OSDN Git Service

Merge Linux 4.4.203-rc2 into 10
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65                               struct page **res)
66 {
67         const char *err;
68         struct cache_sb *s;
69         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70         unsigned i;
71
72         if (!bh)
73                 return "IO error";
74
75         s = (struct cache_sb *) bh->b_data;
76
77         sb->offset              = le64_to_cpu(s->offset);
78         sb->version             = le64_to_cpu(s->version);
79
80         memcpy(sb->magic,       s->magic, 16);
81         memcpy(sb->uuid,        s->uuid, 16);
82         memcpy(sb->set_uuid,    s->set_uuid, 16);
83         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
84
85         sb->flags               = le64_to_cpu(s->flags);
86         sb->seq                 = le64_to_cpu(s->seq);
87         sb->last_mount          = le32_to_cpu(s->last_mount);
88         sb->first_bucket        = le16_to_cpu(s->first_bucket);
89         sb->keys                = le16_to_cpu(s->keys);
90
91         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92                 sb->d[i] = le64_to_cpu(s->d[i]);
93
94         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95                  sb->version, sb->flags, sb->seq, sb->keys);
96
97         err = "Not a bcache superblock";
98         if (sb->offset != SB_SECTOR)
99                 goto err;
100
101         if (memcmp(sb->magic, bcache_magic, 16))
102                 goto err;
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Bad checksum";
109         if (s->csum != csum_set(s))
110                 goto err;
111
112         err = "Bad UUID";
113         if (bch_is_zero(sb->uuid, 16))
114                 goto err;
115
116         sb->block_size  = le16_to_cpu(s->block_size);
117
118         err = "Superblock block size smaller than device block size";
119         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120                 goto err;
121
122         switch (sb->version) {
123         case BCACHE_SB_VERSION_BDEV:
124                 sb->data_offset = BDEV_DATA_START_DEFAULT;
125                 break;
126         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127                 sb->data_offset = le64_to_cpu(s->data_offset);
128
129                 err = "Bad data offset";
130                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131                         goto err;
132
133                 break;
134         case BCACHE_SB_VERSION_CDEV:
135         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
137                 sb->block_size  = le16_to_cpu(s->block_size);
138                 sb->bucket_size = le16_to_cpu(s->bucket_size);
139
140                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
141                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142
143                 err = "Too many buckets";
144                 if (sb->nbuckets > LONG_MAX)
145                         goto err;
146
147                 err = "Not enough buckets";
148                 if (sb->nbuckets < 1 << 7)
149                         goto err;
150
151                 err = "Bad block/bucket size";
152                 if (!is_power_of_2(sb->block_size) ||
153                     sb->block_size > PAGE_SECTORS ||
154                     !is_power_of_2(sb->bucket_size) ||
155                     sb->bucket_size < PAGE_SECTORS)
156                         goto err;
157
158                 err = "Invalid superblock: device too small";
159                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160                         goto err;
161
162                 err = "Bad UUID";
163                 if (bch_is_zero(sb->set_uuid, 16))
164                         goto err;
165
166                 err = "Bad cache device number in set";
167                 if (!sb->nr_in_set ||
168                     sb->nr_in_set <= sb->nr_this_dev ||
169                     sb->nr_in_set > MAX_CACHES_PER_SET)
170                         goto err;
171
172                 err = "Journal buckets not sequential";
173                 for (i = 0; i < sb->keys; i++)
174                         if (sb->d[i] != sb->first_bucket + i)
175                                 goto err;
176
177                 err = "Too many journal buckets";
178                 if (sb->first_bucket + sb->keys > sb->nbuckets)
179                         goto err;
180
181                 err = "Invalid superblock: first bucket comes before end of super";
182                 if (sb->first_bucket * sb->bucket_size < 16)
183                         goto err;
184
185                 break;
186         default:
187                 err = "Unsupported superblock version";
188                 goto err;
189         }
190
191         sb->last_mount = get_seconds();
192         err = NULL;
193
194         get_page(bh->b_page);
195         *res = bh->b_page;
196 err:
197         put_bh(bh);
198         return err;
199 }
200
201 static void write_bdev_super_endio(struct bio *bio)
202 {
203         struct cached_dev *dc = bio->bi_private;
204         /* XXX: error checking */
205
206         closure_put(&dc->sb_write);
207 }
208
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212         unsigned i;
213
214         bio->bi_iter.bi_sector  = SB_SECTOR;
215         bio->bi_rw              = REQ_SYNC|REQ_META;
216         bio->bi_iter.bi_size    = SB_SIZE;
217         bch_bio_map(bio, NULL);
218
219         out->offset             = cpu_to_le64(sb->offset);
220         out->version            = cpu_to_le64(sb->version);
221
222         memcpy(out->uuid,       sb->uuid, 16);
223         memcpy(out->set_uuid,   sb->set_uuid, 16);
224         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
225
226         out->flags              = cpu_to_le64(sb->flags);
227         out->seq                = cpu_to_le64(sb->seq);
228
229         out->last_mount         = cpu_to_le32(sb->last_mount);
230         out->first_bucket       = cpu_to_le16(sb->first_bucket);
231         out->keys               = cpu_to_le16(sb->keys);
232
233         for (i = 0; i < sb->keys; i++)
234                 out->d[i] = cpu_to_le64(sb->d[i]);
235
236         out->csum = csum_set(out);
237
238         pr_debug("ver %llu, flags %llu, seq %llu",
239                  sb->version, sb->flags, sb->seq);
240
241         submit_bio(REQ_WRITE, bio);
242 }
243
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248         up(&dc->sb_write_mutex);
249 }
250
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253         struct closure *cl = &dc->sb_write;
254         struct bio *bio = &dc->sb_bio;
255
256         down(&dc->sb_write_mutex);
257         closure_init(cl, parent);
258
259         bio_reset(bio);
260         bio->bi_bdev    = dc->bdev;
261         bio->bi_end_io  = write_bdev_super_endio;
262         bio->bi_private = dc;
263
264         closure_get(cl);
265         __write_super(&dc->sb, bio);
266
267         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269
270 static void write_super_endio(struct bio *bio)
271 {
272         struct cache *ca = bio->bi_private;
273
274         bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275         closure_put(&ca->set->sb_write);
276 }
277
278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281
282         up(&c->sb_write_mutex);
283 }
284
285 void bcache_write_super(struct cache_set *c)
286 {
287         struct closure *cl = &c->sb_write;
288         struct cache *ca;
289         unsigned i;
290
291         down(&c->sb_write_mutex);
292         closure_init(cl, &c->cl);
293
294         c->sb.seq++;
295
296         for_each_cache(ca, c, i) {
297                 struct bio *bio = &ca->sb_bio;
298
299                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300                 ca->sb.seq              = c->sb.seq;
301                 ca->sb.last_mount       = c->sb.last_mount;
302
303                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304
305                 bio_reset(bio);
306                 bio->bi_bdev    = ca->bdev;
307                 bio->bi_end_io  = write_super_endio;
308                 bio->bi_private = ca;
309
310                 closure_get(cl);
311                 __write_super(&ca->sb, bio);
312         }
313
314         closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316
317 /* UUID io */
318
319 static void uuid_endio(struct bio *bio)
320 {
321         struct closure *cl = bio->bi_private;
322         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323
324         cache_set_err_on(bio->bi_error, c, "accessing uuids");
325         bch_bbio_free(bio, c);
326         closure_put(cl);
327 }
328
329 static void uuid_io_unlock(struct closure *cl)
330 {
331         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332
333         up(&c->uuid_write_mutex);
334 }
335
336 static void uuid_io(struct cache_set *c, unsigned long rw,
337                     struct bkey *k, struct closure *parent)
338 {
339         struct closure *cl = &c->uuid_write;
340         struct uuid_entry *u;
341         unsigned i;
342         char buf[80];
343
