OSDN Git Service

dm thin: direct dispatch when breaking sharing
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/rbtree.h>
21
22 #define DM_MSG_PREFIX   "thin"
23
24 /*
25  * Tunable constants
26  */
27 #define ENDIO_HOOK_POOL_SIZE 1024
28 #define MAPPING_POOL_SIZE 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35                 "A percentage of time allocated for copy on write");
36
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113                            dm_block_t b, struct dm_cell_key *key)
114 {
115         key->virtual = 0;
116         key->dev = dm_thin_dev_id(td);
117         key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121                               struct dm_cell_key *key)
122 {
123         key->virtual = 1;
124         key->dev = dm_thin_dev_id(td);
125         key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 #define THROTTLE_THRESHOLD (1 * HZ)
131
132 struct throttle {
133         struct rw_semaphore lock;
134         unsigned long threshold;
135         bool throttle_applied;
136 };
137
138 static void throttle_init(struct throttle *t)
139 {
140         init_rwsem(&t->lock);
141         t->throttle_applied = false;
142 }
143
144 static void throttle_work_start(struct throttle *t)
145 {
146         t->threshold = jiffies + THROTTLE_THRESHOLD;
147 }
148
149 static void throttle_work_update(struct throttle *t)
150 {
151         if (!t->throttle_applied && jiffies > t->threshold) {
152                 down_write(&t->lock);
153                 t->throttle_applied = true;
154         }
155 }
156
157 static void throttle_work_complete(struct throttle *t)
158 {
159         if (t->throttle_applied) {
160                 t->throttle_applied = false;
161                 up_write(&t->lock);
162         }
163 }
164
165 static void throttle_lock(struct throttle *t)
166 {
167         down_read(&t->lock);
168 }
169
170 static void throttle_unlock(struct throttle *t)
171 {
172         up_read(&t->lock);
173 }
174
175 /*----------------------------------------------------------------*/
176
177 /*
178  * A pool device ties together a metadata device and a data device.  It
179  * also provides the interface for creating and destroying internal
180  * devices.
181  */
182 struct dm_thin_new_mapping;
183
184 /*
185  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
186  */
187 enum pool_mode {
188         PM_WRITE,               /* metadata may be changed */
189         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
190         PM_READ_ONLY,           /* metadata may not be changed */
191         PM_FAIL,                /* all I/O fails */
192 };
193
194 struct pool_features {
195         enum pool_mode mode;
196
197         bool zero_new_blocks:1;
198         bool discard_enabled:1;
199         bool discard_passdown:1;
200         bool error_if_no_space:1;
201 };
202
203 struct thin_c;
204 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
205 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
206 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
207
208 struct pool {
209         struct list_head list;
210         struct dm_target *ti;   /* Only set if a pool target is bound */
211
212         struct mapped_device *pool_md;
213         struct block_device *md_dev;
214         struct dm_pool_metadata *pmd;
215
216         dm_block_t low_water_blocks;
217         uint32_t sectors_per_block;
218         int sectors_per_block_shift;
219
220         struct pool_features pf;
221         bool low_water_triggered:1;     /* A dm event has been sent */
222
223         struct dm_bio_prison *prison;
224         struct dm_kcopyd_client *copier;
225
226         struct workqueue_struct *wq;
227         struct throttle throttle;
228         struct work_struct worker;
229         struct delayed_work waker;
230         struct delayed_work no_space_timeout;
231
232         unsigned long last_commit_jiffies;
233         unsigned ref_count;
234
235         spinlock_t lock;
236         struct bio_list deferred_flush_bios;
237         struct list_head prepared_mappings;
238         struct list_head prepared_discards;
239         struct list_head active_thins;
240
241         struct dm_deferred_set *shared_read_ds;
242         struct dm_deferred_set *all_io_ds;
243
244         struct dm_thin_new_mapping *next_mapping;
245         mempool_t *mapping_pool;
246
247         process_bio_fn process_bio;
248         process_bio_fn process_discard;
249
250         process_cell_fn process_cell;
251         process_cell_fn process_discard_cell;
252
253         process_mapping_fn process_prepared_mapping;
254         process_mapping_fn process_prepared_discard;
255 };
256
257 static enum pool_mode get_pool_mode(struct pool *pool);
258 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
259
260 /*
261  * Target context for a pool.
262  */
263 struct pool_c {
264         struct dm_target *ti;
265         struct pool *pool;
266         struct dm_dev *data_dev;
267         struct dm_dev *metadata_dev;
268         struct dm_target_callbacks callbacks;
269
270         dm_block_t low_water_blocks;
271         struct pool_features requested_pf; /* Features requested during table load */
272         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
273 };
274
275 /*
276  * Target context for a thin.
277  */
278 struct thin_c {
279         struct list_head list;
280         struct dm_dev *pool_dev;
281         struct dm_dev *origin_dev;
282         sector_t origin_size;
283         dm_thin_id dev_id;
284
285         struct pool *pool;
286         struct dm_thin_device *td;
287         bool requeue_mode:1;
288         spinlock_t lock;
289         struct list_head deferred_cells;
290         struct bio_list deferred_bio_list;
291         struct bio_list retry_on_resume_list;
292         struct rb_root sort_bio_list; /* sorted list of deferred bios */
293
294         /*
295          * Ensures the thin is not destroyed until the worker has finished
296          * iterating the active_thins list.
297          */
298         atomic_t refcount;
299         struct completion can_destroy;
300 };
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * wake_worker() is used when new work is queued and when pool_resume is
306  * ready to continue deferred IO processing.
307  */
308 static void wake_worker(struct pool *pool)
309 {
310         queue_work(pool->wq, &pool->worker);
311 }
312
313 /*----------------------------------------------------------------*/
314
315 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
316                       struct dm_bio_prison_cell **cell_result)
317 {
318         int r;
319         struct dm_bio_prison_cell *cell_prealloc;
320
321         /*
322          * Allocate a cell from the prison's mempool.
323          * This might block but it can't fail.
324          */
325         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
326
327         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
328         if (r)
329                 /*
330                  * We reused an old cell; we can get rid of
331                  * the new one.
332                  */
333                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
334
335         return r;
336 }
337
338 static void cell_release(struct pool *pool,
339                          struct dm_bio_prison_cell *cell,
340                          struct bio_list *bios)
341 {
342         dm_cell_release(pool->prison, cell, bios);
343         dm_bio_prison_free_cell(pool->prison, cell);
344 }
345
346 static void cell_visit_release(struct pool *pool,
347                                void (*fn)(void *, struct dm_bio_prison_cell *),
348                                void *context,
349                                struct dm_bio_prison_cell *cell)
350 {
351         dm_cell_visit_release(pool->prison, fn, context, cell);
352         dm_bio_prison_free_cell(pool->prison, cell);
353 }
354
355 static void cell_release_no_holder(struct pool *pool,
356                                    struct dm_bio_prison_cell *cell,
357                                    struct bio_list *bios)
358 {
359         dm_cell_release_no_holder(pool->prison, cell, bios);
360         dm_bio_prison_free_cell(pool->prison, cell);
361 }
362
363 static void cell_error_with_code(struct pool *pool,
364                                  struct dm_bio_prison_cell *cell, int error_code)
365 {
366         dm_cell_error(pool->prison, cell, error_code);
367         dm_bio_prison_free_cell(pool->prison, cell);
368 }
369
370 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
371 {
372         cell_error_with_code(pool, cell, -EIO);
373 }
374
375 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
376 {
377         cell_error_with_code(pool, cell, 0);
378 }
379
380 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
381 {
382         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
383 }
384
385 /*----------------------------------------------------------------*/
386
387 /*
388  * A global list of pools that uses a struct mapped_device as a key.
389  */
390 static struct dm_thin_pool_table {
391         struct mutex mutex;
392         struct list_head pools;
393 } dm_thin_pool_table;
394
395 static void pool_table_init(void)
396 {
397         mutex_init(&dm_thin_pool_table.mutex);
398         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
399 }
400
401 static void __pool_table_insert(struct pool *pool)
402 {
403         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
404         list_add(&pool->list, &dm_thin_pool_table.pools);
405 }
406
407 static void __pool_table_remove(struct pool *pool)
408 {
409         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
410         list_del(&pool->list);
411 }
412
413 static struct pool *__pool_table_lookup(struct mapped_device *md)
414 {
415         struct pool *pool = NULL, *tmp;
416
417         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
418
419         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
420                 if (tmp->pool_md == md) {
421                         pool = tmp;
422                         break;
423                 }
424         }
425
426         return pool;
427 }
428
429 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
430 {
431         struct pool *pool = NULL, *tmp;
432
433         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
434
435         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
436                 if (tmp->md_dev == md_dev) {
437                         pool = tmp;
438                         break;
439                 }
440         }
441
442         return pool;
443 }
444
445 /*----------------------------------------------------------------*/
446
447 struct dm_thin_endio_hook {
448         struct thin_c *tc;
449         struct dm_deferred_entry *shared_read_entry;
450         struct dm_deferred_entry *all_io_entry;
451         struct dm_thin_new_mapping *overwrite_mapping;
452         struct rb_node rb_node;
453 };
454
455 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
456 {
457         struct bio *bio;
458         struct bio_list bios;
459         unsigned long flags;
460
461         bio_list_init(&bios);
462
463         spin_lock_irqsave(&tc->lock, flags);
464         bio_list_merge(&bios, master);
465         bio_list_init(master);
466         spin_unlock_irqrestore(&tc->lock, flags);
467
468         while ((bio = bio_list_pop(&bios)))
469                 bio_endio(bio, DM_ENDIO_REQUEUE);
470 }
471
472 static void requeue_deferred_cells(struct thin_c *tc)
473 {
474         struct pool *pool = tc->pool;
475         unsigned long flags;
476         struct list_head cells;
477         struct dm_bio_prison_cell *cell, *tmp;
478
479         INIT_LIST_HEAD(&cells);
480
481         spin_lock_irqsave(&tc->lock, flags);
482         list_splice_init(&tc->deferred_cells, &cells);
483         spin_unlock_irqrestore(&tc->lock, flags);
484
485         list_for_each_entry_safe(cell, tmp, &cells, user_list)
486                 cell_requeue(pool, cell);
487 }
488
489 static void requeue_io(struct thin_c *tc)
490 {
491         requeue_bio_list(tc, &tc->deferred_bio_list);
492         requeue_bio_list(tc, &tc->retry_on_resume_list);
493         requeue_deferred_cells(tc);
494 }
495
496 static void error_thin_retry_list(struct thin_c *tc)
497 {
498         struct bio *bio;
499         unsigned long flags;
500         struct bio_list bios;
501
502         bio_list_init(&bios);
503
504         spin_lock_irqsave(&tc->lock, flags);
505         bio_list_merge(&bios, &tc->retry_on_resume_list);
506         bio_list_init(&tc->retry_on_resume_list);
507         spin_unlock_irqrestore(&tc->lock, flags);
508
509         while ((bio = bio_list_pop(&bios)))
510                 bio_io_error(bio);
511 }
512
513 static void error_retry_list(struct pool *pool)
514 {
515         struct thin_c *tc;
516
517         rcu_read_lock();
518         list_for_each_entry_rcu(tc, &pool->active_thins, list)
519                 error_thin_retry_list(tc);
520         rcu_read_unlock();
521 }
522
523 /*
524  * This section of code contains the logic for processing a thin device's IO.
525  * Much of the code depends on pool object resources (lists, workqueues, etc)
526  * but most is exclusively called from the thin target rather than the thin-pool
527  * target.
528  */
529
530 static bool block_size_is_power_of_two(struct pool *pool)
531 {
532         return pool->sectors_per_block_shift >= 0;
533 }
534
535 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
536 {
537         struct pool *pool = tc->pool;
538         sector_t block_nr = bio->bi_iter.bi_sector;
539
540         if (block_size_is_power_of_two(pool))
541                 block_nr >>= pool->sectors_per_block_shift;
542         else
543                 (void) sector_div(block_nr, pool->sectors_per_block);
544
545         return block_nr;
546 }
547
548 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
549 {
550         struct pool *pool = tc->pool;
551         sector_t bi_sector = bio->bi_iter.bi_sector;
552
553         bio->bi_bdev = tc->pool_dev->bdev;
554         if (block_size_is_power_of_two(pool))
555                 bio->bi_iter.bi_sector =
556                         (block << pool->sectors_per_block_shift) |
557                         (bi_sector & (pool->sectors_per_block - 1));
558         else
559                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
560                                  sector_div(bi_sector, pool->sectors_per_block);
561 }
562
563 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
564 {
565         bio->bi_bdev = tc->origin_dev->bdev;
566 }
567
568 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
569 {
570         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
571                 dm_thin_changed_this_transaction(tc->td);
572 }
573
574 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
575 {
576         struct dm_thin_endio_hook *h;
577
578         if (bio->bi_rw & REQ_DISCARD)
579                 return;
580
581         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
582         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
583 }
584
585 static void issue(struct thin_c *tc, struct bio *bio)
586 {
587         struct pool *pool = tc->pool;
588         unsigned long flags;
589
590         if (!bio_triggers_commit(tc, bio)) {
591                 generic_make_request(bio);
592                 return;
593         }
594
595         /*
596          * Complete bio with an error if earlier I/O caused changes to
597          * the metadata that can't be committed e.g, due to I/O errors
598          * on the metadata device.
