OSDN Git Service

KVM: Fix potential guest state leak into host
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 static struct page *vmx_io_bitmap_a;
38 static struct page *vmx_io_bitmap_b;
39
40 #ifdef CONFIG_X86_64
41 #define HOST_IS_64 1
42 #else
43 #define HOST_IS_64 0
44 #endif
45
46 static struct vmcs_descriptor {
47         int size;
48         int order;
49         u32 revision_id;
50 } vmcs_descriptor;
51
52 #define VMX_SEGMENT_FIELD(seg)                                  \
53         [VCPU_SREG_##seg] = {                                   \
54                 .selector = GUEST_##seg##_SELECTOR,             \
55                 .base = GUEST_##seg##_BASE,                     \
56                 .limit = GUEST_##seg##_LIMIT,                   \
57                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
58         }
59
60 static struct kvm_vmx_segment_field {
61         unsigned selector;
62         unsigned base;
63         unsigned limit;
64         unsigned ar_bytes;
65 } kvm_vmx_segment_fields[] = {
66         VMX_SEGMENT_FIELD(CS),
67         VMX_SEGMENT_FIELD(DS),
68         VMX_SEGMENT_FIELD(ES),
69         VMX_SEGMENT_FIELD(FS),
70         VMX_SEGMENT_FIELD(GS),
71         VMX_SEGMENT_FIELD(SS),
72         VMX_SEGMENT_FIELD(TR),
73         VMX_SEGMENT_FIELD(LDTR),
74 };
75
76 /*
77  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
78  * away by decrementing the array size.
79  */
80 static const u32 vmx_msr_index[] = {
81 #ifdef CONFIG_X86_64
82         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
83 #endif
84         MSR_EFER, MSR_K6_STAR,
85 };
86 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
87
88 #ifdef CONFIG_X86_64
89 static unsigned msr_offset_kernel_gs_base;
90 #define NR_64BIT_MSRS 4
91 /*
92  * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
93  * mechanism (cpu bug AA24)
94  */
95 #define NR_BAD_MSRS 2
96 #else
97 #define NR_64BIT_MSRS 0
98 #define NR_BAD_MSRS 0
99 #endif
100
101 static inline int is_page_fault(u32 intr_info)
102 {
103         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
104                              INTR_INFO_VALID_MASK)) ==
105                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
106 }
107
108 static inline int is_no_device(u32 intr_info)
109 {
110         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
111                              INTR_INFO_VALID_MASK)) ==
112                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
113 }
114
115 static inline int is_external_interrupt(u32 intr_info)
116 {
117         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
118                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
119 }
120
121 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
122 {
123         int i;
124
125         for (i = 0; i < vcpu->nmsrs; ++i)
126                 if (vcpu->guest_msrs[i].index == msr)
127                         return &vcpu->guest_msrs[i];
128         return NULL;
129 }
130
131 static void vmcs_clear(struct vmcs *vmcs)
132 {
133         u64 phys_addr = __pa(vmcs);
134         u8 error;
135
136         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
137                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
138                       : "cc", "memory");
139         if (error)
140                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
141                        vmcs, phys_addr);
142 }
143
144 static void __vcpu_clear(void *arg)
145 {
146         struct kvm_vcpu *vcpu = arg;
147         int cpu = raw_smp_processor_id();
148
149         if (vcpu->cpu == cpu)
150                 vmcs_clear(vcpu->vmcs);
151         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
152                 per_cpu(current_vmcs, cpu) = NULL;
153 }
154
155 static void vcpu_clear(struct kvm_vcpu *vcpu)
156 {
157         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
158                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
159         else
160                 __vcpu_clear(vcpu);
161         vcpu->launched = 0;
162 }
163
164 static unsigned long vmcs_readl(unsigned long field)
165 {
166         unsigned long value;
167
168         asm volatile (ASM_VMX_VMREAD_RDX_RAX
169                       : "=a"(value) : "d"(field) : "cc");
170         return value;
171 }
172
173 static u16 vmcs_read16(unsigned long field)
174 {
175         return vmcs_readl(field);
176 }
177
178 static u32 vmcs_read32(unsigned long field)
179 {
180         return vmcs_readl(field);
181 }
182
183 static u64 vmcs_read64(unsigned long field)
184 {
185 #ifdef CONFIG_X86_64
186         return vmcs_readl(field);
187 #else
188         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
189 #endif
190 }
191
192 static noinline void vmwrite_error(unsigned long field, unsigned long value)
193 {
194         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
195                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
196         dump_stack();
197 }
198
199 static void vmcs_writel(unsigned long field, unsigned long value)
200 {
201         u8 error;
202
203         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
204                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
205         if (unlikely(error))
206                 vmwrite_error(field, value);
207 }
208
209 static void vmcs_write16(unsigned long field, u16 value)
210 {
211         vmcs_writel(field, value);
212 }
213
214 static void vmcs_write32(unsigned long field, u32 value)
215 {
216         vmcs_writel(field, value);
217 }
218
219 static void vmcs_write64(unsigned long field, u64 value)
220 {
221 #ifdef CONFIG_X86_64
222         vmcs_writel(field, value);
223 #else
224         vmcs_writel(field, value);
225         asm volatile ("");
226         vmcs_writel(field+1, value >> 32);
227 #endif
228 }
229
230 static void vmcs_clear_bits(unsigned long field, u32 mask)
231 {
232         vmcs_writel(field, vmcs_readl(field) & ~mask);
233 }
234
235 static void vmcs_set_bits(unsigned long field, u32 mask)
236 {
237         vmcs_writel(field, vmcs_readl(field) | mask);
238 }
239
240 static void reload_tss(void)
241 {
242 #ifndef CONFIG_X86_64
243
244         /*
245          * VT restores TR but not its size.  Useless.
246          */
247         struct descriptor_table gdt;
248         struct segment_descriptor *descs;
249
250         get_gdt(&gdt);
251         descs = (void *)gdt.base;
252         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
253         load_TR_desc();
254 #endif
255 }
256
257 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
258 {
259         struct vmx_host_state *hs = &vcpu->vmx_host_state;
260
261         if (hs->loaded)
262                 return;
263
264         hs->loaded = 1;
265         /*
266          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
267          * allow segment selectors with cpl > 0 or ti == 1.
268          */
269         hs->ldt_sel = read_ldt();
270         hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
271         hs->fs_sel = read_fs();
272         if (!(hs->fs_sel & 7))
273                 vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
274         else {
275                 vmcs_write16(HOST_FS_SELECTOR, 0);
276                 hs->fs_gs_ldt_reload_needed = 1;
277         }
278         hs->gs_sel = read_gs();
279         if (!(hs->gs_sel & 7))
280                 vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
281         else {
282                 vmcs_write16(HOST_GS_SELECTOR, 0);
283                 hs->fs_gs_ldt_reload_needed = 1;
284         }
285
286 #ifdef CONFIG_X86_64
287         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
288         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
289 #else
290         vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
291         vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
292 #endif
293 }
294
295 static void vmx_load_host_state(struct kvm_vcpu *vcpu)
296 {
297         struct vmx_host_state *hs = &vcpu->vmx_host_state;
298
299         if (!hs->loaded)
300                 return;
301
302         hs->loaded = 0;
303         if (hs->fs_gs_ldt_reload_needed) {
304                 load_ldt(hs->ldt_sel);
305                 load_fs(hs->fs_sel);
306                 /*
307                  * If we have to reload gs, we must take care to
308                  * preserve our gs base.
309                  */
310                 local_irq_disable();
311                 load_gs(hs->gs_sel);
312 #ifdef CONFIG_X86_64
313                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
314 #endif
315                 local_irq_enable();
316
317                 reload_tss();
318         }
319 #ifdef CONFIG_X86_64
320         if (is_long_mode(vcpu)) {
321                 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
322                 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
323         }
324 #endif
325 }
326
327 /*
328  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
329  * vcpu mutex is already taken.