344         BUG_ON(!parent);
345         down(&c->uuid_write_mutex);
346         closure_init(cl, parent);
347
348         for (i = 0; i < KEY_PTRS(k); i++) {
349                 struct bio *bio = bch_bbio_alloc(c);
350
351                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
352                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353
354                 bio->bi_end_io  = uuid_endio;
355                 bio->bi_private = cl;
356                 bch_bio_map(bio, c->uuids);
357
358                 bch_submit_bbio(bio, c, k, i);
359
360                 if (!(rw & WRITE))
361                         break;
362         }
363
364         bch_extent_to_text(buf, sizeof(buf), k);
365         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
366
367         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368                 if (!bch_is_zero(u->uuid, 16))
369                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370                                  u - c->uuids, u->uuid, u->label,
371                                  u->first_reg, u->last_reg, u->invalidated);
372
373         closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378         struct bkey *k = &j->uuid_bucket;
379
380         if (__bch_btree_ptr_invalid(c, k))
381                 return "bad uuid pointer";
382
383         bkey_copy(&c->uuid_bucket, k);
384         uuid_io(c, READ_SYNC, k, cl);
385
386         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
388                 struct uuid_entry       *u1 = (void *) c->uuids;
389                 int i;
390
391                 closure_sync(cl);
392
393                 /*
394                  * Since the new uuid entry is bigger than the old, we have to
395                  * convert starting at the highest memory address and work down
396                  * in order to do it in place
397                  */
398
399                 for (i = c->nr_uuids - 1;
400                      i >= 0;
401                      --i) {
402                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
403                         memcpy(u1[i].label,     u0[i].label, 32);
404
405                         u1[i].first_reg         = u0[i].first_reg;
406                         u1[i].last_reg          = u0[i].last_reg;
407                         u1[i].invalidated       = u0[i].invalidated;
408
409                         u1[i].flags     = 0;
410                         u1[i].sectors   = 0;
411                 }
412         }
413
414         return NULL;
415 }
416
417 static int __uuid_write(struct cache_set *c)
418 {
419         BKEY_PADDED(key) k;
420         struct closure cl;
421         closure_init_stack(&cl);
422
423         lockdep_assert_held(&bch_register_lock);
424
425         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426                 return 1;
427
428         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429         uuid_io(c, REQ_WRITE, &k.key, &cl);
430         closure_sync(&cl);
431
432         bkey_copy(&c->uuid_bucket, &k.key);
433         bkey_put(c, &k.key);
434         return 0;
435 }
436
437 int bch_uuid_write(struct cache_set *c)
438 {
439         int ret = __uuid_write(c);
440
441         if (!ret)
442                 bch_journal_meta(c, NULL);
443
444         return ret;
445 }
446
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449         struct uuid_entry *u;
450
451         for (u = c->uuids;
452              u < c->uuids + c->nr_uuids; u++)
453                 if (!memcmp(u->uuid, uuid, 16))
454                         return u;
455
456         return NULL;
457 }
458
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462         return uuid_find(c, zero_uuid);
463 }
464
465 /*
466  * Bucket priorities/gens:
467  *
468  * For each bucket, we store on disk its
469    * 8 bit gen
470    * 16 bit priority
471  *
472  * See alloc.c for an explanation of the gen. The priority is used to implement
473  * lru (and in the future other) cache replacement policies; for most purposes
474  * it's just an opaque integer.
475  *
476  * The gens and the priorities don't have a whole lot to do with each other, and
477  * it's actually the gens that must be written out at specific times - it's no
478  * big deal if the priorities don't get written, if we lose them we just reuse
479  * buckets in suboptimal order.
480  *
481  * On disk they're stored in a packed array, and in as many buckets are required
482  * to fit them all. The buckets we use to store them form a list; the journal
483  * header points to the first bucket, the first bucket points to the second
484  * bucket, et cetera.
485  *
486  * This code is used by the allocation code; periodically (whenever it runs out
487  * of buckets to allocate from) the allocation code will invalidate some
488  * buckets, but it can't use those buckets until their new gens are safely on
489  * disk.
490  */
491
492 static void prio_endio(struct bio *bio)
493 {
494         struct cache *ca = bio->bi_private;
495
496         cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497         bch_bbio_free(bio, ca->set);
498         closure_put(&ca->prio);
499 }
500
501 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
502 {
503         struct closure *cl = &ca->prio;
504         struct bio *bio = bch_bbio_alloc(ca->set);
505
506         closure_init_stack(cl);
507
508         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
509         bio->bi_bdev            = ca->bdev;
510         bio->bi_rw              = REQ_SYNC|REQ_META|rw;
511         bio->bi_iter.bi_size    = bucket_bytes(ca);
512
513         bio->bi_end_io  = prio_endio;
514         bio->bi_private = ca;
515         bch_bio_map(bio, ca->disk_buckets);
516
517         closure_bio_submit(bio, &ca->prio);
518         closure_sync(cl);
519 }
520
521 void bch_prio_write(struct cache *ca)
522 {
523         int i;
524         struct bucket *b;
525         struct closure cl;
526
527         closure_init_stack(&cl);
528
529         lockdep_assert_held(&ca->set->bucket_lock);
530
531         ca->disk_buckets->seq++;
532
533         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
534                         &ca->meta_sectors_written);
535
536         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
537         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
538
539         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
540                 long bucket;
541                 struct prio_set *p = ca->disk_buckets;
542                 struct bucket_disk *d = p->data;
543                 struct bucket_disk *end = d + prios_per_bucket(ca);
544
545                 for (b = ca->buckets + i * prios_per_bucket(ca);
546                      b < ca->buckets + ca->sb.nbuckets && d < end;
547                      b++, d++) {
548                         d->prio = cpu_to_le16(b->prio);
549                         d->gen = b->gen;
550                 }
551
552                 p->next_bucket  = ca->prio_buckets[i + 1];
553                 p->magic        = pset_magic(&ca->sb);
554                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
555
556                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
557                 BUG_ON(bucket == -1);
558
559                 mutex_unlock(&ca->set->bucket_lock);
560                 prio_io(ca, bucket, REQ_WRITE);
561                 mutex_lock(&ca->set->bucket_lock);
562
563                 ca->prio_buckets[i] = bucket;
564                 atomic_dec_bug(&ca->buckets[bucket].pin);
565         }
566
567         mutex_unlock(&ca->set->bucket_lock);
568
569         bch_journal_meta(ca->set, &cl);
570         closure_sync(&cl);
571
572         mutex_lock(&ca->set->bucket_lock);
573
574         /*
575          * Don't want the old priorities to get garbage collected until after we
576          * finish writing the new ones, and they're journalled
577          */
578         for (i = 0; i < prio_buckets(ca); i++) {
579                 if (ca->prio_last_buckets[i])
580                         __bch_bucket_free(ca,
581                                 &ca->buckets[ca->prio_last_buckets[i]]);
582
583                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
584         }
585 }
586
587 static void prio_read(struct cache *ca, uint64_t bucket)
588 {
589         struct prio_set *p = ca->disk_buckets;
590         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
591         struct bucket *b;
592         unsigned bucket_nr = 0;
593
594         for (b = ca->buckets;
595              b < ca->buckets + ca->sb.nbuckets;
596              b++, d++) {
597                 if (d == end) {
598                         ca->prio_buckets[bucket_nr] = bucket;
599                         ca->prio_last_buckets[bucket_nr] = bucket;
600                         bucket_nr++;
601
602                         prio_io(ca, bucket, READ_SYNC);
603
604                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
605                                 pr_warn("bad csum reading priorities");
606
607                         if (p->magic != pset_magic(&ca->sb))