599          */
600         if (dm_thin_aborted_changes(tc->td)) {
601                 bio_io_error(bio);
602                 return;
603         }
604
605         /*
606          * Batch together any bios that trigger commits and then issue a
607          * single commit for them in process_deferred_bios().
608          */
609         spin_lock_irqsave(&pool->lock, flags);
610         bio_list_add(&pool->deferred_flush_bios, bio);
611         spin_unlock_irqrestore(&pool->lock, flags);
612 }
613
614 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
615 {
616         remap_to_origin(tc, bio);
617         issue(tc, bio);
618 }
619
620 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
621                             dm_block_t block)
622 {
623         remap(tc, bio, block);
624         issue(tc, bio);
625 }
626
627 /*----------------------------------------------------------------*/
628
629 /*
630  * Bio endio functions.
631  */
632 struct dm_thin_new_mapping {
633         struct list_head list;
634
635         bool pass_discard:1;
636         bool definitely_not_shared:1;
637
638         /*
639          * Track quiescing, copying and zeroing preparation actions.  When this
640          * counter hits zero the block is prepared and can be inserted into the
641          * btree.
642          */
643         atomic_t prepare_actions;
644
645         int err;
646         struct thin_c *tc;
647         dm_block_t virt_block;
648         dm_block_t data_block;
649         struct dm_bio_prison_cell *cell, *cell2;
650
651         /*
652          * If the bio covers the whole area of a block then we can avoid
653          * zeroing or copying.  Instead this bio is hooked.  The bio will
654          * still be in the cell, so care has to be taken to avoid issuing
655          * the bio twice.
656          */
657         struct bio *bio;
658         bio_end_io_t *saved_bi_end_io;
659 };
660
661 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
662 {
663         struct pool *pool = m->tc->pool;
664
665         if (atomic_dec_and_test(&m->prepare_actions)) {
666                 list_add_tail(&m->list, &pool->prepared_mappings);
667                 wake_worker(pool);
668         }
669 }
670
671 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
672 {
673         unsigned long flags;
674         struct pool *pool = m->tc->pool;
675
676         spin_lock_irqsave(&pool->lock, flags);
677         __complete_mapping_preparation(m);
678         spin_unlock_irqrestore(&pool->lock, flags);
679 }
680
681 static void copy_complete(int read_err, unsigned long write_err, void *context)
682 {
683         struct dm_thin_new_mapping *m = context;
684
685         m->err = read_err || write_err ? -EIO : 0;
686         complete_mapping_preparation(m);
687 }
688
689 static void overwrite_endio(struct bio *bio, int err)
690 {
691         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
692         struct dm_thin_new_mapping *m = h->overwrite_mapping;
693
694         m->err = err;
695         complete_mapping_preparation(m);
696 }
697
698 /*----------------------------------------------------------------*/
699
700 /*
701  * Workqueue.
702  */
703
704 /*
705  * Prepared mapping jobs.
706  */
707
708 /*
709  * This sends the bios in the cell, except the original holder, back
710  * to the deferred_bios list.
711  */
712 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
713 {
714         struct pool *pool = tc->pool;
715         unsigned long flags;
716
717         spin_lock_irqsave(&tc->lock, flags);
718         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
719         spin_unlock_irqrestore(&tc->lock, flags);
720
721         wake_worker(pool);
722 }
723
724 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
725
726 struct remap_info {
727         struct thin_c *tc;
728         struct bio_list defer_bios;
729         struct bio_list issue_bios;
730 };
731
732 static void __inc_remap_and_issue_cell(void *context,
733                                        struct dm_bio_prison_cell *cell)
734 {
735         struct remap_info *info = context;
736         struct bio *bio;
737
738         while ((bio = bio_list_pop(&cell->bios))) {
739                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
740                         bio_list_add(&info->defer_bios, bio);
741                 else {
742                         inc_all_io_entry(info->tc->pool, bio);
743
744                         /*
745                          * We can't issue the bios with the bio prison lock
746                          * held, so we add them to a list to issue on
747                          * return from this function.
748                          */
749                         bio_list_add(&info->issue_bios, bio);
750                 }
751         }
752 }
753
754 static void inc_remap_and_issue_cell(struct thin_c *tc,
755                                      struct dm_bio_prison_cell *cell,
756                                      dm_block_t block)
757 {
758         struct bio *bio;
759         struct remap_info info;
760
761         info.tc = tc;
762         bio_list_init(&info.defer_bios);
763         bio_list_init(&info.issue_bios);
764
765         /*
766          * We have to be careful to inc any bios we're about to issue
767          * before the cell is released, and avoid a race with new bios
768          * being added to the cell.
769          */
770         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
771                            &info, cell);
772
773         while ((bio = bio_list_pop(&info.defer_bios)))
774                 thin_defer_bio(tc, bio);
775
776         while ((bio = bio_list_pop(&info.issue_bios)))
777                 remap_and_issue(info.tc, bio, block);
778 }
779
780 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
781 {
782         if (m->bio) {
783                 m->bio->bi_end_io = m->saved_bi_end_io;
784                 atomic_inc(&m->bio->bi_remaining);
785         }
786         cell_error(m->tc->pool, m->cell);
787         list_del(&m->list);
788         mempool_free(m, m->tc->pool->mapping_pool);
789 }
790
791 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
792 {
793         struct thin_c *tc = m->tc;
794         struct pool *pool = tc->pool;
795         struct bio *bio;
796         int r;
797
798         bio = m->bio;
799         if (bio) {
800                 bio->bi_end_io = m->saved_bi_end_io;
801                 atomic_inc(&bio->bi_remaining);
802         }
803
804         if (m->err) {
805                 cell_error(pool, m->cell);
806                 goto out;
807         }
808
809         /*
810          * Commit the prepared block into the mapping btree.
811          * Any I/O for this block arriving after this point will get
812          * remapped to it directly.
813          */
814         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
815         if (r) {
816                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
817                 cell_error(pool, m->cell);
818                 goto out;
819         }
820
821         /*
822          * Release any bios held while the block was being provisioned.
823          * If we are processing a write bio that completely covers the block,
824          * we already processed it so can ignore it now when processing
825          * the bios in the cell.
826          */
827         if (bio) {
828                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
829                 bio_endio(bio, 0);
830         } else {
831                 inc_all_io_entry(tc->pool, m->cell->holder);
832                 remap_and_issue(tc, m->cell->holder, m->data_block);
833                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
834         }
835
836 out:
837         list_del(&m->list);
838         mempool_free(m, pool->mapping_pool);
839 }
840
841 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
842 {
843         struct thin_c *tc = m->tc;
844
845         bio_io_error(m->bio);
846         cell_defer_no_holder(tc, m->cell);
847         cell_defer_no_holder(tc, m->cell2);
848         mempool_free(m, tc->pool->mapping_pool);
849 }
850
851 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
852 {
853         struct thin_c *tc = m->tc;
854
855         inc_all_io_entry(tc->pool, m->bio);
856         cell_defer_no_holder(tc, m->cell);
857         cell_defer_no_holder(tc, m->cell2);
858
859         if (m->pass_discard)
860                 if (m->definitely_not_shared)
861                         remap_and_issue(tc, m->bio, m->data_block);
862                 else {
863                         bool used = false;
864                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
865                                 bio_endio(m->bio, 0);
866                         else
867                                 remap_and_issue(tc, m->bio, m->data_block);
868                 }
869         else
870                 bio_endio(m->bio, 0);
871
872         mempool_free(m, tc->pool->mapping_pool);
873 }
874
875 static void process_prepared_discard(struct dm_thin_new_mapping *m)
876 {
877         int r;
878         struct thin_c *tc = m->tc;
879
880         r = dm_thin_remove_block(tc->td, m->virt_block);
881         if (r)
882                 DMERR_LIMIT("dm_thin_remove_block() failed");
883
884         process_prepared_discard_passdown(m);
885 }
886
887 static void process_prepared(struct pool *pool, struct list_head *head,
888                              process_mapping_fn *fn)
889 {
890         unsigned long flags;
891         struct list_head maps;
892         struct dm_thin_new_mapping *m, *tmp;
893
894         INIT_LIST_HEAD(&maps);
895         spin_lock_irqsave(&pool->lock, flags);
896         list_splice_init(head, &maps);
897         spin_unlock_irqrestore(&pool->lock, flags);
898
899         list_for_each_entry_safe(m, tmp, &maps, list)
900                 (*fn)(m);
901 }
902
903 /*
904  * Deferred bio jobs.
905  */
906 static int io_overlaps_block(struct pool *pool, struct bio *bio)
907 {
908         return bio->bi_iter.bi_size ==
909                 (pool->sectors_per_block << SECTOR_SHIFT);
910 }
911
912 static int io_overwrites_block(struct pool *pool, struct bio *bio)
913 {
914         return (bio_data_dir(bio) == WRITE) &&
915                 io_overlaps_block(pool, bio);
916 }
917
918 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
919                                bio_end_io_t *fn)
920 {
921         *save = bio->bi_end_io;
922         bio->bi_end_io = fn;
923 }
924
925 static int ensure_next_mapping(struct pool *pool)
926 {
927         if (pool->next_mapping)
928                 return 0;
929
930         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
931
932         return pool->next_mapping ? 0 : -ENOMEM;
933 }
934
935 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
936 {
937         struct dm_thin_new_mapping *m = pool->next_mapping;
938
939         BUG_ON(!pool->next_mapping);
940
941         memset(m, 0, sizeof(struct dm_thin_new_mapping));
942         INIT_LIST_HEAD(&m->list);
943         m->bio = NULL;
944
945         pool->next_mapping = NULL;
946
947         return m;
948 }
949
950 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
951                     sector_t begin, sector_t end)
952 {
953         int r;
954         struct dm_io_region to;
955
956         to.bdev = tc->pool_dev->bdev;
957         to.sector = begin;
958         to.count = end - begin;
959
960         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
961         if (r < 0) {
962                 DMERR_LIMIT("dm_kcopyd_zero() failed");
963                 copy_complete(1, 1, m);
964         }
965 }
966
967 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
968                                       dm_block_t data_block,
969                                       struct dm_thin_new_mapping *m)
970 {
971         struct pool *pool = tc->pool;
972         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
973
974         h->overwrite_mapping = m;
975         m->bio = bio;
976         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
977         inc_all_io_entry(pool, bio);
978         remap_and_issue(tc, bio, data_block);
979 }
980
981 /*
982  * A partial copy also needs to zero the uncopied region.
983  */
984 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
985                           struct dm_dev *origin, dm_block_t data_origin,
986                           dm_block_t data_dest,
987                           struct dm_bio_prison_cell *cell, struct bio *bio,
988                           sector_t len)
989 {
990         int r;
991         struct pool *pool = tc->pool;
992         struct dm_thin_new_mapping *m = get_next_mapping(pool);
993
994         m->tc = tc;
995         m->virt_block = virt_block;
996         m->data_block = data_dest;
997         m->cell = cell;
998
999         /*
1000          * quiesce action + copy action + an extra reference held for the
1001          * duration of this function (we may need to inc later for a
1002          * partial zero).
1003          */
1004         atomic_set(&m->prepare_actions, 3);
1005
1006         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1007                 complete_mapping_preparation(m); /* already quiesced */
1008
1009         /*
1010          * IO to pool_dev remaps to the pool target's data_dev.
1011          *
1012          * If the whole block of data is being overwritten, we can issue the
1013          * bio immediately. Otherwise we use kcopyd to clone the data first.
1014          */
1015         if (io_overwrites_block(pool, bio))
1016                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1017         else {
1018                 struct dm_io_region from, to;
1019
1020                 from.bdev = origin->bdev;
1021                 from.sector = data_origin * pool->sectors_per_block;
1022                 from.count = len;
1023
1024                 to.bdev = tc->pool_dev->bdev;
1025                 to.sector = data_dest * pool->sectors_per_block;
1026                 to.count = len;
1027
1028                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1029                                    0, copy_complete, m);
1030                 if (r < 0) {
1031                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1032                         copy_complete(1, 1, m);
1033
1034                         /*
1035                          * We allow the zero to be issued, to simplify the
1036                          * error path.  Otherwise we'd need to start
1037                          * worrying about decrementing the prepare_actions
1038                          * counter.