330  */
331 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
332 {
333         u64 phys_addr = __pa(vcpu->vmcs);
334         int cpu;
335
336         cpu = get_cpu();
337
338         if (vcpu->cpu != cpu)
339                 vcpu_clear(vcpu);
340
341         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
342                 u8 error;
343
344                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
345                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
346                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
347                               : "cc");
348                 if (error)
349                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
350                                vcpu->vmcs, phys_addr);
351         }
352
353         if (vcpu->cpu != cpu) {
354                 struct descriptor_table dt;
355                 unsigned long sysenter_esp;
356
357                 vcpu->cpu = cpu;
358                 /*
359                  * Linux uses per-cpu TSS and GDT, so set these when switching
360                  * processors.
361                  */
362                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
363                 get_gdt(&dt);
364                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
365
366                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
367                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
368         }
369 }
370
371 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
372 {
373         vmx_load_host_state(vcpu);
374         kvm_put_guest_fpu(vcpu);
375         put_cpu();
376 }
377
378 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
379 {
380         vcpu_clear(vcpu);
381 }
382
383 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
384 {
385         return vmcs_readl(GUEST_RFLAGS);
386 }
387
388 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
389 {
390         vmcs_writel(GUEST_RFLAGS, rflags);
391 }
392
393 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
394 {
395         unsigned long rip;
396         u32 interruptibility;
397
398         rip = vmcs_readl(GUEST_RIP);
399         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
400         vmcs_writel(GUEST_RIP, rip);
401
402         /*
403          * We emulated an instruction, so temporary interrupt blocking
404          * should be removed, if set.
405          */
406         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
407         if (interruptibility & 3)
408                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
409                              interruptibility & ~3);
410         vcpu->interrupt_window_open = 1;
411 }
412
413 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
414 {
415         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
416                vmcs_readl(GUEST_RIP));
417         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
418         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
419                      GP_VECTOR |
420                      INTR_TYPE_EXCEPTION |
421                      INTR_INFO_DELIEVER_CODE_MASK |
422                      INTR_INFO_VALID_MASK);
423 }
424
425 /*
426  * Set up the vmcs to automatically save and restore system
427  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
428  * mode, as fiddling with msrs is very expensive.
429  */
430 static void setup_msrs(struct kvm_vcpu *vcpu)
431 {
432         int nr_skip, nr_good_msrs;
433
434         if (is_long_mode(vcpu))
435                 nr_skip = NR_BAD_MSRS;
436         else
437                 nr_skip = NR_64BIT_MSRS;
438         nr_good_msrs = vcpu->nmsrs - nr_skip;
439
440         /*
441          * MSR_K6_STAR is only needed on long mode guests, and only
442          * if efer.sce is enabled.
443          */
444         if (find_msr_entry(vcpu, MSR_K6_STAR)) {
445                 --nr_good_msrs;
446 #ifdef CONFIG_X86_64
447                 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
448                         ++nr_good_msrs;
449 #endif
450         }
451
452         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
453                     virt_to_phys(vcpu->guest_msrs + nr_skip));
454         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
455                     virt_to_phys(vcpu->guest_msrs + nr_skip));
456         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
457                     virt_to_phys(vcpu->host_msrs + nr_skip));
458         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
459         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
460         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
461 }
462
463 /*
464  * reads and returns guest's timestamp counter "register"
465  * guest_tsc = host_tsc + tsc_offset    -- 21.3
466  */
467 static u64 guest_read_tsc(void)
468 {
469         u64 host_tsc, tsc_offset;
470
471         rdtscll(host_tsc);
472         tsc_offset = vmcs_read64(TSC_OFFSET);
473         return host_tsc + tsc_offset;
474 }
475
476 /*
477  * writes 'guest_tsc' into guest's timestamp counter "register"
478  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
479  */
480 static void guest_write_tsc(u64 guest_tsc)
481 {
482         u64 host_tsc;
483
484         rdtscll(host_tsc);
485         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
486 }
487
488 /*
489  * Reads an msr value (of 'msr_index') into 'pdata'.
490  * Returns 0 on success, non-0 otherwise.
491  * Assumes vcpu_load() was already called.
492  */
493 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
494 {
495         u64 data;
496         struct vmx_msr_entry *msr;
497
498         if (!pdata) {
499                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
500                 return -EINVAL;
501         }
502
503         switch (msr_index) {
504 #ifdef CONFIG_X86_64
505         case MSR_FS_BASE:
506                 data = vmcs_readl(GUEST_FS_BASE);
507                 break;
508         case MSR_GS_BASE:
509                 data = vmcs_readl(GUEST_GS_BASE);
510                 break;
511         case MSR_EFER:
512                 return kvm_get_msr_common(vcpu, msr_index, pdata);
513 #endif
514         case MSR_IA32_TIME_STAMP_COUNTER:
515                 data = guest_read_tsc();
516                 break;
517         case MSR_IA32_SYSENTER_CS:
518                 data = vmcs_read32(GUEST_SYSENTER_CS);
519                 break;
520         case MSR_IA32_SYSENTER_EIP:
521                 data = vmcs_readl(GUEST_SYSENTER_EIP);
522                 break;
523         case MSR_IA32_SYSENTER_ESP:
524                 data = vmcs_readl(GUEST_SYSENTER_ESP);
525                 break;
526         default:
527                 msr = find_msr_entry(vcpu, msr_index);
528                 if (msr) {
529                         data = msr->data;
530                         break;
531                 }
532                 return kvm_get_msr_common(vcpu, msr_index, pdata);
533         }
534
535         *pdata = data;
536         return 0;
537 }
538
539 /*
540  * Writes msr value into into the appropriate "register".
541  * Returns 0 on success, non-0 otherwise.
542  * Assumes vcpu_load() was already called.
543  */
544 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
545 {
546         struct vmx_msr_entry *msr;
547         switch (msr_index) {
548 #ifdef CONFIG_X86_64
549         case MSR_EFER:
550                 return kvm_set_msr_common(vcpu, msr_index, data);
551         case MSR_FS_BASE:
552                 vmcs_writel(GUEST_FS_BASE, data);
553                 break;
554         case MSR_GS_BASE:
555                 vmcs_writel(GUEST_GS_BASE, data);
556                 break;
557         case MSR_LSTAR:
558         case MSR_SYSCALL_MASK:
559                 msr = find_msr_entry(vcpu, msr_index);
560                 if (msr)
561                         msr->data = data;
562                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
563                 break;
564 #endif
565         case MSR_IA32_SYSENTER_CS:
566                 vmcs_write32(GUEST_SYSENTER_CS, data);
567                 break;
568         case MSR_IA32_SYSENTER_EIP:
569                 vmcs_writel(GUEST_SYSENTER_EIP, data);
570                 break;
571         case MSR_IA32_SYSENTER_ESP:
572                 vmcs_writel(GUEST_SYSENTER_ESP, data);
573                 break;
574         case MSR_IA32_TIME_STAMP_COUNTER:
575                 guest_write_tsc(data);
576                 break;
577         default:
578                 msr = find_msr_entry(vcpu, msr_index);
579                 if (msr) {
580                         msr->data = data;
581                         break;
582                 }
583                 return kvm_set_msr_common(vcpu, msr_index, data);
584                 msr->data = data;
585                 break;
586         }
587
588         return 0;
589 }
590
591 /*
592  * Sync the rsp and rip registers into the vcpu structure.  This allows
593  * registers to be accessed by indexing vcpu->regs.