608                                 pr_warn("bad magic reading priorities");
609
610                         bucket = p->next_bucket;
611                         d = p->data;
612                 }
613
614                 b->prio = le16_to_cpu(d->prio);
615                 b->gen = b->last_gc = d->gen;
616         }
617 }
618
619 /* Bcache device */
620
621 static int open_dev(struct block_device *b, fmode_t mode)
622 {
623         struct bcache_device *d = b->bd_disk->private_data;
624         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
625                 return -ENXIO;
626
627         closure_get(&d->cl);
628         return 0;
629 }
630
631 static void release_dev(struct gendisk *b, fmode_t mode)
632 {
633         struct bcache_device *d = b->private_data;
634         closure_put(&d->cl);
635 }
636
637 static int ioctl_dev(struct block_device *b, fmode_t mode,
638                      unsigned int cmd, unsigned long arg)
639 {
640         struct bcache_device *d = b->bd_disk->private_data;
641         return d->ioctl(d, mode, cmd, arg);
642 }
643
644 static const struct block_device_operations bcache_ops = {
645         .open           = open_dev,
646         .release        = release_dev,
647         .ioctl          = ioctl_dev,
648         .owner          = THIS_MODULE,
649 };
650
651 void bcache_device_stop(struct bcache_device *d)
652 {
653         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
654                 closure_queue(&d->cl);
655 }
656
657 static void bcache_device_unlink(struct bcache_device *d)
658 {
659         lockdep_assert_held(&bch_register_lock);
660
661         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
662                 unsigned i;
663                 struct cache *ca;
664
665                 sysfs_remove_link(&d->c->kobj, d->name);
666                 sysfs_remove_link(&d->kobj, "cache");
667
668                 for_each_cache(ca, d->c, i)
669                         bd_unlink_disk_holder(ca->bdev, d->disk);
670         }
671 }
672
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674                                const char *name)
675 {
676         unsigned i;
677         struct cache *ca;
678
679         for_each_cache(ca, d->c, i)
680                 bd_link_disk_holder(ca->bdev, d->disk);
681
682         snprintf(d->name, BCACHEDEVNAME_SIZE,
683                  "%s%u", name, d->id);
684
685         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
686              sysfs_create_link(&c->kobj, &d->kobj, d->name),
687              "Couldn't create device <-> cache set symlinks");
688
689         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694         lockdep_assert_held(&bch_register_lock);
695
696         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
697                 struct uuid_entry *u = d->c->uuids + d->id;
698
699                 SET_UUID_FLASH_ONLY(u, 0);
700                 memcpy(u->uuid, invalid_uuid, 16);
701                 u->invalidated = cpu_to_le32(get_seconds());
702                 bch_uuid_write(d->c);
703         }
704
705         bcache_device_unlink(d);
706
707         d->c->devices[d->id] = NULL;
708         closure_put(&d->c->caching);
709         d->c = NULL;
710 }
711
712 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
713                                  unsigned id)
714 {
715         d->id = id;
716         d->c = c;
717         c->devices[id] = d;
718
719         closure_get(&c->caching);
720 }
721
722 static void bcache_device_free(struct bcache_device *d)
723 {
724         lockdep_assert_held(&bch_register_lock);
725
726         pr_info("%s stopped", d->disk->disk_name);
727
728         if (d->c)
729                 bcache_device_detach(d);
730         if (d->disk && d->disk->flags & GENHD_FL_UP)
731                 del_gendisk(d->disk);
732         if (d->disk && d->disk->queue)
733                 blk_cleanup_queue(d->disk->queue);
734         if (d->disk) {
735                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
736                 put_disk(d->disk);
737         }
738
739         if (d->bio_split)
740                 bioset_free(d->bio_split);
741         kvfree(d->full_dirty_stripes);
742         kvfree(d->stripe_sectors_dirty);
743
744         closure_debug_destroy(&d->cl);
745 }
746
747 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
748                               sector_t sectors)
749 {
750         struct request_queue *q;
751         size_t n;
752         int minor;
753
754         if (!d->stripe_size)
755                 d->stripe_size = 1 << 31;
756
757         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
758
759         if (!d->nr_stripes ||
760             d->nr_stripes > INT_MAX ||
761             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
762                 pr_err("nr_stripes too large");
763                 return -ENOMEM;
764         }
765
766         n = d->nr_stripes * sizeof(atomic_t);
767         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
768                 ? kzalloc(n, GFP_KERNEL)
769                 : vzalloc(n);
770         if (!d->stripe_sectors_dirty)
771                 return -ENOMEM;
772
773         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
774         d->full_dirty_stripes = n < PAGE_SIZE << 6
775                 ? kzalloc(n, GFP_KERNEL)
776                 : vzalloc(n);
777         if (!d->full_dirty_stripes)
778                 return -ENOMEM;
779
780         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
781         if (minor < 0)
782                 return minor;
783
784         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
785             !(d->disk = alloc_disk(1))) {
786                 ida_simple_remove(&bcache_minor, minor);
787                 return -ENOMEM;
788         }
789
790         set_capacity(d->disk, sectors);
791         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
792
793         d->disk->major          = bcache_major;
794         d->disk->first_minor    = minor;
795         d->disk->fops           = &bcache_ops;
796         d->disk->private_data   = d;
797
798         q = blk_alloc_queue(GFP_KERNEL);
799         if (!q)
800                 return -ENOMEM;
801
802         blk_queue_make_request(q, NULL);
803         d->disk->queue                  = q;
804         q->queuedata                    = d;
805         q->backing_dev_info->congested_data = d;
806         q->limits.max_hw_sectors        = UINT_MAX;
807         q->limits.max_sectors           = UINT_MAX;
808         q->limits.max_segment_size      = UINT_MAX;
809         q->limits.max_segments          = BIO_MAX_PAGES;
810         blk_queue_max_discard_sectors(q, UINT_MAX);
811         q->limits.discard_granularity   = 512;
812         q->limits.io_min                = block_size;
813         q->limits.logical_block_size    = block_size;
814         q->limits.physical_block_size   = block_size;
815         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
816         clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
817         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
818
819         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
820
821         return 0;
822 }
823
824 /* Cached device */
825
826 static void calc_cached_dev_sectors(struct cache_set *c)
827 {
828         uint64_t sectors = 0;
829         struct cached_dev *dc;
830
831         list_for_each_entry(dc, &c->cached_devs, list)
832                 sectors += bdev_sectors(dc->bdev);
833
834         c->cached_dev_sectors = sectors;
835 }
836
837 void bch_cached_dev_run(struct cached_dev *dc)
838 {
839         struct bcache_device *d = &dc->disk;
840         char buf[SB_LABEL_SIZE + 1];
841         char *env[] = {
842                 "DRIVER=bcache",
843                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
844                 NULL,
845                 NULL,
846         };
847
848         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
849         buf[SB_LABEL_SIZE] = '\0';
850         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
851
852         if (atomic_xchg(&dc->running, 1)) {
853                 kfree(env[1]);
854                 kfree(env[2]);
855                 return;
856         }
857
858         if (!d->c &&
859             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
860                 struct closure cl;
861                 closure_init_stack(&cl);
862
863                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
864                 bch_write_bdev_super(dc, &cl);
865                 closure_sync(&cl);
866         }
867
868         add_disk(d->disk);
869         bd_link_disk_holder(dc->bdev, dc->disk.disk);
870         /* won't show up in the uevent file, use udevadm monitor -e instead
871          * only class / kset properties are persistent */
872         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
873         kfree(env[1]);
874         kfree(env[2]);
875
876         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
877             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
878                 pr_debug("error creating sysfs link");
879 }
880
