OSDN Git Service

dm: add full blk-mq support to request-based DM
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22
23 #define DM_MSG_PREFIX "table"
24
25 #define MAX_DEPTH 16
26 #define NODE_SIZE L1_CACHE_BYTES
27 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
28 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29
30 struct dm_table {
31         struct mapped_device *md;
32         unsigned type;
33
34         /* btree table */
35         unsigned int depth;
36         unsigned int counts[MAX_DEPTH]; /* in nodes */
37         sector_t *index[MAX_DEPTH];
38
39         unsigned int num_targets;
40         unsigned int num_allocated;
41         sector_t *highs;
42         struct dm_target *targets;
43
44         struct target_type *immutable_target_type;
45         unsigned integrity_supported:1;
46         unsigned singleton:1;
47
48         /*
49          * Indicates the rw permissions for the new logical
50          * device.  This should be a combination of FMODE_READ
51          * and FMODE_WRITE.
52          */
53         fmode_t mode;
54
55         /* a list of devices used by this table */
56         struct list_head devices;
57
58         /* events get handed up using this callback */
59         void (*event_fn)(void *);
60         void *event_context;
61
62         struct dm_md_mempools *mempools;
63
64         struct list_head target_callbacks;
65 };
66
67 /*
68  * Similar to ceiling(log_size(n))
69  */
70 static unsigned int int_log(unsigned int n, unsigned int base)
71 {
72         int result = 0;
73
74         while (n > 1) {
75                 n = dm_div_up(n, base);
76                 result++;
77         }
78
79         return result;
80 }
81
82 /*
83  * Calculate the index of the child node of the n'th node k'th key.
84  */
85 static inline unsigned int get_child(unsigned int n, unsigned int k)
86 {
87         return (n * CHILDREN_PER_NODE) + k;
88 }
89
90 /*
91  * Return the n'th node of level l from table t.
92  */
93 static inline sector_t *get_node(struct dm_table *t,
94                                  unsigned int l, unsigned int n)
95 {
96         return t->index[l] + (n * KEYS_PER_NODE);
97 }
98
99 /*
100  * Return the highest key that you could lookup from the n'th
101  * node on level l of the btree.
102  */
103 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
104 {
105         for (; l < t->depth - 1; l++)
106                 n = get_child(n, CHILDREN_PER_NODE - 1);
107
108         if (n >= t->counts[l])
109                 return (sector_t) - 1;
110
111         return get_node(t, l, n)[KEYS_PER_NODE - 1];
112 }
113
114 /*
115  * Fills in a level of the btree based on the highs of the level
116  * below it.
117  */
118 static int setup_btree_index(unsigned int l, struct dm_table *t)
119 {
120         unsigned int n, k;
121         sector_t *node;
122
123         for (n = 0U; n < t->counts[l]; n++) {
124                 node = get_node(t, l, n);
125
126                 for (k = 0U; k < KEYS_PER_NODE; k++)
127                         node[k] = high(t, l + 1, get_child(n, k));
128         }
129
130         return 0;
131 }
132
133 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
134 {
135         unsigned long size;
136         void *addr;
137
138         /*
139          * Check that we're not going to overflow.
140          */
141         if (nmemb > (ULONG_MAX / elem_size))
142                 return NULL;
143
144         size = nmemb * elem_size;
145         addr = vzalloc(size);
146
147         return addr;
148 }
149 EXPORT_SYMBOL(dm_vcalloc);
150
151 /*
152  * highs, and targets are managed as dynamic arrays during a
153  * table load.
154  */
155 static int alloc_targets(struct dm_table *t, unsigned int num)
156 {
157         sector_t *n_highs;
158         struct dm_target *n_targets;
159
160         /*
161          * Allocate both the target array and offset array at once.
162          * Append an empty entry to catch sectors beyond the end of
163          * the device.
164          */
165         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166                                           sizeof(sector_t));
167         if (!n_highs)
168                 return -ENOMEM;
169
170         n_targets = (struct dm_target *) (n_highs + num);
171
172         memset(n_highs, -1, sizeof(*n_highs) * num);
173         vfree(t->highs);
174
175         t->num_allocated = num;
176         t->highs = n_highs;
177         t->targets = n_targets;
178
179         return 0;
180 }
181
182 int dm_table_create(struct dm_table **result, fmode_t mode,
183                     unsigned num_targets, struct mapped_device *md)
184 {
185         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
186
187         if (!t)
188                 return -ENOMEM;
189
190         INIT_LIST_HEAD(&t->devices);
191         INIT_LIST_HEAD(&t->target_callbacks);
192
193         if (!num_targets)
194                 num_targets = KEYS_PER_NODE;
195
196         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
197
198         if (!num_targets) {
199                 kfree(t);
200                 return -ENOMEM;
201         }
202
203         if (alloc_targets(t, num_targets)) {
204                 kfree(t);
205                 return -ENOMEM;
206         }
207
208         t->mode = mode;
209         t->md = md;
210         *result = t;
211         return 0;
212 }
213
214 static void free_devices(struct list_head *devices, struct mapped_device *md)
215 {
216         struct list_head *tmp, *next;
217
218         list_for_each_safe(tmp, next, devices) {
219                 struct dm_dev_internal *dd =
220                     list_entry(tmp, struct dm_dev_internal, list);
221                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222                        dm_device_name(md), dd->dm_dev->name);
223                 dm_put_table_device(md, dd->dm_dev);
224                 kfree(dd);
225         }
226 }
227
228 void dm_table_destroy(struct dm_table *t)
229 {
230         unsigned int i;
231
232         if (!t)
233                 return;
234
235         /* free the indexes */
236         if (t->depth >= 2)
237                 vfree(t->index[t->depth - 2]);
238
239         /* free the targets */
240         for (i = 0; i < t->num_targets; i++) {
241                 struct dm_target *tgt = t->targets + i;
242
243                 if (tgt->type->dtr)
244                         tgt->type->dtr(tgt);
245
246                 dm_put_target_type(tgt->type);
247         }
248
249         vfree(t->highs);
250
251         /* free the device list */
252         free_devices(&t->devices, t->md);
253
254         dm_free_md_mempools(t->mempools);
255
256         kfree(t);
257 }
258
259 /*
260  * See if we've already got a device in the list.