594  */
595 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
596 {
597         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
598         vcpu->rip = vmcs_readl(GUEST_RIP);
599 }
600
601 /*
602  * Syncs rsp and rip back into the vmcs.  Should be called after possible
603  * modification.
604  */
605 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
606 {
607         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
608         vmcs_writel(GUEST_RIP, vcpu->rip);
609 }
610
611 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
612 {
613         unsigned long dr7 = 0x400;
614         u32 exception_bitmap;
615         int old_singlestep;
616
617         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
618         old_singlestep = vcpu->guest_debug.singlestep;
619
620         vcpu->guest_debug.enabled = dbg->enabled;
621         if (vcpu->guest_debug.enabled) {
622                 int i;
623
624                 dr7 |= 0x200;  /* exact */
625                 for (i = 0; i < 4; ++i) {
626                         if (!dbg->breakpoints[i].enabled)
627                                 continue;
628                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
629                         dr7 |= 2 << (i*2);    /* global enable */
630                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
631                 }
632
633                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
634
635                 vcpu->guest_debug.singlestep = dbg->singlestep;
636         } else {
637                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
638                 vcpu->guest_debug.singlestep = 0;
639         }
640
641         if (old_singlestep && !vcpu->guest_debug.singlestep) {
642                 unsigned long flags;
643
644                 flags = vmcs_readl(GUEST_RFLAGS);
645                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
646                 vmcs_writel(GUEST_RFLAGS, flags);
647         }
648
649         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
650         vmcs_writel(GUEST_DR7, dr7);
651
652         return 0;
653 }
654
655 static __init int cpu_has_kvm_support(void)
656 {
657         unsigned long ecx = cpuid_ecx(1);
658         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
659 }
660
661 static __init int vmx_disabled_by_bios(void)
662 {
663         u64 msr;
664
665         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
666         return (msr & 5) == 1; /* locked but not enabled */
667 }
668
669 static void hardware_enable(void *garbage)
670 {
671         int cpu = raw_smp_processor_id();
672         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
673         u64 old;
674
675         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
676         if ((old & 5) != 5)
677                 /* enable and lock */
678                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
679         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
680         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
681                       : "memory", "cc");
682 }
683
684 static void hardware_disable(void *garbage)
685 {
686         asm volatile (ASM_VMX_VMXOFF : : : "cc");
687 }
688
689 static __init void setup_vmcs_descriptor(void)
690 {
691         u32 vmx_msr_low, vmx_msr_high;
692
693         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
694         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
695         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
696         vmcs_descriptor.revision_id = vmx_msr_low;
697 }
698
699 static struct vmcs *alloc_vmcs_cpu(int cpu)
700 {
701         int node = cpu_to_node(cpu);
702         struct page *pages;
703         struct vmcs *vmcs;
704
705         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
706         if (!pages)
707                 return NULL;
708         vmcs = page_address(pages);
709         memset(vmcs, 0, vmcs_descriptor.size);
710         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
711         return vmcs;
712 }
713
714 static struct vmcs *alloc_vmcs(void)
715 {
716         return alloc_vmcs_cpu(raw_smp_processor_id());
717 }
718
719 static void free_vmcs(struct vmcs *vmcs)
720 {
721         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
722 }
723
724 static void free_kvm_area(void)
725 {
726         int cpu;
727
728         for_each_online_cpu(cpu)
729                 free_vmcs(per_cpu(vmxarea, cpu));
730 }
731
732 extern struct vmcs *alloc_vmcs_cpu(int cpu);
733
734 static __init int alloc_kvm_area(void)
735 {
736         int cpu;
737
738         for_each_online_cpu(cpu) {
739                 struct vmcs *vmcs;
740
741                 vmcs = alloc_vmcs_cpu(cpu);
742                 if (!vmcs) {
743                         free_kvm_area();
744                         return -ENOMEM;
745                 }
746
747                 per_cpu(vmxarea, cpu) = vmcs;
748         }
749         return 0;
750 }
751
752 static __init int hardware_setup(void)
753 {
754         setup_vmcs_descriptor();
755         return alloc_kvm_area();
756 }
757
758 static __exit void hardware_unsetup(void)
759 {
760         free_kvm_area();
761 }
762
763 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
764 {
765         if (vcpu->rmode.active)
766                 vmcs_write32(EXCEPTION_BITMAP, ~0);
767         else
768                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
769 }
770
771 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
772 {
773         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
774
775         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
776                 vmcs_write16(sf->selector, save->selector);
777                 vmcs_writel(sf->base, save->base);
778                 vmcs_write32(sf->limit, save->limit);
779                 vmcs_write32(sf->ar_bytes, save->ar);
780         } else {
781                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
782                         << AR_DPL_SHIFT;
783                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
784         }
785 }
786
787 static void enter_pmode(struct kvm_vcpu *vcpu)
788 {
789         unsigned long flags;
790
791         vcpu->rmode.active = 0;
792
793         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
794         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
795         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
796
797         flags = vmcs_readl(GUEST_RFLAGS);
798         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
799         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
800         vmcs_writel(GUEST_RFLAGS, flags);
801
802         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
803                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
804
805         update_exception_bitmap(vcpu);
806
807         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
808         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
809         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
810         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
811
812         vmcs_write16(GUEST_SS_SELECTOR, 0);
813         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
814
815         vmcs_write16(GUEST_CS_SELECTOR,
816                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
817         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
818 }
819
820 static int rmode_tss_base(struct kvm* kvm)
821 {
822         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
823         return base_gfn << PAGE_SHIFT;
824 }
825
826 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
827 {
828         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
829
830         save->selector = vmcs_read16(sf->selector);
831         save->base = vmcs_readl(sf->base);
832         save->limit = vmcs_read32(sf->limit);
833         save->ar = vmcs_read32(sf->ar_bytes);
834         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
835         vmcs_write32(sf->limit, 0xffff);
836         vmcs_write32(sf->ar_bytes, 0xf3);
837 }
838
839 static void enter_rmode(struct kvm_vcpu *vcpu)
840 {
841         unsigned long flags;
842
843         vcpu->rmode.active = 1;
844
845         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
846         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
847
848         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
849         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
850
851         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
852         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
853
854         flags = vmcs_readl(GUEST_RFLAGS);
855         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
856
857         flags |= IOPL_MASK | X86_EFLAGS_VM;
858
859         vmcs_writel(GUEST_RFLAGS, flags);
860         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
861         update_exception_bitmap(vcpu);
862
863         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
864         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
865         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
866
867         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
868         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
869         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