1039                          */
1040                 }
1041
1042                 /*
1043                  * Do we need to zero a tail region?
1044                  */
1045                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1046                         atomic_inc(&m->prepare_actions);
1047                         ll_zero(tc, m,
1048                                 data_dest * pool->sectors_per_block + len,
1049                                 (data_dest + 1) * pool->sectors_per_block);
1050                 }
1051         }
1052
1053         complete_mapping_preparation(m); /* drop our ref */
1054 }
1055
1056 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1057                                    dm_block_t data_origin, dm_block_t data_dest,
1058                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1059 {
1060         schedule_copy(tc, virt_block, tc->pool_dev,
1061                       data_origin, data_dest, cell, bio,
1062                       tc->pool->sectors_per_block);
1063 }
1064
1065 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1066                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1067                           struct bio *bio)
1068 {
1069         struct pool *pool = tc->pool;
1070         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1071
1072         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1073         m->tc = tc;
1074         m->virt_block = virt_block;
1075         m->data_block = data_block;
1076         m->cell = cell;
1077
1078         /*
1079          * If the whole block of data is being overwritten or we are not
1080          * zeroing pre-existing data, we can issue the bio immediately.
1081          * Otherwise we use kcopyd to zero the data first.
1082          */
1083         if (!pool->pf.zero_new_blocks)
1084                 process_prepared_mapping(m);
1085
1086         else if (io_overwrites_block(pool, bio))
1087                 remap_and_issue_overwrite(tc, bio, data_block, m);
1088
1089         else
1090                 ll_zero(tc, m,
1091                         data_block * pool->sectors_per_block,
1092                         (data_block + 1) * pool->sectors_per_block);
1093 }
1094
1095 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1096                                    dm_block_t data_dest,
1097                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1098 {
1099         struct pool *pool = tc->pool;
1100         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1101         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1102
1103         if (virt_block_end <= tc->origin_size)
1104                 schedule_copy(tc, virt_block, tc->origin_dev,
1105                               virt_block, data_dest, cell, bio,
1106                               pool->sectors_per_block);
1107
1108         else if (virt_block_begin < tc->origin_size)
1109                 schedule_copy(tc, virt_block, tc->origin_dev,
1110                               virt_block, data_dest, cell, bio,
1111                               tc->origin_size - virt_block_begin);
1112
1113         else
1114                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1115 }
1116
1117 /*
1118  * A non-zero return indicates read_only or fail_io mode.
1119  * Many callers don't care about the return value.
1120  */
1121 static int commit(struct pool *pool)
1122 {
1123         int r;
1124
1125         if (get_pool_mode(pool) >= PM_READ_ONLY)
1126                 return -EINVAL;
1127
1128         r = dm_pool_commit_metadata(pool->pmd);
1129         if (r)
1130                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1131
1132         return r;
1133 }
1134
1135 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1136 {
1137         unsigned long flags;
1138
1139         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1140                 DMWARN("%s: reached low water mark for data device: sending event.",
1141                        dm_device_name(pool->pool_md));
1142                 spin_lock_irqsave(&pool->lock, flags);
1143                 pool->low_water_triggered = true;
1144                 spin_unlock_irqrestore(&pool->lock, flags);
1145                 dm_table_event(pool->ti->table);
1146         }
1147 }
1148
1149 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1150
1151 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1152 {
1153         int r;
1154         dm_block_t free_blocks;
1155         struct pool *pool = tc->pool;
1156
1157         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1158                 return -EINVAL;
1159
1160         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1163                 return r;
1164         }
1165
1166         check_low_water_mark(pool, free_blocks);
1167
1168         if (!free_blocks) {
1169                 /*
1170                  * Try to commit to see if that will free up some
1171                  * more space.
1172                  */
1173                 r = commit(pool);
1174                 if (r)
1175                         return r;
1176
1177                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1178                 if (r) {
1179                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1180                         return r;
1181                 }
1182
1183                 if (!free_blocks) {
1184                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1185                         return -ENOSPC;
1186                 }
1187         }
1188
1189         r = dm_pool_alloc_data_block(pool->pmd, result);
1190         if (r) {
1191                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1192                 return r;
1193         }
1194
1195         return 0;
1196 }
1197
1198 /*
1199  * If we have run out of space, queue bios until the device is
1200  * resumed, presumably after having been reloaded with more space.
1201  */
1202 static void retry_on_resume(struct bio *bio)
1203 {
1204         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1205         struct thin_c *tc = h->tc;
1206         unsigned long flags;
1207
1208         spin_lock_irqsave(&tc->lock, flags);
1209         bio_list_add(&tc->retry_on_resume_list, bio);
1210         spin_unlock_irqrestore(&tc->lock, flags);
1211 }
1212
1213 static int should_error_unserviceable_bio(struct pool *pool)
1214 {
1215         enum pool_mode m = get_pool_mode(pool);
1216
1217         switch (m) {
1218         case PM_WRITE:
1219                 /* Shouldn't get here */
1220                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1221                 return -EIO;
1222
1223         case PM_OUT_OF_DATA_SPACE:
1224                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1225
1226         case PM_READ_ONLY:
1227         case PM_FAIL:
1228                 return -EIO;
1229         default:
1230                 /* Shouldn't get here */
1231                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1232                 return -EIO;
1233         }
1234 }
1235
1236 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1237 {
1238         int error = should_error_unserviceable_bio(pool);
1239
1240         if (error)
1241                 bio_endio(bio, error);
1242         else
1243                 retry_on_resume(bio);
1244 }
1245
1246 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1247 {
1248         struct bio *bio;
1249         struct bio_list bios;
1250         int error;
1251
1252         error = should_error_unserviceable_bio(pool);
1253         if (error) {
1254                 cell_error_with_code(pool, cell, error);
1255                 return;
1256         }
1257
1258         bio_list_init(&bios);
1259         cell_release(pool, cell, &bios);
1260
1261         error = should_error_unserviceable_bio(pool);
1262         if (error)
1263                 while ((bio = bio_list_pop(&bios)))
1264                         bio_endio(bio, error);
1265         else
1266                 while ((bio = bio_list_pop(&bios)))
1267                         retry_on_resume(bio);
1268 }
1269
1270 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1271 {
1272         int r;
1273         struct bio *bio = cell->holder;
1274         struct pool *pool = tc->pool;
1275         struct dm_bio_prison_cell *cell2;
1276         struct dm_cell_key key2;
1277         dm_block_t block = get_bio_block(tc, bio);
1278         struct dm_thin_lookup_result lookup_result;
1279         struct dm_thin_new_mapping *m;
1280
1281         if (tc->requeue_mode) {
1282                 cell_requeue(pool, cell);
1283                 return;
1284         }
1285
1286         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1287         switch (r) {
1288         case 0:
1289                 /*
1290                  * Check nobody is fiddling with this pool block.  This can
1291                  * happen if someone's in the process of breaking sharing
1292                  * on this block.
1293                  */
1294                 build_data_key(tc->td, lookup_result.block, &key2);
1295                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1296                         cell_defer_no_holder(tc, cell);
1297                         break;
1298                 }
1299
1300                 if (io_overlaps_block(pool, bio)) {
1301                         /*
1302                          * IO may still be going to the destination block.  We must
1303                          * quiesce before we can do the removal.
1304                          */
1305                         m = get_next_mapping(pool);
1306                         m->tc = tc;
1307                         m->pass_discard = pool->pf.discard_passdown;
1308                         m->definitely_not_shared = !lookup_result.shared;
1309                         m->virt_block = block;
1310                         m->data_block = lookup_result.block;
1311                         m->cell = cell;
1312                         m->cell2 = cell2;
1313                         m->bio = bio;
1314
1315                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1316                                 pool->process_prepared_discard(m);
1317
1318                 } else {
1319                         inc_all_io_entry(pool, bio);
1320                         cell_defer_no_holder(tc, cell);
1321                         cell_defer_no_holder(tc, cell2);
1322
1323                         /*
1324                          * The DM core makes sure that the discard doesn't span
1325                          * a block boundary.  So we submit the discard of a
1326                          * partial block appropriately.
1327                          */
1328                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1329                                 remap_and_issue(tc, bio, lookup_result.block);
1330                         else
1331                                 bio_endio(bio, 0);
1332                 }
1333                 break;
1334
1335         case -ENODATA:
1336                 /*
1337                  * It isn't provisioned, just forget it.
1338                  */
1339                 cell_defer_no_holder(tc, cell);
1340                 bio_endio(bio, 0);
1341                 break;
1342
1343         default:
1344                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1345                             __func__, r);
1346                 cell_defer_no_holder(tc, cell);
1347                 bio_io_error(bio);
1348                 break;
1349         }
1350 }
1351
1352 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1353 {
1354         struct dm_bio_prison_cell *cell;
1355         struct dm_cell_key key;
1356         dm_block_t block = get_bio_block(tc, bio);
1357
1358         build_virtual_key(tc->td, block, &key);
1359         if (bio_detain(tc->pool, &key, bio, &cell))
1360                 return;
1361
1362         process_discard_cell(tc, cell);
1363 }
1364
1365 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1366                           struct dm_cell_key *key,
1367                           struct dm_thin_lookup_result *lookup_result,
1368                           struct dm_bio_prison_cell *cell)
1369 {
1370         int r;
1371         dm_block_t data_block;
1372         struct pool *pool = tc->pool;
1373
1374         r = alloc_data_block(tc, &data_block);
1375         switch (r) {
1376         case 0:
1377                 schedule_internal_copy(tc, block, lookup_result->block,
1378                                        data_block, cell, bio);
1379                 break;
1380
1381         case -ENOSPC:
1382                 retry_bios_on_resume(pool, cell);
1383                 break;
1384
1385         default:
1386                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1387                             __func__, r);
1388                 cell_error(pool, cell);
1389                 break;
1390         }
1391 }
1392
1393 static void __remap_and_issue_shared_cell(void *context,
1394                                           struct dm_bio_prison_cell *cell)
1395 {
1396         struct remap_info *info = context;
1397         struct bio *bio;
1398
1399         while ((bio = bio_list_pop(&cell->bios))) {
1400                 if ((bio_data_dir(bio) == WRITE) ||
1401                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1402                         bio_list_add(&info->defer_bios, bio);
1403                 else {
1404                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1405
1406                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1407                         inc_all_io_entry(info->tc->pool, bio);
1408                         bio_list_add(&info->issue_bios, bio);
1409                 }
1410         }
1411 }
1412
1413 static void remap_and_issue_shared_cell(struct thin_c *tc,
1414                                         struct dm_bio_prison_cell *cell,
1415                                         dm_block_t block)
1416 {
1417         struct bio *bio;
1418         struct remap_info info;
1419
1420         info.tc = tc;
1421         bio_list_init(&info.defer_bios);
1422         bio_list_init(&info.issue_bios);
1423
1424         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1425                            &info, cell);
1426
1427         while ((bio = bio_list_pop(&info.defer_bios)))
1428                 thin_defer_bio(tc, bio);
1429
1430         while ((bio = bio_list_pop(&info.issue_bios)))
1431                 remap_and_issue(tc, bio, block);
1432 }
1433
1434 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1435                                dm_block_t block,
1436                                struct dm_thin_lookup_result *lookup_result,
1437                                struct dm_bio_prison_cell *virt_cell)
1438 {
1439         struct dm_bio_prison_cell *data_cell;
1440         struct pool *pool = tc->pool;
1441         struct dm_cell_key key;
1442
1443         /*
1444          * If cell is already occupied, then sharing is already in the process
1445          * of being broken so we have nothing further to do here.
1446          */
1447         build_data_key(tc->td, lookup_result->block, &key);
1448         if (bio_detain(pool, &key, bio, &data_cell)) {
1449                 cell_defer_no_holder(tc, virt_cell);
1450                 return;
1451         }
1452
1453         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1454                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1455                 cell_defer_no_holder(tc, virt_cell);
1456         } else {
1457                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1458
1459                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1460                 inc_all_io_entry(pool, bio);
1461                 remap_and_issue(tc, bio, lookup_result->block);
1462
1463                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1464                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1465         }
1466 }
1467
1468 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1469                             struct dm_bio_prison_cell *cell)
1470 {
1471         int r;
1472         dm_block_t data_block;
1473         struct pool *pool = tc->pool;
1474
1475         /*
1476          * Remap empty bios (flushes) immediately, without provisioning.
