OSDN Git Service

sparc32: fix struct ipc64_perm type definition
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / crypto / vmac.c
1 /*
2  * VMAC: Message Authentication Code using Universal Hashing
3  *
4  * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
5  *
6  * Copyright (c) 2009, Intel Corporation.
7  * Copyright (c) 2018, Google Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20  * Place - Suite 330, Boston, MA 02111-1307 USA.
21  */
22
23 /*
24  * Derived from:
25  *      VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
26  *      This implementation is herby placed in the public domain.
27  *      The authors offers no warranty. Use at your own risk.
28  *      Last modified: 17 APR 08, 1700 PDT
29  */
30
31 #include <asm/unaligned.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/crypto.h>
35 #include <linux/module.h>
36 #include <linux/scatterlist.h>
37 #include <asm/byteorder.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/hash.h>
40
41 /*
42  * User definable settings.
43  */
44 #define VMAC_TAG_LEN    64
45 #define VMAC_KEY_SIZE   128/* Must be 128, 192 or 256                   */
46 #define VMAC_KEY_LEN    (VMAC_KEY_SIZE/8)
47 #define VMAC_NHBYTES    128/* Must 2^i for any 3 < i < 13 Standard = 128*/
48
49 /* per-transform (per-key) context */
50 struct vmac_tfm_ctx {
51         struct crypto_cipher *cipher;
52         u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
53         u64 polykey[2*VMAC_TAG_LEN/64];
54         u64 l3key[2*VMAC_TAG_LEN/64];
55 };
56
57 /* per-request context */
58 struct vmac_desc_ctx {
59         union {
60                 u8 partial[VMAC_NHBYTES];       /* partial block */
61                 __le64 partial_words[VMAC_NHBYTES / 8];
62         };
63         unsigned int partial_size;      /* size of the partial block */
64         bool first_block_processed;
65         u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
66 };
67
68 /*
69  * Constants and masks
70  */
71 #define UINT64_C(x) x##ULL
72 static const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */
73 static const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */
74 static const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */
75 static const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */
76 static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */
77
78 #define pe64_to_cpup le64_to_cpup               /* Prefer little endian */
79
80 #ifdef __LITTLE_ENDIAN
81 #define INDEX_HIGH 1
82 #define INDEX_LOW 0
83 #else
84 #define INDEX_HIGH 0
85 #define INDEX_LOW 1
86 #endif
87
88 /*
89  * The following routines are used in this implementation. They are
90  * written via macros to simulate zero-overhead call-by-reference.
91  *
92  * MUL64: 64x64->128-bit multiplication
93  * PMUL64: assumes top bits cleared on inputs
94  * ADD128: 128x128->128-bit addition
95  */
96
97 #define ADD128(rh, rl, ih, il)                                          \
98         do {                                                            \
99                 u64 _il = (il);                                         \
100                 (rl) += (_il);                                          \
101                 if ((rl) < (_il))                                       \
102                         (rh)++;                                         \
103                 (rh) += (ih);                                           \
104         } while (0)
105
106 #define MUL32(i1, i2)   ((u64)(u32)(i1)*(u32)(i2))
107
108 #define PMUL64(rh, rl, i1, i2)  /* Assumes m doesn't overflow */        \
109         do {                                                            \
110                 u64 _i1 = (i1), _i2 = (i2);                             \
111                 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);      \
112                 rh = MUL32(_i1>>32, _i2>>32);                           \
113                 rl = MUL32(_i1, _i2);                                   \
114                 ADD128(rh, rl, (m >> 32), (m << 32));                   \
115         } while (0)
116
117 #define MUL64(rh, rl, i1, i2)                                           \
118         do {                                                            \
119                 u64 _i1 = (i1), _i2 = (i2);                             \
120                 u64 m1 = MUL32(_i1, _i2>>32);                           \
121                 u64 m2 = MUL32(_i1>>32, _i2);                           \
122                 rh = MUL32(_i1>>32, _i2>>32);                           \
123                 rl = MUL32(_i1, _i2);                                   \
124                 ADD128(rh, rl, (m1 >> 32), (m1 << 32));                 \
125                 ADD128(rh, rl, (m2 >> 32), (m2 << 32));                 \
126         } while (0)
127
128 /*
129  * For highest performance the L1 NH and L2 polynomial hashes should be
130  * carefully implemented to take advantage of one's target architecture.
131  * Here these two hash functions are defined multiple time; once for
132  * 64-bit architectures, once for 32-bit SSE2 architectures, and once
133  * for the rest (32-bit) architectures.