870                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
871         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
872
873         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
874         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
875         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
876         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
877 }
878
879 #ifdef CONFIG_X86_64
880
881 static void enter_lmode(struct kvm_vcpu *vcpu)
882 {
883         u32 guest_tr_ar;
884
885         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
886         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
887                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
888                        __FUNCTION__);
889                 vmcs_write32(GUEST_TR_AR_BYTES,
890                              (guest_tr_ar & ~AR_TYPE_MASK)
891                              | AR_TYPE_BUSY_64_TSS);
892         }
893
894         vcpu->shadow_efer |= EFER_LMA;
895
896         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
897         vmcs_write32(VM_ENTRY_CONTROLS,
898                      vmcs_read32(VM_ENTRY_CONTROLS)
899                      | VM_ENTRY_CONTROLS_IA32E_MASK);
900 }
901
902 static void exit_lmode(struct kvm_vcpu *vcpu)
903 {
904         vcpu->shadow_efer &= ~EFER_LMA;
905
906         vmcs_write32(VM_ENTRY_CONTROLS,
907                      vmcs_read32(VM_ENTRY_CONTROLS)
908                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
909 }
910
911 #endif
912
913 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
914 {
915         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
916         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
917 }
918
919 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
920 {
921         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
922                 enter_pmode(vcpu);
923
924         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
925                 enter_rmode(vcpu);
926
927 #ifdef CONFIG_X86_64
928         if (vcpu->shadow_efer & EFER_LME) {
929                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
930                         enter_lmode(vcpu);
931                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
932                         exit_lmode(vcpu);
933         }
934 #endif
935
936         if (!(cr0 & CR0_TS_MASK)) {
937                 vcpu->fpu_active = 1;
938                 vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
939         }
940
941         vmcs_writel(CR0_READ_SHADOW, cr0);
942         vmcs_writel(GUEST_CR0,
943                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
944         vcpu->cr0 = cr0;
945 }
946
947 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
948 {
949         vmcs_writel(GUEST_CR3, cr3);
950
951         if (!(vcpu->cr0 & CR0_TS_MASK)) {
952                 vcpu->fpu_active = 0;
953                 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
954                 vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
955         }
956 }
957
958 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
959 {
960         vmcs_writel(CR4_READ_SHADOW, cr4);
961         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
962                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
963         vcpu->cr4 = cr4;
964 }
965
966 #ifdef CONFIG_X86_64
967
968 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
969 {
970         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
971
972         vcpu->shadow_efer = efer;
973         if (efer & EFER_LMA) {
974                 vmcs_write32(VM_ENTRY_CONTROLS,
975                                      vmcs_read32(VM_ENTRY_CONTROLS) |
976                                      VM_ENTRY_CONTROLS_IA32E_MASK);
977                 msr->data = efer;
978
979         } else {
980                 vmcs_write32(VM_ENTRY_CONTROLS,
981                                      vmcs_read32(VM_ENTRY_CONTROLS) &
982                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
983
984                 msr->data = efer & ~EFER_LME;
985         }
986         setup_msrs(vcpu);
987 }
988
989 #endif
990
991 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
992 {
993         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
994
995         return vmcs_readl(sf->base);
996 }
997
998 static void vmx_get_segment(struct kvm_vcpu *vcpu,
999                             struct kvm_segment *var, int seg)
1000 {
1001         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1002         u32 ar;
1003
1004         var->base = vmcs_readl(sf->base);
1005         var->limit = vmcs_read32(sf->limit);
1006         var->selector = vmcs_read16(sf->selector);
1007         ar = vmcs_read32(sf->ar_bytes);
1008         if (ar & AR_UNUSABLE_MASK)
1009                 ar = 0;
1010         var->type = ar & 15;
1011         var->s = (ar >> 4) & 1;
1012         var->dpl = (ar >> 5) & 3;
1013         var->present = (ar >> 7) & 1;
1014         var->avl = (ar >> 12) & 1;
1015         var->l = (ar >> 13) & 1;
1016         var->db = (ar >> 14) & 1;
1017         var->g = (ar >> 15) & 1;
1018         var->unusable = (ar >> 16) & 1;
1019 }
1020
1021 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1022                             struct kvm_segment *var, int seg)
1023 {
1024         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1025         u32 ar;
1026
1027         vmcs_writel(sf->base, var->base);
1028         vmcs_write32(sf->limit, var->limit);
1029         vmcs_write16(sf->selector, var->selector);
1030         if (vcpu->rmode.active && var->s) {
1031                 /*
1032                  * Hack real-mode segments into vm86 compatibility.
1033                  */
1034                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1035                         vmcs_writel(sf->base, 0xf0000);
1036                 ar = 0xf3;
1037         } else if (var->unusable)
1038                 ar = 1 << 16;
1039         else {
1040                 ar = var->type & 15;
1041                 ar |= (var->s & 1) << 4;
1042                 ar |= (var->dpl & 3) << 5;
1043                 ar |= (var->present & 1) << 7;
1044                 ar |= (var->avl & 1) << 12;
1045                 ar |= (var->l & 1) << 13;
1046                 ar |= (var->db & 1) << 14;
1047                 ar |= (var->g & 1) << 15;
1048         }
1049         if (ar == 0) /* a 0 value means unusable */
1050                 ar = AR_UNUSABLE_MASK;
1051         vmcs_write32(sf->ar_bytes, ar);
1052 }
1053
1054 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1055 {
1056         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1057
1058         *db = (ar >> 14) & 1;
1059         *l = (ar >> 13) & 1;
1060 }
1061
1062 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1063 {
1064         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1065         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1066 }
1067
1068 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1069 {
1070         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1071         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1072 }
1073
1074 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1075 {
1076         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1077         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1078 }
1079
1080 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1081 {
1082         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1083         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1084 }
1085
1086 static int init_rmode_tss(struct kvm* kvm)
1087 {
1088         struct page *p1, *p2, *p3;
1089         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1090         char *page;
1091
1092         p1 = gfn_to_page(kvm, fn++);
1093         p2 = gfn_to_page(kvm, fn++);
1094         p3 = gfn_to_page(kvm, fn);
1095
1096         if (!p1 || !p2 || !p3) {
1097                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1098                 return 0;
1099         }
1100
1101         page = kmap_atomic(p1, KM_USER0);
1102         memset(page, 0, PAGE_SIZE);
1103         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1104         kunmap_atomic(page, KM_USER0);
1105
1106         page = kmap_atomic(p2, KM_USER0);
1107         memset(page, 0, PAGE_SIZE);
1108         kunmap_atomic(page, KM_USER0);
1109
1110         page = kmap_atomic(p3, KM_USER0);
1111         memset(page, 0, PAGE_SIZE);
1112         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1113         kunmap_atomic(page, KM_USER0);
1114
1115         return 1;
1116 }
1117
1118 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1119 {
1120         u32 msr_high, msr_low;
1121
1122         rdmsr(msr, msr_low, msr_high);
1123
1124         val &= msr_high;
1125         val |= msr_low;
1126         vmcs_write32(vmcs_field, val);
1127 }
1128
1129 static void seg_setup(int seg)
1130 {
1131         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1132
1133         vmcs_write16(sf->selector, 0);
1134         vmcs_writel(sf->base, 0);
1135         vmcs_write32(sf->limit, 0xffff);
1136         vmcs_write32(sf->ar_bytes, 0x93);
1137 }
1138
1139 /*
1140  * Sets up the vmcs for emulated real mode.