881 static void cached_dev_detach_finish(struct work_struct *w)
882 {
883         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
884         char buf[BDEVNAME_SIZE];
885         struct closure cl;
886         closure_init_stack(&cl);
887
888         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
889         BUG_ON(atomic_read(&dc->count));
890
891         mutex_lock(&bch_register_lock);
892
893         cancel_delayed_work_sync(&dc->writeback_rate_update);
894         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
895                 kthread_stop(dc->writeback_thread);
896                 dc->writeback_thread = NULL;
897         }
898
899         memset(&dc->sb.set_uuid, 0, 16);
900         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
901
902         bch_write_bdev_super(dc, &cl);
903         closure_sync(&cl);
904
905         calc_cached_dev_sectors(dc->disk.c);
906         bcache_device_detach(&dc->disk);
907         list_move(&dc->list, &uncached_devices);
908
909         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
910         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
911
912         mutex_unlock(&bch_register_lock);
913
914         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
915
916         /* Drop ref we took in cached_dev_detach() */
917         closure_put(&dc->disk.cl);
918 }
919
920 void bch_cached_dev_detach(struct cached_dev *dc)
921 {
922         lockdep_assert_held(&bch_register_lock);
923
924         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
925                 return;
926
927         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
928                 return;
929
930         /*
931          * Block the device from being closed and freed until we're finished
932          * detaching
933          */
934         closure_get(&dc->disk.cl);
935
936         bch_writeback_queue(dc);
937         cached_dev_put(dc);
938 }
939
940 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
941                           uint8_t *set_uuid)
942 {
943         uint32_t rtime = cpu_to_le32(get_seconds());
944         struct uuid_entry *u;
945         char buf[BDEVNAME_SIZE];
946         struct cached_dev *exist_dc, *t;
947
948         bdevname(dc->bdev, buf);
949
950         if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
951             (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
952                 return -ENOENT;
953
954         if (dc->disk.c) {
955                 pr_err("Can't attach %s: already attached", buf);
956                 return -EINVAL;
957         }
958
959         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
960                 pr_err("Can't attach %s: shutting down", buf);
961                 return -EINVAL;
962         }
963
964         if (dc->sb.block_size < c->sb.block_size) {
965                 /* Will die */
966                 pr_err("Couldn't attach %s: block size less than set's block size",
967                        buf);
968                 return -EINVAL;
969         }
970
971         /* Check whether already attached */
972         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
973                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
974                         pr_err("Tried to attach %s but duplicate UUID already attached",
975                                 buf);
976
977                         return -EINVAL;
978                 }
979         }
980
981         u = uuid_find(c, dc->sb.uuid);
982
983         if (u &&
984             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
985              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
986                 memcpy(u->uuid, invalid_uuid, 16);
987                 u->invalidated = cpu_to_le32(get_seconds());
988                 u = NULL;
989         }
990
991         if (!u) {
992                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
993                         pr_err("Couldn't find uuid for %s in set", buf);
994                         return -ENOENT;
995                 }
996
997                 u = uuid_find_empty(c);
998                 if (!u) {
999                         pr_err("Not caching %s, no room for UUID", buf);
1000                         return -EINVAL;
1001                 }
1002         }
1003
1004         /* Deadlocks since we're called via sysfs...
1005         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1006          */
1007
1008         if (bch_is_zero(u->uuid, 16)) {
1009                 struct closure cl;
1010                 closure_init_stack(&cl);
1011
1012                 memcpy(u->uuid, dc->sb.uuid, 16);
1013                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1014                 u->first_reg = u->last_reg = rtime;
1015                 bch_uuid_write(c);
1016
1017                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1018                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1019
1020                 bch_write_bdev_super(dc, &cl);
1021                 closure_sync(&cl);
1022         } else {
1023                 u->last_reg = rtime;
1024                 bch_uuid_write(c);
1025         }
1026
1027         bcache_device_attach(&dc->disk, c, u - c->uuids);
1028         list_move(&dc->list, &c->cached_devs);
1029         calc_cached_dev_sectors(c);
1030
1031         smp_wmb();
1032         /*
1033          * dc->c must be set before dc->count != 0 - paired with the mb in
1034          * cached_dev_get()
1035          */
1036         atomic_set(&dc->count, 1);
1037
1038         /* Block writeback thread, but spawn it */
1039         down_write(&dc->writeback_lock);
1040         if (bch_cached_dev_writeback_start(dc)) {
1041                 up_write(&dc->writeback_lock);
1042                 return -ENOMEM;
1043         }
1044
1045         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1046                 bch_sectors_dirty_init(&dc->disk);
1047                 atomic_set(&dc->has_dirty, 1);
1048                 atomic_inc(&dc->count);
1049                 bch_writeback_queue(dc);
1050         }
1051
1052         bch_cached_dev_run(dc);
1053         bcache_device_link(&dc->disk, c, "bdev");
1054
1055         /* Allow the writeback thread to proceed */
1056         up_write(&dc->writeback_lock);
1057
1058         pr_info("Caching %s as %s on set %pU",
1059                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1060                 dc->disk.c->sb.set_uuid);
1061         return 0;
1062 }
1063
1064 void bch_cached_dev_release(struct kobject *kobj)
1065 {
1066         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1067                                              disk.kobj);
1068         kfree(dc);
1069         module_put(THIS_MODULE);
1070 }
1071
1072 static void cached_dev_free(struct closure *cl)
1073 {
1074         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1075
1076         cancel_delayed_work_sync(&dc->writeback_rate_update);
1077         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1078                 kthread_stop(dc->writeback_thread);
1079         if (dc->writeback_write_wq)
1080                 destroy_workqueue(dc->writeback_write_wq);
1081
1082         mutex_lock(&bch_register_lock);
1083
1084         if (atomic_read(&dc->running))
1085                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1086         bcache_device_free(&dc->disk);
1087         list_del(&dc->list);
1088
1089         mutex_unlock(&bch_register_lock);
1090
1091         if (!IS_ERR_OR_NULL(dc->bdev))
1092                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1093
1094         wake_up(&unregister_wait);
1095
1096         kobject_put(&dc->disk.kobj);
1097 }
1098
1099 static void cached_dev_flush(struct closure *cl)
1100 {
1101         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1102         struct bcache_device *d = &dc->disk;
1103
1104         mutex_lock(&bch_register_lock);
1105         bcache_device_unlink(d);
1106         mutex_unlock(&bch_register_lock);
1107
1108         bch_cache_accounting_destroy(&dc->accounting);
1109         kobject_del(&d->kobj);
1110
1111         continue_at(cl, cached_dev_free, system_wq);
1112 }
1113
1114 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1115 {
1116         int ret;
1117         struct io *io;
1118         struct request_queue *q = bdev_get_queue(dc->bdev);
1119
1120         __module_get(THIS_MODULE);
1121         INIT_LIST_HEAD(&dc->list);
1122         closure_init(&dc->disk.cl, NULL);
1123         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1124         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1125         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1126         sema_init(&dc->sb_write_mutex, 1);
1127         INIT_LIST_HEAD(&dc->io_lru);
1128         spin_lock_init(&dc->io_lock);
1129         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1130
1131         dc->sequential_cutoff           = 4 << 20;
1132
1133         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1134                 list_add(&io->lru, &dc->io_lru);
1135                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1136         }