134  * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
135  * Optionally, nh_vmac_nhbytes can be defined (for multiples of
136  * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
137  * NH computations at once).
138  */
139
140 #ifdef CONFIG_64BIT
141
142 #define nh_16(mp, kp, nw, rh, rl)                                       \
143         do {                                                            \
144                 int i; u64 th, tl;                                      \
145                 rh = rl = 0;                                            \
146                 for (i = 0; i < nw; i += 2) {                           \
147                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
148                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
149                         ADD128(rh, rl, th, tl);                         \
150                 }                                                       \
151         } while (0)
152
153 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)                           \
154         do {                                                            \
155                 int i; u64 th, tl;                                      \
156                 rh1 = rl1 = rh = rl = 0;                                \
157                 for (i = 0; i < nw; i += 2) {                           \
158                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
159                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
160                         ADD128(rh, rl, th, tl);                         \
161                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
162                                 pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
163                         ADD128(rh1, rl1, th, tl);                       \
164                 }                                                       \
165         } while (0)
166
167 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
168 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
169         do {                                                            \
170                 int i; u64 th, tl;                                      \
171                 rh = rl = 0;                                            \
172                 for (i = 0; i < nw; i += 8) {                           \
173                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
174                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
175                         ADD128(rh, rl, th, tl);                         \
176                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
177                                 pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
178                         ADD128(rh, rl, th, tl);                         \
179                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
180                                 pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
181                         ADD128(rh, rl, th, tl);                         \
182                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
183                                 pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
184                         ADD128(rh, rl, th, tl);                         \
185                 }                                                       \
186         } while (0)
187
188 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)                 \
189         do {                                                            \
190                 int i; u64 th, tl;                                      \
191                 rh1 = rl1 = rh = rl = 0;                                \
192                 for (i = 0; i < nw; i += 8) {                           \
193                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
194                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
195                         ADD128(rh, rl, th, tl);                         \
196                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
197                                 pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
198                         ADD128(rh1, rl1, th, tl);                       \
199                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
200                                 pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
201                         ADD128(rh, rl, th, tl);                         \
202                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
203                                 pe64_to_cpup((mp)+i+3)+(kp)[i+5]);      \
204                         ADD128(rh1, rl1, th, tl);                       \
205                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
206                                 pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
207                         ADD128(rh, rl, th, tl);                         \
208                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
209                                 pe64_to_cpup((mp)+i+5)+(kp)[i+7]);      \
210                         ADD128(rh1, rl1, th, tl);                       \
211                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
212                                 pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
213                         ADD128(rh, rl, th, tl);                         \
214                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
215                                 pe64_to_cpup((mp)+i+7)+(kp)[i+9]);      \
216                         ADD128(rh1, rl1, th, tl);                       \
217                 }                                                       \
218         } while (0)