261  */
262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
263 {
264         struct dm_dev_internal *dd;
265
266         list_for_each_entry (dd, l, list)
267                 if (dd->dm_dev->bdev->bd_dev == dev)
268                         return dd;
269
270         return NULL;
271 }
272
273 /*
274  * If possible, this checks an area of a destination device is invalid.
275  */
276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277                                   sector_t start, sector_t len, void *data)
278 {
279         struct request_queue *q;
280         struct queue_limits *limits = data;
281         struct block_device *bdev = dev->bdev;
282         sector_t dev_size =
283                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
284         unsigned short logical_block_size_sectors =
285                 limits->logical_block_size >> SECTOR_SHIFT;
286         char b[BDEVNAME_SIZE];
287
288         /*
289          * Some devices exist without request functions,
290          * such as loop devices not yet bound to backing files.
291          * Forbid the use of such devices.
292          */
293         q = bdev_get_queue(bdev);
294         if (!q || !q->make_request_fn) {
295                 DMWARN("%s: %s is not yet initialised: "
296                        "start=%llu, len=%llu, dev_size=%llu",
297                        dm_device_name(ti->table->md), bdevname(bdev, b),
298                        (unsigned long long)start,
299                        (unsigned long long)len,
300                        (unsigned long long)dev_size);
301                 return 1;
302         }
303
304         if (!dev_size)
305                 return 0;
306
307         if ((start >= dev_size) || (start + len > dev_size)) {
308                 DMWARN("%s: %s too small for target: "
309                        "start=%llu, len=%llu, dev_size=%llu",
310                        dm_device_name(ti->table->md), bdevname(bdev, b),
311                        (unsigned long long)start,
312                        (unsigned long long)len,
313                        (unsigned long long)dev_size);
314                 return 1;
315         }
316
317         if (logical_block_size_sectors <= 1)
318                 return 0;
319
320         if (start & (logical_block_size_sectors - 1)) {
321                 DMWARN("%s: start=%llu not aligned to h/w "
322                        "logical block size %u of %s",
323                        dm_device_name(ti->table->md),
324                        (unsigned long long)start,
325                        limits->logical_block_size, bdevname(bdev, b));
326                 return 1;
327         }
328
329         if (len & (logical_block_size_sectors - 1)) {
330                 DMWARN("%s: len=%llu not aligned to h/w "
331                        "logical block size %u of %s",
332                        dm_device_name(ti->table->md),
333                        (unsigned long long)len,
334                        limits->logical_block_size, bdevname(bdev, b));
335                 return 1;
336         }
337
338         return 0;
339 }
340
341 /*
342  * This upgrades the mode on an already open dm_dev, being
343  * careful to leave things as they were if we fail to reopen the
344  * device and not to touch the existing bdev field in case
345  * it is accessed concurrently inside dm_table_any_congested().
346  */
347 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
348                         struct mapped_device *md)
349 {
350         int r;
351         struct dm_dev *old_dev, *new_dev;
352
353         old_dev = dd->dm_dev;
354
355         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
356                                 dd->dm_dev->mode | new_mode, &new_dev);
357         if (r)
358                 return r;
359
360         dd->dm_dev = new_dev;
361         dm_put_table_device(md, old_dev);
362
363         return 0;
364 }
365
366 /*
367  * Add a device to the list, or just increment the usage count if
368  * it's already present.
369  */
370 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
371                   struct dm_dev **result)
372 {
373         int r;
374         dev_t uninitialized_var(dev);
375         struct dm_dev_internal *dd;
376         unsigned int major, minor;
377         struct dm_table *t = ti->table;
378         char dummy;
379
380         BUG_ON(!t);
381
382         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
383                 /* Extract the major/minor numbers */
384                 dev = MKDEV(major, minor);
385                 if (MAJOR(dev) != major || MINOR(dev) != minor)
386                         return -EOVERFLOW;
387         } else {
388                 /* convert the path to a device */
389                 struct block_device *bdev = lookup_bdev(path);
390
391                 if (IS_ERR(bdev))
392                         return PTR_ERR(bdev);
393                 dev = bdev->bd_dev;
394                 bdput(bdev);
395         }
396
397         dd = find_device(&t->devices, dev);
398         if (!dd) {
399                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
400                 if (!dd)
401                         return -ENOMEM;
402
403                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
404                         kfree(dd);
405                         return r;
406                 }
407
408                 atomic_set(&dd->count, 0);
409                 list_add(&dd->list, &t->devices);
410
411         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
412                 r = upgrade_mode(dd, mode, t->md);
413                 if (r)
414                         return r;
415         }
416         atomic_inc(&dd->count);
417
418         *result = dd->dm_dev;
419         return 0;
420 }
421 EXPORT_SYMBOL(dm_get_device);
422
423 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
424                                 sector_t start, sector_t len, void *data)
425 {
426         struct queue_limits *limits = data;
427         struct block_device *bdev = dev->bdev;
428         struct request_queue *q = bdev_get_queue(bdev);
429         char b[BDEVNAME_SIZE];
430
431         if (unlikely(!q)) {
432                 DMWARN("%s: Cannot set limits for nonexistent device %s",
433                        dm_device_name(ti->table->md), bdevname(bdev, b));
434                 return 0;
435         }
436
437         if (bdev_stack_limits(limits, bdev, start) < 0)
438                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
439                        "physical_block_size=%u, logical_block_size=%u, "
440                        "alignment_offset=%u, start=%llu",
441                        dm_device_name(ti->table->md), bdevname(bdev, b),
442                        q->limits.physical_block_size,
443                        q->limits.logical_block_size,
444                        q->limits.alignment_offset,
445                        (unsigned long long) start << SECTOR_SHIFT);
446
447         /*
448          * Check if merge fn is supported.
449          * If not we'll force DM to use PAGE_SIZE or
450          * smaller I/O, just to be safe.
