OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / gonum.org / v1 / gonum / mat / gsvd.go
diff --git a/vendor/gonum.org/v1/gonum/mat/gsvd.go b/vendor/gonum.org/v1/gonum/mat/gsvd.go
new file mode 100644 (file)
index 0000000..f2b82cb
--- /dev/null
@@ -0,0 +1,371 @@
+// Copyright ©2017 The Gonum Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package mat
+
+import (
+       "gonum.org/v1/gonum/blas/blas64"
+       "gonum.org/v1/gonum/floats"
+       "gonum.org/v1/gonum/lapack"
+       "gonum.org/v1/gonum/lapack/lapack64"
+)
+
+// GSVD is a type for creating and using the Generalized Singular Value Decomposition
+// (GSVD) of a matrix.
+//
+// The factorization is a linear transformation of the data sets from the given
+// variable×sample spaces to reduced and diagonalized "eigenvariable"×"eigensample"
+// spaces.
+type GSVD struct {
+       kind GSVDKind
+
+       r, p, c, k, l int
+       s1, s2        []float64
+       a, b, u, v, q blas64.General
+
+       work  []float64
+       iwork []int
+}
+
+// Factorize computes the generalized singular value decomposition (GSVD) of the input
+// the r×c matrix A and the p×c matrix B. The singular values of A and B are computed
+// in all cases, while the singular vectors are optionally computed depending on the
+// input kind.
+//
+// The full singular value decomposition (kind == GSVDU|GSVDV|GSVDQ) deconstructs A and B as
+//  A = U * Σ₁ * [ 0 R ] * Q^T
+//
+//  B = V * Σ₂ * [ 0 R ] * Q^T
+// where Σ₁ and Σ₂ are r×(k+l) and p×(k+l) diagonal matrices of singular values, and
+// U, V and Q are r×r, p×p and c×c orthogonal matrices of singular vectors. k+l is the
+// effective numerical rank of the matrix [ A^T B^T ]^T.
+//
+// It is frequently not necessary to compute the full GSVD. Computation time and
+// storage costs can be reduced using the appropriate kind. Either only the singular
+// values can be computed (kind == SVDNone), or in conjunction with specific singular
+// vectors (kind bit set according to matrix.GSVDU, matrix.GSVDV and matrix.GSVDQ).
+//
+// Factorize returns whether the decomposition succeeded. If the decomposition
+// failed, routines that require a successful factorization will panic.
+func (gsvd *GSVD) Factorize(a, b Matrix, kind GSVDKind) (ok bool) {
+       r, c := a.Dims()
+       gsvd.r, gsvd.c = r, c
+       p, c := b.Dims()
+       gsvd.p = p
+       if gsvd.c != c {
+               panic(ErrShape)
+       }
+       var jobU, jobV, jobQ lapack.GSVDJob
+       switch {
+       default:
+               panic("gsvd: bad input kind")
+       case kind == GSVDNone:
+               jobU = lapack.GSVDNone
+               jobV = lapack.GSVDNone
+               jobQ = lapack.GSVDNone
+       case (GSVDU|GSVDV|GSVDQ)&kind != 0:
+               if GSVDU&kind != 0 {
+                       jobU = lapack.GSVDU
+                       gsvd.u = blas64.General{
+                               Rows:   r,
+                               Cols:   r,
+                               Stride: r,
+                               Data:   use(gsvd.u.Data, r*r),
+                       }
+               }
+               if GSVDV&kind != 0 {
+                       jobV = lapack.GSVDV
+                       gsvd.v = blas64.General{
+                               Rows:   p,
+                               Cols:   p,
+                               Stride: p,
+                               Data:   use(gsvd.v.Data, p*p),
+                       }
+               }
+               if GSVDQ&kind != 0 {
+                       jobQ = lapack.GSVDQ
+                       gsvd.q = blas64.General{
+                               Rows:   c,
+                               Cols:   c,
+                               Stride: c,
+                               Data:   use(gsvd.q.Data, c*c),
+                       }
+               }
+       }
+
+       // A and B are destroyed on call, so copy the matrices.