1141  */
1142 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1143 {
1144         u32 host_sysenter_cs;
1145         u32 junk;
1146         unsigned long a;
1147         struct descriptor_table dt;
1148         int i;
1149         int ret = 0;
1150         extern asmlinkage void kvm_vmx_return(void);
1151
1152         if (!init_rmode_tss(vcpu->kvm)) {
1153                 ret = -ENOMEM;
1154                 goto out;
1155         }
1156
1157         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1158         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1159         vcpu->cr8 = 0;
1160         vcpu->apic_base = 0xfee00000 |
1161                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1162                         MSR_IA32_APICBASE_ENABLE;
1163
1164         fx_init(vcpu);
1165
1166         /*
1167          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1168          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1169          */
1170         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1171         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1172         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1173         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1174
1175         seg_setup(VCPU_SREG_DS);
1176         seg_setup(VCPU_SREG_ES);
1177         seg_setup(VCPU_SREG_FS);
1178         seg_setup(VCPU_SREG_GS);
1179         seg_setup(VCPU_SREG_SS);
1180
1181         vmcs_write16(GUEST_TR_SELECTOR, 0);
1182         vmcs_writel(GUEST_TR_BASE, 0);
1183         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1184         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1185
1186         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1187         vmcs_writel(GUEST_LDTR_BASE, 0);
1188         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1189         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1190
1191         vmcs_write32(GUEST_SYSENTER_CS, 0);
1192         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1193         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1194
1195         vmcs_writel(GUEST_RFLAGS, 0x02);
1196         vmcs_writel(GUEST_RIP, 0xfff0);
1197         vmcs_writel(GUEST_RSP, 0);
1198
1199         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1200         vmcs_writel(GUEST_DR7, 0x400);
1201
1202         vmcs_writel(GUEST_GDTR_BASE, 0);
1203         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1204
1205         vmcs_writel(GUEST_IDTR_BASE, 0);
1206         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1207
1208         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1209         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1210         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1211
1212         /* I/O */
1213         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1214         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1215
1216         guest_write_tsc(0);
1217
1218         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1219
1220         /* Special registers */
1221         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1222
1223         /* Control */
1224         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1225                                PIN_BASED_VM_EXEC_CONTROL,
1226                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1227                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1228                         );
1229         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1230                                CPU_BASED_VM_EXEC_CONTROL,
1231                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1232                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1233                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1234                                | CPU_BASED_ACTIVATE_IO_BITMAP  /* 20.6.2 */
1235                                | CPU_BASED_MOV_DR_EXITING
1236                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1237                         );
1238
1239         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1240         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1241         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1242         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1243
1244         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1245         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1246         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1247
1248         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1249         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1250         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1251         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1252         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1253         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1254 #ifdef CONFIG_X86_64
1255         rdmsrl(MSR_FS_BASE, a);
1256         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1257         rdmsrl(MSR_GS_BASE, a);
1258         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1259 #else
1260         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1261         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1262 #endif
1263
1264         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1265
1266         get_idt(&dt);
1267         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1268
1269
1270         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1271
1272         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1273         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1274         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1275         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1276         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1277         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1278
1279         for (i = 0; i < NR_VMX_MSR; ++i) {
1280                 u32 index = vmx_msr_index[i];
1281                 u32 data_low, data_high;
1282                 u64 data;
1283                 int j = vcpu->nmsrs;
1284
1285                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1286                         continue;
1287                 if (wrmsr_safe(index, data_low, data_high) < 0)
1288                         continue;
1289                 data = data_low | ((u64)data_high << 32);
1290                 vcpu->host_msrs[j].index = index;
1291                 vcpu->host_msrs[j].reserved = 0;
1292                 vcpu->host_msrs[j].data = data;
1293                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1294 #ifdef CONFIG_X86_64
1295                 if (index == MSR_KERNEL_GS_BASE)
1296                         msr_offset_kernel_gs_base = j;
1297 #endif
1298                 ++vcpu->nmsrs;
1299         }
1300
1301         setup_msrs(vcpu);
1302
1303         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1304                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1305
1306         /* 22.2.1, 20.8.1 */
1307         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1308                                VM_ENTRY_CONTROLS, 0);
1309         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1310
1311 #ifdef CONFIG_X86_64
1312         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1313         vmcs_writel(TPR_THRESHOLD, 0);
1314 #endif
1315
1316         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1317         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1318
1319         vcpu->cr0 = 0x60000010;
1320         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1321         vmx_set_cr4(vcpu, 0);
1322 #ifdef CONFIG_X86_64
1323         vmx_set_efer(vcpu, 0);
1324 #endif
1325
1326         return 0;
1327
1328 out:
1329         return ret;
1330 }
1331
1332 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1333 {
1334         u16 ent[2];
1335         u16 cs;
1336         u16 ip;
1337         unsigned long flags;
1338         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1339         u16 sp =  vmcs_readl(GUEST_RSP);
1340         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1341
1342         if (sp > ss_limit || sp < 6 ) {
1343                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1344                             __FUNCTION__,
1345                             vmcs_readl(GUEST_RSP),
1346                             vmcs_readl(GUEST_SS_BASE),
1347                             vmcs_read32(GUEST_SS_LIMIT));
1348                 return;
1349         }
1350
1351         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1352                                                                 sizeof(ent)) {
1353                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1354                 return;
1355         }
1356
1357         flags =  vmcs_readl(GUEST_RFLAGS);
1358         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1359         ip =  vmcs_readl(GUEST_RIP);
1360
1361
1362         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1363             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1364             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1365                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1366                 return;
1367         }
1368
1369         vmcs_writel(GUEST_RFLAGS, flags &
1370                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1371         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1372         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1373         vmcs_writel(GUEST_RIP, ent[0]);
1374         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1375 }
1376
1377 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1378 {
1379         int word_index = __ffs(vcpu->irq_summary);
1380         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1381         int irq = word_index * BITS_PER_LONG + bit_index;
1382
1383         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1384         if (!vcpu->irq_pending[word_index])
1385                 clear_bit(word_index, &vcpu->irq_summary);
1386
1387         if (vcpu->rmode.active) {
1388                 inject_rmode_irq(vcpu, irq);
1389                 return;
1390         }
1391         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1392                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1393 }
1394
1395
1396 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1397                                        struct kvm_run *kvm_run)
1398 {
1399         u32 cpu_based_vm_exec_control;
1400
1401         vcpu->interrupt_window_open =
1402                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1403                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1404
1405         if (vcpu->interrupt_window_open &&
1406             vcpu->irq_summary &&
1407             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1408                 /*
1409                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1410                  */
1411                 kvm_do_inject_irq(vcpu);
1412
1413         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1414         if (!vcpu->interrupt_window_open &&
1415             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1416                 /*
1417                  * Interrupts blocked.  Wait for unblock.
1418                  */
1419                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1420         else
1421                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1422         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1423 }
1424
1425 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1426 {
1427         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1428
1429         set_debugreg(dbg->bp[0], 0);
1430         set_debugreg(dbg->bp[1], 1);
1431         set_debugreg(dbg->bp[2], 2);
1432         set_debugreg(dbg->bp[3], 3);
1433
1434         if (dbg->singlestep) {
1435                 unsigned long flags;
1436
1437                 flags = vmcs_readl(GUEST_RFLAGS);
1438                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1439                 vmcs_writel(GUEST_RFLAGS, flags);
1440         }
1441 }
1442
1443 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1444                                   int vec, u32 err_code)
1445 {
1446         if (!vcpu->rmode.active)
1447                 return 0;
1448
1449         if (vec == GP_VECTOR && err_code == 0)
1450                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1451                         return 1;
1452         return 0;
1453 }
1454
1455 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1456 {
1457         u32 intr_info, error_code;
1458         unsigned long cr2, rip;
1459         u32 vect_info;
1460         enum emulation_result er;
1461         int r;
1462
1463         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1464         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1465
1466         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1467                                                 !is_page_fault(intr_info)) {
1468                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1469                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1470         }