451          */
452         if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
453                 blk_limits_max_hw_sectors(limits,
454                                           (unsigned int) (PAGE_SIZE >> 9));
455         return 0;
456 }
457
458 /*
459  * Decrement a device's use count and remove it if necessary.
460  */
461 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462 {
463         int found = 0;
464         struct list_head *devices = &ti->table->devices;
465         struct dm_dev_internal *dd;
466
467         list_for_each_entry(dd, devices, list) {
468                 if (dd->dm_dev == d) {
469                         found = 1;
470                         break;
471                 }
472         }
473         if (!found) {
474                 DMWARN("%s: device %s not in table devices list",
475                        dm_device_name(ti->table->md), d->name);
476                 return;
477         }
478         if (atomic_dec_and_test(&dd->count)) {
479                 dm_put_table_device(ti->table->md, d);
480                 list_del(&dd->list);
481                 kfree(dd);
482         }
483 }
484 EXPORT_SYMBOL(dm_put_device);
485
486 /*
487  * Checks to see if the target joins onto the end of the table.
488  */
489 static int adjoin(struct dm_table *table, struct dm_target *ti)
490 {
491         struct dm_target *prev;
492
493         if (!table->num_targets)
494                 return !ti->begin;
495
496         prev = &table->targets[table->num_targets - 1];
497         return (ti->begin == (prev->begin + prev->len));
498 }
499
500 /*
501  * Used to dynamically allocate the arg array.
502  *
503  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504  * process messages even if some device is suspended. These messages have a
505  * small fixed number of arguments.
506  *
507  * On the other hand, dm-switch needs to process bulk data using messages and
508  * excessive use of GFP_NOIO could cause trouble.
509  */
510 static char **realloc_argv(unsigned *array_size, char **old_argv)
511 {
512         char **argv;
513         unsigned new_size;
514         gfp_t gfp;
515
516         if (*array_size) {
517                 new_size = *array_size * 2;
518                 gfp = GFP_KERNEL;
519         } else {
520                 new_size = 8;
521                 gfp = GFP_NOIO;
522         }
523         argv = kmalloc(new_size * sizeof(*argv), gfp);
524         if (argv) {
525                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
526                 *array_size = new_size;
527         }
528
529         kfree(old_argv);
530         return argv;
531 }
532
533 /*
534  * Destructively splits up the argument list to pass to ctr.
535  */
536 int dm_split_args(int *argc, char ***argvp, char *input)
537 {
538         char *start, *end = input, *out, **argv = NULL;
539         unsigned array_size = 0;
540
541         *argc = 0;
542
543         if (!input) {
544                 *argvp = NULL;
545                 return 0;
546         }
547
548         argv = realloc_argv(&array_size, argv);
549         if (!argv)
550                 return -ENOMEM;
551
552         while (1) {
553                 /* Skip whitespace */
554                 start = skip_spaces(end);
555
556                 if (!*start)
557                         break;  /* success, we hit the end */
558
559                 /* 'out' is used to remove any back-quotes */
560                 end = out = start;
561                 while (*end) {
562                         /* Everything apart from '\0' can be quoted */
563                         if (*end == '\\' && *(end + 1)) {
564                                 *out++ = *(end + 1);
565                                 end += 2;
566                                 continue;
567                         }
568
569                         if (isspace(*end))
570                                 break;  /* end of token */
571
572                         *out++ = *end++;
573                 }
574
575                 /* have we already filled the array ? */
576                 if ((*argc + 1) > array_size) {
577                         argv = realloc_argv(&array_size, argv);
578                         if (!argv)
579                                 return -ENOMEM;
580                 }
581
582                 /* we know this is whitespace */
583                 if (*end)
584                         end++;
585
586                 /* terminate the string and put it in the array */
587                 *out = '\0';
588                 argv[*argc] = start;
589                 (*argc)++;
590         }
591
592         *argvp = argv;
593         return 0;
594 }
595
596 /*
597  * Impose necessary and sufficient conditions on a devices's table such
598  * that any incoming bio which respects its logical_block_size can be
599  * processed successfully.  If it falls across the boundary between
600  * two or more targets, the size of each piece it gets split into must
601  * be compatible with the logical_block_size of the target processing it.
602  */
603 static int validate_hardware_logical_block_alignment(struct dm_table *table,
604                                                  struct queue_limits *limits)
605 {
606         /*
607          * This function uses arithmetic modulo the logical_block_size
608          * (in units of 512-byte sectors).
609          */
610         unsigned short device_logical_block_size_sects =
611                 limits->logical_block_size >> SECTOR_SHIFT;
612
613         /*
614          * Offset of the start of the next table entry, mod logical_block_size.
615          */
616         unsigned short next_target_start = 0;
617
618         /*
619          * Given an aligned bio that extends beyond the end of a
620          * target, how many sectors must the next target handle?
621          */
622         unsigned short remaining = 0;
623
624         struct dm_target *uninitialized_var(ti);
625         struct queue_limits ti_limits;
626         unsigned i = 0;
627
628         /*
629          * Check each entry in the table in turn.
630          */
631         while (i < dm_table_get_num_targets(table)) {
632                 ti = dm_table_get_target(table, i++);
633
634                 blk_set_stacking_limits(&ti_limits);
635
636                 /* combine all target devices' limits */
637                 if (ti->type->iterate_devices)
638                         ti->type->iterate_devices(ti, dm_set_device_limits,
639                                                   &ti_limits);
640
641                 /*
642                  * If the remaining sectors fall entirely within this
643                  * table entry are they compatible with its logical_block_size?
644                  */
645                 if (remaining < ti->len &&
646                     remaining & ((ti_limits.logical_block_size >>
647                                   SECTOR_SHIFT) - 1))
648                         break;  /* Error */
649
650                 next_target_start =
651                     (unsigned short) ((next_target_start + ti->len) &
652                                       (device_logical_block_size_sects - 1));
653                 remaining = next_target_start ?