1137
1138         dc->disk.stripe_size = q->limits.io_opt >> 9;
1139
1140         if (dc->disk.stripe_size)
1141                 dc->partial_stripes_expensive =
1142                         q->limits.raid_partial_stripes_expensive;
1143
1144         ret = bcache_device_init(&dc->disk, block_size,
1145                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1146         if (ret)
1147                 return ret;
1148
1149         set_capacity(dc->disk.disk,
1150                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1151
1152         dc->disk.disk->queue->backing_dev_info->ra_pages =
1153                 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1154                     q->backing_dev_info->ra_pages);
1155
1156         bch_cached_dev_request_init(dc);
1157         bch_cached_dev_writeback_init(dc);
1158         return 0;
1159 }
1160
1161 /* Cached device - bcache superblock */
1162
1163 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1164                                  struct block_device *bdev,
1165                                  struct cached_dev *dc)
1166 {
1167         char name[BDEVNAME_SIZE];
1168         const char *err = "cannot allocate memory";
1169         struct cache_set *c;
1170
1171         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1172         dc->bdev = bdev;
1173         dc->bdev->bd_holder = dc;
1174
1175         bio_init(&dc->sb_bio);
1176         dc->sb_bio.bi_max_vecs  = 1;
1177         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1178         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1179         get_page(sb_page);
1180
1181         if (cached_dev_init(dc, sb->block_size << 9))
1182                 goto err;
1183
1184         err = "error creating kobject";
1185         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1186                         "bcache"))
1187                 goto err;
1188         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1189                 goto err;
1190
1191         pr_info("registered backing device %s", bdevname(bdev, name));
1192
1193         list_add(&dc->list, &uncached_devices);
1194         list_for_each_entry(c, &bch_cache_sets, list)
1195                 bch_cached_dev_attach(dc, c, NULL);
1196
1197         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1198             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1199                 bch_cached_dev_run(dc);
1200
1201         return;
1202 err:
1203         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1204         bcache_device_stop(&dc->disk);
1205 }
1206
1207 /* Flash only volumes */
1208
1209 void bch_flash_dev_release(struct kobject *kobj)
1210 {
1211         struct bcache_device *d = container_of(kobj, struct bcache_device,
1212                                                kobj);
1213         kfree(d);
1214 }
1215
1216 static void flash_dev_free(struct closure *cl)
1217 {
1218         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1219         mutex_lock(&bch_register_lock);
1220         bcache_device_free(d);
1221         mutex_unlock(&bch_register_lock);
1222         kobject_put(&d->kobj);
1223 }
1224
1225 static void flash_dev_flush(struct closure *cl)
1226 {
1227         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1228
1229         mutex_lock(&bch_register_lock);
1230         bcache_device_unlink(d);
1231         mutex_unlock(&bch_register_lock);
1232         kobject_del(&d->kobj);
1233         continue_at(cl, flash_dev_free, system_wq);
1234 }
1235
1236 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1237 {
1238         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1239                                           GFP_KERNEL);
1240         if (!d)
1241                 return -ENOMEM;
1242
1243         closure_init(&d->cl, NULL);
1244         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1245
1246         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1247
1248         if (bcache_device_init(d, block_bytes(c), u->sectors))
1249                 goto err;
1250
1251         bcache_device_attach(d, c, u - c->uuids);
1252         bch_sectors_dirty_init(d);
1253         bch_flash_dev_request_init(d);
1254         add_disk(d->disk);
1255
1256         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1257                 goto err;
1258
1259         bcache_device_link(d, c, "volume");
1260
1261         return 0;
1262 err:
1263         kobject_put(&d->kobj);
1264         return -ENOMEM;
1265 }
1266
1267 static int flash_devs_run(struct cache_set *c)
1268 {
1269         int ret = 0;
1270         struct uuid_entry *u;
1271
1272         for (u = c->uuids;
1273              u < c->uuids + c->nr_uuids && !ret;
1274              u++)
1275                 if (UUID_FLASH_ONLY(u))
1276                         ret = flash_dev_run(c, u);
1277
1278         return ret;
1279 }
1280
1281 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1282 {
1283         struct uuid_entry *u;
1284
1285         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1286                 return -EINTR;
1287
1288         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1289                 return -EPERM;
1290
1291         u = uuid_find_empty(c);
1292         if (!u) {
1293                 pr_err("Can't create volume, no room for UUID");
1294                 return -EINVAL;
1295         }
1296
1297         get_random_bytes(u->uuid, 16);
1298         memset(u->label, 0, 32);
1299         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1300
1301         SET_UUID_FLASH_ONLY(u, 1);
1302         u->sectors = size >> 9;
1303
1304         bch_uuid_write(c);
1305
1306         return flash_dev_run(c, u);
1307 }
1308
1309 /* Cache set */
1310
1311 __printf(2, 3)
1312 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1313 {
1314         va_list args;
1315
1316         if (c->on_error != ON_ERROR_PANIC &&
1317             test_bit(CACHE_SET_STOPPING, &c->flags))
1318                 return false;
1319
1320         /* XXX: we can be called from atomic context
1321         acquire_console_sem();
1322         */
1323
1324         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1325
1326         va_start(args, fmt);
1327         vprintk(fmt, args);
1328         va_end(args);
1329
1330         printk(", disabling caching\n");
1331
1332         if (c->on_error == ON_ERROR_PANIC)
1333                 panic("panic forced after error\n");
1334
1335         bch_cache_set_unregister(c);
1336         return true;
1337 }
1338
1339 void bch_cache_set_release(struct kobject *kobj)
1340 {
1341         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1342         kfree(c);
1343         module_put(THIS_MODULE);
1344 }
1345
1346 static void cache_set_free(struct closure *cl)
1347 {
1348         struct cache_set *c = container_of(cl, struct cache_set, cl);
1349         struct cache *ca;
1350         unsigned i;
1351
1352         if (!IS_ERR_OR_NULL(c->debug))
1353                 debugfs_remove(c->debug);
1354
1355         bch_open_buckets_free(c);
1356         bch_btree_cache_free(c);
1357         bch_journal_free(c);
1358
1359         mutex_lock(&bch_register_lock);
1360         for_each_cache(ca, c, i)
1361                 if (ca) {
1362                         ca->set = NULL;
1363                         c->cache[ca->sb.nr_this_dev] = NULL;
1364                         kobject_put(&ca->kobj);
1365                 }
1366
1367         bch_bset_sort_state_free(&c->sort);
1368         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1369
1370         if (c->moving_gc_wq)
1371                 destroy_workqueue(c->moving_gc_wq);
1372         if (c->bio_split)
1373                 bioset_free(c->bio_split);
1374         if (c->fill_iter)
1375                 mempool_destroy(c->fill_iter);
1376         if (c->bio_meta)
1377                 mempool_destroy(c->bio_meta);
1378         if (c->search)
1379                 mempool_destroy(c->search);
1380         kfree(c->devices);
1381
1382         list_del(&c->list);
1383         mutex_unlock(&bch_register_lock);
1384
1385         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1386         wake_up(&unregister_wait);
1387
1388         closure_debug_destroy(&c->cl);
1389         kobject_put(&c->kobj);
1390 }
1391
1392 static void cache_set_flush(struct closure *cl)
1393 {
1394         struct cache_set *c = container_of(cl, struct cache_set, caching);
1395         struct cache *ca;
1396         struct btree *b;
1397         unsigned i;
1398
1399         if (!c)
1400                 closure_return(cl);
1401
1402         bch_cache_accounting_destroy(&c->accounting);
1403
1404         kobject_put(&c->internal);
1405         kobject_del(&c->kobj);
1406
1407         if (!IS_ERR_OR_NULL(c->gc_thread))
1408                 kthread_stop(c->gc_thread);
1409
1410         if (!IS_ERR_OR_NULL(c->root))
1411                 list_add(&c->root->list, &c->btree_cache);
1412
1413         /* Should skip this if we're unregistering because of an error */
1414         list_for_each_entry(b, &c->btree_cache, list) {
1415                 mutex_lock(&b->write_lock);