1471
1472         if (is_external_interrupt(vect_info)) {
1473                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1474                 set_bit(irq, vcpu->irq_pending);
1475                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1476         }
1477
1478         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1479                 asm ("int $2");
1480                 return 1;
1481         }
1482
1483         if (is_no_device(intr_info)) {
1484                 vcpu->fpu_active = 1;
1485                 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1486                 if (!(vcpu->cr0 & CR0_TS_MASK))
1487                         vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1488                 return 1;
1489         }
1490
1491         error_code = 0;
1492         rip = vmcs_readl(GUEST_RIP);
1493         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1494                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1495         if (is_page_fault(intr_info)) {
1496                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1497
1498                 spin_lock(&vcpu->kvm->lock);
1499                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1500                 if (r < 0) {
1501                         spin_unlock(&vcpu->kvm->lock);
1502                         return r;
1503                 }
1504                 if (!r) {
1505                         spin_unlock(&vcpu->kvm->lock);
1506                         return 1;
1507                 }
1508
1509                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1510                 spin_unlock(&vcpu->kvm->lock);
1511
1512                 switch (er) {
1513                 case EMULATE_DONE:
1514                         return 1;
1515                 case EMULATE_DO_MMIO:
1516                         ++vcpu->stat.mmio_exits;
1517                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1518                         return 0;
1519                  case EMULATE_FAIL:
1520                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1521                         break;
1522                 default:
1523                         BUG();
1524                 }
1525         }
1526
1527         if (vcpu->rmode.active &&
1528             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1529                                                                 error_code))
1530                 return 1;
1531
1532         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1533                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1534                 return 0;
1535         }
1536         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1537         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1538         kvm_run->ex.error_code = error_code;
1539         return 0;
1540 }
1541
1542 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1543                                      struct kvm_run *kvm_run)
1544 {
1545         ++vcpu->stat.irq_exits;
1546         return 1;
1547 }
1548
1549 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1550 {
1551         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1552         return 0;
1553 }
1554
1555 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1556 {
1557         u64 inst;
1558         gva_t rip;
1559         int countr_size;
1560         int i, n;
1561
1562         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1563                 countr_size = 2;
1564         } else {
1565                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1566
1567                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1568                               (cs_ar & AR_DB_MASK) ? 4: 2;
1569         }
1570
1571         rip =  vmcs_readl(GUEST_RIP);
1572         if (countr_size != 8)
1573                 rip += vmcs_readl(GUEST_CS_BASE);
1574
1575         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1576
1577         for (i = 0; i < n; i++) {
1578                 switch (((u8*)&inst)[i]) {
1579                 case 0xf0:
1580                 case 0xf2:
1581                 case 0xf3:
1582                 case 0x2e:
1583                 case 0x36:
1584                 case 0x3e:
1585                 case 0x26:
1586                 case 0x64:
1587                 case 0x65:
1588                 case 0x66:
1589                         break;
1590                 case 0x67:
1591                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1592                 default:
1593                         goto done;
1594                 }
1595         }
1596         return 0;
1597 done:
1598         countr_size *= 8;
1599         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1600         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1601         return 1;
1602 }
1603
1604 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1605 {
1606         u64 exit_qualification;
1607         int size, down, in, string, rep;
1608         unsigned port;
1609         unsigned long count;
1610         gva_t address;
1611
1612         ++vcpu->stat.io_exits;
1613         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1614         in = (exit_qualification & 8) != 0;
1615         size = (exit_qualification & 7) + 1;
1616         string = (exit_qualification & 16) != 0;
1617         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1618         count = 1;
1619         rep = (exit_qualification & 32) != 0;
1620         port = exit_qualification >> 16;
1621         address = 0;
1622         if (string) {
1623                 if (rep && !get_io_count(vcpu, &count))
1624                         return 1;
1625                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1626         }
1627         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1628                              address, rep, port);
1629 }
1630
1631 static void
1632 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1633 {
1634         /*
1635          * Patch in the VMCALL instruction:
1636          */
1637         hypercall[0] = 0x0f;
1638         hypercall[1] = 0x01;
1639         hypercall[2] = 0xc1;
1640         hypercall[3] = 0xc3;
1641 }
1642
1643 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1644 {
1645         u64 exit_qualification;
1646         int cr;
1647         int reg;
1648
1649         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1650         cr = exit_qualification & 15;
1651         reg = (exit_qualification >> 8) & 15;
1652         switch ((exit_qualification >> 4) & 3) {
1653         case 0: /* mov to cr */
1654                 switch (cr) {
1655                 case 0:
1656                         vcpu_load_rsp_rip(vcpu);
1657                         set_cr0(vcpu, vcpu->regs[reg]);
1658                         skip_emulated_instruction(vcpu);
1659                         return 1;
1660                 case 3:
1661                         vcpu_load_rsp_rip(vcpu);
1662                         set_cr3(vcpu, vcpu->regs[reg]);
1663                         skip_emulated_instruction(vcpu);
1664                         return 1;
1665                 case 4:
1666                         vcpu_load_rsp_rip(vcpu);
1667                         set_cr4(vcpu, vcpu->regs[reg]);
1668                         skip_emulated_instruction(vcpu);
1669                         return 1;
1670                 case 8:
1671                         vcpu_load_rsp_rip(vcpu);
1672                         set_cr8(vcpu, vcpu->regs[reg]);
1673                         skip_emulated_instruction(vcpu);
1674                         return 1;
1675                 };
1676                 break;
1677         case 2: /* clts */
1678                 vcpu_load_rsp_rip(vcpu);
1679                 vcpu->fpu_active = 1;
1680                 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1681                 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1682                 vcpu->cr0 &= ~CR0_TS_MASK;
1683                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1684                 skip_emulated_instruction(vcpu);
1685                 return 1;
1686         case 1: /*mov from cr*/
1687                 switch (cr) {
1688                 case 3:
1689                         vcpu_load_rsp_rip(vcpu);
1690                         vcpu->regs[reg] = vcpu->cr3;
1691                         vcpu_put_rsp_rip(vcpu);
1692                         skip_emulated_instruction(vcpu);
1693                         return 1;
1694                 case 8:
1695                         vcpu_load_rsp_rip(vcpu);
1696                         vcpu->regs[reg] = vcpu->cr8;
1697                         vcpu_put_rsp_rip(vcpu);
1698                         skip_emulated_instruction(vcpu);
1699                         return 1;
1700                 }
1701                 break;
1702         case 3: /* lmsw */
1703                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1704
1705                 skip_emulated_instruction(vcpu);
1706                 return 1;
1707         default:
1708                 break;
1709         }
1710         kvm_run->exit_reason = 0;
1711         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1712                (int)(exit_qualification >> 4) & 3, cr);
1713         return 0;
1714 }
1715
1716 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1717 {
1718         u64 exit_qualification;
1719         unsigned long val;
1720         int dr, reg;
1721
1722         /*
1723          * FIXME: this code assumes the host is debugging the guest.
1724          *        need to deal with guest debugging itself too.
1725          */
1726         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1727         dr = exit_qualification & 7;
1728         reg = (exit_qualification >> 8) & 15;
1729         vcpu_load_rsp_rip(vcpu);
1730         if (exit_qualification & 16) {
1731                 /* mov from dr */
1732                 switch (dr) {
1733                 case 6:
1734                         val = 0xffff0ff0;
1735                         break;
1736                 case 7:
1737                         val = 0x400;
1738                         break;
1739                 default:
1740                         val = 0;
1741                 }
1742                 vcpu->regs[reg] = val;
1743         } else {
1744                 /* mov to dr */
1745         }
1746         vcpu_put_rsp_rip(vcpu);
1747         skip_emulated_instruction(vcpu);
1748         return 1;
1749 }
1750
1751 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1752 {
1753         kvm_emulate_cpuid(vcpu);
1754         return 1;
1755 }
1756
1757 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1758 {
1759         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1760         u64 data;
1761
1762         if (vmx_get_msr(vcpu, ecx, &data)) {
1763                 vmx_inject_gp(vcpu, 0);
1764                 return 1;
1765         }
1766
1767         /* FIXME: handling of bits 32:63 of rax, rdx */
1768         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1769         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1770         skip_emulated_instruction(vcpu);
1771         return 1;
1772 }
1773
1774 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1775 {
1776         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1777         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1778                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1779
1780         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1781                 vmx_inject_gp(vcpu, 0);
1782                 return 1;
1783         }
1784
1785         skip_emulated_instruction(vcpu);
1786         return 1;
1787 }
1788
1789 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1790                               struct kvm_run *kvm_run)
1791 {
1792         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1793         kvm_run->cr8 = vcpu->cr8;
1794         kvm_run->apic_base = vcpu->apic_base;
1795         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1796                                                   vcpu->irq_summary == 0);
1797 }
1798
1799 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1800                                    struct kvm_run *kvm_run)
1801 {
1802         /*
1803          * If the user space waits to inject interrupts, exit as soon as
1804          * possible
1805          */
1806         if (kvm_run->request_interrupt_window &&
1807             !vcpu->irq_summary) {
1808                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1809                 ++vcpu->stat.irq_window_exits;
1810                 return 0;
1811         }
1812         return 1;
1813 }
1814
1815 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1816 {
1817         skip_emulated_instruction(vcpu);
1818         if (vcpu->irq_summary)
1819                 return 1;
1820
1821         kvm_run->exit_reason = KVM_EXIT_HLT;
1822         ++vcpu->stat.halt_exits;
1823         return 0;
1824 }
1825
1826 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1827 {
1828         skip_emulated_instruction(vcpu);
1829         return kvm_hypercall(vcpu, kvm_run);
1830 }
1831
1832 /*
1833  * The exit handlers return 1 if the exit was handled fully and guest execution
1834  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1835  * to be done to userspace and return 0.