654                     device_logical_block_size_sects - next_target_start : 0;
655         }
656
657         if (remaining) {
658                 DMWARN("%s: table line %u (start sect %llu len %llu) "
659                        "not aligned to h/w logical block size %u",
660                        dm_device_name(table->md), i,
661                        (unsigned long long) ti->begin,
662                        (unsigned long long) ti->len,
663                        limits->logical_block_size);
664                 return -EINVAL;
665         }
666
667         return 0;
668 }
669
670 int dm_table_add_target(struct dm_table *t, const char *type,
671                         sector_t start, sector_t len, char *params)
672 {
673         int r = -EINVAL, argc;
674         char **argv;
675         struct dm_target *tgt;
676
677         if (t->singleton) {
678                 DMERR("%s: target type %s must appear alone in table",
679                       dm_device_name(t->md), t->targets->type->name);
680                 return -EINVAL;
681         }
682
683         BUG_ON(t->num_targets >= t->num_allocated);
684
685         tgt = t->targets + t->num_targets;
686         memset(tgt, 0, sizeof(*tgt));
687
688         if (!len) {
689                 DMERR("%s: zero-length target", dm_device_name(t->md));
690                 return -EINVAL;
691         }
692
693         tgt->type = dm_get_target_type(type);
694         if (!tgt->type) {
695                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696                       type);
697                 return -EINVAL;
698         }
699
700         if (dm_target_needs_singleton(tgt->type)) {
701                 if (t->num_targets) {
702                         DMERR("%s: target type %s must appear alone in table",
703                               dm_device_name(t->md), type);
704                         return -EINVAL;
705                 }
706                 t->singleton = 1;
707         }
708
709         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
710                 DMERR("%s: target type %s may not be included in read-only tables",
711                       dm_device_name(t->md), type);
712                 return -EINVAL;
713         }
714
715         if (t->immutable_target_type) {
716                 if (t->immutable_target_type != tgt->type) {
717                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
718                               dm_device_name(t->md), t->immutable_target_type->name);
719                         return -EINVAL;
720                 }
721         } else if (dm_target_is_immutable(tgt->type)) {
722                 if (t->num_targets) {
723                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
724                               dm_device_name(t->md), tgt->type->name);
725                         return -EINVAL;
726                 }
727                 t->immutable_target_type = tgt->type;
728         }
729
730         tgt->table = t;
731         tgt->begin = start;
732         tgt->len = len;
733         tgt->error = "Unknown error";
734
735         /*
736          * Does this target adjoin the previous one ?
737          */
738         if (!adjoin(t, tgt)) {
739                 tgt->error = "Gap in table";
740                 r = -EINVAL;
741                 goto bad;
742         }
743
744         r = dm_split_args(&argc, &argv, params);
745         if (r) {
746                 tgt->error = "couldn't split parameters (insufficient memory)";
747                 goto bad;
748         }
749
750         r = tgt->type->ctr(tgt, argc, argv);
751         kfree(argv);
752         if (r)
753                 goto bad;
754
755         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
756
757         if (!tgt->num_discard_bios && tgt->discards_supported)
758                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
759                        dm_device_name(t->md), type);
760
761         return 0;
762
763  bad:
764         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765         dm_put_target_type(tgt->type);
766         return r;
767 }
768
769 /*
770  * Target argument parsing helpers.
771  */
772 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
773                              unsigned *value, char **error, unsigned grouped)
774 {
775         const char *arg_str = dm_shift_arg(arg_set);
776         char dummy;
777
778         if (!arg_str ||
779             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
780             (*value < arg->min) ||
781             (*value > arg->max) ||
782             (grouped && arg_set->argc < *value)) {
783                 *error = arg->error;
784                 return -EINVAL;
785         }
786
787         return 0;
788 }
789
790 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
791                 unsigned *value, char **error)
792 {
793         return validate_next_arg(arg, arg_set, value, error, 0);
794 }
795 EXPORT_SYMBOL(dm_read_arg);
796
797 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
798                       unsigned *value, char **error)
799 {
800         return validate_next_arg(arg, arg_set, value, error, 1);
801 }
802 EXPORT_SYMBOL(dm_read_arg_group);
803
804 const char *dm_shift_arg(struct dm_arg_set *as)
805 {
806         char *r;
807
808         if (as->argc) {
809                 as->argc--;
810                 r = *as->argv;
811                 as->argv++;
812                 return r;
813         }
814
815         return NULL;
816 }
817 EXPORT_SYMBOL(dm_shift_arg);
818
819 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
820 {
821         BUG_ON(as->argc < num_args);
822         as->argc -= num_args;
823         as->argv += num_args;
824 }
825 EXPORT_SYMBOL(dm_consume_args);
826
827 static int dm_table_set_type(struct dm_table *t)
828 {
829         unsigned i;
830         unsigned bio_based = 0, request_based = 0, hybrid = 0;
831         bool use_blk_mq = false;
832         struct dm_target *tgt;
833         struct dm_dev_internal *dd;
834         struct list_head *devices;
835         unsigned live_md_type = dm_get_md_type(t->md);
836
837         for (i = 0; i < t->num_targets; i++) {
838                 tgt = t->targets + i;
839                 if (dm_target_hybrid(tgt))
840                         hybrid = 1;
841                 else if (dm_target_request_based(tgt))
842                         request_based = 1;
843                 else
844                         bio_based = 1;
845
846                 if (bio_based && request_based) {
847                         DMWARN("Inconsistent table: different target types"
848                                " can't be mixed up");
849                         return -EINVAL;
850                 }
851         }
852
853         if (hybrid && !bio_based && !request_based) {
854                 /*
855                  * The targets can work either way.
856                  * Determine the type from the live device.
857                  * Default to bio-based if device is new.
858                  */
859                 if (live_md_type == DM_TYPE_REQUEST_BASED ||
860                     live_md_type == DM_TYPE_MQ_REQUEST_BASED)
861                         request_based = 1;
862                 else
863                         bio_based = 1;
864         }
865
866         if (bio_based) {
867                 /* We must use this table as bio-based */
868                 t->type = DM_TYPE_BIO_BASED;
869                 return 0;
870         }
871
872         BUG_ON(!request_based); /* No targets in this table */
873
874         /*
875          * Request-based dm supports only tables that have a single target now.
876          * To support multiple targets, request splitting support is needed,
877          * and that needs lots of changes in the block-layer.