+       aCopy := DenseCopyOf(a)
+       bCopy := DenseCopyOf(b)
+
+       gsvd.s1 = use(gsvd.s1, c)
+       gsvd.s2 = use(gsvd.s2, c)
+
+       gsvd.iwork = useInt(gsvd.iwork, c)
+
+       gsvd.work = use(gsvd.work, 1)
+       lapack64.Ggsvd3(jobU, jobV, jobQ, aCopy.mat, bCopy.mat, gsvd.s1, gsvd.s2, gsvd.u, gsvd.v, gsvd.q, gsvd.work, -1, gsvd.iwork)
+       gsvd.work = use(gsvd.work, int(gsvd.work[0]))
+       gsvd.k, gsvd.l, ok = lapack64.Ggsvd3(jobU, jobV, jobQ, aCopy.mat, bCopy.mat, gsvd.s1, gsvd.s2, gsvd.u, gsvd.v, gsvd.q, gsvd.work, len(gsvd.work), gsvd.iwork)
+       if ok {
+               gsvd.a = aCopy.mat
+               gsvd.b = bCopy.mat
+               gsvd.kind = kind
+       }
+       return ok
+}
+
+// Kind returns the matrix.GSVDKind of the decomposition. If no decomposition has been
+// computed, Kind returns 0.
+func (gsvd *GSVD) Kind() GSVDKind {
+       return gsvd.kind
+}
+
+// Rank returns the k and l terms of the rank of [ A^T B^T ]^T.
+func (gsvd *GSVD) Rank() (k, l int) {
+       return gsvd.k, gsvd.l
+}
+
+// GeneralizedValues returns the generalized singular values of the factorized matrices.
+// If the input slice is non-nil, the values will be stored in-place into the slice.
+// In this case, the slice must have length min(r,c)-k, and GeneralizedValues will
+// panic with matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
+// a new slice of the appropriate length will be allocated and returned.
+//
+// GeneralizedValues will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) GeneralizedValues(v []float64) []float64 {
+       if gsvd.kind == 0 {
+               panic("gsvd: no decomposition computed")
+       }
+       r := gsvd.r
+       c := gsvd.c
+       k := gsvd.k
+       d := min(r, c)
+       if v == nil {
+               v = make([]float64, d-k)
+       }
+       if len(v) != d-k {
+               panic(ErrSliceLengthMismatch)
+       }
+       floats.DivTo(v, gsvd.s1[k:d], gsvd.s2[k:d])
+       return v
+}
+
+// ValuesA returns the singular values of the factorized A matrix.
+// If the input slice is non-nil, the values will be stored in-place into the slice.
+// In this case, the slice must have length min(r,c)-k, and ValuesA will panic with
+// matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
+// a new slice of the appropriate length will be allocated and returned.
+//
+// ValuesA will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) ValuesA(s []float64) []float64 {
+       if gsvd.kind == 0 {
+               panic("gsvd: no decomposition computed")
+       }
+       r := gsvd.r
+       c := gsvd.c
+       k := gsvd.k
+       d := min(r, c)
+       if s == nil {
+               s = make([]float64, d-k)
+       }
+       if len(s) != d-k {
+               panic(ErrSliceLengthMismatch)
+       }
+       copy(s, gsvd.s1[k:min(r, c)])
+       return s
+}
+
+// ValuesB returns the singular values of the factorized B matrix.
+// If the input slice is non-nil, the values will be stored in-place into the slice.
+// In this case, the slice must have length min(r,c)-k, and ValuesB will panic with
+// matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
+// a new slice of the appropriate length will be allocated and returned.
+//
+// ValuesB will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) ValuesB(s []float64) []float64 {
+       if gsvd.kind == 0 {
+               panic("gsvd: no decomposition computed")
+       }
+       r := gsvd.r
+       c := gsvd.c
+       k := gsvd.k
+       d := min(r, c)
+       if s == nil {
+               s = make([]float64, d-k)
+       }
+       if len(s) != d-k {
+               panic(ErrSliceLengthMismatch)
+       }
+       copy(s, gsvd.s2[k:d])
+       return s
+}
+
+// ZeroRTo extracts the matrix [ 0 R ] from the singular value decomposition, storing
+// the result in-place into dst. [ 0 R ] is size (k+l)×c.
+// If dst is nil, a new matrix is allocated. The resulting ZeroR matrix is returned.
+//
+// ZeroRTo will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) ZeroRTo(dst *Dense) *Dense {
+       if gsvd.kind == 0 {
+               panic("gsvd: no decomposition computed")
+       }
+       r := gsvd.r
+       c := gsvd.c
+       k := gsvd.k
+       l := gsvd.l
+       h := min(k+l, r)
+       if dst == nil {
+               dst = NewDense(k+l, c, nil)
+       } else {
+               dst.reuseAsZeroed(k+l, c)
+       }
+       a := Dense{
+               mat:     gsvd.a,
+               capRows: r,
+               capCols: c,
+       }
+       dst.Slice(0, h, c-k-l, c).(*Dense).