1836  */
1837 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1838                                       struct kvm_run *kvm_run) = {
1839         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1840         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1841         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1842         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1843         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1844         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1845         [EXIT_REASON_CPUID]                   = handle_cpuid,
1846         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1847         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1848         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1849         [EXIT_REASON_HLT]                     = handle_halt,
1850         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1851 };
1852
1853 static const int kvm_vmx_max_exit_handlers =
1854         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1855
1856 /*
1857  * The guest has exited.  See if we can fix it or if we need userspace
1858  * assistance.
1859  */
1860 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1861 {
1862         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1863         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1864
1865         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1866                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1867                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1868                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1869         if (exit_reason < kvm_vmx_max_exit_handlers
1870             && kvm_vmx_exit_handlers[exit_reason])
1871                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1872         else {
1873                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1874                 kvm_run->hw.hardware_exit_reason = exit_reason;
1875         }
1876         return 0;
1877 }
1878
1879 /*
1880  * Check if userspace requested an interrupt window, and that the
1881  * interrupt window is open.
1882  *
1883  * No need to exit to userspace if we already have an interrupt queued.
1884  */
1885 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1886                                           struct kvm_run *kvm_run)
1887 {
1888         return (!vcpu->irq_summary &&
1889                 kvm_run->request_interrupt_window &&
1890                 vcpu->interrupt_window_open &&
1891                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1892 }
1893
1894 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1895 {
1896         u8 fail;
1897         int r;
1898
1899 preempted:
1900         if (!vcpu->mmio_read_completed)
1901                 do_interrupt_requests(vcpu, kvm_run);
1902
1903         if (vcpu->guest_debug.enabled)
1904                 kvm_guest_debug_pre(vcpu);
1905
1906 #ifdef CONFIG_X86_64
1907         if (is_long_mode(vcpu)) {
1908                 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1909                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1910         }
1911 #endif
1912
1913 again:
1914         vmx_save_host_state(vcpu);
1915         kvm_load_guest_fpu(vcpu);
1916
1917         /*
1918          * Loading guest fpu may have cleared host cr0.ts
1919          */
1920         vmcs_writel(HOST_CR0, read_cr0());
1921
1922         asm (
1923                 /* Store host registers */
1924                 "pushf \n\t"
1925 #ifdef CONFIG_X86_64
1926                 "push %%rax; push %%rbx; push %%rdx;"
1927                 "push %%rsi; push %%rdi; push %%rbp;"
1928                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1929                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1930                 "push %%rcx \n\t"
1931                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1932 #else
1933                 "pusha; push %%ecx \n\t"
1934                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1935 #endif
1936                 /* Check if vmlaunch of vmresume is needed */
1937                 "cmp $0, %1 \n\t"
1938                 /* Load guest registers.  Don't clobber flags. */
1939 #ifdef CONFIG_X86_64
1940                 "mov %c[cr2](%3), %%rax \n\t"
1941                 "mov %%rax, %%cr2 \n\t"
1942                 "mov %c[rax](%3), %%rax \n\t"
1943                 "mov %c[rbx](%3), %%rbx \n\t"
1944                 "mov %c[rdx](%3), %%rdx \n\t"
1945                 "mov %c[rsi](%3), %%rsi \n\t"
1946                 "mov %c[rdi](%3), %%rdi \n\t"
1947                 "mov %c[rbp](%3), %%rbp \n\t"
1948                 "mov %c[r8](%3),  %%r8  \n\t"
1949                 "mov %c[r9](%3),  %%r9  \n\t"
1950                 "mov %c[r10](%3), %%r10 \n\t"
1951                 "mov %c[r11](%3), %%r11 \n\t"
1952                 "mov %c[r12](%3), %%r12 \n\t"
1953                 "mov %c[r13](%3), %%r13 \n\t"
1954                 "mov %c[r14](%3), %%r14 \n\t"
1955                 "mov %c[r15](%3), %%r15 \n\t"
1956                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1957 #else
1958                 "mov %c[cr2](%3), %%eax \n\t"
1959                 "mov %%eax,   %%cr2 \n\t"
1960                 "mov %c[rax](%3), %%eax \n\t"
1961                 "mov %c[rbx](%3), %%ebx \n\t"
1962                 "mov %c[rdx](%3), %%edx \n\t"
1963                 "mov %c[rsi](%3), %%esi \n\t"
1964                 "mov %c[rdi](%3), %%edi \n\t"
1965                 "mov %c[rbp](%3), %%ebp \n\t"
1966                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1967 #endif
1968                 /* Enter guest mode */
1969                 "jne launched \n\t"
1970                 ASM_VMX_VMLAUNCH "\n\t"
1971                 "jmp kvm_vmx_return \n\t"
1972                 "launched: " ASM_VMX_VMRESUME "\n\t"
1973                 ".globl kvm_vmx_return \n\t"
1974                 "kvm_vmx_return: "
1975                 /* Save guest registers, load host registers, keep flags */
1976 #ifdef CONFIG_X86_64
1977                 "xchg %3,     (%%rsp) \n\t"
1978                 "mov %%rax, %c[rax](%3) \n\t"
1979                 "mov %%rbx, %c[rbx](%3) \n\t"
1980                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1981                 "mov %%rdx, %c[rdx](%3) \n\t"
1982                 "mov %%rsi, %c[rsi](%3) \n\t"
1983                 "mov %%rdi, %c[rdi](%3) \n\t"
1984                 "mov %%rbp, %c[rbp](%3) \n\t"
1985                 "mov %%r8,  %c[r8](%3) \n\t"
1986                 "mov %%r9,  %c[r9](%3) \n\t"
1987                 "mov %%r10, %c[r10](%3) \n\t"
1988                 "mov %%r11, %c[r11](%3) \n\t"
1989                 "mov %%r12, %c[r12](%3) \n\t"
1990                 "mov %%r13, %c[r13](%3) \n\t"
1991                 "mov %%r14, %c[r14](%3) \n\t"
1992                 "mov %%r15, %c[r15](%3) \n\t"
1993                 "mov %%cr2, %%rax   \n\t"
1994                 "mov %%rax, %c[cr2](%3) \n\t"
1995                 "mov (%%rsp), %3 \n\t"
1996
1997                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1998                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1999                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2000                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2001 #else
2002                 "xchg %3, (%%esp) \n\t"
2003                 "mov %%eax, %c[rax](%3) \n\t"
2004                 "mov %%ebx, %c[rbx](%3) \n\t"
2005                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2006                 "mov %%edx, %c[rdx](%3) \n\t"
2007                 "mov %%esi, %c[rsi](%3) \n\t"
2008                 "mov %%edi, %c[rdi](%3) \n\t"
2009                 "mov %%ebp, %c[rbp](%3) \n\t"
2010                 "mov %%cr2, %%eax  \n\t"
2011                 "mov %%eax, %c[cr2](%3) \n\t"
2012                 "mov (%%esp), %3 \n\t"
2013
2014                 "pop %%ecx; popa \n\t"
2015 #endif
2016                 "setbe %0 \n\t"
2017                 "popf \n\t"
2018               : "=q" (fail)
2019               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
2020                 "c"(vcpu),
2021                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2022                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2023                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2024                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2025                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2026                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2027                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2028 #ifdef CONFIG_X86_64