219 #endif
220
221 #define poly_step(ah, al, kh, kl, mh, ml)                               \
222         do {                                                            \
223                 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;                \
224                 /* compute ab*cd, put bd into result registers */       \
225                 PMUL64(t3h, t3l, al, kh);                               \
226                 PMUL64(t2h, t2l, ah, kl);                               \
227                 PMUL64(t1h, t1l, ah, 2*kh);                             \
228                 PMUL64(ah, al, al, kl);                                 \
229                 /* add 2 * ac to result */                              \
230                 ADD128(ah, al, t1h, t1l);                               \
231                 /* add together ad + bc */                              \
232                 ADD128(t2h, t2l, t3h, t3l);                             \
233                 /* now (ah,al), (t2l,2*t2h) need summing */             \
234                 /* first add the high registers, carrying into t2h */   \
235                 ADD128(t2h, ah, z, t2l);                                \
236                 /* double t2h and add top bit of ah */                  \
237                 t2h = 2 * t2h + (ah >> 63);                             \
238                 ah &= m63;                                              \
239                 /* now add the low registers */                         \
240                 ADD128(ah, al, mh, ml);                                 \
241                 ADD128(ah, al, z, t2h);                                 \
242         } while (0)
243
244 #else /* ! CONFIG_64BIT */
245
246 #ifndef nh_16
247 #define nh_16(mp, kp, nw, rh, rl)                                       \
248         do {                                                            \
249                 u64 t1, t2, m1, m2, t;                                  \
250                 int i;                                                  \
251                 rh = rl = t = 0;                                        \
252                 for (i = 0; i < nw; i += 2)  {                          \
253                         t1 = pe64_to_cpup(mp+i) + kp[i];                \
254                         t2 = pe64_to_cpup(mp+i+1) + kp[i+1];            \
255                         m2 = MUL32(t1 >> 32, t2);                       \
256                         m1 = MUL32(t1, t2 >> 32);                       \
257                         ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),       \
258                                 MUL32(t1, t2));                         \
259                         rh += (u64)(u32)(m1 >> 32)                      \
260                                 + (u32)(m2 >> 32);                      \
261                         t += (u64)(u32)m1 + (u32)m2;                    \
262                 }                                                       \
263                 ADD128(rh, rl, (t >> 32), (t << 32));                   \
264         } while (0)
265 #endif
266
267 static void poly_step_func(u64 *ahi, u64 *alo,
268                         const u64 *kh, const u64 *kl,
269                         const u64 *mh, const u64 *ml)
270 {
271 #define a0 (*(((u32 *)alo)+INDEX_LOW))
272 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
273 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
274 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
275 #define k0 (*(((u32 *)kl)+INDEX_LOW))
276 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
277 #define k2 (*(((u32 *)kh)+INDEX_LOW))
278 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
279
280         u64 p, q, t;
281         u32 t2;
282
283         p = MUL32(a3, k3);
284         p += p;
285         p += *(u64 *)mh;
286         p += MUL32(a0, k2);
287         p += MUL32(a1, k1);
288         p += MUL32(a2, k0);
289         t = (u32)(p);
290         p >>= 32;
291         p += MUL32(a0, k3);
292         p += MUL32(a1, k2);
293         p += MUL32(a2, k1);
294         p += MUL32(a3, k0);
295         t |= ((u64)((u32)p & 0x7fffffff)) << 32;
296         p >>= 31;
297         p += (u64)(((u32 *)ml)[INDEX_LOW]);
298         p += MUL32(a0, k0);
299         q =  MUL32(a1, k3);
300         q += MUL32(a2, k2);
301         q += MUL32(a3, k1);
302         q += q;
303         p += q;
304         t2 = (u32)(p);
305         p >>= 32;
306         p += (u64)(((u32 *)ml)[INDEX_HIGH]);
307         p += MUL32(a0, k1);
308         p += MUL32(a1, k0);
309         q =  MUL32(a2, k3);
310         q += MUL32(a3, k2);
311         q += q;
312         p += q;
313         *(u64 *)(alo) = (p << 32) | t2;
314         p >>= 32;
315         *(u64 *)(ahi) = p + t;
316
317 #undef a0
318 #undef a1
319 #undef a2
320 #undef a3
321 #undef k0
322 #undef k1
323 #undef k2
324 #undef k3
325 }
326
327 #define poly_step(ah, al, kh, kl, mh, ml)                               \
328         poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
329
330 #endif  /* end of specialized NH and poly definitions */
331
332 /* At least nh_16 is defined. Defined others as needed here */
333 #ifndef nh_16_2
334 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)                           \
335         do {                                                            \
336                 nh_16(mp, kp, nw, rh, rl);                              \
337                 nh_16(mp, ((kp)+2), nw, rh2, rl2);                      \
338         } while (0)
339 #endif
340 #ifndef nh_vmac_nhbytes
341 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
342         nh_16(mp, kp, nw, rh, rl)
343 #endif
344 #ifndef nh_vmac_nhbytes_2
345 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)                 \