878          * (e.g. request completion process for partial completion.)
879          */
880         if (t->num_targets > 1) {
881                 DMWARN("Request-based dm doesn't support multiple targets yet");
882                 return -EINVAL;
883         }
884
885         /* Non-request-stackable devices can't be used for request-based dm */
886         devices = dm_table_get_devices(t);
887         list_for_each_entry(dd, devices, list) {
888                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
889
890                 if (!blk_queue_stackable(q)) {
891                         DMERR("table load rejected: including"
892                               " non-request-stackable devices");
893                         return -EINVAL;
894                 }
895
896                 if (q->mq_ops)
897                         use_blk_mq = true;
898         }
899
900         if (use_blk_mq) {
901                 /* verify _all_ devices in the table are blk-mq devices */
902                 list_for_each_entry(dd, devices, list)
903                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
904                                 DMERR("table load rejected: not all devices"
905                                       " are blk-mq request-stackable");
906                                 return -EINVAL;
907                         }
908                 t->type = DM_TYPE_MQ_REQUEST_BASED;
909
910         } else if (hybrid && list_empty(devices) && live_md_type != DM_TYPE_NONE) {
911                 /* inherit live MD type */
912                 t->type = live_md_type;
913
914         } else
915                 t->type = DM_TYPE_REQUEST_BASED;
916
917         return 0;
918 }
919
920 unsigned dm_table_get_type(struct dm_table *t)
921 {
922         return t->type;
923 }
924
925 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
926 {
927         return t->immutable_target_type;
928 }
929
930 bool dm_table_request_based(struct dm_table *t)
931 {
932         unsigned table_type = dm_table_get_type(t);
933
934         return (table_type == DM_TYPE_REQUEST_BASED ||
935                 table_type == DM_TYPE_MQ_REQUEST_BASED);
936 }
937
938 bool dm_table_mq_request_based(struct dm_table *t)
939 {
940         return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
941 }
942
943 static int dm_table_alloc_md_mempools(struct dm_table *t)
944 {
945         unsigned type = dm_table_get_type(t);
946         unsigned per_bio_data_size = 0;
947         struct dm_target *tgt;
948         unsigned i;
949
950         if (unlikely(type == DM_TYPE_NONE)) {
951                 DMWARN("no table type is set, can't allocate mempools");
952                 return -EINVAL;
953         }
954
955         if (type == DM_TYPE_BIO_BASED)
956                 for (i = 0; i < t->num_targets; i++) {
957                         tgt = t->targets + i;
958                         per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
959                 }
960
961         t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
962         if (!t->mempools)
963                 return -ENOMEM;
964
965         return 0;
966 }
967
968 void dm_table_free_md_mempools(struct dm_table *t)
969 {
970         dm_free_md_mempools(t->mempools);
971         t->mempools = NULL;
972 }
973
974 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
975 {
976         return t->mempools;
977 }
978
979 static int setup_indexes(struct dm_table *t)
980 {
981         int i;
982         unsigned int total = 0;
983         sector_t *indexes;
984
985         /* allocate the space for *all* the indexes */
986         for (i = t->depth - 2; i >= 0; i--) {
987                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
988                 total += t->counts[i];
989         }
990
991         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
992         if (!indexes)
993                 return -ENOMEM;
994
995         /* set up internal nodes, bottom-up */
996         for (i = t->depth - 2; i >= 0; i--) {
997                 t->index[i] = indexes;
998                 indexes += (KEYS_PER_NODE * t->counts[i]);
999                 setup_btree_index(i, t);
1000         }
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * Builds the btree to index the map.
1007  */
1008 static int dm_table_build_index(struct dm_table *t)
1009 {
1010         int r = 0;
1011         unsigned int leaf_nodes;
1012
1013         /* how many indexes will the btree have ? */
1014         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1015         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1016
1017         /* leaf layer has already been set up */
1018         t->counts[t->depth - 1] = leaf_nodes;
1019         t->index[t->depth - 1] = t->highs;
1020
1021         if (t->depth >= 2)
1022                 r = setup_indexes(t);
1023
1024         return r;
1025 }
1026
1027 /*
1028  * Get a disk whose integrity profile reflects the table's profile.
1029  * If %match_all is true, all devices' profiles must match.
1030  * If %match_all is false, all devices must at least have an
1031  * allocated integrity profile; but uninitialized is ok.
1032  * Returns NULL if integrity support was inconsistent or unavailable.
1033  */
1034 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1035                                                     bool match_all)
1036 {
1037         struct list_head *devices = dm_table_get_devices(t);
1038         struct dm_dev_internal *dd = NULL;
1039         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1040
1041         list_for_each_entry(dd, devices, list) {
1042                 template_disk = dd->dm_dev->bdev->bd_disk;
1043                 if (!blk_get_integrity(template_disk))
1044                         goto no_integrity;
1045                 if (!match_all && !blk_integrity_is_initialized(template_disk))
1046                         continue; /* skip uninitialized profiles */
1047                 else if (prev_disk &&
1048                          blk_integrity_compare(prev_disk, template_disk) < 0)
1049                         goto no_integrity;
1050                 prev_disk = template_disk;
1051         }
1052
1053         return template_disk;
1054
1055 no_integrity:
1056         if (prev_disk)
1057                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1058                        dm_device_name(t->md),
1059                        prev_disk->disk_name,
1060                        template_disk->disk_name);
1061         return NULL;
1062 }
1063
1064 /*
1065  * Register the mapped device for blk_integrity support if
1066  * the underlying devices have an integrity profile.  But all devices
1067  * may not have matching profiles (checking all devices isn't reliable
1068  * during table load because this table may use other DM device(s) which
1069  * must be resumed before they will have an initialized integity profile).
1070  * Stacked DM devices force a 2 stage integrity profile validation:
1071  * 1 - during load, validate all initialized integrity profiles match
1072  * 2 - during resume, validate all integrity profiles match
1073  */
1074 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1075 {
1076         struct gendisk *template_disk = NULL;
1077
1078         template_disk = dm_table_get_integrity_disk(t, false);
1079         if (!template_disk)
1080                 return 0;
1081
1082         if (!blk_integrity_is_initialized(dm_disk(md))) {
1083                 t->integrity_supported = 1;
1084                 return blk_integrity_register(dm_disk(md), NULL);
1085         }
1086
1087         /*
1088          * If DM device already has an initalized integrity
1089          * profile the new profile should not conflict.