+               Copy(a.Slice(0, h, c-k-l, c))
+       if r < k+l {
+               b := Dense{
+                       mat:     gsvd.b,
+                       capRows: gsvd.p,
+                       capCols: c,
+               }
+               dst.Slice(r, k+l, c+r-k-l, c).(*Dense).
+                       Copy(b.Slice(r-k, l, c+r-k-l, c))
+       }
+       return dst
+}
+
+// SigmaATo extracts the matrix Σ₁ from the singular value decomposition, storing
+// the result in-place into dst. Σ₁ is size r×(k+l).
+// If dst is nil, a new matrix is allocated. The resulting SigmaA matrix is returned.
+//
+// SigmaATo will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) SigmaATo(dst *Dense) *Dense {
+       if gsvd.kind == 0 {
+               panic("gsvd: no decomposition computed")
+       }
+       r := gsvd.r
+       k := gsvd.k
+       l := gsvd.l
+       if dst == nil {
+               dst = NewDense(r, k+l, nil)
+       } else {
+               dst.reuseAsZeroed(r, k+l)
+       }
+       for i := 0; i < k; i++ {
+               dst.set(i, i, 1)
+       }
+       for i := k; i < min(r, k+l); i++ {
+               dst.set(i, i, gsvd.s1[i])
+       }
+       return dst
+}
+
+// SigmaBTo extracts the matrix Σ₂ from the singular value decomposition, storing
+// the result in-place into dst. Σ₂ is size p×(k+l).
+// If dst is nil, a new matrix is allocated. The resulting SigmaB matrix is returned.
+//
+// SigmaBTo will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) SigmaBTo(dst *Dense) *Dense {
+       if gsvd.kind == 0 {
+               panic("gsvd: no decomposition computed")
+       }
+       r := gsvd.r
+       p := gsvd.p
+       k := gsvd.k
+       l := gsvd.l
+       if dst == nil {
+               dst = NewDense(p, k+l, nil)
+       } else {
+               dst.reuseAsZeroed(p, k+l)
+       }
+       for i := 0; i < min(l, r-k); i++ {
+               dst.set(i, i+k, gsvd.s2[k+i])
+       }
+       for i := r - k; i < l; i++ {
+               dst.set(i, i+k, 1)
+       }
+       return dst
+}
+
+// UTo extracts the matrix U from the singular value decomposition, storing
+// the result in-place into dst. U is size r×r.
+// If dst is nil, a new matrix is allocated. The resulting U matrix is returned.
+//
+// UTo will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) UTo(dst *Dense) *Dense {
+       if gsvd.kind&GSVDU == 0 {
+               panic("mat: improper GSVD kind")
+       }
+       r := gsvd.u.Rows
+       c := gsvd.u.Cols
+       if dst == nil {
+               dst = NewDense(r, c, nil)
+       } else {
+               dst.reuseAs(r, c)
+       }
+
+       tmp := &Dense{
+               mat:     gsvd.u,
+               capRows: r,
+               capCols: c,
+       }
+       dst.Copy(tmp)
+       return dst
+}
+
+// VTo extracts the matrix V from the singular value decomposition, storing
+// the result in-place into dst. V is size p×p.
+// If dst is nil, a new matrix is allocated. The resulting V matrix is returned.
+//
+// VTo will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) VTo(dst *Dense) *Dense {
+       if gsvd.kind&GSVDV == 0 {
+               panic("mat: improper GSVD kind")
+       }
+       r := gsvd.v.Rows
+       c := gsvd.v.Cols
+       if dst == nil {
+               dst = NewDense(r, c, nil)
+       } else {
+               dst.reuseAs(r, c)
+       }
+
+       tmp := &Dense{
+               mat:     gsvd.v,
+               capRows: r,
+               capCols: c,
+       }
+       dst.Copy(tmp)
+       return dst
+}
+
+// QTo extracts the matrix Q from the singular value decomposition, storing
+// the result in-place into dst. Q is size c×c.
+// If dst is nil, a new matrix is allocated. The resulting Q matrix is returned.
+//
+// QTo will panic if the receiver does not contain a successful factorization.
+func (gsvd *GSVD) QTo(dst *Dense) *Dense {
+       if gsvd.kind&GSVDQ == 0 {
+               panic("mat: improper GSVD kind")
+       }
+       r := gsvd.q.Rows
+       c := gsvd.q.Cols
+       if dst == nil {
+               dst = NewDense(r, c, nil)
+       } else {
+               dst.reuseAs(r, c)
+       }
+
+       tmp := &Dense{
+               mat:     gsvd.q,
+               capRows: r,
+               capCols: c,
+       }
+       dst.Copy(tmp)
+       return dst
+}