1416                 if (btree_node_dirty(b))
1417                         __bch_btree_node_write(b, NULL);
1418                 mutex_unlock(&b->write_lock);
1419         }
1420
1421         for_each_cache(ca, c, i)
1422                 if (ca->alloc_thread)
1423                         kthread_stop(ca->alloc_thread);
1424
1425         if (c->journal.cur) {
1426                 cancel_delayed_work_sync(&c->journal.work);
1427                 /* flush last journal entry if needed */
1428                 c->journal.work.work.func(&c->journal.work.work);
1429         }
1430
1431         closure_return(cl);
1432 }
1433
1434 static void __cache_set_unregister(struct closure *cl)
1435 {
1436         struct cache_set *c = container_of(cl, struct cache_set, caching);
1437         struct cached_dev *dc;
1438         size_t i;
1439
1440         mutex_lock(&bch_register_lock);
1441
1442         for (i = 0; i < c->nr_uuids; i++)
1443                 if (c->devices[i]) {
1444                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1445                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1446                                 dc = container_of(c->devices[i],
1447                                                   struct cached_dev, disk);
1448                                 bch_cached_dev_detach(dc);
1449                         } else {
1450                                 bcache_device_stop(c->devices[i]);
1451                         }
1452                 }
1453
1454         mutex_unlock(&bch_register_lock);
1455
1456         continue_at(cl, cache_set_flush, system_wq);
1457 }
1458
1459 void bch_cache_set_stop(struct cache_set *c)
1460 {
1461         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1462                 closure_queue(&c->caching);
1463 }
1464
1465 void bch_cache_set_unregister(struct cache_set *c)
1466 {
1467         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1468         bch_cache_set_stop(c);
1469 }
1470
1471 #define alloc_bucket_pages(gfp, c)                      \
1472         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1473
1474 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1475 {
1476         int iter_size;
1477         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1478         if (!c)
1479                 return NULL;
1480
1481         __module_get(THIS_MODULE);
1482         closure_init(&c->cl, NULL);
1483         set_closure_fn(&c->cl, cache_set_free, system_wq);
1484
1485         closure_init(&c->caching, &c->cl);
1486         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1487
1488         /* Maybe create continue_at_noreturn() and use it here? */
1489         closure_set_stopped(&c->cl);
1490         closure_put(&c->cl);
1491
1492         kobject_init(&c->kobj, &bch_cache_set_ktype);
1493         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1494
1495         bch_cache_accounting_init(&c->accounting, &c->cl);
1496
1497         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1498         c->sb.block_size        = sb->block_size;
1499         c->sb.bucket_size       = sb->bucket_size;
1500         c->sb.nr_in_set         = sb->nr_in_set;
1501         c->sb.last_mount        = sb->last_mount;
1502         c->bucket_bits          = ilog2(sb->bucket_size);
1503         c->block_bits           = ilog2(sb->block_size);
1504         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1505
1506         c->btree_pages          = bucket_pages(c);
1507         if (c->btree_pages > BTREE_MAX_PAGES)
1508                 c->btree_pages = max_t(int, c->btree_pages / 4,
1509                                        BTREE_MAX_PAGES);
1510
1511         sema_init(&c->sb_write_mutex, 1);
1512         mutex_init(&c->bucket_lock);
1513         init_waitqueue_head(&c->btree_cache_wait);
1514         init_waitqueue_head(&c->bucket_wait);
1515         init_waitqueue_head(&c->gc_wait);
1516         sema_init(&c->uuid_write_mutex, 1);
1517
1518         spin_lock_init(&c->btree_gc_time.lock);
1519         spin_lock_init(&c->btree_split_time.lock);
1520         spin_lock_init(&c->btree_read_time.lock);
1521
1522         bch_moving_init_cache_set(c);
1523
1524         INIT_LIST_HEAD(&c->list);
1525         INIT_LIST_HEAD(&c->cached_devs);
1526         INIT_LIST_HEAD(&c->btree_cache);
1527         INIT_LIST_HEAD(&c->btree_cache_freeable);
1528         INIT_LIST_HEAD(&c->btree_cache_freed);
1529         INIT_LIST_HEAD(&c->data_buckets);
1530
1531         c->search = mempool_create_slab_pool(32, bch_search_cache);
1532         if (!c->search)
1533                 goto err;
1534
1535         iter_size = (sb->bucket_size / sb->block_size + 1) *
1536                 sizeof(struct btree_iter_set);
1537
1538         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1539             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1540                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1541                                 bucket_pages(c))) ||
1542             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1543             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1544             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1545             !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1546             bch_journal_alloc(c) ||
1547             bch_btree_cache_alloc(c) ||
1548             bch_open_buckets_alloc(c) ||
1549             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1550                 goto err;
1551
1552         c->congested_read_threshold_us  = 2000;
1553         c->congested_write_threshold_us = 20000;
1554         c->error_limit  = 8 << IO_ERROR_SHIFT;
1555
1556         return c;
1557 err:
1558         bch_cache_set_unregister(c);
1559         return NULL;
1560 }
1561
1562 static int run_cache_set(struct cache_set *c)
1563 {
1564         const char *err = "cannot allocate memory";
1565         struct cached_dev *dc, *t;
1566         struct cache *ca;
1567         struct closure cl;
1568         unsigned i;
1569
1570         closure_init_stack(&cl);
1571
1572         for_each_cache(ca, c, i)
1573                 c->nbuckets += ca->sb.nbuckets;
1574         set_gc_sectors(c);
1575
1576         if (CACHE_SYNC(&c->sb)) {
1577                 LIST_HEAD(journal);
1578                 struct bkey *k;
1579                 struct jset *j;
1580
1581                 err = "cannot allocate memory for journal";
1582                 if (bch_journal_read(c, &journal))
1583                         goto err;
1584
1585                 pr_debug("btree_journal_read() done");
1586
1587                 err = "no journal entries found";
1588                 if (list_empty(&journal))
1589                         goto err;
1590
1591                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1592
1593                 err = "IO error reading priorities";
1594                 for_each_cache(ca, c, i)
1595                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1596
1597                 /*
1598                  * If prio_read() fails it'll call cache_set_error and we'll
1599                  * tear everything down right away, but if we perhaps checked
1600                  * sooner we could avoid journal replay.
1601                  */
1602
1603                 k = &j->btree_root;
1604
1605                 err = "bad btree root";
1606                 if (__bch_btree_ptr_invalid(c, k))
1607                         goto err;
1608
1609                 err = "error reading btree root";
1610                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1611                 if (IS_ERR_OR_NULL(c->root))
1612                         goto err;
1613
1614                 list_del_init(&c->root->list);
1615                 rw_unlock(true, c->root);
1616
1617                 err = uuid_read(c, j, &cl);
1618                 if (err)
1619                         goto err;
1620
1621                 err = "error in recovery";
1622                 if (bch_btree_check(c))
1623                         goto err;
1624
1625                 bch_journal_mark(c, &journal);
1626                 bch_initial_gc_finish(c);
1627                 pr_debug("btree_check() done");
1628
1629                 /*
1630                  * bcache_journal_next() can't happen sooner, or
1631                  * btree_gc_finish() will give spurious errors about last_gc >
1632                  * gc_gen - this is a hack but oh well.
1633                  */
1634                 bch_journal_next(&c->journal);
1635
1636                 err = "error starting allocator thread";
1637                 for_each_cache(ca, c, i)
1638                         if (bch_cache_allocator_start(ca))
1639                                 goto err;
1640
1641                 /*
1642                  * First place it's safe to allocate: btree_check() and
1643                  * btree_gc_finish() have to run before we have buckets to
1644                  * allocate, and bch_bucket_alloc_set() might cause a journal
1645                  * entry to be written so bcache_journal_next() has to be called
1646                  * first.
