OSDN Git Service

net: Fix recursive descent in __scm_destroy().
[linux-kernel-docs/linux-2.4.36.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <asm/param.h>  /* for HZ */
5
6 extern unsigned long event;
7
8 #include <linux/config.h>
9 #include <linux/binfmts.h>
10 #include <linux/threads.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/times.h>
14 #include <linux/timex.h>
15 #include <linux/rbtree.h>
16
17 #include <asm/system.h>
18 #include <asm/semaphore.h>
19 #include <asm/page.h>
20 #include <asm/ptrace.h>
21 #include <asm/mmu.h>
22
23 #include <linux/smp.h>
24 #include <linux/tty.h>
25 #include <linux/sem.h>
26 #include <linux/signal.h>
27 #include <linux/securebits.h>
28 #include <linux/fs_struct.h>
29
30 struct exec_domain;
31
32 /*
33  * cloning flags:
34  */
35 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
36 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
37 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
38 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
39 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
40 #define CLONE_PID       0x00001000      /* set if pid shared */
41 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
42 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
43 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
44 #define CLONE_THREAD    0x00010000      /* Same thread group? */
45 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
46
47 #define CLONE_SIGNAL    (CLONE_SIGHAND | CLONE_THREAD)
48
49 /*
50  * These are the constant used to fake the fixed-point load-average
51  * counting. Some notes:
52  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
53  *    a load-average precision of 10 bits integer + 11 bits fractional
54  *  - if you want to count load-averages more often, you need more
55  *    precision, or rounding will get you. With 2-second counting freq,
56  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
57  *    11 bit fractions.
58  */
59 extern unsigned long avenrun[];         /* Load averages */
60
61 #define FSHIFT          11              /* nr of bits of precision */
62 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
63 #define LOAD_FREQ       (5*HZ)          /* 5 sec intervals */
64 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
65 #define EXP_5           2014            /* 1/exp(5sec/5min) */
66 #define EXP_15          2037            /* 1/exp(5sec/15min) */
67
68 #define CALC_LOAD(load,exp,n) \
69         load *= exp; \
70         load += n*(FIXED_1-exp); \
71         load >>= FSHIFT;
72
73 #define CT_TO_SECS(x)   ((x) / HZ)
74 #define CT_TO_USECS(x)  (((x) % HZ) * 1000000/HZ)
75
76 extern int nr_running, nr_threads;
77 extern int last_pid;
78
79 #include <linux/fs.h>
80 #include <linux/time.h>
81 #include <linux/param.h>
82 #include <linux/resource.h>
83 #ifdef __KERNEL__
84 #include <linux/timer.h>
85 #endif
86
87 #include <asm/processor.h>
88
89 #define TASK_RUNNING            0
90 #define TASK_INTERRUPTIBLE      1
91 #define TASK_UNINTERRUPTIBLE    2
92 #define TASK_ZOMBIE             4
93 #define TASK_STOPPED            8
94
95 #define __set_task_state(tsk, state_value)              \
96         do { (tsk)->state = (state_value); } while (0)
97 #define set_task_state(tsk, state_value)                \
98         set_mb((tsk)->state, (state_value))
99
100 #define __set_current_state(state_value)                        \
101         do { current->state = (state_value); } while (0)
102 #define set_current_state(state_value)          \
103         set_mb(current->state, (state_value))
104
105 /*
106  * Scheduling policies
107  */
108 #define SCHED_OTHER             0
109 #define SCHED_FIFO              1
110 #define SCHED_RR                2
111
112 /*
113  * This is an additional bit set when we want to
114  * yield the CPU for one re-schedule..
115  */
116 #define SCHED_YIELD             0x10
117
118 struct sched_param {
119         int sched_priority;
120 };
121
122 struct completion;
123
124 #ifdef __KERNEL__
125
126 #include <linux/spinlock.h>
127
128 /*
129  * This serializes "schedule()" and also protects
130  * the run-queue from deletions/modifications (but
131  * _adding_ to the beginning of the run-queue has
132  * a separate lock).