1090          */
1091         if (blk_integrity_is_initialized(template_disk) &&
1092             blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1093                 DMWARN("%s: conflict with existing integrity profile: "
1094                        "%s profile mismatch",
1095                        dm_device_name(t->md),
1096                        template_disk->disk_name);
1097                 return 1;
1098         }
1099
1100         /* Preserve existing initialized integrity profile */
1101         t->integrity_supported = 1;
1102         return 0;
1103 }
1104
1105 /*
1106  * Prepares the table for use by building the indices,
1107  * setting the type, and allocating mempools.
1108  */
1109 int dm_table_complete(struct dm_table *t)
1110 {
1111         int r;
1112
1113         r = dm_table_set_type(t);
1114         if (r) {
1115                 DMERR("unable to set table type");
1116                 return r;
1117         }
1118
1119         r = dm_table_build_index(t);
1120         if (r) {
1121                 DMERR("unable to build btrees");
1122                 return r;
1123         }
1124
1125         r = dm_table_prealloc_integrity(t, t->md);
1126         if (r) {
1127                 DMERR("could not register integrity profile.");
1128                 return r;
1129         }
1130
1131         r = dm_table_alloc_md_mempools(t);
1132         if (r)
1133                 DMERR("unable to allocate mempools");
1134
1135         return r;
1136 }
1137
1138 static DEFINE_MUTEX(_event_lock);
1139 void dm_table_event_callback(struct dm_table *t,
1140                              void (*fn)(void *), void *context)
1141 {
1142         mutex_lock(&_event_lock);
1143         t->event_fn = fn;
1144         t->event_context = context;
1145         mutex_unlock(&_event_lock);
1146 }
1147
1148 void dm_table_event(struct dm_table *t)
1149 {
1150         /*
1151          * You can no longer call dm_table_event() from interrupt
1152          * context, use a bottom half instead.
1153          */
1154         BUG_ON(in_interrupt());
1155
1156         mutex_lock(&_event_lock);
1157         if (t->event_fn)
1158                 t->event_fn(t->event_context);
1159         mutex_unlock(&_event_lock);
1160 }
1161 EXPORT_SYMBOL(dm_table_event);
1162
1163 sector_t dm_table_get_size(struct dm_table *t)
1164 {
1165         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1166 }
1167 EXPORT_SYMBOL(dm_table_get_size);
1168
1169 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1170 {
1171         if (index >= t->num_targets)
1172                 return NULL;
1173
1174         return t->targets + index;
1175 }
1176
1177 /*
1178  * Search the btree for the correct target.
1179  *
1180  * Caller should check returned pointer with dm_target_is_valid()
1181  * to trap I/O beyond end of device.
1182  */
1183 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1184 {
1185         unsigned int l, n = 0, k = 0;
1186         sector_t *node;
1187
1188         for (l = 0; l < t->depth; l++) {
1189                 n = get_child(n, k);
1190                 node = get_node(t, l, n);
1191
1192                 for (k = 0; k < KEYS_PER_NODE; k++)
1193                         if (node[k] >= sector)
1194                                 break;
1195         }
1196
1197         return &t->targets[(KEYS_PER_NODE * n) + k];
1198 }
1199
1200 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1201                         sector_t start, sector_t len, void *data)
1202 {
1203         unsigned *num_devices = data;
1204
1205         (*num_devices)++;
1206
1207         return 0;
1208 }
1209
1210 /*
1211  * Check whether a table has no data devices attached using each
1212  * target's iterate_devices method.
1213  * Returns false if the result is unknown because a target doesn't
1214  * support iterate_devices.
1215  */
1216 bool dm_table_has_no_data_devices(struct dm_table *table)
1217 {
1218         struct dm_target *uninitialized_var(ti);
1219         unsigned i = 0, num_devices = 0;
1220
1221         while (i < dm_table_get_num_targets(table)) {
1222                 ti = dm_table_get_target(table, i++);
1223
1224                 if (!ti->type->iterate_devices)
1225                         return false;
1226
1227                 ti->type->iterate_devices(ti, count_device, &num_devices);
1228                 if (num_devices)
1229                         return false;
1230         }
1231
1232         return true;
1233 }
1234
1235 /*
1236  * Establish the new table's queue_limits and validate them.
1237  */
1238 int dm_calculate_queue_limits(struct dm_table *table,
1239                               struct queue_limits *limits)
1240 {
1241         struct dm_target *uninitialized_var(ti);
1242         struct queue_limits ti_limits;
1243         unsigned i = 0;
1244
1245         blk_set_stacking_limits(limits);
1246
1247         while (i < dm_table_get_num_targets(table)) {
1248                 blk_set_stacking_limits(&ti_limits);
1249
1250                 ti = dm_table_get_target(table, i++);
1251
1252                 if (!ti->type->iterate_devices)
1253                         goto combine_limits;
1254
1255                 /*
1256                  * Combine queue limits of all the devices this target uses.
1257                  */
1258                 ti->type->iterate_devices(ti, dm_set_device_limits,
1259                                           &ti_limits);
1260
1261                 /* Set I/O hints portion of queue limits */
1262                 if (ti->type->io_hints)
1263                         ti->type->io_hints(ti, &ti_limits);
1264
1265                 /*
1266                  * Check each device area is consistent with the target's
1267                  * overall queue limits.
1268                  */
1269                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1270                                               &ti_limits))
1271                         return -EINVAL;
1272
1273 combine_limits:
1274                 /*
1275                  * Merge this target's queue limits into the overall limits
1276                  * for the table.