1647                  *
1648                  * If the uuids were in the old format we have to rewrite them
1649                  * before the next journal entry is written:
1650                  */
1651                 if (j->version < BCACHE_JSET_VERSION_UUID)
1652                         __uuid_write(c);
1653
1654                 err = "bcache: replay journal failed";
1655                 if (bch_journal_replay(c, &journal))
1656                         goto err;
1657         } else {
1658                 pr_notice("invalidating existing data");
1659
1660                 for_each_cache(ca, c, i) {
1661                         unsigned j;
1662
1663                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1664                                               2, SB_JOURNAL_BUCKETS);
1665
1666                         for (j = 0; j < ca->sb.keys; j++)
1667                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1668                 }
1669
1670                 bch_initial_gc_finish(c);
1671
1672                 err = "error starting allocator thread";
1673                 for_each_cache(ca, c, i)
1674                         if (bch_cache_allocator_start(ca))
1675                                 goto err;
1676
1677                 mutex_lock(&c->bucket_lock);
1678                 for_each_cache(ca, c, i)
1679                         bch_prio_write(ca);
1680                 mutex_unlock(&c->bucket_lock);
1681
1682                 err = "cannot allocate new UUID bucket";
1683                 if (__uuid_write(c))
1684                         goto err;
1685
1686                 err = "cannot allocate new btree root";
1687                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1688                 if (IS_ERR_OR_NULL(c->root))
1689                         goto err;
1690
1691                 mutex_lock(&c->root->write_lock);
1692                 bkey_copy_key(&c->root->key, &MAX_KEY);
1693                 bch_btree_node_write(c->root, &cl);
1694                 mutex_unlock(&c->root->write_lock);
1695
1696                 bch_btree_set_root(c->root);
1697                 rw_unlock(true, c->root);
1698
1699                 /*
1700                  * We don't want to write the first journal entry until
1701                  * everything is set up - fortunately journal entries won't be
1702                  * written until the SET_CACHE_SYNC() here:
1703                  */
1704                 SET_CACHE_SYNC(&c->sb, true);
1705
1706                 bch_journal_next(&c->journal);
1707                 bch_journal_meta(c, &cl);
1708         }
1709
1710         err = "error starting gc thread";
1711         if (bch_gc_thread_start(c))
1712                 goto err;
1713
1714         closure_sync(&cl);
1715         c->sb.last_mount = get_seconds();
1716         bcache_write_super(c);
1717
1718         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1719                 bch_cached_dev_attach(dc, c, NULL);
1720
1721         flash_devs_run(c);
1722
1723         set_bit(CACHE_SET_RUNNING, &c->flags);
1724         return 0;
1725 err:
1726         closure_sync(&cl);
1727         /* XXX: test this, it's broken */
1728         bch_cache_set_error(c, "%s", err);
1729
1730         return -EIO;
1731 }
1732
1733 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1734 {
1735         return ca->sb.block_size        == c->sb.block_size &&
1736                 ca->sb.bucket_size      == c->sb.bucket_size &&
1737                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1738 }
1739
1740 static const char *register_cache_set(struct cache *ca)
1741 {
1742         char buf[12];
1743         const char *err = "cannot allocate memory";
1744         struct cache_set *c;
1745
1746         list_for_each_entry(c, &bch_cache_sets, list)
1747                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1748                         if (c->cache[ca->sb.nr_this_dev])
1749                                 return "duplicate cache set member";
1750
1751                         if (!can_attach_cache(ca, c))
1752                                 return "cache sb does not match set";
1753
1754                         if (!CACHE_SYNC(&ca->sb))
1755                                 SET_CACHE_SYNC(&c->sb, false);
1756
1757                         goto found;
1758                 }
1759
1760         c = bch_cache_set_alloc(&ca->sb);
1761         if (!c)
1762                 return err;
1763
1764         err = "error creating kobject";
1765         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1766             kobject_add(&c->internal, &c->kobj, "internal"))
1767                 goto err;
1768
1769         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1770                 goto err;
1771
1772         bch_debug_init_cache_set(c);
1773
1774         list_add(&c->list, &bch_cache_sets);
1775 found:
1776         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1777         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1778             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1779                 goto err;
1780
1781         if (ca->sb.seq > c->sb.seq) {
1782                 c->sb.version           = ca->sb.version;
1783                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1784                 c->sb.flags             = ca->sb.flags;
1785                 c->sb.seq               = ca->sb.seq;
1786                 pr_debug("set version = %llu", c->sb.version);
1787         }
1788
1789         kobject_get(&ca->kobj);
1790         ca->set = c;
1791         ca->set->cache[ca->sb.nr_this_dev] = ca;
1792         c->cache_by_alloc[c->caches_loaded++] = ca;
1793
1794         if (c->caches_loaded == c->sb.nr_in_set) {
1795                 err = "failed to run cache set";
1796                 if (run_cache_set(c) < 0)
1797                         goto err;
1798         }
1799
1800         return NULL;
1801 err:
1802         bch_cache_set_unregister(c);
1803         return err;
1804 }
1805
1806 /* Cache device */
1807
1808 void bch_cache_release(struct kobject *kobj)
1809 {
1810         struct cache *ca = container_of(kobj, struct cache, kobj);
1811         unsigned i;
1812
1813         if (ca->set) {
1814                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1815                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1816         }
1817
1818         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1819         kfree(ca->prio_buckets);
1820         vfree(ca->buckets);
1821
1822         free_heap(&ca->heap);
1823         free_fifo(&ca->free_inc);
1824
1825         for (i = 0; i < RESERVE_NR; i++)
1826                 free_fifo(&ca->free[i]);
1827
1828         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1829                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1830
1831         if (!IS_ERR_OR_NULL(ca->bdev))
1832                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1833
1834         kfree(ca);
1835         module_put(THIS_MODULE);
1836 }
1837
1838 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1839 {
1840         size_t free;
1841         size_t btree_buckets;
1842         struct bucket *b;
1843
1844         __module_get(THIS_MODULE);
1845         kobject_init(&ca->kobj, &bch_cache_ktype);
1846
1847         bio_init(&ca->journal.bio);
1848         ca->journal.bio.bi_max_vecs = 8;
1849         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1850
1851         /*
1852          * when ca->sb.njournal_buckets is not zero, journal exists,
1853          * and in bch_journal_replay(), tree node may split,
1854          * so bucket of RESERVE_BTREE type is needed,
1855          * the worst situation is all journal buckets are valid journal,
1856          * and all the keys need to replay,
1857          * so the number of  RESERVE_BTREE type buckets should be as much
1858          * as journal buckets
1859          */
1860         btree_buckets = ca->sb.njournal_buckets ?: 8;
1861         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1862
1863         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1864             !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1865             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1866             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1867             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1868             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1869             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1870                                           ca->sb.nbuckets)) ||
1871             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1872                                           2, GFP_KERNEL)) ||
1873             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1874                 return -ENOMEM;
1875
1876         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1877
1878         for_each_bucket(b, ca)
1879                 atomic_set(&b->pin, 0);
1880
1881         return 0;
1882 }
1883
1884 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1885                                 struct block_device *bdev, struct cache *ca)
1886 {
1887         char name[BDEVNAME_SIZE];
1888         const char *err = NULL;
1889         int ret = 0;
1890
1891         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1892         ca->bdev = bdev;
1893         ca->bdev->bd_holder = ca;
1894
1895         bio_init(&ca->sb_bio);