1477          */
1478         if (!bio->bi_iter.bi_size) {
1479                 inc_all_io_entry(pool, bio);
1480                 cell_defer_no_holder(tc, cell);
1481
1482                 remap_and_issue(tc, bio, 0);
1483                 return;
1484         }
1485
1486         /*
1487          * Fill read bios with zeroes and complete them immediately.
1488          */
1489         if (bio_data_dir(bio) == READ) {
1490                 zero_fill_bio(bio);
1491                 cell_defer_no_holder(tc, cell);
1492                 bio_endio(bio, 0);
1493                 return;
1494         }
1495
1496         r = alloc_data_block(tc, &data_block);
1497         switch (r) {
1498         case 0:
1499                 if (tc->origin_dev)
1500                         schedule_external_copy(tc, block, data_block, cell, bio);
1501                 else
1502                         schedule_zero(tc, block, data_block, cell, bio);
1503                 break;
1504
1505         case -ENOSPC:
1506                 retry_bios_on_resume(pool, cell);
1507                 break;
1508
1509         default:
1510                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1511                             __func__, r);
1512                 cell_error(pool, cell);
1513                 break;
1514         }
1515 }
1516
1517 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1518 {
1519         int r;
1520         struct pool *pool = tc->pool;
1521         struct bio *bio = cell->holder;
1522         dm_block_t block = get_bio_block(tc, bio);
1523         struct dm_thin_lookup_result lookup_result;
1524
1525         if (tc->requeue_mode) {
1526                 cell_requeue(pool, cell);
1527                 return;
1528         }
1529
1530         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1531         switch (r) {
1532         case 0:
1533                 if (lookup_result.shared)
1534                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1535                 else {
1536                         inc_all_io_entry(pool, bio);
1537                         remap_and_issue(tc, bio, lookup_result.block);
1538                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1539                 }
1540                 break;
1541
1542         case -ENODATA:
1543                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1544                         inc_all_io_entry(pool, bio);
1545                         cell_defer_no_holder(tc, cell);
1546
1547                         if (bio_end_sector(bio) <= tc->origin_size)
1548                                 remap_to_origin_and_issue(tc, bio);
1549
1550                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1551                                 zero_fill_bio(bio);
1552                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1553                                 remap_to_origin_and_issue(tc, bio);
1554
1555                         } else {
1556                                 zero_fill_bio(bio);
1557                                 bio_endio(bio, 0);
1558                         }
1559                 } else
1560                         provision_block(tc, bio, block, cell);
1561                 break;
1562
1563         default:
1564                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1565                             __func__, r);
1566                 cell_defer_no_holder(tc, cell);
1567                 bio_io_error(bio);
1568                 break;
1569         }
1570 }
1571
1572 static void process_bio(struct thin_c *tc, struct bio *bio)
1573 {
1574         struct pool *pool = tc->pool;
1575         dm_block_t block = get_bio_block(tc, bio);
1576         struct dm_bio_prison_cell *cell;
1577         struct dm_cell_key key;
1578
1579         /*
1580          * If cell is already occupied, then the block is already
1581          * being provisioned so we have nothing further to do here.
1582          */
1583         build_virtual_key(tc->td, block, &key);
1584         if (bio_detain(pool, &key, bio, &cell))
1585                 return;
1586
1587         process_cell(tc, cell);
1588 }
1589
1590 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1591                                     struct dm_bio_prison_cell *cell)
1592 {
1593         int r;
1594         int rw = bio_data_dir(bio);
1595         dm_block_t block = get_bio_block(tc, bio);
1596         struct dm_thin_lookup_result lookup_result;
1597
1598         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1599         switch (r) {
1600         case 0:
1601                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1602                         handle_unserviceable_bio(tc->pool, bio);
1603                         if (cell)
1604                                 cell_defer_no_holder(tc, cell);
1605                 } else {
1606                         inc_all_io_entry(tc->pool, bio);
1607                         remap_and_issue(tc, bio, lookup_result.block);
1608                         if (cell)
1609                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1610                 }
1611                 break;
1612
1613         case -ENODATA:
1614                 if (cell)
1615                         cell_defer_no_holder(tc, cell);
1616                 if (rw != READ) {
1617                         handle_unserviceable_bio(tc->pool, bio);
1618                         break;
1619                 }
1620
1621                 if (tc->origin_dev) {
1622                         inc_all_io_entry(tc->pool, bio);
1623                         remap_to_origin_and_issue(tc, bio);
1624                         break;
1625                 }
1626
1627                 zero_fill_bio(bio);
1628                 bio_endio(bio, 0);
1629                 break;
1630
1631         default:
1632                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1633                             __func__, r);
1634                 if (cell)
1635                         cell_defer_no_holder(tc, cell);
1636                 bio_io_error(bio);
1637                 break;
1638         }
1639 }
1640
1641 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1642 {
1643         __process_bio_read_only(tc, bio, NULL);
1644 }
1645
1646 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1647 {
1648         __process_bio_read_only(tc, cell->holder, cell);
1649 }
1650
1651 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1652 {
1653         bio_endio(bio, 0);
1654 }
1655
1656 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1657 {
1658         bio_io_error(bio);
1659 }
1660
1661 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1662 {
1663         cell_success(tc->pool, cell);
1664 }
1665
1666 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1667 {
1668         cell_error(tc->pool, cell);
1669 }
1670
1671 /*
1672  * FIXME: should we also commit due to size of transaction, measured in
1673  * metadata blocks?
1674  */
1675 static int need_commit_due_to_time(struct pool *pool)
1676 {
1677         return jiffies < pool->last_commit_jiffies ||
1678                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1679 }
1680
1681 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1682 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1683
1684 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1685 {
1686         struct rb_node **rbp, *parent;
1687         struct dm_thin_endio_hook *pbd;
1688         sector_t bi_sector = bio->bi_iter.bi_sector;
1689
1690         rbp = &tc->sort_bio_list.rb_node;
1691         parent = NULL;
1692         while (*rbp) {
1693                 parent = *rbp;
1694                 pbd = thin_pbd(parent);
1695
1696                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1697                         rbp = &(*rbp)->rb_left;
1698                 else
1699                         rbp = &(*rbp)->rb_right;
1700         }
1701
1702         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1703         rb_link_node(&pbd->rb_node, parent, rbp);
1704         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1705 }
1706
1707 static void __extract_sorted_bios(struct thin_c *tc)
1708 {
1709         struct rb_node *node;
1710         struct dm_thin_endio_hook *pbd;
1711         struct bio *bio;
1712
1713         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1714                 pbd = thin_pbd(node);
1715                 bio = thin_bio(pbd);
1716
1717                 bio_list_add(&tc->deferred_bio_list, bio);
1718                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1719         }
1720
1721         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1722 }
1723
1724 static void __sort_thin_deferred_bios(struct thin_c *tc)
1725 {
1726         struct bio *bio;
1727         struct bio_list bios;
1728
1729         bio_list_init(&bios);
1730         bio_list_merge(&bios, &tc->deferred_bio_list);
1731         bio_list_init(&tc->deferred_bio_list);
1732
1733         /* Sort deferred_bio_list using rb-tree */
1734         while ((bio = bio_list_pop(&bios)))
1735                 __thin_bio_rb_add(tc, bio);
1736
1737         /*
1738          * Transfer the sorted bios in sort_bio_list back to
1739          * deferred_bio_list to allow lockless submission of
1740          * all bios.
1741          */
1742         __extract_sorted_bios(tc);
1743 }
1744
1745 static void process_thin_deferred_bios(struct thin_c *tc)
1746 {
1747         struct pool *pool = tc->pool;
1748         unsigned long flags;
1749         struct bio *bio;
1750         struct bio_list bios;
1751         struct blk_plug plug;
1752         unsigned count = 0;
1753
1754         if (tc->requeue_mode) {
1755                 requeue_bio_list(tc, &tc->deferred_bio_list);
1756                 return;
1757         }
1758
1759         bio_list_init(&bios);
1760
1761         spin_lock_irqsave(&tc->lock, flags);
1762
1763         if (bio_list_empty(&tc->deferred_bio_list)) {
1764                 spin_unlock_irqrestore(&tc->lock, flags);
1765                 return;
1766         }
1767
1768         __sort_thin_deferred_bios(tc);
1769
1770         bio_list_merge(&bios, &tc->deferred_bio_list);
1771         bio_list_init(&tc->deferred_bio_list);
1772
1773         spin_unlock_irqrestore(&tc->lock, flags);
1774
1775         blk_start_plug(&plug);
1776         while ((bio = bio_list_pop(&bios))) {
1777                 /*
1778                  * If we've got no free new_mapping structs, and processing
1779                  * this bio might require one, we pause until there are some
1780                  * prepared mappings to process.
1781                  */
1782                 if (ensure_next_mapping(pool)) {
1783                         spin_lock_irqsave(&tc->lock, flags);
1784                         bio_list_add(&tc->deferred_bio_list, bio);
1785                         bio_list_merge(&tc->deferred_bio_list, &bios);
1786                         spin_unlock_irqrestore(&tc->lock, flags);
1787                         break;
1788                 }
1789
1790                 if (bio->bi_rw & REQ_DISCARD)
1791                         pool->process_discard(tc, bio);
1792                 else
1793                         pool->process_bio(tc, bio);
1794
1795                 if ((count++ & 127) == 0) {
1796                         throttle_work_update(&pool->throttle);
1797                         dm_pool_issue_prefetches(pool->pmd);
1798                 }
1799         }
1800         blk_finish_plug(&plug);
1801 }
1802
1803 static void process_thin_deferred_cells(struct thin_c *tc)
1804 {
1805         struct pool *pool = tc->pool;
1806         unsigned long flags;
1807         struct list_head cells;
1808         struct dm_bio_prison_cell *cell, *tmp;
1809
1810         INIT_LIST_HEAD(&cells);
1811
1812         spin_lock_irqsave(&tc->lock, flags);
1813         list_splice_init(&tc->deferred_cells, &cells);
1814         spin_unlock_irqrestore(&tc->lock, flags);
1815
1816         if (list_empty(&cells))
1817                 return;
1818
1819         list_for_each_entry_safe(cell, tmp, &cells, user_list) {
1820                 BUG_ON(!cell->holder);
1821
1822                 /*
1823                  * If we've got no free new_mapping structs, and processing
1824                  * this bio might require one, we pause until there are some
1825                  * prepared mappings to process.
1826                  */
1827                 if (ensure_next_mapping(pool)) {
1828                         spin_lock_irqsave(&tc->lock, flags);
1829                         list_add(&cell->user_list, &tc->deferred_cells);
1830                         list_splice(&cells, &tc->deferred_cells);
1831                         spin_unlock_irqrestore(&tc->lock, flags);
1832                         break;
1833                 }
1834
1835                 if (cell->holder->bi_rw & REQ_DISCARD)
1836                         pool->process_discard_cell(tc, cell);
1837                 else
1838                         pool->process_cell(tc, cell);
1839         }
1840 }
1841
1842 static void thin_get(struct thin_c *tc);
1843 static void thin_put(struct thin_c *tc);
1844
1845 /*
1846  * We can't hold rcu_read_lock() around code that can block.  So we
1847  * find a thin with the rcu lock held; bump a refcount; then drop
1848  * the lock.
1849  */
1850 static struct thin_c *get_first_thin(struct pool *pool)
1851 {
1852         struct thin_c *tc = NULL;
1853
1854         rcu_read_lock();
1855         if (!list_empty(&pool->active_thins)) {
1856                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1857                 thin_get(tc);
1858         }
1859         rcu_read_unlock();
1860
1861         return tc;
1862 }
1863
1864 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1865 {
1866         struct thin_c *old_tc = tc;
1867
1868         rcu_read_lock();
1869         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1870                 thin_get(tc);
1871                 thin_put(old_tc);
1872                 rcu_read_unlock();
1873                 return tc;
1874         }
1875         thin_put(old_tc);
1876         rcu_read_unlock();
1877
1878         return NULL;
1879 }
1880
1881 static void process_deferred_bios(struct pool *pool)
1882 {
1883         unsigned long flags;
1884         struct bio *bio;
1885         struct bio_list bios;
1886         struct thin_c *tc;
1887
1888         tc = get_first_thin(pool);
1889         while (tc) {
1890                 process_thin_deferred_cells(tc);
1891                 process_thin_deferred_bios(tc);
1892                 tc = get_next_thin(pool, tc);
1893         }
1894
1895         /*
1896          * If there are any deferred flush bios, we must commit
1897          * the metadata before issuing them.