133  */
134 extern rwlock_t tasklist_lock;
135 extern spinlock_t runqueue_lock;
136 extern spinlock_t mmlist_lock;
137
138 extern void sched_init(void);
139 extern void init_idle(void);
140 extern void show_state(void);
141 extern void cpu_init (void);
142 extern void trap_init(void);
143 extern void update_process_times(int user);
144 extern void update_one_process(struct task_struct *p, unsigned long user,
145                                unsigned long system, int cpu);
146
147 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
148 extern signed long FASTCALL(schedule_timeout(signed long timeout));
149 asmlinkage void schedule(void);
150
151 extern int schedule_task(struct tq_struct *task);
152 extern void flush_scheduled_tasks(void);
153 extern int start_context_thread(void);
154 extern int current_is_keventd(void);
155
156 #if CONFIG_SMP
157 extern void set_cpus_allowed(struct task_struct *p, unsigned long new_mask);
158 #else
159 # define set_cpus_allowed(p, new_mask) do { } while (0)
160 #endif
161
162 /*
163  * The default fd array needs to be at least BITS_PER_LONG,
164  * as this is the granularity returned by copy_fdset().
165  */
166 #define NR_OPEN_DEFAULT BITS_PER_LONG
167
168 struct namespace;
169 /*
170  * Open file table structure
171  */
172 struct files_struct {
173         atomic_t count;
174         rwlock_t file_lock;     /* Protects all the below members.  Nests inside tsk->alloc_lock */
175         int max_fds;
176         int max_fdset;
177         int next_fd;
178         struct file ** fd;      /* current fd array */
179         fd_set *close_on_exec;
180         fd_set *open_fds;
181         fd_set close_on_exec_init;
182         fd_set open_fds_init;
183         struct file * fd_array[NR_OPEN_DEFAULT];
184 };
185
186 #define INIT_FILES \
187 {                                                       \
188         count:          ATOMIC_INIT(1),                 \
189         file_lock:      RW_LOCK_UNLOCKED,               \
190         max_fds:        NR_OPEN_DEFAULT,                \
191         max_fdset:      __FD_SETSIZE,                   \
192         next_fd:        0,                              \
193         fd:             &init_files.fd_array[0],        \
194         close_on_exec:  &init_files.close_on_exec_init, \
195         open_fds:       &init_files.open_fds_init,      \
196         close_on_exec_init: { { 0, } },                 \
197         open_fds_init:  { { 0, } },                     \
198         fd_array:       { NULL, }                       \
199 }
200
201 /* Maximum number of active map areas.. This is a random (large) number */
202 #define DEFAULT_MAX_MAP_COUNT   (65536)
203
204 extern int max_map_count;
205
206 struct mm_struct {
207         struct vm_area_struct * mmap;           /* list of VMAs */
208         rb_root_t mm_rb;
209         struct vm_area_struct * mmap_cache;     /* last find_vma result */
210         pgd_t * pgd;
211         atomic_t mm_users;                      /* How many users with user space? */
212         atomic_t mm_count;                      /* How many references to "struct mm_struct" (users count as 1) */
213         int map_count;                          /* number of VMAs */
214         struct rw_semaphore mmap_sem;
215         spinlock_t page_table_lock;             /* Protects task page tables and mm->rss */
216
217         struct list_head mmlist;                /* List of all active mm's.  These are globally strung
218                                                  * together off init_mm.mmlist, and are protected
219                                                  * by mmlist_lock
220                                                  */
221
222         unsigned long start_code, end_code, start_data, end_data;
223         unsigned long start_brk, brk, start_stack;
224         unsigned long arg_start, arg_end, env_start, env_end;
225         unsigned long rss, total_vm, locked_vm;
226         unsigned long def_flags;
227         unsigned long cpu_vm_mask;
228         unsigned long swap_address;
229
230         unsigned dumpable:1;
231
232         /* Architecture-specific MM context */
233         mm_context_t context;
234 };
235
236 extern int mmlist_nr;
237
238 #define INIT_MM(name) \
239 {                                                       \
240         mm_rb:          RB_ROOT,                        \
241         pgd:            swapper_pg_dir,                 \
242         mm_users:       ATOMIC_INIT(2),                 \
243         mm_count:       ATOMIC_INIT(1),                 \
244         mmap_sem:       __RWSEM_INITIALIZER(name.mmap_sem), \
245         page_table_lock: SPIN_LOCK_UNLOCKED,            \
246         mmlist:         LIST_HEAD_INIT(name.mmlist),    \
247 }
248
249 struct signal_struct {
250         atomic_t                count;
251         struct k_sigaction      action[_NSIG];
252         spinlock_t              siglock;
253 };
254
255
256 #define INIT_SIGNALS {  \
257         count:          ATOMIC_INIT(1),                 \
258         action:         { {{0,}}, },                    \
259         siglock:        SPIN_LOCK_UNLOCKED              \
260 }
261
262 /*
263  * Some day this will be a full-fledged user tracking system..