1277                  */
1278                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1279                         DMWARN("%s: adding target device "
1280                                "(start sect %llu len %llu) "
1281                                "caused an alignment inconsistency",
1282                                dm_device_name(table->md),
1283                                (unsigned long long) ti->begin,
1284                                (unsigned long long) ti->len);
1285         }
1286
1287         return validate_hardware_logical_block_alignment(table, limits);
1288 }
1289
1290 /*
1291  * Set the integrity profile for this device if all devices used have
1292  * matching profiles.  We're quite deep in the resume path but still
1293  * don't know if all devices (particularly DM devices this device
1294  * may be stacked on) have matching profiles.  Even if the profiles
1295  * don't match we have no way to fail (to resume) at this point.
1296  */
1297 static void dm_table_set_integrity(struct dm_table *t)
1298 {
1299         struct gendisk *template_disk = NULL;
1300
1301         if (!blk_get_integrity(dm_disk(t->md)))
1302                 return;
1303
1304         template_disk = dm_table_get_integrity_disk(t, true);
1305         if (template_disk)
1306                 blk_integrity_register(dm_disk(t->md),
1307                                        blk_get_integrity(template_disk));
1308         else if (blk_integrity_is_initialized(dm_disk(t->md)))
1309                 DMWARN("%s: device no longer has a valid integrity profile",
1310                        dm_device_name(t->md));
1311         else
1312                 DMWARN("%s: unable to establish an integrity profile",
1313                        dm_device_name(t->md));
1314 }
1315
1316 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1317                                 sector_t start, sector_t len, void *data)
1318 {
1319         unsigned flush = (*(unsigned *)data);
1320         struct request_queue *q = bdev_get_queue(dev->bdev);
1321
1322         return q && (q->flush_flags & flush);
1323 }
1324
1325 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1326 {
1327         struct dm_target *ti;
1328         unsigned i = 0;
1329
1330         /*
1331          * Require at least one underlying device to support flushes.
1332          * t->devices includes internal dm devices such as mirror logs
1333          * so we need to use iterate_devices here, which targets
1334          * supporting flushes must provide.
1335          */
1336         while (i < dm_table_get_num_targets(t)) {
1337                 ti = dm_table_get_target(t, i++);
1338
1339                 if (!ti->num_flush_bios)
1340                         continue;
1341
1342                 if (ti->flush_supported)
1343                         return 1;
1344
1345                 if (ti->type->iterate_devices &&
1346                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1347                         return 1;
1348         }
1349
1350         return 0;
1351 }
1352
1353 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1354 {
1355         struct dm_target *ti;
1356         unsigned i = 0;
1357
1358         /* Ensure that all targets supports discard_zeroes_data. */
1359         while (i < dm_table_get_num_targets(t)) {
1360                 ti = dm_table_get_target(t, i++);
1361
1362                 if (ti->discard_zeroes_data_unsupported)
1363                         return 0;
1364         }
1365
1366         return 1;
1367 }
1368
1369 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1370                             sector_t start, sector_t len, void *data)
1371 {
1372         struct request_queue *q = bdev_get_queue(dev->bdev);
1373
1374         return q && blk_queue_nonrot(q);
1375 }
1376
1377 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1378                              sector_t start, sector_t len, void *data)
1379 {
1380         struct request_queue *q = bdev_get_queue(dev->bdev);
1381
1382         return q && !blk_queue_add_random(q);
1383 }
1384
1385 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1386                                    sector_t start, sector_t len, void *data)
1387 {
1388         struct request_queue *q = bdev_get_queue(dev->bdev);
1389
1390         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1391 }
1392
1393 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1394                                   sector_t start, sector_t len, void *data)
1395 {
1396         struct request_queue *q = bdev_get_queue(dev->bdev);
1397
1398         return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1399 }
1400
1401 static bool dm_table_all_devices_attribute(struct dm_table *t,
1402                                            iterate_devices_callout_fn func)
1403 {
1404         struct dm_target *ti;
1405         unsigned i = 0;
1406
1407         while (i < dm_table_get_num_targets(t)) {
1408                 ti = dm_table_get_target(t, i++);
1409
1410                 if (!ti->type->iterate_devices ||
1411                     !ti->type->iterate_devices(ti, func, NULL))
1412                         return 0;
1413         }
1414
1415         return 1;
1416 }
1417
1418 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1419                                          sector_t start, sector_t len, void *data)
1420 {
1421         struct request_queue *q = bdev_get_queue(dev->bdev);
1422
1423         return q && !q->limits.max_write_same_sectors;
1424 }
1425
1426 static bool dm_table_supports_write_same(struct dm_table *t)
1427 {
1428         struct dm_target *ti;
1429         unsigned i = 0;
1430
1431         while (i < dm_table_get_num_targets(t)) {
1432                 ti = dm_table_get_target(t, i++);
1433
1434                 if (!ti->num_write_same_bios)
1435                         return false;
1436
1437                 if (!ti->type->iterate_devices ||
1438                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1439                         return false;
1440         }
1441
1442         return true;
1443 }
1444
1445 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1446                                   sector_t start, sector_t len, void *data)
1447 {
1448         struct request_queue *q = bdev_get_queue(dev->bdev);
1449
1450         return q && blk_queue_discard(q);
1451 }
1452
1453 static bool dm_table_supports_discards(struct dm_table *t)
1454 {
1455         struct dm_target *ti;
1456         unsigned i = 0;
1457
1458         /*
1459          * Unless any target used by the table set discards_supported,
1460          * require at least one underlying device to support discards.
1461          * t->devices includes internal dm devices such as mirror logs
1462          * so we need to use iterate_devices here, which targets
1463          * supporting discard selectively must provide.