2029                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2030                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2031                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2032                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2033                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2034                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2035                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2036                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2037 #endif
2038                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2039               : "cc", "memory" );
2040
2041         ++vcpu->stat.exits;
2042
2043         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2044
2045         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2046
2047         if (unlikely(fail)) {
2048                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2049                 kvm_run->fail_entry.hardware_entry_failure_reason
2050                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2051                 r = 0;
2052                 goto out;
2053         }
2054         /*
2055          * Profile KVM exit RIPs:
2056          */
2057         if (unlikely(prof_on == KVM_PROFILING))
2058                 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2059
2060         vcpu->launched = 1;
2061         r = kvm_handle_exit(kvm_run, vcpu);
2062         if (r > 0) {
2063                 /* Give scheduler a change to reschedule. */
2064                 if (signal_pending(current)) {
2065                         r = -EINTR;
2066                         kvm_run->exit_reason = KVM_EXIT_INTR;
2067                         ++vcpu->stat.signal_exits;
2068                         goto out;
2069                 }
2070
2071                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2072                         r = -EINTR;
2073                         kvm_run->exit_reason = KVM_EXIT_INTR;
2074                         ++vcpu->stat.request_irq_exits;
2075                         goto out;
2076                 }
2077                 if (!need_resched()) {
2078                         ++vcpu->stat.light_exits;
2079                         goto again;
2080                 }
2081         }
2082
2083 out:
2084         if (r > 0) {
2085                 kvm_resched(vcpu);
2086                 goto preempted;
2087         }
2088
2089         post_kvm_run_save(vcpu, kvm_run);
2090         return r;
2091 }
2092
2093 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2094 {
2095         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2096 }
2097
2098 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2099                                   unsigned long addr,
2100                                   u32 err_code)
2101 {
2102         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2103
2104         ++vcpu->stat.pf_guest;
2105
2106         if (is_page_fault(vect_info)) {
2107                 printk(KERN_DEBUG "inject_page_fault: "
2108                        "double fault 0x%lx @ 0x%lx\n",
2109                        addr, vmcs_readl(GUEST_RIP));
2110                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2111                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2112                              DF_VECTOR |
2113                              INTR_TYPE_EXCEPTION |
2114                              INTR_INFO_DELIEVER_CODE_MASK |
2115                              INTR_INFO_VALID_MASK);
2116                 return;
2117         }
2118         vcpu->cr2 = addr;
2119         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2120         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2121                      PF_VECTOR |
2122                      INTR_TYPE_EXCEPTION |
2123                      INTR_INFO_DELIEVER_CODE_MASK |
2124                      INTR_INFO_VALID_MASK);
2125
2126 }
2127
2128 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2129 {
2130         if (vcpu->vmcs) {
2131                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2132                 free_vmcs(vcpu->vmcs);
2133                 vcpu->vmcs = NULL;
2134         }
2135 }
2136
2137 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2138 {
2139         vmx_free_vmcs(vcpu);
2140 }
2141
2142 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2143 {
2144         struct vmcs *vmcs;
2145
2146         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2147         if (!vcpu->guest_msrs)
2148                 return -ENOMEM;
2149
2150         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2151         if (!vcpu->host_msrs)
2152                 goto out_free_guest_msrs;
2153
2154         vmcs = alloc_vmcs();
2155         if (!vmcs)
2156                 goto out_free_msrs;
2157
2158         vmcs_clear(vmcs);
2159         vcpu->vmcs = vmcs;
2160         vcpu->launched = 0;
2161         vcpu->fpu_active = 1;
2162
2163         return 0;
2164
2165 out_free_msrs:
2166         kfree(vcpu->host_msrs);
2167         vcpu->host_msrs = NULL;
2168
2169 out_free_guest_msrs:
2170         kfree(vcpu->guest_msrs);
2171         vcpu->guest_msrs = NULL;
2172
2173         return -ENOMEM;
2174 }
2175
2176 static struct kvm_arch_ops vmx_arch_ops = {
2177         .cpu_has_kvm_support = cpu_has_kvm_support,
2178         .disabled_by_bios = vmx_disabled_by_bios,
2179         .hardware_setup = hardware_setup,
2180         .hardware_unsetup = hardware_unsetup,
2181         .hardware_enable = hardware_enable,
2182         .hardware_disable = hardware_disable,
2183
2184         .vcpu_create = vmx_create_vcpu,
2185         .vcpu_free = vmx_free_vcpu,
2186
2187         .vcpu_load = vmx_vcpu_load,
2188         .vcpu_put = vmx_vcpu_put,
2189         .vcpu_decache = vmx_vcpu_decache,
2190
2191         .set_guest_debug = set_guest_debug,
2192         .get_msr = vmx_get_msr,
2193         .set_msr = vmx_set_msr,
2194         .get_segment_base = vmx_get_segment_base,
2195         .get_segment = vmx_get_segment,
2196         .set_segment = vmx_set_segment,
2197         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2198         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2199         .set_cr0 = vmx_set_cr0,
2200         .set_cr3 = vmx_set_cr3,
2201         .set_cr4 = vmx_set_cr4,
2202 #ifdef CONFIG_X86_64
2203         .set_efer = vmx_set_efer,
2204 #endif
2205         .get_idt = vmx_get_idt,
2206         .set_idt = vmx_set_idt,
2207         .get_gdt = vmx_get_gdt,
2208         .set_gdt = vmx_set_gdt,
2209         .cache_regs = vcpu_load_rsp_rip,
2210         .decache_regs = vcpu_put_rsp_rip,
2211         .get_rflags = vmx_get_rflags,
2212         .set_rflags = vmx_set_rflags,
2213
2214         .tlb_flush = vmx_flush_tlb,
2215         .inject_page_fault = vmx_inject_page_fault,
2216
2217         .inject_gp = vmx_inject_gp,
2218
2219         .run = vmx_vcpu_run,
2220         .skip_emulated_instruction = skip_emulated_instruction,
2221         .vcpu_setup = vmx_vcpu_setup,
2222         .patch_hypercall = vmx_patch_hypercall,
2223 };
2224
2225 static int __init vmx_init(void)
2226 {
2227         void *iova;
2228         int r;
2229
2230         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2231         if (!vmx_io_bitmap_a)
2232                 return -ENOMEM;
2233
2234         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2235         if (!vmx_io_bitmap_b) {
2236                 r = -ENOMEM;
2237                 goto out;
2238         }
2239
2240         /*
2241          * Allow direct access to the PC debug port (it is often used for I/O
2242          * delays, but the vmexits simply slow things down).
2243          */
2244         iova = kmap(vmx_io_bitmap_a);
2245         memset(iova, 0xff, PAGE_SIZE);
2246         clear_bit(0x80, iova);
2247         kunmap(iova);
2248
2249         iova = kmap(vmx_io_bitmap_b);
2250         memset(iova, 0xff, PAGE_SIZE);
2251         kunmap(iova);
2252
2253         r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2254         if (r)
2255                 goto out1;
2256
2257         return 0;
2258
2259 out1:
2260         __free_page(vmx_io_bitmap_b);
2261 out:
2262         __free_page(vmx_io_bitmap_a);
2263         return r;
2264 }
2265
2266 static void __exit vmx_exit(void)
2267 {
2268         __free_page(vmx_io_bitmap_b);
2269         __free_page(vmx_io_bitmap_a);
2270
2271         kvm_exit_arch();
2272 }
2273
2274 module_init(vmx_init)
2275 module_exit(vmx_exit)