264  */
265 struct user_struct {
266         atomic_t __count;       /* reference count */
267         atomic_t processes;     /* How many processes does this user have? */
268         atomic_t files;         /* How many open files does this user have? */
269
270         /* Hash table maintenance information */
271         struct user_struct *next, **pprev;
272         uid_t uid;
273 };
274
275 #define get_current_user() ({                           \
276         struct user_struct *__tmp_user = current->user; \
277         atomic_inc(&__tmp_user->__count);               \
278         __tmp_user; })
279
280 extern struct user_struct root_user;
281 #define INIT_USER (&root_user)
282
283 struct task_struct {
284         /*
285          * offsets of these are hardcoded elsewhere - touch with care
286          */
287         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
288         unsigned long flags;    /* per process flags, defined below */
289         int sigpending;
290         mm_segment_t addr_limit;        /* thread address space:
291                                                 0-0xBFFFFFFF for user-thead
292                                                 0-0xFFFFFFFF for kernel-thread
293                                          */
294         struct exec_domain *exec_domain;
295         volatile long need_resched;
296         unsigned long ptrace;
297
298         int lock_depth;         /* Lock depth */
299
300 /*
301  * offset 32 begins here on 32-bit platforms. We keep
302  * all fields in a single cacheline that are needed for
303  * the goodness() loop in schedule().
304  */
305         long counter;
306         long nice;
307         unsigned long policy;
308         struct mm_struct *mm;
309         int processor;
310         /*
311          * cpus_runnable is ~0 if the process is not running on any
312          * CPU. It's (1 << cpu) if it's running on a CPU. This mask
313          * is updated under the runqueue lock.
314          *
315          * To determine whether a process might run on a CPU, this
316          * mask is AND-ed with cpus_allowed.
317          */
318         unsigned long cpus_runnable, cpus_allowed;
319         /*
320          * (only the 'next' pointer fits into the cacheline, but
321          * that's just fine.)
322          */
323         struct list_head run_list;
324         unsigned long sleep_time;
325
326         struct task_struct *next_task, *prev_task;
327         struct mm_struct *active_mm;
328         struct list_head local_pages;
329         unsigned int allocation_order, nr_local_pages;
330
331 /* task state */
332         struct linux_binfmt *binfmt;
333         int exit_code, exit_signal;
334         int pdeath_signal;  /*  The signal sent when the parent dies  */
335         /* ??? */
336         unsigned long personality;
337         int did_exec:1;
338         unsigned task_dumpable:1;
339         pid_t pid;
340         pid_t pgrp;
341         pid_t tty_old_pgrp;
342         pid_t session;
343         pid_t tgid;
344         /* boolean value for session group leader */
345         int leader;
346         /* 
347          * pointers to (original) parent process, youngest child, younger sibling,
348          * older sibling, respectively.  (p->father can be replaced with 
349          * p->p_pptr->pid)
350          */
351         struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
352         struct list_head thread_group;
353
354         /* PID hash table linkage. */
355         struct task_struct *pidhash_next;
356         struct task_struct **pidhash_pprev;
357
358         wait_queue_head_t wait_chldexit;        /* for wait4() */
359         struct completion *vfork_done;          /* for vfork() */
360         unsigned long rt_priority;
361         unsigned long it_real_value, it_prof_value, it_virt_value;
362         unsigned long it_real_incr, it_prof_incr, it_virt_incr;
363         struct timer_list real_timer;
364         struct tms times;
365         unsigned long start_time;
366         long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
367 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
368         unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
369         int swappable:1;
370 /* process credentials */
371         uid_t uid,euid,suid,fsuid;
372         gid_t gid,egid,sgid,fsgid;
373         int ngroups;
374         gid_t   groups[NGROUPS];
375         kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
376         int keep_capabilities:1;
377         struct user_struct *user;
378 /* limits */
379         struct rlimit rlim[RLIM_NLIMITS];
380         unsigned short used_math;
381         char comm[16];
382 /* file system info */
383         int link_count, total_link_count;
384         struct tty_struct *tty; /* NULL if no tty */