1898          */
1899         bio_list_init(&bios);
1900         spin_lock_irqsave(&pool->lock, flags);
1901         bio_list_merge(&bios, &pool->deferred_flush_bios);
1902         bio_list_init(&pool->deferred_flush_bios);
1903         spin_unlock_irqrestore(&pool->lock, flags);
1904
1905         if (bio_list_empty(&bios) &&
1906             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1907                 return;
1908
1909         if (commit(pool)) {
1910                 while ((bio = bio_list_pop(&bios)))
1911                         bio_io_error(bio);
1912                 return;
1913         }
1914         pool->last_commit_jiffies = jiffies;
1915
1916         while ((bio = bio_list_pop(&bios)))
1917                 generic_make_request(bio);
1918 }
1919
1920 static void do_worker(struct work_struct *ws)
1921 {
1922         struct pool *pool = container_of(ws, struct pool, worker);
1923
1924         throttle_work_start(&pool->throttle);
1925         dm_pool_issue_prefetches(pool->pmd);
1926         throttle_work_update(&pool->throttle);
1927         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1928         throttle_work_update(&pool->throttle);
1929         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1930         throttle_work_update(&pool->throttle);
1931         process_deferred_bios(pool);
1932         throttle_work_complete(&pool->throttle);
1933 }
1934
1935 /*
1936  * We want to commit periodically so that not too much
1937  * unwritten data builds up.
1938  */
1939 static void do_waker(struct work_struct *ws)
1940 {
1941         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1942         wake_worker(pool);
1943         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1944 }
1945
1946 /*
1947  * We're holding onto IO to allow userland time to react.  After the
1948  * timeout either the pool will have been resized (and thus back in
1949  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1950  */
1951 static void do_no_space_timeout(struct work_struct *ws)
1952 {
1953         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1954                                          no_space_timeout);
1955
1956         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1957                 set_pool_mode(pool, PM_READ_ONLY);
1958 }
1959
1960 /*----------------------------------------------------------------*/
1961
1962 struct pool_work {
1963         struct work_struct worker;
1964         struct completion complete;
1965 };
1966
1967 static struct pool_work *to_pool_work(struct work_struct *ws)
1968 {
1969         return container_of(ws, struct pool_work, worker);
1970 }
1971
1972 static void pool_work_complete(struct pool_work *pw)
1973 {
1974         complete(&pw->complete);
1975 }
1976
1977 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1978                            void (*fn)(struct work_struct *))
1979 {
1980         INIT_WORK_ONSTACK(&pw->worker, fn);
1981         init_completion(&pw->complete);
1982         queue_work(pool->wq, &pw->worker);
1983         wait_for_completion(&pw->complete);
1984 }
1985
1986 /*----------------------------------------------------------------*/
1987
1988 struct noflush_work {
1989         struct pool_work pw;
1990         struct thin_c *tc;
1991 };
1992
1993 static struct noflush_work *to_noflush(struct work_struct *ws)
1994 {
1995         return container_of(to_pool_work(ws), struct noflush_work, pw);
1996 }
1997
1998 static void do_noflush_start(struct work_struct *ws)
1999 {
2000         struct noflush_work *w = to_noflush(ws);
2001         w->tc->requeue_mode = true;
2002         requeue_io(w->tc);
2003         pool_work_complete(&w->pw);
2004 }
2005
2006 static void do_noflush_stop(struct work_struct *ws)
2007 {
2008         struct noflush_work *w = to_noflush(ws);
2009         w->tc->requeue_mode = false;
2010         pool_work_complete(&w->pw);
2011 }
2012
2013 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2014 {
2015         struct noflush_work w;
2016
2017         w.tc = tc;
2018         pool_work_wait(&w.pw, tc->pool, fn);
2019 }
2020
2021 /*----------------------------------------------------------------*/
2022
2023 static enum pool_mode get_pool_mode(struct pool *pool)
2024 {
2025         return pool->pf.mode;
2026 }
2027
2028 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2029 {
2030         dm_table_event(pool->ti->table);
2031         DMINFO("%s: switching pool to %s mode",
2032                dm_device_name(pool->pool_md), new_mode);
2033 }
2034
2035 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2036 {
2037         struct pool_c *pt = pool->ti->private;
2038         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2039         enum pool_mode old_mode = get_pool_mode(pool);
2040         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2041
2042         /*
2043          * Never allow the pool to transition to PM_WRITE mode if user
2044          * intervention is required to verify metadata and data consistency.
2045          */
2046         if (new_mode == PM_WRITE && needs_check) {
2047                 DMERR("%s: unable to switch pool to write mode until repaired.",
2048                       dm_device_name(pool->pool_md));
2049                 if (old_mode != new_mode)
2050                         new_mode = old_mode;
2051                 else
2052                         new_mode = PM_READ_ONLY;
2053         }
2054         /*
2055          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2056          * not going to recover without a thin_repair.  So we never let the
2057          * pool move out of the old mode.
2058          */
2059         if (old_mode == PM_FAIL)
2060                 new_mode = old_mode;
2061
2062         switch (new_mode) {
2063         case PM_FAIL:
2064                 if (old_mode != new_mode)
2065                         notify_of_pool_mode_change(pool, "failure");
2066                 dm_pool_metadata_read_only(pool->pmd);
2067                 pool->process_bio = process_bio_fail;
2068                 pool->process_discard = process_bio_fail;
2069                 pool->process_cell = process_cell_fail;
2070                 pool->process_discard_cell = process_cell_fail;
2071                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2072                 pool->process_prepared_discard = process_prepared_discard_fail;
2073
2074                 error_retry_list(pool);
2075                 break;
2076
2077         case PM_READ_ONLY:
2078                 if (old_mode != new_mode)
2079                         notify_of_pool_mode_change(pool, "read-only");
2080                 dm_pool_metadata_read_only(pool->pmd);
2081                 pool->process_bio = process_bio_read_only;
2082                 pool->process_discard = process_bio_success;
2083                 pool->process_cell = process_cell_read_only;
2084                 pool->process_discard_cell = process_cell_success;
2085                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2086                 pool->process_prepared_discard = process_prepared_discard_passdown;
2087
2088                 error_retry_list(pool);
2089                 break;
2090
2091         case PM_OUT_OF_DATA_SPACE:
2092                 /*
2093                  * Ideally we'd never hit this state; the low water mark
2094                  * would trigger userland to extend the pool before we
2095                  * completely run out of data space.  However, many small
2096                  * IOs to unprovisioned space can consume data space at an
2097                  * alarming rate.  Adjust your low water mark if you're
2098                  * frequently seeing this mode.
2099                  */
2100                 if (old_mode != new_mode)
2101                         notify_of_pool_mode_change(pool, "out-of-data-space");
2102                 pool->process_bio = process_bio_read_only;
2103                 pool->process_discard = process_discard_bio;
2104                 pool->process_cell = process_cell_read_only;
2105                 pool->process_discard_cell = process_discard_cell;
2106                 pool->process_prepared_mapping = process_prepared_mapping;
2107                 pool->process_prepared_discard = process_prepared_discard_passdown;
2108
2109                 if (!pool->pf.error_if_no_space && no_space_timeout)
2110                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2111                 break;
2112
2113         case PM_WRITE:
2114                 if (old_mode != new_mode)
2115                         notify_of_pool_mode_change(pool, "write");
2116                 dm_pool_metadata_read_write(pool->pmd);
2117                 pool->process_bio = process_bio;
2118                 pool->process_discard = process_discard_bio;
2119                 pool->process_cell = process_cell;
2120                 pool->process_discard_cell = process_discard_cell;
2121                 pool->process_prepared_mapping = process_prepared_mapping;
2122                 pool->process_prepared_discard = process_prepared_discard;
2123                 break;
2124         }
2125
2126         pool->pf.mode = new_mode;
2127         /*
2128          * The pool mode may have changed, sync it so bind_control_target()
2129          * doesn't cause an unexpected mode transition on resume.
2130          */
2131         pt->adjusted_pf.mode = new_mode;
2132 }
2133
2134 static void abort_transaction(struct pool *pool)
2135 {
2136         const char *dev_name = dm_device_name(pool->pool_md);
2137
2138         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2139         if (dm_pool_abort_metadata(pool->pmd)) {
2140                 DMERR("%s: failed to abort metadata transaction", dev_name);
2141                 set_pool_mode(pool, PM_FAIL);
2142         }
2143
2144         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2145                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2146                 set_pool_mode(pool, PM_FAIL);
2147         }
2148 }
2149
2150 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2151 {
2152         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2153                     dm_device_name(pool->pool_md), op, r);
2154
2155         abort_transaction(pool);
2156         set_pool_mode(pool, PM_READ_ONLY);
2157 }
2158
2159 /*----------------------------------------------------------------*/
2160
2161 /*
2162  * Mapping functions.
2163  */
2164
2165 /*
2166  * Called only while mapping a thin bio to hand it over to the workqueue.
2167  */
2168 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2169 {
2170         unsigned long flags;
2171         struct pool *pool = tc->pool;
2172
2173         spin_lock_irqsave(&tc->lock, flags);
2174         bio_list_add(&tc->deferred_bio_list, bio);
2175         spin_unlock_irqrestore(&tc->lock, flags);
2176
2177         wake_worker(pool);
2178 }
2179
2180 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2181 {
2182         struct pool *pool = tc->pool;
2183
2184         throttle_lock(&pool->throttle);
2185         thin_defer_bio(tc, bio);
2186         throttle_unlock(&pool->throttle);
2187 }
2188
2189 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2190 {
2191         unsigned long flags;
2192         struct pool *pool = tc->pool;
2193
2194         throttle_lock(&pool->throttle);
2195         spin_lock_irqsave(&tc->lock, flags);
2196         list_add_tail(&cell->user_list, &tc->deferred_cells);
2197         spin_unlock_irqrestore(&tc->lock, flags);
2198         throttle_unlock(&pool->throttle);
2199
2200         wake_worker(pool);
2201 }
2202
2203 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2204 {
2205         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2206
2207         h->tc = tc;
2208         h->shared_read_entry = NULL;
2209         h->all_io_entry = NULL;
2210         h->overwrite_mapping = NULL;
2211 }
2212
2213 /*
2214  * Non-blocking function called from the thin target's map function.
2215  */
2216 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2217 {
2218         int r;
2219         struct thin_c *tc = ti->private;
2220         dm_block_t block = get_bio_block(tc, bio);
2221         struct dm_thin_device *td = tc->td;
2222         struct dm_thin_lookup_result result;
2223         struct dm_bio_prison_cell *virt_cell, *data_cell;
2224         struct dm_cell_key key;
2225
2226         thin_hook_bio(tc, bio);
2227
2228         if (tc->requeue_mode) {
2229                 bio_endio(bio, DM_ENDIO_REQUEUE);
2230                 return DM_MAPIO_SUBMITTED;
2231         }
2232
2233         if (get_pool_mode(tc->pool) == PM_FAIL) {
2234                 bio_io_error(bio);
2235                 return DM_MAPIO_SUBMITTED;
2236         }
2237
2238         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2239                 thin_defer_bio_with_throttle(tc, bio);
2240                 return DM_MAPIO_SUBMITTED;
2241         }
2242
2243         /*
2244          * We must hold the virtual cell before doing the lookup, otherwise
2245          * there's a race with discard.
2246          */
2247         build_virtual_key(tc->td, block, &key);
2248         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2249                 return DM_MAPIO_SUBMITTED;
2250
2251         r = dm_thin_find_block(td, block, 0, &result);
2252
2253         /*
2254          * Note that we defer readahead too.
2255          */
2256         switch (r) {
2257         case 0:
2258                 if (unlikely(result.shared)) {
2259                         /*
2260                          * We have a race condition here between the
2261                          * result.shared value returned by the lookup and
2262                          * snapshot creation, which may cause new
2263                          * sharing.
2264                          *
2265                          * To avoid this always quiesce the origin before
2266                          * taking the snap.  You want to do this anyway to
2267                          * ensure a consistent application view
2268                          * (i.e. lockfs).
2269                          *
2270                          * More distant ancestors are irrelevant. The
2271                          * shared flag will be set in their case.
2272                          */
2273                         thin_defer_cell(tc, virt_cell);
2274                         return DM_MAPIO_SUBMITTED;
2275                 }
2276
2277                 build_data_key(tc->td, result.block, &key);
2278                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2279                         cell_defer_no_holder(tc, virt_cell);
2280                         return DM_MAPIO_SUBMITTED;
2281                 }
2282
2283                 inc_all_io_entry(tc->pool, bio);
2284                 cell_defer_no_holder(tc, data_cell);
2285                 cell_defer_no_holder(tc, virt_cell);
2286
2287                 remap(tc, bio, result.block);
2288                 return DM_MAPIO_REMAPPED;
2289
2290         case -ENODATA:
2291                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2292                         /*
2293                          * This block isn't provisioned, and we have no way
2294                          * of doing so.