1464          */
1465         while (i < dm_table_get_num_targets(t)) {
1466                 ti = dm_table_get_target(t, i++);
1467
1468                 if (!ti->num_discard_bios)
1469                         continue;
1470
1471                 if (ti->discards_supported)
1472                         return 1;
1473
1474                 if (ti->type->iterate_devices &&
1475                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1476                         return 1;
1477         }
1478
1479         return 0;
1480 }
1481
1482 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1483                                struct queue_limits *limits)
1484 {
1485         unsigned flush = 0;
1486
1487         /*
1488          * Copy table's limits to the DM device's request_queue
1489          */
1490         q->limits = *limits;
1491
1492         if (!dm_table_supports_discards(t))
1493                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1494         else
1495                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1496
1497         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1498                 flush |= REQ_FLUSH;
1499                 if (dm_table_supports_flush(t, REQ_FUA))
1500                         flush |= REQ_FUA;
1501         }
1502         blk_queue_flush(q, flush);
1503
1504         if (!dm_table_discard_zeroes_data(t))
1505                 q->limits.discard_zeroes_data = 0;
1506
1507         /* Ensure that all underlying devices are non-rotational. */
1508         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1509                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1510         else
1511                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1512
1513         if (!dm_table_supports_write_same(t))
1514                 q->limits.max_write_same_sectors = 0;
1515
1516         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1517                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518         else
1519                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1520
1521         if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1522                 queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1523         else
1524                 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1525
1526         dm_table_set_integrity(t);
1527
1528         /*
1529          * Determine whether or not this queue's I/O timings contribute
1530          * to the entropy pool, Only request-based targets use this.
1531          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1532          * have it set.
1533          */
1534         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1535                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1536
1537         /*
1538          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1539          * visible to other CPUs because, once the flag is set, incoming bios
1540          * are processed by request-based dm, which refers to the queue
1541          * settings.
1542          * Until the flag set, bios are passed to bio-based dm and queued to
1543          * md->deferred where queue settings are not needed yet.
1544          * Those bios are passed to request-based dm at the resume time.
1545          */
1546         smp_mb();
1547         if (dm_table_request_based(t))
1548                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1549 }
1550
1551 unsigned int dm_table_get_num_targets(struct dm_table *t)
1552 {
1553         return t->num_targets;
1554 }
1555
1556 struct list_head *dm_table_get_devices(struct dm_table *t)
1557 {
1558         return &t->devices;
1559 }
1560
1561 fmode_t dm_table_get_mode(struct dm_table *t)
1562 {
1563         return t->mode;
1564 }
1565 EXPORT_SYMBOL(dm_table_get_mode);
1566
1567 enum suspend_mode {
1568         PRESUSPEND,
1569         PRESUSPEND_UNDO,
1570         POSTSUSPEND,
1571 };
1572
1573 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1574 {
1575         int i = t->num_targets;
1576         struct dm_target *ti = t->targets;
1577
1578         while (i--) {
1579                 switch (mode) {
1580                 case PRESUSPEND:
1581                         if (ti->type->presuspend)
1582                                 ti->type->presuspend(ti);
1583                         break;
1584                 case PRESUSPEND_UNDO:
1585                         if (ti->type->presuspend_undo)
1586                                 ti->type->presuspend_undo(ti);
1587                         break;
1588                 case POSTSUSPEND:
1589                         if (ti->type->postsuspend)
1590                                 ti->type->postsuspend(ti);
1591                         break;
1592                 }
1593                 ti++;
1594         }
1595 }
1596
1597 void dm_table_presuspend_targets(struct dm_table *t)
1598 {
1599         if (!t)
1600                 return;
1601
1602         suspend_targets(t, PRESUSPEND);
1603 }
1604
1605 void dm_table_presuspend_undo_targets(struct dm_table *t)
1606 {
1607         if (!t)
1608                 return;
1609
1610         suspend_targets(t, PRESUSPEND_UNDO);
1611 }
1612
1613 void dm_table_postsuspend_targets(struct dm_table *t)
1614 {
1615         if (!t)
1616                 return;
1617
1618         suspend_targets(t, POSTSUSPEND);
1619 }
1620
1621 int dm_table_resume_targets(struct dm_table *t)
1622 {
1623         int i, r = 0;
1624
1625         for (i = 0; i < t->num_targets; i++) {
1626                 struct dm_target *ti = t->targets + i;
1627
1628                 if (!ti->type->preresume)
1629                         continue;
1630
1631                 r = ti->type->preresume(ti);
1632                 if (r) {
1633                         DMERR("%s: %s: preresume failed, error = %d",
1634                               dm_device_name(t->md), ti->type->name, r);
1635                         return r;
1636                 }
1637         }
1638
1639         for (i = 0; i < t->num_targets; i++) {
1640                 struct dm_target *ti = t->targets + i;
1641
1642                 if (ti->type->resume)
1643                         ti->type->resume(ti);
1644         }
1645
1646         return 0;
1647 }
1648
1649 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1650 {
1651         list_add(&cb->list, &t->target_callbacks);
1652 }
1653 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1654
1655 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1656 {
1657         struct dm_dev_internal *dd;
1658         struct list_head *devices = dm_table_get_devices(t);
1659         struct dm_target_callbacks *cb;
1660         int r = 0;
1661
1662         list_for_each_entry(dd, devices, list) {
1663                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1664                 char b[BDEVNAME_SIZE];
1665
1666                 if (likely(q))
1667                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1668                 else
1669                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1670                                      dm_device_name(t->md),
1671                                      bdevname(dd->dm_dev->bdev, b));
1672         }
1673
1674         list_for_each_entry(cb, &t->target_callbacks, list)
1675                 if (cb->congested_fn)
1676                         r |= cb->congested_fn(cb, bdi_bits);
1677
1678         return r;
1679 }
1680
1681 struct mapped_device *dm_table_get_md(struct dm_table *t)
1682 {
1683         return t->md;
1684 }
1685 EXPORT_SYMBOL(dm_table_get_md);
1686
1687 void dm_table_run_md_queue_async(struct dm_table *t)
1688 {
1689         struct mapped_device *md;
1690         struct request_queue *queue;
1691         unsigned long flags;
1692
1693         if (!dm_table_request_based(t))
1694                 return;
1695
1696         md = dm_table_get_md(t);
1697         queue = dm_get_md_queue(md);
1698         if (queue) {
1699                 if (queue->mq_ops)
1700                         blk_mq_run_hw_queues(queue, true);
1701                 else {
1702                         spin_lock_irqsave(queue->queue_lock, flags);
1703                         blk_run_queue_async(queue);
1704                         spin_unlock_irqrestore(queue->queue_lock, flags);
1705                 }
1706         }
1707 }
1708 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1709