385         unsigned int locks; /* How many file locks are being held */
386 /* ipc stuff */
387         struct sem_undo *semundo;
388         struct sem_queue *semsleeping;
389 /* CPU-specific state of this task */
390         struct thread_struct thread;
391 /* filesystem information */
392         struct fs_struct *fs;
393 /* open file information */
394         struct files_struct *files;
395 /* namespace */
396         struct namespace *namespace;
397 /* signal handlers */
398         spinlock_t sigmask_lock;        /* Protects signal and blocked */
399         struct signal_struct *sig;
400
401         sigset_t blocked;
402         struct sigpending pending;
403
404         unsigned long sas_ss_sp;
405         size_t sas_ss_size;
406         int (*notifier)(void *priv);
407         void *notifier_data;
408         sigset_t *notifier_mask;
409         
410 /* Thread group tracking */
411         u32 parent_exec_id;
412         u32 self_exec_id;
413 /* Protection of (de-)allocation: mm, files, fs, tty */
414         spinlock_t alloc_lock;
415
416 /* journalling filesystem info */
417         void *journal_info;
418
419         struct list_head *scm_work_list;
420 };
421
422 /*
423  * Per process flags
424  */
425 #define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
426                                         /* Not implemented yet, only for 486*/
427 #define PF_STARTING     0x00000002      /* being created */
428 #define PF_EXITING      0x00000004      /* getting shut down */
429 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
430 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
431 #define PF_DUMPCORE     0x00000200      /* dumped core */
432 #define PF_SIGNALED     0x00000400      /* killed by a signal */
433 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
434 #define PF_MEMDIE      0x00001000       /* Killed for out-of-memory */
435 #define PF_FREE_PAGES   0x00002000      /* per process page freeing */
436 #define PF_NOIO         0x00004000      /* avoid generating further I/O */
437 #define PF_FSTRANS      0x00008000      /* inside a filesystem transaction */
438
439 #define PF_USEDFPU      0x00100000      /* task used FPU this quantum (SMP) */
440
441 /*
442  * Ptrace flags
443  */
444
445 #define PT_PTRACED      0x00000001
446 #define PT_TRACESYS     0x00000002
447 #define PT_DTRACE       0x00000004      /* delayed trace (used on m68k, i386) */
448 #define PT_TRACESYSGOOD 0x00000008
449 #define PT_PTRACE_CAP   0x00000010      /* ptracer can follow suid-exec */
450
451 #define is_dumpable(tsk)    ((tsk)->task_dumpable && (tsk)->mm && (tsk)->mm->dumpable)
452
453 /*
454  * Limit the stack by to some sane default: root can always
455  * increase this limit if needed..  8MB seems reasonable.
456  */
457 #define _STK_LIM        (8*1024*1024)
458
459 #define DEF_COUNTER     (10*HZ/100)     /* 100 ms time slice */
460 #define MAX_COUNTER     (20*HZ/100)
461 #define DEF_NICE        (0)
462
463 extern void yield(void);
464
465 /*
466  * The default (Linux) execution domain.
467  */
468 extern struct exec_domain       default_exec_domain;
469
470 /*
471  *  INIT_TASK is used to set up the first task table, touch at
472  * your own risk!. Base=0, limit=0x1fffff (=2MB)
473  */
474 #define INIT_TASK(tsk)  \
475 {                                                                       \
476     state:              0,                                              \
477     flags:              0,                                              \
478     sigpending:         0,                                              \
479     addr_limit:         KERNEL_DS,                                      \
480     exec_domain:        &default_exec_domain,                           \
481     lock_depth:         -1,                                             \
482     counter:            DEF_COUNTER,                                    \
483     nice:               DEF_NICE,                                       \
484     policy:             SCHED_OTHER,                                    \
485     mm:                 NULL,                                           \
486     active_mm:          &init_mm,                                       \
487     cpus_runnable:      ~0UL,                                           \
488     cpus_allowed:       ~0UL,                                           \
489     run_list:           LIST_HEAD_INIT(tsk.run_list),                   \
490     next_task:          &tsk,                                           \
491     prev_task:          &tsk,                                           \
492     p_opptr:            &tsk,                                           \
493     p_pptr:             &tsk,                                           \