2295                          */
2296                         handle_unserviceable_bio(tc->pool, bio);
2297                         cell_defer_no_holder(tc, virt_cell);
2298                         return DM_MAPIO_SUBMITTED;
2299                 }
2300                 /* fall through */
2301
2302         case -EWOULDBLOCK:
2303                 thin_defer_cell(tc, virt_cell);
2304                 return DM_MAPIO_SUBMITTED;
2305
2306         default:
2307                 /*
2308                  * Must always call bio_io_error on failure.
2309                  * dm_thin_find_block can fail with -EINVAL if the
2310                  * pool is switched to fail-io mode.
2311                  */
2312                 bio_io_error(bio);
2313                 cell_defer_no_holder(tc, virt_cell);
2314                 return DM_MAPIO_SUBMITTED;
2315         }
2316 }
2317
2318 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2319 {
2320         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2321         struct request_queue *q;
2322
2323         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2324                 return 1;
2325
2326         q = bdev_get_queue(pt->data_dev->bdev);
2327         return bdi_congested(&q->backing_dev_info, bdi_bits);
2328 }
2329
2330 static void requeue_bios(struct pool *pool)
2331 {
2332         unsigned long flags;
2333         struct thin_c *tc;
2334
2335         rcu_read_lock();
2336         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2337                 spin_lock_irqsave(&tc->lock, flags);
2338                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2339                 bio_list_init(&tc->retry_on_resume_list);
2340                 spin_unlock_irqrestore(&tc->lock, flags);
2341         }
2342         rcu_read_unlock();
2343 }
2344
2345 /*----------------------------------------------------------------
2346  * Binding of control targets to a pool object
2347  *--------------------------------------------------------------*/
2348 static bool data_dev_supports_discard(struct pool_c *pt)
2349 {
2350         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2351
2352         return q && blk_queue_discard(q);
2353 }
2354
2355 static bool is_factor(sector_t block_size, uint32_t n)
2356 {
2357         return !sector_div(block_size, n);
2358 }
2359
2360 /*
2361  * If discard_passdown was enabled verify that the data device
2362  * supports discards.  Disable discard_passdown if not.
2363  */
2364 static void disable_passdown_if_not_supported(struct pool_c *pt)
2365 {
2366         struct pool *pool = pt->pool;
2367         struct block_device *data_bdev = pt->data_dev->bdev;
2368         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2369         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2370         const char *reason = NULL;
2371         char buf[BDEVNAME_SIZE];
2372
2373         if (!pt->adjusted_pf.discard_passdown)
2374                 return;
2375
2376         if (!data_dev_supports_discard(pt))
2377                 reason = "discard unsupported";
2378
2379         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2380                 reason = "max discard sectors smaller than a block";
2381
2382         else if (data_limits->discard_granularity > block_size)
2383                 reason = "discard granularity larger than a block";
2384
2385         else if (!is_factor(block_size, data_limits->discard_granularity))
2386                 reason = "discard granularity not a factor of block size";
2387
2388         if (reason) {
2389                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2390                 pt->adjusted_pf.discard_passdown = false;
2391         }
2392 }
2393
2394 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2395 {
2396         struct pool_c *pt = ti->private;
2397
2398         /*
2399          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2400          */
2401         enum pool_mode old_mode = get_pool_mode(pool);
2402         enum pool_mode new_mode = pt->adjusted_pf.mode;
2403
2404         /*
2405          * Don't change the pool's mode until set_pool_mode() below.
2406          * Otherwise the pool's process_* function pointers may
2407          * not match the desired pool mode.
2408          */
2409         pt->adjusted_pf.mode = old_mode;
2410
2411         pool->ti = ti;
2412         pool->pf = pt->adjusted_pf;
2413         pool->low_water_blocks = pt->low_water_blocks;
2414
2415         set_pool_mode(pool, new_mode);
2416
2417         return 0;
2418 }
2419
2420 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2421 {
2422         if (pool->ti == ti)
2423                 pool->ti = NULL;
2424 }
2425
2426 /*----------------------------------------------------------------
2427  * Pool creation
2428  *--------------------------------------------------------------*/
2429 /* Initialize pool features. */
2430 static void pool_features_init(struct pool_features *pf)
2431 {
2432         pf->mode = PM_WRITE;
2433         pf->zero_new_blocks = true;
2434         pf->discard_enabled = true;
2435         pf->discard_passdown = true;
2436         pf->error_if_no_space = false;
2437 }
2438
2439 static void __pool_destroy(struct pool *pool)
2440 {
2441         __pool_table_remove(pool);
2442
2443         if (dm_pool_metadata_close(pool->pmd) < 0)
2444                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2445
2446         dm_bio_prison_destroy(pool->prison);
2447         dm_kcopyd_client_destroy(pool->copier);
2448
2449         if (pool->wq)
2450                 destroy_workqueue(pool->wq);
2451
2452         if (pool->next_mapping)
2453                 mempool_free(pool->next_mapping, pool->mapping_pool);
2454         mempool_destroy(pool->mapping_pool);
2455         dm_deferred_set_destroy(pool->shared_read_ds);
2456         dm_deferred_set_destroy(pool->all_io_ds);
2457         kfree(pool);
2458 }
2459
2460 static struct kmem_cache *_new_mapping_cache;
2461
2462 static struct pool *pool_create(struct mapped_device *pool_md,
2463                                 struct block_device *metadata_dev,
2464                                 unsigned long block_size,
2465                                 int read_only, char **error)
2466 {
2467         int r;
2468         void *err_p;
2469         struct pool *pool;
2470         struct dm_pool_metadata *pmd;
2471         bool format_device = read_only ? false : true;
2472
2473         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2474         if (IS_ERR(pmd)) {
2475                 *error = "Error creating metadata object";
2476                 return (struct pool *)pmd;
2477         }
2478
2479         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2480         if (!pool) {
2481                 *error = "Error allocating memory for pool";
2482                 err_p = ERR_PTR(-ENOMEM);
2483                 goto bad_pool;
2484         }
2485
2486         pool->pmd = pmd;
2487         pool->sectors_per_block = block_size;
2488         if (block_size & (block_size - 1))
2489                 pool->sectors_per_block_shift = -1;
2490         else
2491                 pool->sectors_per_block_shift = __ffs(block_size);
2492         pool->low_water_blocks = 0;
2493         pool_features_init(&pool->pf);
2494         pool->prison = dm_bio_prison_create();
2495         if (!pool->prison) {
2496                 *error = "Error creating pool's bio prison";
2497                 err_p = ERR_PTR(-ENOMEM);
2498                 goto bad_prison;
2499         }
2500
2501         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2502         if (IS_ERR(pool->copier)) {
2503                 r = PTR_ERR(pool->copier);
2504                 *error = "Error creating pool's kcopyd client";
2505                 err_p = ERR_PTR(r);
2506                 goto bad_kcopyd_client;
2507         }
2508
2509         /*
2510          * Create singlethreaded workqueue that will service all devices
2511          * that use this metadata.
2512          */
2513         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2514         if (!pool->wq) {
2515                 *error = "Error creating pool's workqueue";
2516                 err_p = ERR_PTR(-ENOMEM);
2517                 goto bad_wq;
2518         }
2519
2520         throttle_init(&pool->throttle);
2521         INIT_WORK(&pool->worker, do_worker);
2522         INIT_DELAYED_WORK(&pool->waker, do_waker);
2523         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2524         spin_lock_init(&pool->lock);
2525         bio_list_init(&pool->deferred_flush_bios);
2526         INIT_LIST_HEAD(&pool->prepared_mappings);
2527         INIT_LIST_HEAD(&pool->prepared_discards);
2528         INIT_LIST_HEAD(&pool->active_thins);
2529         pool->low_water_triggered = false;
2530
2531         pool->shared_read_ds = dm_deferred_set_create();
2532         if (!pool->shared_read_ds) {
2533                 *error = "Error creating pool's shared read deferred set";
2534                 err_p = ERR_PTR(-ENOMEM);
2535                 goto bad_shared_read_ds;
2536         }
2537
2538         pool->all_io_ds = dm_deferred_set_create();
2539         if (!pool->all_io_ds) {
2540                 *error = "Error creating pool's all io deferred set";
2541                 err_p = ERR_PTR(-ENOMEM);
2542                 goto bad_all_io_ds;
2543         }
2544
2545         pool->next_mapping = NULL;
2546         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2547                                                       _new_mapping_cache);
2548         if (!pool->mapping_pool) {
2549                 *error = "Error creating pool's mapping mempool";
2550                 err_p = ERR_PTR(-ENOMEM);
2551                 goto bad_mapping_pool;
2552         }
2553
2554         pool->ref_count = 1;
2555         pool->last_commit_jiffies = jiffies;
2556         pool->pool_md = pool_md;
2557         pool->md_dev = metadata_dev;
2558         __pool_table_insert(pool);
2559
2560         return pool;
2561
2562 bad_mapping_pool:
2563         dm_deferred_set_destroy(pool->all_io_ds);
2564 bad_all_io_ds:
2565         dm_deferred_set_destroy(pool->shared_read_ds);
2566 bad_shared_read_ds:
2567         destroy_workqueue(pool->wq);
2568 bad_wq:
2569         dm_kcopyd_client_destroy(pool->copier);
2570 bad_kcopyd_client:
2571         dm_bio_prison_destroy(pool->prison);
2572 bad_prison:
2573         kfree(pool);
2574 bad_pool:
2575         if (dm_pool_metadata_close(pmd))
2576                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2577
2578         return err_p;
2579 }
2580
2581 static void __pool_inc(struct pool *pool)
2582 {
2583         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2584         pool->ref_count++;
2585 }
2586
2587 static void __pool_dec(struct pool *pool)
2588 {
2589         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2590         BUG_ON(!pool->ref_count);
2591         if (!--pool->ref_count)
2592                 __pool_destroy(pool);
2593 }
2594
2595 static struct pool *__pool_find(struct mapped_device *pool_md,
2596                                 struct block_device *metadata_dev,
2597                                 unsigned long block_size, int read_only,
2598                                 char **error, int *created)
2599 {
2600         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2601
2602         if (pool) {
2603                 if (pool->pool_md != pool_md) {
2604                         *error = "metadata device already in use by a pool";
2605                         return ERR_PTR(-EBUSY);
2606                 }
2607                 __pool_inc(pool);
2608
2609         } else {
2610                 pool = __pool_table_lookup(pool_md);
2611                 if (pool) {
2612                         if (pool->md_dev != metadata_dev) {
2613                                 *error = "different pool cannot replace a pool";
2614                                 return ERR_PTR(-EINVAL);
2615                         }
2616                         __pool_inc(pool);
2617
2618                 } else {
2619                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2620                         *created = 1;
2621                 }
2622         }
2623
2624         return pool;
2625 }
2626
2627 /*----------------------------------------------------------------
2628  * Pool target methods
2629  *--------------------------------------------------------------*/
2630 static void pool_dtr(struct dm_target *ti)
2631 {
2632         struct pool_c *pt = ti->private;
2633
2634         mutex_lock(&dm_thin_pool_table.mutex);
2635
2636         unbind_control_target(pt->pool, ti);
2637         __pool_dec(pt->pool);
2638         dm_put_device(ti, pt->metadata_dev);
2639         dm_put_device(ti, pt->data_dev);
2640         kfree(pt);
2641
2642         mutex_unlock(&dm_thin_pool_table.mutex);
2643 }
2644
2645 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2646                                struct dm_target *ti)
2647 {
2648         int r;
2649         unsigned argc;
2650         const char *arg_name;
2651
2652         static struct dm_arg _args[] = {
2653                 {0, 4, "Invalid number of pool feature arguments"},
2654         };
2655
2656         /*
2657          * No feature arguments supplied.