346         do {                                                            \
347                 nh_vmac_nhbytes(mp, kp, nw, rh, rl);                    \
348                 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);            \
349         } while (0)
350 #endif
351
352 static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
353 {
354         u64 rh, rl, t, z = 0;
355
356         /* fully reduce (p1,p2)+(len,0) mod p127 */
357         t = p1 >> 63;
358         p1 &= m63;
359         ADD128(p1, p2, len, t);
360         /* At this point, (p1,p2) is at most 2^127+(len<<64) */
361         t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
362         ADD128(p1, p2, z, t);
363         p1 &= m63;
364
365         /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
366         t = p1 + (p2 >> 32);
367         t += (t >> 32);
368         t += (u32)t > 0xfffffffeu;
369         p1 += (t >> 32);
370         p2 += (p1 << 32);
371
372         /* compute (p1+k1)%p64 and (p2+k2)%p64 */
373         p1 += k1;
374         p1 += (0 - (p1 < k1)) & 257;
375         p2 += k2;
376         p2 += (0 - (p2 < k2)) & 257;
377
378         /* compute (p1+k1)*(p2+k2)%p64 */
379         MUL64(rh, rl, p1, p2);
380         t = rh >> 56;
381         ADD128(t, rl, z, rh);
382         rh <<= 8;
383         ADD128(t, rl, z, rh);
384         t += t << 8;
385         rl += t;
386         rl += (0 - (rl < t)) & 257;
387         rl += (0 - (rl > p64-1)) & 257;
388         return rl;
389 }
390
391 /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
392 static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
393                          struct vmac_desc_ctx *dctx,
394                          const __le64 *mptr, unsigned int blocks)
395 {
396         const u64 *kptr = tctx->nhkey;
397         const u64 pkh = tctx->polykey[0];
398         const u64 pkl = tctx->polykey[1];
399         u64 ch = dctx->polytmp[0];
400         u64 cl = dctx->polytmp[1];
401         u64 rh, rl;
402
403         if (!dctx->first_block_processed) {
404                 dctx->first_block_processed = true;
405                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
406                 rh &= m62;
407                 ADD128(ch, cl, rh, rl);
408                 mptr += (VMAC_NHBYTES/sizeof(u64));
409                 blocks--;
410         }
411
412         while (blocks--) {
413                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
414                 rh &= m62;
415                 poly_step(ch, cl, pkh, pkl, rh, rl);
416                 mptr += (VMAC_NHBYTES/sizeof(u64));
417         }
418
419         dctx->polytmp[0] = ch;
420         dctx->polytmp[1] = cl;
421 }
422
423 static int vmac_setkey(struct crypto_shash *tfm,
424                        const u8 *key, unsigned int keylen)
425 {
426         struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
427         __be64 out[2];
428         u8 in[16] = { 0 };
429         unsigned int i;
430         int err;
431
432         if (keylen != VMAC_KEY_LEN) {
433                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
434                 return -EINVAL;
435         }
436
437         err = crypto_cipher_setkey(tctx->cipher, key, keylen);
438         if (err)
439                 return err;
440
441         /* Fill nh key */
442         in[0] = 0x80;
443         for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
444                 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
445                 tctx->nhkey[i] = be64_to_cpu(out[0]);
446                 tctx->nhkey[i+1] = be64_to_cpu(out[1]);
447                 in[15]++;
448         }
449
450         /* Fill poly key */
451         in[0] = 0xC0;
452         in[15] = 0;
453         for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
454                 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
455                 tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
456                 tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
457                 in[15]++;
458         }
459
460         /* Fill ip key */
461         in[0] = 0xE0;
462         in[15] = 0;
463         for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
464                 do {
465                         crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
466                         tctx->l3key[i] = be64_to_cpu(out[0]);
467                         tctx->l3key[i+1] = be64_to_cpu(out[1]);
468                         in[15]++;
469                 } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
470         }
471
472         return 0;
473 }
474
475 static int vmac_init(struct shash_desc *desc)
476 {
477         const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
478         struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
479
480         dctx->partial_size = 0;
481         dctx->first_block_processed = false;
482         memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
483         return 0;
484 }
485
486 static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
487 {
488         const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
489         struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
490         unsigned int n;
491
492         if (dctx->partial_size) {
493                 n = min(len, VMAC_NHBYTES - dctx->partial_size);
494                 memcpy(&dctx->partial[dctx->partial_size], p, n);
495                 dctx->partial_size += n;
496                 p += n;
497                 len -= n;
498                 if (dctx->partial_size == VMAC_NHBYTES) {
499                         vhash_blocks(tctx, dctx, dctx->partial_words, 1);
500                         dctx->partial_size = 0;
501                 }
502         }
503
504         if (len >= VMAC_NHBYTES) {