494     thread_group:       LIST_HEAD_INIT(tsk.thread_group),               \
495     wait_chldexit:      __WAIT_QUEUE_HEAD_INITIALIZER(tsk.wait_chldexit),\
496     real_timer:         {                                               \
497         function:               it_real_fn                              \
498     },                                                                  \
499     cap_effective:      CAP_INIT_EFF_SET,                               \
500     cap_inheritable:    CAP_INIT_INH_SET,                               \
501     cap_permitted:      CAP_FULL_SET,                                   \
502     keep_capabilities:  0,                                              \
503     rlim:               INIT_RLIMITS,                                   \
504     user:               INIT_USER,                                      \
505     comm:               "swapper",                                      \
506     thread:             INIT_THREAD,                                    \
507     fs:                 &init_fs,                                       \
508     files:              &init_files,                                    \
509     sigmask_lock:       SPIN_LOCK_UNLOCKED,                             \
510     sig:                &init_signals,                                  \
511     pending:            { NULL, &tsk.pending.head, {{0}}},              \
512     blocked:            {{0}},                                          \
513     alloc_lock:         SPIN_LOCK_UNLOCKED,                             \
514     journal_info:       NULL,                                           \
515 }
516
517
518 #ifndef INIT_TASK_SIZE
519 # define INIT_TASK_SIZE 2048*sizeof(long)
520 #endif
521
522 union task_union {
523         struct task_struct task;
524         unsigned long stack[INIT_TASK_SIZE/sizeof(long)];
525 };
526
527 extern union task_union init_task_union;
528
529 extern struct   mm_struct init_mm;
530 extern struct task_struct *init_tasks[NR_CPUS];
531
532 /* PID hashing. (shouldnt this be dynamic?) */
533 #define PIDHASH_SZ (4096 >> 2)
534 extern struct task_struct *pidhash[PIDHASH_SZ];
535
536 #define pid_hashfn(x)   ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))
537
538 static inline void hash_pid(struct task_struct *p)
539 {
540         struct task_struct **htable = &pidhash[pid_hashfn(p->pid)];
541
542         if((p->pidhash_next = *htable) != NULL)
543                 (*htable)->pidhash_pprev = &p->pidhash_next;
544         *htable = p;
545         p->pidhash_pprev = htable;
546 }
547
548 static inline void unhash_pid(struct task_struct *p)
549 {
550         if(p->pidhash_next)
551                 p->pidhash_next->pidhash_pprev = p->pidhash_pprev;
552         *p->pidhash_pprev = p->pidhash_next;
553 }
554
555 static inline struct task_struct *find_task_by_pid(int pid)
556 {
557         struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];
558
559         for(p = *htable; p && p->pid != pid; p = p->pidhash_next)
560                 ;
561
562         return p;
563 }
564
565 #define task_has_cpu(tsk) ((tsk)->cpus_runnable != ~0UL)
566
567 static inline void task_set_cpu(struct task_struct *tsk, unsigned int cpu)
568 {
569         tsk->processor = cpu;
570         tsk->cpus_runnable = 1UL << cpu;
571 }
572
573 static inline void task_release_cpu(struct task_struct *tsk)
574 {
575         tsk->cpus_runnable = ~0UL;
576 }
577
578 /* per-UID process charging. */
579 extern struct user_struct * alloc_uid(uid_t);
580 extern void free_uid(struct user_struct *);
581 extern void switch_uid(struct user_struct *);
582
583 #include <asm/current.h>
584
585 extern unsigned long volatile jiffies;
586 extern unsigned long itimer_ticks;
587 extern unsigned long itimer_next;
588 extern struct timeval xtime;
589 extern void do_timer(struct pt_regs *);
590
591 extern unsigned int * prof_buffer;
592 extern unsigned long prof_len;
593 extern unsigned long prof_shift;
594
595 #define CURRENT_TIME (xtime.tv_sec)
596
597 extern void FASTCALL(__wake_up(wait_queue_head_t *q, unsigned int mode, int nr));
598 extern void FASTCALL(__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr));
599 extern void FASTCALL(sleep_on(wait_queue_head_t *q));
600 extern long FASTCALL(sleep_on_timeout(wait_queue_head_t *q,
601                                       signed long timeout));
602 extern void FASTCALL(interruptible_sleep_on(wait_queue_head_t *q));
603 extern long FASTCALL(interruptible_sleep_on_timeout(wait_queue_head_t *q,
604                                                     signed long timeout));
605 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
606
607 #define wake_up(x)                      __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