2658          */
2659         if (!as->argc)
2660                 return 0;
2661
2662         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2663         if (r)
2664                 return -EINVAL;
2665
2666         while (argc && !r) {
2667                 arg_name = dm_shift_arg(as);
2668                 argc--;
2669
2670                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2671                         pf->zero_new_blocks = false;
2672
2673                 else if (!strcasecmp(arg_name, "ignore_discard"))
2674                         pf->discard_enabled = false;
2675
2676                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2677                         pf->discard_passdown = false;
2678
2679                 else if (!strcasecmp(arg_name, "read_only"))
2680                         pf->mode = PM_READ_ONLY;
2681
2682                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2683                         pf->error_if_no_space = true;
2684
2685                 else {
2686                         ti->error = "Unrecognised pool feature requested";
2687                         r = -EINVAL;
2688                         break;
2689                 }
2690         }
2691
2692         return r;
2693 }
2694
2695 static void metadata_low_callback(void *context)
2696 {
2697         struct pool *pool = context;
2698
2699         DMWARN("%s: reached low water mark for metadata device: sending event.",
2700                dm_device_name(pool->pool_md));
2701
2702         dm_table_event(pool->ti->table);
2703 }
2704
2705 static sector_t get_dev_size(struct block_device *bdev)
2706 {
2707         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2708 }
2709
2710 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2711 {
2712         sector_t metadata_dev_size = get_dev_size(bdev);
2713         char buffer[BDEVNAME_SIZE];
2714
2715         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2716                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2717                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2718 }
2719
2720 static sector_t get_metadata_dev_size(struct block_device *bdev)
2721 {
2722         sector_t metadata_dev_size = get_dev_size(bdev);
2723
2724         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2725                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2726
2727         return metadata_dev_size;
2728 }
2729
2730 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2731 {
2732         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2733
2734         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2735
2736         return metadata_dev_size;
2737 }
2738
2739 /*
2740  * When a metadata threshold is crossed a dm event is triggered, and
2741  * userland should respond by growing the metadata device.  We could let
2742  * userland set the threshold, like we do with the data threshold, but I'm
2743  * not sure they know enough to do this well.
2744  */
2745 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2746 {
2747         /*
2748          * 4M is ample for all ops with the possible exception of thin
2749          * device deletion which is harmless if it fails (just retry the
2750          * delete after you've grown the device).
2751          */
2752         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2753         return min((dm_block_t)1024ULL /* 4M */, quarter);
2754 }
2755
2756 /*
2757  * thin-pool <metadata dev> <data dev>
2758  *           <data block size (sectors)>
2759  *           <low water mark (blocks)>
2760  *           [<#feature args> [<arg>]*]
2761  *
2762  * Optional feature arguments are:
2763  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2764  *           ignore_discard: disable discard
2765  *           no_discard_passdown: don't pass discards down to the data device
2766  *           read_only: Don't allow any changes to be made to the pool metadata.
2767  *           error_if_no_space: error IOs, instead of queueing, if no space.
2768  */
2769 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2770 {
2771         int r, pool_created = 0;
2772         struct pool_c *pt;
2773         struct pool *pool;
2774         struct pool_features pf;
2775         struct dm_arg_set as;
2776         struct dm_dev *data_dev;
2777         unsigned long block_size;
2778         dm_block_t low_water_blocks;
2779         struct dm_dev *metadata_dev;
2780         fmode_t metadata_mode;
2781
2782         /*
2783          * FIXME Remove validation from scope of lock.
2784          */
2785         mutex_lock(&dm_thin_pool_table.mutex);
2786
2787         if (argc < 4) {
2788                 ti->error = "Invalid argument count";
2789                 r = -EINVAL;
2790                 goto out_unlock;
2791         }
2792
2793         as.argc = argc;
2794         as.argv = argv;
2795
2796         /*
2797          * Set default pool features.
2798          */
2799         pool_features_init(&pf);
2800
2801         dm_consume_args(&as, 4);
2802         r = parse_pool_features(&as, &pf, ti);
2803         if (r)
2804                 goto out_unlock;
2805
2806         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2807         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2808         if (r) {
2809                 ti->error = "Error opening metadata block device";
2810                 goto out_unlock;
2811         }
2812         warn_if_metadata_device_too_big(metadata_dev->bdev);
2813
2814         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2815         if (r) {
2816                 ti->error = "Error getting data device";
2817                 goto out_metadata;
2818         }
2819
2820         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2821             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2822             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2823             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2824                 ti->error = "Invalid block size";
2825                 r = -EINVAL;
2826                 goto out;
2827         }
2828
2829         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2830                 ti->error = "Invalid low water mark";
2831                 r = -EINVAL;
2832                 goto out;
2833         }
2834
2835         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2836         if (!pt) {
2837                 r = -ENOMEM;
2838                 goto out;
2839         }
2840
2841         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2842                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2843         if (IS_ERR(pool)) {
2844                 r = PTR_ERR(pool);
2845                 goto out_free_pt;
2846         }
2847
2848         /*
2849          * 'pool_created' reflects whether this is the first table load.
2850          * Top level discard support is not allowed to be changed after
2851          * initial load.  This would require a pool reload to trigger thin
2852          * device changes.
2853          */
2854         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2855                 ti->error = "Discard support cannot be disabled once enabled";
2856                 r = -EINVAL;
2857                 goto out_flags_changed;
2858         }
2859
2860         pt->pool = pool;
2861         pt->ti = ti;
2862         pt->metadata_dev = metadata_dev;
2863         pt->data_dev = data_dev;
2864         pt->low_water_blocks = low_water_blocks;
2865         pt->adjusted_pf = pt->requested_pf = pf;
2866         ti->num_flush_bios = 1;
2867
2868         /*
2869          * Only need to enable discards if the pool should pass
2870          * them down to the data device.  The thin device's discard
2871          * processing will cause mappings to be removed from the btree.
2872          */
2873         ti->discard_zeroes_data_unsupported = true;
2874         if (pf.discard_enabled && pf.discard_passdown) {
2875                 ti->num_discard_bios = 1;
2876
2877                 /*
2878                  * Setting 'discards_supported' circumvents the normal
2879                  * stacking of discard limits (this keeps the pool and
2880                  * thin devices' discard limits consistent).
2881                  */
2882                 ti->discards_supported = true;
2883         }
2884         ti->private = pt;
2885
2886         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2887                                                 calc_metadata_threshold(pt),
2888                                                 metadata_low_callback,
2889                                                 pool);
2890         if (r)
2891                 goto out_free_pt;
2892
2893         pt->callbacks.congested_fn = pool_is_congested;
2894         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2895
2896         mutex_unlock(&dm_thin_pool_table.mutex);
2897
2898         return 0;
2899
2900 out_flags_changed:
2901         __pool_dec(pool);
2902 out_free_pt:
2903         kfree(pt);
2904 out:
2905         dm_put_device(ti, data_dev);
2906 out_metadata:
2907         dm_put_device(ti, metadata_dev);
2908 out_unlock:
2909         mutex_unlock(&dm_thin_pool_table.mutex);
2910
2911         return r;
2912 }
2913
2914 static int pool_map(struct dm_target *ti, struct bio *bio)
2915 {
2916         int r;
2917         struct pool_c *pt = ti->private;
2918         struct pool *pool = pt->pool;
2919         unsigned long flags;
2920
2921         /*
2922          * As this is a singleton target, ti->begin is always zero.
2923          */
2924         spin_lock_irqsave(&pool->lock, flags);
2925         bio->bi_bdev = pt->data_dev->bdev;
2926         r = DM_MAPIO_REMAPPED;
2927         spin_unlock_irqrestore(&pool->lock, flags);
2928
2929         return r;
2930 }
2931
2932 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2933 {
2934         int r;
2935         struct pool_c *pt = ti->private;
2936         struct pool *pool = pt->pool;
2937         sector_t data_size = ti->len;
2938         dm_block_t sb_data_size;
2939
2940         *need_commit = false;
2941
2942         (void) sector_div(data_size, pool->sectors_per_block);
2943
2944         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2945         if (r) {
2946                 DMERR("%s: failed to retrieve data device size",
2947                       dm_device_name(pool->pool_md));
2948                 return r;
2949         }
2950
2951         if (data_size < sb_data_size) {
2952                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2953                       dm_device_name(pool->pool_md),
2954                       (unsigned long long)data_size, sb_data_size);
2955                 return -EINVAL;
2956
2957         } else if (data_size > sb_data_size) {
2958                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2959                         DMERR("%s: unable to grow the data device until repaired.",
2960                               dm_device_name(pool->pool_md));
2961                         return 0;
2962                 }
2963
2964                 if (sb_data_size)
2965                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2966                                dm_device_name(pool->pool_md),
2967                                sb_data_size, (unsigned long long)data_size);
2968                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2969                 if (r) {
2970                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2971                         return r;
2972                 }
2973
2974                 *need_commit = true;
2975         }
2976
2977         return 0;
2978 }
2979
2980 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2981 {
2982         int r;
2983         struct pool_c *pt = ti->private;
2984         struct pool *pool = pt->pool;
2985         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2986
2987         *need_commit = false;
2988
2989         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2990
2991         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2992         if (r) {
2993                 DMERR("%s: failed to retrieve metadata device size",
2994                       dm_device_name(pool->pool_md));
2995                 return r;
2996         }
2997
2998         if (metadata_dev_size < sb_metadata_dev_size) {
2999                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3000                       dm_device_name(pool->pool_md),
3001                       metadata_dev_size, sb_metadata_dev_size);
3002                 return -EINVAL;
3003
3004         } else if (metadata_dev_size > sb_metadata_dev_size) {
3005                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3006                         DMERR("%s: unable to grow the metadata device until repaired.",
3007                               dm_device_name(pool->pool_md));
3008                         return 0;
3009                 }
3010
3011                 warn_if_metadata_device_too_big(pool->md_dev);
3012                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3013                        dm_device_name(pool->pool_md),
3014                        sb_metadata_dev_size, metadata_dev_size);
3015                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3016                 if (r) {
3017                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3018                         return r;
3019                 }
3020
3021                 *need_commit = true;
3022         }
3023
3024         return 0;
3025 }
3026
3027 /*
3028  * Retrieves the number of blocks of the data device from
3029  * the superblock and compares it to the actual device size,
3030  * thus resizing the data device in case it has grown.
3031  *
3032  * This both copes with opening preallocated data devices in the ctr
3033  * being followed by a resume
3034  * -and-
3035  * calling the resume method individually after userspace has
3036  * grown the data device in reaction to a table event.
3037  */
3038 static int pool_preresume(struct dm_target *ti)
3039 {
3040         int r;
3041         bool need_commit1, need_commit2;
3042         struct pool_c *pt = ti->private;
3043         struct pool *pool = pt->pool;
3044
3045         /*
3046          * Take control of the pool object.