505                 n = round_down(len, VMAC_NHBYTES);
506                 /* TODO: 'p' may be misaligned here */
507                 vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
508                 p += n;
509                 len -= n;
510         }
511
512         if (len) {
513                 memcpy(dctx->partial, p, len);
514                 dctx->partial_size = len;
515         }
516
517         return 0;
518 }
519
520 static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
521                        struct vmac_desc_ctx *dctx)
522 {
523         unsigned int partial = dctx->partial_size;
524         u64 ch = dctx->polytmp[0];
525         u64 cl = dctx->polytmp[1];
526
527         /* L1 and L2-hash the final block if needed */
528         if (partial) {
529                 /* Zero-pad to next 128-bit boundary */
530                 unsigned int n = round_up(partial, 16);
531                 u64 rh, rl;
532
533                 memset(&dctx->partial[partial], 0, n - partial);
534                 nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
535                 rh &= m62;
536                 if (dctx->first_block_processed)
537                         poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
538                                   rh, rl);
539                 else
540                         ADD128(ch, cl, rh, rl);
541         }
542
543         /* L3-hash the 128-bit output of L2-hash */
544         return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
545 }
546
547 static int vmac_final(struct shash_desc *desc, u8 *out)
548 {
549         const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
550         struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
551         static const u8 nonce[16] = {}; /* TODO: this is insecure */
552         union {
553                 u8 bytes[16];
554                 __be64 pads[2];
555         } block;
556         int index;
557         u64 hash, pad;
558
559         /* Finish calculating the VHASH of the message */
560         hash = vhash_final(tctx, dctx);
561
562         /* Generate pseudorandom pad by encrypting the nonce */
563         memcpy(&block, nonce, 16);
564         index = block.bytes[15] & 1;
565         block.bytes[15] &= ~1;
566         crypto_cipher_encrypt_one(tctx->cipher, block.bytes, block.bytes);
567         pad = be64_to_cpu(block.pads[index]);
568
569         /* The VMAC is the sum of VHASH and the pseudorandom pad */
570         put_unaligned_le64(hash + pad, out);
571         return 0;
572 }
573
574 static int vmac_init_tfm(struct crypto_tfm *tfm)
575 {
576         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
577         struct crypto_spawn *spawn = crypto_instance_ctx(inst);
578         struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
579         struct crypto_cipher *cipher;
580
581         cipher = crypto_spawn_cipher(spawn);
582         if (IS_ERR(cipher))
583                 return PTR_ERR(cipher);
584
585         tctx->cipher = cipher;
586         return 0;
587 }
588
589 static void vmac_exit_tfm(struct crypto_tfm *tfm)
590 {
591         struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
592
593         crypto_free_cipher(tctx->cipher);
594 }
595
596 static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
597 {
598         struct shash_instance *inst;
599         struct crypto_alg *alg;
600         int err;
601
602         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
603         if (err)
604                 return err;
605
606         alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
607                         CRYPTO_ALG_TYPE_MASK);
608         if (IS_ERR(alg))
609                 return PTR_ERR(alg);
610
611         err = -EINVAL;
612         if (alg->cra_blocksize != 16)
613                 goto out_put_alg;
614
615         inst = shash_alloc_instance("vmac", alg);
616         err = PTR_ERR(inst);
617         if (IS_ERR(inst))
618                 goto out_put_alg;
619
620         err = crypto_init_spawn(shash_instance_ctx(inst), alg,
621                         shash_crypto_instance(inst),
622                         CRYPTO_ALG_TYPE_MASK);
623         if (err)
624                 goto out_free_inst;
625
626         inst->alg.base.cra_priority = alg->cra_priority;
627         inst->alg.base.cra_blocksize = alg->cra_blocksize;
628         inst->alg.base.cra_alignmask = alg->cra_alignmask;
629
630         inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
631         inst->alg.base.cra_init = vmac_init_tfm;
632         inst->alg.base.cra_exit = vmac_exit_tfm;
633
634         inst->alg.descsize = sizeof(struct vmac_desc_ctx);
635         inst->alg.digestsize = VMAC_TAG_LEN / 8;
636         inst->alg.init = vmac_init;
637         inst->alg.update = vmac_update;
638         inst->alg.final = vmac_final;
639         inst->alg.setkey = vmac_setkey;
640
641         err = shash_register_instance(tmpl, inst);
642         if (err) {
643 out_free_inst:
644                 shash_free_instance(shash_crypto_instance(inst));
645         }
646
647 out_put_alg:
648         crypto_mod_put(alg);
649         return err;
650 }
651
652 static struct crypto_template vmac_tmpl = {
653         .name = "vmac",
654         .create = vmac_create,
655         .free = shash_free_instance,
656         .module = THIS_MODULE,
657 };
658
659 static int __init vmac_module_init(void)
660 {
661         return crypto_register_template(&vmac_tmpl);
662 }
663
664 static void __exit vmac_module_exit(void)
665 {
666         crypto_unregister_template(&vmac_tmpl);
667 }
668
669 module_init(vmac_module_init);
670 module_exit(vmac_module_exit);
671
672 MODULE_LICENSE("GPL");
673 MODULE_DESCRIPTION("VMAC hash algorithm");
674 MODULE_ALIAS_CRYPTO("vmac");