608 #define wake_up_nr(x, nr)               __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
609 #define wake_up_all(x)                  __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0)
610 #define wake_up_sync(x)                 __wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
611 #define wake_up_sync_nr(x, nr)          __wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
612 #define wake_up_interruptible(x)        __wake_up((x),TASK_INTERRUPTIBLE, 1)
613 #define wake_up_interruptible_nr(x, nr) __wake_up((x),TASK_INTERRUPTIBLE, nr)
614 #define wake_up_interruptible_all(x)    __wake_up((x),TASK_INTERRUPTIBLE, 0)
615 #define wake_up_interruptible_sync(x)   __wake_up_sync((x),TASK_INTERRUPTIBLE, 1)
616 #define wake_up_interruptible_sync_nr(x, nr) __wake_up_sync((x),TASK_INTERRUPTIBLE,  nr)
617 asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru);
618
619 extern int in_group_p(gid_t);
620 extern int in_egroup_p(gid_t);
621
622 extern void proc_caches_init(void);
623 extern void flush_signals(struct task_struct *);
624 extern void flush_signal_handlers(struct task_struct *);
625 extern void sig_exit(int, int, struct siginfo *);
626 extern int dequeue_signal(sigset_t *, siginfo_t *);
627 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
628                               sigset_t *mask);
629 extern void unblock_all_signals(void);
630 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
631 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
632 extern int kill_pg_info(int, struct siginfo *, pid_t);
633 extern int kill_sl_info(int, struct siginfo *, pid_t);
634 extern int kill_proc_info(int, struct siginfo *, pid_t);
635 extern void notify_parent(struct task_struct *, int);
636 extern void do_notify_parent(struct task_struct *, int);
637 extern void force_sig(int, struct task_struct *);
638 extern int send_sig(int, struct task_struct *, int);
639 extern int kill_pg(pid_t, int, int);
640 extern int kill_sl(pid_t, int, int);
641 extern int kill_proc(pid_t, int, int);
642 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
643 extern int do_sigaltstack(const stack_t *, stack_t *, unsigned long);
644
645 static inline int signal_pending(struct task_struct *p)
646 {
647         return (p->sigpending != 0);
648 }
649
650 /*
651  * Re-calculate pending state from the set of locally pending
652  * signals, globally pending signals, and blocked signals.
653  */
654 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
655 {
656         unsigned long ready;
657         long i;
658
659         switch (_NSIG_WORDS) {
660         default:
661                 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
662                         ready |= signal->sig[i] &~ blocked->sig[i];
663                 break;
664
665         case 4: ready  = signal->sig[3] &~ blocked->sig[3];
666                 ready |= signal->sig[2] &~ blocked->sig[2];
667                 ready |= signal->sig[1] &~ blocked->sig[1];
668                 ready |= signal->sig[0] &~ blocked->sig[0];
669                 break;
670
671         case 2: ready  = signal->sig[1] &~ blocked->sig[1];
672                 ready |= signal->sig[0] &~ blocked->sig[0];
673                 break;
674
675         case 1: ready  = signal->sig[0] &~ blocked->sig[0];
676         }
677         return ready != 0;
678 }
679
680 /* Reevaluate whether the task has signals pending delivery.
681    This is required every time the blocked sigset_t changes.
682    All callers should have t->sigmask_lock.  */
683
684 static inline void recalc_sigpending(struct task_struct *t)
685 {
686         t->sigpending = has_pending_signals(&t->pending.signal, &t->blocked);
687 }
688
689 /* True if we are on the alternate signal stack.  */
690
691 static inline int on_sig_stack(unsigned long sp)
692 {
693         return (sp - current->sas_ss_sp < current->sas_ss_size);
694 }
695
696 static inline int sas_ss_flags(unsigned long sp)
697 {
698         return (current->sas_ss_size == 0 ? SS_DISABLE
699                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
700 }
701
702 extern int request_irq(unsigned int,
703                        void (*handler)(int, void *, struct pt_regs *),
704                        unsigned long, const char *, void *);
705 extern void free_irq(unsigned int, void *);
706
707 /*
708  * This has now become a routine instead of a macro, it sets a flag if
709  * it returns true (to do BSD-style accounting where the process is flagged
710  * if it uses root privs). The implication of this is that you should do
711  * normal permissions checks first, and check suser() last.
712  *
713  * [Dec 1997 -- Chris Evans]
714  * For correctness, the above considerations need to be extended to
715  * fsuser(). This is done, along with moving fsuser() checks to be
716  * last.