1896         ca->sb_bio.bi_max_vecs  = 1;
1897         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1898         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1899         get_page(sb_page);
1900
1901         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1902                 ca->discard = CACHE_DISCARD(&ca->sb);
1903
1904         ret = cache_alloc(sb, ca);
1905         if (ret != 0)
1906                 goto err;
1907
1908         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1909                 err = "error calling kobject_add";
1910                 ret = -ENOMEM;
1911                 goto out;
1912         }
1913
1914         mutex_lock(&bch_register_lock);
1915         err = register_cache_set(ca);
1916         mutex_unlock(&bch_register_lock);
1917
1918         if (err) {
1919                 ret = -ENODEV;
1920                 goto out;
1921         }
1922
1923         pr_info("registered cache device %s", bdevname(bdev, name));
1924
1925 out:
1926         kobject_put(&ca->kobj);
1927
1928 err:
1929         if (err)
1930                 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1931
1932         return ret;
1933 }
1934
1935 /* Global interfaces/init */
1936
1937 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1938                                const char *, size_t);
1939
1940 kobj_attribute_write(register,          register_bcache);
1941 kobj_attribute_write(register_quiet,    register_bcache);
1942
1943 static bool bch_is_open_backing(struct block_device *bdev) {
1944         struct cache_set *c, *tc;
1945         struct cached_dev *dc, *t;
1946
1947         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1948                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1949                         if (dc->bdev == bdev)
1950                                 return true;
1951         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1952                 if (dc->bdev == bdev)
1953                         return true;
1954         return false;
1955 }
1956
1957 static bool bch_is_open_cache(struct block_device *bdev) {
1958         struct cache_set *c, *tc;
1959         struct cache *ca;
1960         unsigned i;
1961
1962         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1963                 for_each_cache(ca, c, i)
1964                         if (ca->bdev == bdev)
1965                                 return true;
1966         return false;
1967 }
1968
1969 static bool bch_is_open(struct block_device *bdev) {
1970         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1971 }
1972
1973 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1974                                const char *buffer, size_t size)
1975 {
1976         ssize_t ret = size;
1977         const char *err = "cannot allocate memory";
1978         char *path = NULL;
1979         struct cache_sb *sb = NULL;
1980         struct block_device *bdev = NULL;
1981         struct page *sb_page = NULL;
1982
1983         if (!try_module_get(THIS_MODULE))
1984                 return -EBUSY;
1985
1986         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1987             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1988                 goto err;
1989
1990         err = "failed to open device";
1991         bdev = blkdev_get_by_path(strim(path),
1992                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1993                                   sb);
1994         if (IS_ERR(bdev)) {
1995                 if (bdev == ERR_PTR(-EBUSY)) {
1996                         bdev = lookup_bdev(strim(path));
1997                         mutex_lock(&bch_register_lock);
1998                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1999                                 err = "device already registered";
2000                         else
2001                                 err = "device busy";
2002                         mutex_unlock(&bch_register_lock);
2003                         if (!IS_ERR(bdev))
2004                                 bdput(bdev);
2005                         if (attr == &ksysfs_register_quiet)
2006                                 goto out;
2007                 }
2008                 goto err;
2009         }
2010
2011         err = "failed to set blocksize";
2012         if (set_blocksize(bdev, 4096))
2013                 goto err_close;
2014
2015         err = read_super(sb, bdev, &sb_page);
2016         if (err)
2017                 goto err_close;
2018
2019         if (SB_IS_BDEV(sb)) {
2020                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2021                 if (!dc)
2022                         goto err_close;
2023
2024                 mutex_lock(&bch_register_lock);
2025                 register_bdev(sb, sb_page, bdev, dc);
2026                 mutex_unlock(&bch_register_lock);
2027         } else {
2028                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2029                 if (!ca)
2030                         goto err_close;
2031
2032                 if (register_cache(sb, sb_page, bdev, ca) != 0)
2033                         goto err_close;
2034         }
2035 out:
2036         if (sb_page)
2037                 put_page(sb_page);
2038         kfree(sb);
2039         kfree(path);
2040         module_put(THIS_MODULE);
2041         return ret;
2042
2043 err_close:
2044         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2045 err:
2046         pr_info("error opening %s: %s", path, err);
2047         ret = -EINVAL;
2048         goto out;
2049 }
2050
2051 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2052 {
2053         if (code == SYS_DOWN ||
2054             code == SYS_HALT ||
2055             code == SYS_POWER_OFF) {
2056                 DEFINE_WAIT(wait);
2057                 unsigned long start = jiffies;
2058                 bool stopped = false;
2059
2060                 struct cache_set *c, *tc;
2061                 struct cached_dev *dc, *tdc;
2062
2063                 mutex_lock(&bch_register_lock);
2064
2065                 if (list_empty(&bch_cache_sets) &&
2066                     list_empty(&uncached_devices))
2067                         goto out;
2068
2069                 pr_info("Stopping all devices:");
2070
2071                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2072                         bch_cache_set_stop(c);
2073
2074                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2075                         bcache_device_stop(&dc->disk);
2076
2077                 /* What's a condition variable? */
2078                 while (1) {
2079                         long timeout = start + 2 * HZ - jiffies;
2080
2081                         stopped = list_empty(&bch_cache_sets) &&
2082                                 list_empty(&uncached_devices);
2083
2084                         if (timeout < 0 || stopped)
2085                                 break;
2086
2087                         prepare_to_wait(&unregister_wait, &wait,
2088                                         TASK_UNINTERRUPTIBLE);
2089
2090                         mutex_unlock(&bch_register_lock);
2091                         schedule_timeout(timeout);
2092                         mutex_lock(&bch_register_lock);
2093                 }
2094
2095                 finish_wait(&unregister_wait, &wait);
2096
2097                 if (stopped)
2098                         pr_info("All devices stopped");
2099                 else
2100                         pr_notice("Timeout waiting for devices to be closed");
2101 out:
2102                 mutex_unlock(&bch_register_lock);
2103         }
2104
2105         return NOTIFY_DONE;
2106 }
2107
2108 static struct notifier_block reboot = {
2109         .notifier_call  = bcache_reboot,
2110         .priority       = INT_MAX, /* before any real devices */
2111 };
2112
2113 static void bcache_exit(void)
2114 {
2115         bch_debug_exit();
2116         bch_request_exit();
2117         if (bcache_kobj)
2118                 kobject_put(bcache_kobj);
2119         if (bcache_wq)
2120                 destroy_workqueue(bcache_wq);
2121         if (bcache_major)
2122                 unregister_blkdev(bcache_major, "bcache");
2123         unregister_reboot_notifier(&reboot);
2124         mutex_destroy(&bch_register_lock);
2125 }
2126
2127 static int __init bcache_init(void)
2128 {
2129         static const struct attribute *files[] = {
2130                 &ksysfs_register.attr,
2131                 &ksysfs_register_quiet.attr,
2132                 NULL
2133         };
2134
2135         mutex_init(&bch_register_lock);
2136         init_waitqueue_head(&unregister_wait);
2137         register_reboot_notifier(&reboot);
2138         closure_debug_init();
2139
2140         bcache_major = register_blkdev(0, "bcache");
2141         if (bcache_major < 0) {
2142                 unregister_reboot_notifier(&reboot);
2143                 mutex_destroy(&bch_register_lock);
2144                 return bcache_major;
2145         }
2146
2147         if (!(bcache_wq = create_workqueue("bcache")) ||
2148             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2149             bch_request_init() ||
2150             bch_debug_init(bcache_kobj) ||
2151             sysfs_create_files(bcache_kobj, files))
2152                 goto err;
2153
2154         return 0;
2155 err:
2156         bcache_exit();
2157         return -ENOMEM;
2158 }
2159
2160 module_exit(bcache_exit);
2161 module_init(bcache_init);