717  *
718  * These will be removed, but in the mean time, when the SECURE_NOROOT 
719  * flag is set, uids don't grant privilege.
720  */
721 static inline int suser(void)
722 {
723         if (!issecure(SECURE_NOROOT) && current->euid == 0) { 
724                 current->flags |= PF_SUPERPRIV;
725                 return 1;
726         }
727         return 0;
728 }
729
730 static inline int fsuser(void)
731 {
732         if (!issecure(SECURE_NOROOT) && current->fsuid == 0) {
733                 current->flags |= PF_SUPERPRIV;
734                 return 1;
735         }
736         return 0;
737 }
738
739 /*
740  * capable() checks for a particular capability.  
741  * New privilege checks should use this interface, rather than suser() or
742  * fsuser(). See include/linux/capability.h for defined capabilities.
743  */
744
745 static inline int capable(int cap)
746 {
747 #if 1 /* ok now */
748         if (cap_raised(current->cap_effective, cap))
749 #else
750         if (cap_is_fs_cap(cap) ? current->fsuid == 0 : current->euid == 0)
751 #endif
752         {
753                 current->flags |= PF_SUPERPRIV;
754                 return 1;
755         }
756         return 0;
757 }
758
759 /*
760  * Routines for handling mm_structs
761  */
762 extern struct mm_struct * mm_alloc(void);
763
764 extern struct mm_struct * start_lazy_tlb(void);
765 extern void end_lazy_tlb(struct mm_struct *mm);
766
767 /* mmdrop drops the mm and the page tables */
768 extern void FASTCALL(__mmdrop(struct mm_struct *));
769 static inline void mmdrop(struct mm_struct * mm)
770 {
771         if (atomic_dec_and_test(&mm->mm_count))
772                 __mmdrop(mm);
773 }
774
775 /* mmput gets rid of the mappings and all user-space */
776 extern void mmput(struct mm_struct *);
777 /* Remove the current tasks stale references to the old mm_struct */
778 extern void mm_release(void);
779
780 /*
781  * Routines for handling the fd arrays
782  */
783 extern struct file ** alloc_fd_array(int);
784 extern int expand_fd_array(struct files_struct *, int nr);
785 extern void free_fd_array(struct file **, int);
786
787 extern fd_set *alloc_fdset(int);
788 extern int expand_fdset(struct files_struct *, int nr);
789 extern void free_fdset(fd_set *, int);
790
791 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
792 extern void flush_thread(void);
793 extern void exit_thread(void);
794
795 extern void exit_mm(struct task_struct *);
796 extern void exit_files(struct task_struct *);
797 extern void exit_sighand(struct task_struct *);
798
799 extern void reparent_to_init(void);
800 extern void daemonize(void);
801
802 extern int do_execve(char *, char **, char **, struct pt_regs *);
803 extern int do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long);
804
805 extern void set_task_comm(struct task_struct *tsk, char *from);
806 extern void get_task_comm(char *to, struct task_struct *tsk);
807
808 extern void FASTCALL(add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));
809 extern void FASTCALL(add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait));
810 extern void FASTCALL(remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));
811
812 extern long kernel_thread(int (*fn)(void *), void * arg, unsigned long flags);
813
814 #define __wait_event(wq, condition)                                     \
815 do {                                                                    \
816         wait_queue_t __wait;                                            \
817         init_waitqueue_entry(&__wait, current);                         \
818                                                                         \
819         add_wait_queue(&wq, &__wait);                                   \
820         for (;;) {                                                      \
821                 set_current_state(TASK_UNINTERRUPTIBLE);                \
822                 if (condition)                                          \
823                         break;                                          \
824                 schedule();                                             \
825         }                                                               \
826         current->state = TASK_RUNNING;                                  \
827         remove_wait_queue(&wq, &__wait);                                \
828 } while (0)
829
830 #define wait_event(wq, condition)                                       \
831 do {                                                                    \
832         if (condition)                                                  \
833                 break;                                                  \
834         __wait_event(wq, condition);                                    \
835 } while (0)
836
837 #define __wait_event_interruptible(wq, condition, ret)                  \
838 do {                                                                    \
839         wait_queue_t __wait;                                            \
840         init_waitqueue_entry(&__wait, current);                         \
841                                                                         \
842         add_wait_queue(&wq, &__wait);                                   \
843         for (;;) {                                                      \
844                 set_current_state(TASK_INTERRUPTIBLE);                  \
845                 if (condition)                                          \
846                         break;                                          \
847                 if (!signal_pending(current)) {                         \
848                         schedule();                                     \
849                         continue;                                       \
850                 }                                                       \
851                 ret = -ERESTARTSYS;                                     \
852                 break;                                                  \
853         }                                                               \
854         current->state = TASK_RUNNING;                                  \
855         remove_wait_queue(&wq, &__wait);                                \
856 } while (0)
857         
858 #define wait_event_interruptible(wq, condition)                         \
859 ({                                                                      \
860         int __ret = 0;                                                  \
861         if (!(condition))                                               \
862                 __wait_event_interruptible(wq, condition, __ret);       \
863         __ret;                                                          \
864 })
865
866 #define REMOVE_LINKS(p) do { \
867         (p)->next_task->prev_task = (p)->prev_task; \
868         (p)->prev_task->next_task = (p)->next_task; \
869         if ((p)->p_osptr) \
870                 (p)->p_osptr->p_ysptr = (p)->p_ysptr; \
871         if ((p)->p_ysptr) \
872                 (p)->p_ysptr->p_osptr = (p)->p_osptr; \
873         else \
874                 (p)->p_pptr->p_cptr = (p)->p_osptr; \
875         } while (0)
876
877 #define SET_LINKS(p) do { \
878         (p)->next_task = &init_task; \
879         (p)->prev_task = init_task.prev_task; \
880         init_task.prev_task->next_task = (p); \
881         init_task.prev_task = (p); \
882         (p)->p_ysptr = NULL; \
883         if (((p)->p_osptr = (p)->p_pptr->p_cptr) != NULL) \
884                 (p)->p_osptr->p_ysptr = p; \
885         (p)->p_pptr->p_cptr = p; \
886         } while (0)
887
888 #define for_each_task(p) \
889         for (p = &init_task ; (p = p->next_task) != &init_task ; )
890
891 #define for_each_thread(task) \
892         for (task = next_thread(current) ; task != current ; task = next_thread(task))
893
894 #define next_thread(p) \
895         list_entry((p)->thread_group.next, struct task_struct, thread_group)
896
897 #define thread_group_leader(p)  (p->pid == p->tgid)
898
899 static inline void del_from_runqueue(struct task_struct * p)
900 {
901         nr_running--;
902         p->sleep_time = jiffies;
903         list_del(&p->run_list);
904         p->run_list.next = NULL;
905 }
906
907 static inline int task_on_runqueue(struct task_struct *p)
908 {
909         return (p->run_list.next != NULL);
910 }
911
912 static inline void unhash_process(struct task_struct *p)
913 {
914         if (task_on_runqueue(p))
915                 out_of_line_bug();
916         write_lock_irq(&tasklist_lock);
917         nr_threads--;
918         unhash_pid(p);
919         REMOVE_LINKS(p);
920         list_del(&p->thread_group);
921         write_unlock_irq(&tasklist_lock);
922 }
923
924 /* Protects ->fs, ->files, ->mm, and synchronises with wait4().  Nests inside tasklist_lock */
925 static inline void task_lock(struct task_struct *p)
926 {
927         spin_lock(&p->alloc_lock);
928 }
929
930 static inline void task_unlock(struct task_struct *p)
931 {
932         spin_unlock(&p->alloc_lock);
933 }
934
935 /* write full pathname into buffer and return start of pathname */
936 static inline char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
937                                 char *buf, int buflen)
938 {
939         char *res;
940         struct vfsmount *rootmnt;
941         struct dentry *root;
942         read_lock(&current->fs->lock);
943         rootmnt = mntget(current->fs->rootmnt);
944         root = dget(current->fs->root);
945         read_unlock(&current->fs->lock);
946         spin_lock(&dcache_lock);
947         res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
948         spin_unlock(&dcache_lock);
949         dput(root);
950         mntput(rootmnt);
951         return res;
952 }
953
954 static inline int need_resched(void)
955 {
956         return (unlikely(current->need_resched));
957 }
958
959 extern void __cond_resched(void);
960 static inline void cond_resched(void)
961 {
962         if (need_resched())
963                 __cond_resched();
964 }
965
966 #endif /* __KERNEL__ */
967 #endif