3047          */
3048         r = bind_control_target(pool, ti);
3049         if (r)
3050                 return r;
3051
3052         r = maybe_resize_data_dev(ti, &need_commit1);
3053         if (r)
3054                 return r;
3055
3056         r = maybe_resize_metadata_dev(ti, &need_commit2);
3057         if (r)
3058                 return r;
3059
3060         if (need_commit1 || need_commit2)
3061                 (void) commit(pool);
3062
3063         return 0;
3064 }
3065
3066 static void pool_resume(struct dm_target *ti)
3067 {
3068         struct pool_c *pt = ti->private;
3069         struct pool *pool = pt->pool;
3070         unsigned long flags;
3071
3072         spin_lock_irqsave(&pool->lock, flags);
3073         pool->low_water_triggered = false;
3074         spin_unlock_irqrestore(&pool->lock, flags);
3075         requeue_bios(pool);
3076
3077         do_waker(&pool->waker.work);
3078 }
3079
3080 static void pool_postsuspend(struct dm_target *ti)
3081 {
3082         struct pool_c *pt = ti->private;
3083         struct pool *pool = pt->pool;
3084
3085         cancel_delayed_work(&pool->waker);
3086         cancel_delayed_work(&pool->no_space_timeout);
3087         flush_workqueue(pool->wq);
3088         (void) commit(pool);
3089 }
3090
3091 static int check_arg_count(unsigned argc, unsigned args_required)
3092 {
3093         if (argc != args_required) {
3094                 DMWARN("Message received with %u arguments instead of %u.",
3095                        argc, args_required);
3096                 return -EINVAL;
3097         }
3098
3099         return 0;
3100 }
3101
3102 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3103 {
3104         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3105             *dev_id <= MAX_DEV_ID)
3106                 return 0;
3107
3108         if (warning)
3109                 DMWARN("Message received with invalid device id: %s", arg);
3110
3111         return -EINVAL;
3112 }
3113
3114 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3115 {
3116         dm_thin_id dev_id;
3117         int r;
3118
3119         r = check_arg_count(argc, 2);
3120         if (r)
3121                 return r;
3122
3123         r = read_dev_id(argv[1], &dev_id, 1);
3124         if (r)
3125                 return r;
3126
3127         r = dm_pool_create_thin(pool->pmd, dev_id);
3128         if (r) {
3129                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3130                        argv[1]);
3131                 return r;
3132         }
3133
3134         return 0;
3135 }
3136
3137 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3138 {
3139         dm_thin_id dev_id;
3140         dm_thin_id origin_dev_id;
3141         int r;
3142
3143         r = check_arg_count(argc, 3);
3144         if (r)
3145                 return r;
3146
3147         r = read_dev_id(argv[1], &dev_id, 1);
3148         if (r)
3149                 return r;
3150
3151         r = read_dev_id(argv[2], &origin_dev_id, 1);
3152         if (r)
3153                 return r;
3154
3155         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3156         if (r) {
3157                 DMWARN("Creation of new snapshot %s of device %s failed.",
3158                        argv[1], argv[2]);
3159                 return r;
3160         }
3161
3162         return 0;
3163 }
3164
3165 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3166 {
3167         dm_thin_id dev_id;
3168         int r;
3169
3170         r = check_arg_count(argc, 2);
3171         if (r)
3172                 return r;
3173
3174         r = read_dev_id(argv[1], &dev_id, 1);
3175         if (r)
3176                 return r;
3177
3178         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3179         if (r)
3180                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3181
3182         return r;
3183 }
3184
3185 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3186 {
3187         dm_thin_id old_id, new_id;
3188         int r;
3189
3190         r = check_arg_count(argc, 3);
3191         if (r)
3192                 return r;
3193
3194         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3195                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3196                 return -EINVAL;
3197         }
3198
3199         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3200                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3201                 return -EINVAL;
3202         }
3203
3204         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3205         if (r) {
3206                 DMWARN("Failed to change transaction id from %s to %s.",
3207                        argv[1], argv[2]);
3208                 return r;
3209         }
3210
3211         return 0;
3212 }
3213
3214 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3215 {
3216         int r;
3217
3218         r = check_arg_count(argc, 1);
3219         if (r)
3220                 return r;
3221
3222         (void) commit(pool);
3223
3224         r = dm_pool_reserve_metadata_snap(pool->pmd);
3225         if (r)
3226                 DMWARN("reserve_metadata_snap message failed.");
3227
3228         return r;
3229 }
3230
3231 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3232 {
3233         int r;
3234
3235         r = check_arg_count(argc, 1);
3236         if (r)
3237                 return r;
3238
3239         r = dm_pool_release_metadata_snap(pool->pmd);
3240         if (r)
3241                 DMWARN("release_metadata_snap message failed.");
3242
3243         return r;
3244 }
3245
3246 /*
3247  * Messages supported:
3248  *   create_thin        <dev_id>
3249  *   create_snap        <dev_id> <origin_id>
3250  *   delete             <dev_id>
3251  *   trim               <dev_id> <new_size_in_sectors>
3252  *   set_transaction_id <current_trans_id> <new_trans_id>
3253  *   reserve_metadata_snap
3254  *   release_metadata_snap
3255  */
3256 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3257 {
3258         int r = -EINVAL;
3259         struct pool_c *pt = ti->private;
3260         struct pool *pool = pt->pool;
3261
3262         if (!strcasecmp(argv[0], "create_thin"))
3263                 r = process_create_thin_mesg(argc, argv, pool);
3264
3265         else if (!strcasecmp(argv[0], "create_snap"))
3266                 r = process_create_snap_mesg(argc, argv, pool);
3267
3268         else if (!strcasecmp(argv[0], "delete"))
3269                 r = process_delete_mesg(argc, argv, pool);
3270
3271         else if (!strcasecmp(argv[0], "set_transaction_id"))
3272                 r = process_set_transaction_id_mesg(argc, argv, pool);
3273
3274         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3275                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3276
3277         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3278                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3279
3280         else
3281                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3282
3283         if (!r)
3284                 (void) commit(pool);
3285
3286         return r;
3287 }
3288
3289 static void emit_flags(struct pool_features *pf, char *result,
3290                        unsigned sz, unsigned maxlen)
3291 {
3292         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3293                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3294                 pf->error_if_no_space;
3295         DMEMIT("%u ", count);
3296
3297         if (!pf->zero_new_blocks)
3298                 DMEMIT("skip_block_zeroing ");
3299
3300         if (!pf->discard_enabled)
3301                 DMEMIT("ignore_discard ");
3302
3303         if (!pf->discard_passdown)
3304                 DMEMIT("no_discard_passdown ");
3305
3306         if (pf->mode == PM_READ_ONLY)
3307                 DMEMIT("read_only ");
3308
3309         if (pf->error_if_no_space)
3310                 DMEMIT("error_if_no_space ");
3311 }
3312
3313 /*
3314  * Status line is:
3315  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3316  *    <used data sectors>/<total data sectors> <held metadata root>
3317  */
3318 static void pool_status(struct dm_target *ti, status_type_t type,
3319                         unsigned status_flags, char *result, unsigned maxlen)
3320 {
3321         int r;
3322         unsigned sz = 0;
3323         uint64_t transaction_id;
3324         dm_block_t nr_free_blocks_data;
3325         dm_block_t nr_free_blocks_metadata;
3326         dm_block_t nr_blocks_data;
3327         dm_block_t nr_blocks_metadata;
3328         dm_block_t held_root;
3329         char buf[BDEVNAME_SIZE];
3330         char buf2[BDEVNAME_SIZE];
3331         struct pool_c *pt = ti->private;
3332         struct pool *pool = pt->pool;
3333
3334         switch (type) {
3335         case STATUSTYPE_INFO:
3336                 if (get_pool_mode(pool) == PM_FAIL) {
3337                         DMEMIT("Fail");
3338                         break;
3339                 }
3340
3341                 /* Commit to ensure statistics aren't out-of-date */
3342                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3343                         (void) commit(pool);
3344
3345                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3346                 if (r) {
3347                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3348                               dm_device_name(pool->pool_md), r);
3349                         goto err;
3350                 }
3351
3352                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3353                 if (r) {
3354                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3355                               dm_device_name(pool->pool_md), r);
3356                         goto err;
3357                 }
3358
3359                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3360                 if (r) {
3361                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3362                               dm_device_name(pool->pool_md), r);
3363                         goto err;
3364                 }
3365
3366                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3367                 if (r) {
3368                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3369                               dm_device_name(pool->pool_md), r);
3370                         goto err;
3371                 }
3372
3373                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3374                 if (r) {
3375                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3376                               dm_device_name(pool->pool_md), r);
3377                         goto err;
3378                 }
3379
3380                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3381                 if (r) {
3382                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3383                               dm_device_name(pool->pool_md), r);
3384                         goto err;
3385                 }
3386
3387                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3388                        (unsigned long long)transaction_id,
3389                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3390                        (unsigned long long)nr_blocks_metadata,
3391                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3392                        (unsigned long long)nr_blocks_data);
3393
3394                 if (held_root)
3395                         DMEMIT("%llu ", held_root);
3396                 else
3397                         DMEMIT("- ");
3398
3399                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3400                         DMEMIT("out_of_data_space ");
3401                 else if (pool->pf.mode == PM_READ_ONLY)
3402                         DMEMIT("ro ");
3403                 else
3404                         DMEMIT("rw ");
3405
3406                 if (!pool->pf.discard_enabled)
3407                         DMEMIT("ignore_discard ");
3408                 else if (pool->pf.discard_passdown)
3409                         DMEMIT("discard_passdown ");
3410                 else
3411                         DMEMIT("no_discard_passdown ");
3412
3413                 if (pool->pf.error_if_no_space)
3414                         DMEMIT("error_if_no_space ");
3415                 else
3416                         DMEMIT("queue_if_no_space ");
3417
3418                 break;
3419
3420         case STATUSTYPE_TABLE:
3421                 DMEMIT("%s %s %lu %llu ",
3422                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3423                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3424                        (unsigned long)pool->sectors_per_block,
3425                        (unsigned long long)pt->low_water_blocks);
3426                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3427                 break;
3428         }
3429         return;
3430
3431 err:
3432         DMEMIT("Error");
3433 }
3434
3435 static int pool_iterate_devices(struct dm_target *ti,
3436                                 iterate_devices_callout_fn fn, void *data)
3437 {
3438         struct pool_c *pt = ti->private;
3439
3440         return fn(ti, pt->data_dev, 0, ti->len, data);
3441 }
3442
3443 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3444                       struct bio_vec *biovec, int max_size)
3445 {
3446         struct pool_c *pt = ti->private;
3447         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3448
3449         if (!q->merge_bvec_fn)
3450                 return max_size;
3451
3452         bvm->bi_bdev = pt->data_dev->bdev;
3453
3454         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3455 }
3456
3457 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3458 {
3459         struct pool *pool = pt->pool;
3460         struct queue_limits *data_limits;
3461
3462         limits->max_discard_sectors = pool->sectors_per_block;
3463
3464         /*
3465          * discard_granularity is just a hint, and not enforced.
3466          */
3467         if (pt->adjusted_pf.discard_passdown) {
3468                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3469                 limits->discard_granularity = max(data_limits->discard_granularity,
3470                                                   pool->sectors_per_block << SECTOR_SHIFT);
3471         } else
3472                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3473 }
3474
3475 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3476 {
3477         struct pool_c *pt = ti->private;
3478         struct pool *pool = pt->pool;
3479         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3480
3481         /*
3482          * Adjust max_sectors_kb to highest possible power-of-2
3483          * factor of pool->sectors_per_block.
3484          */
3485         if (limits->max_hw_sectors & (limits->max_hw_sectors - 1))
3486                 limits->max_sectors = rounddown_pow_of_two(limits->max_hw_sectors);
3487         else
3488                 limits->max_sectors = limits->max_hw_sectors;
3489
3490         if (limits->max_sectors < pool->sectors_per_block) {
3491                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3492                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3493                                 limits->max_sectors--;
3494                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3495                 }
3496         } else if (block_size_is_power_of_two(pool)) {
3497                 /* max_sectors_kb is >= power-of-2 thinp blocksize */
3498                 while (!is_factor(limits->max_sectors, pool->sectors_per_block)) {
3499                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3500                                 limits->max_sectors--;
3501                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3502                 }
3503         }
3504
3505         /*
3506          * If the system-determined stacked limits are compatible with the
3507          * pool's blocksize (io_opt is a factor) do not override them.
3508          */
3509         if (io_opt_sectors < pool->sectors_per_block ||
3510             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3511                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3512                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3513                 else
3514                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3515                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3516         }
3517
3518         /*
3519          * pt->adjusted_pf is a staging area for the actual features to use.
3520          * They get transferred to the live pool in bind_control_target()
3521          * called from pool_preresume().
3522          */
3523         if (!pt->adjusted_pf.discard_enabled) {
3524                 /*
3525                  * Must explicitly disallow stacking discard limits otherwise the
3526                  * block layer will stack them if pool's data device has support.
3527                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3528                  * user to see that, so make sure to set all discard limits to 0.
3529                  */
3530                 limits->discard_granularity = 0;
3531                 return;
3532         }
3533
3534         disable_passdown_if_not_supported(pt);
3535
3536         set_discard_limits(pt, limits);
3537 }
3538
3539 static struct target_type pool_target = {
3540         .name = "thin-pool",
3541         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3542                     DM_TARGET_IMMUTABLE,
3543         .version = {1, 14, 0},
3544         .module = THIS_MODULE,
3545         .ctr = pool_ctr,
3546         .dtr = pool_dtr,
3547         .map = pool_map,
3548         .postsuspend = pool_postsuspend,
3549         .preresume = pool_preresume,
3550         .resume = pool_resume,
3551         .message = pool_message,
3552         .status = pool_status,
3553         .merge = pool_merge,
3554         .iterate_devices = pool_iterate_devices,
3555         .io_hints = pool_io_hints,
3556 };
3557
3558 /*----------------------------------------------------------------
3559  * Thin target methods
3560  *--------------------------------------------------------------*/
3561 static void thin_get(struct thin_c *tc)
3562 {
3563         atomic_inc(&tc->refcount);
3564 }
3565
3566 static void thin_put(struct thin_c *tc)
3567 {
3568         if (atomic_dec_and_test(&tc->refcount))
3569                 complete(&tc->can_destroy);
3570 }
3571
3572 static void thin_dtr(struct dm_target *ti)
3573 {
3574         struct thin_c *tc = ti->private;
3575         unsigned long flags;
3576
3577         thin_put(tc);
3578         wait_for_completion(&tc->can_destroy);
3579
3580         spin_lock_irqsave(&tc->pool->lock, flags);
3581         list_del_rcu(&tc->list);
3582         spin_unlock_irqrestore(&tc->pool->lock, flags);
3583         synchronize_rcu();
3584
3585         mutex_lock(&dm_thin_pool_table.mutex);
3586
3587         __pool_dec(tc->pool);
3588         dm_pool_close_thin_device(tc->td);
3589         dm_put_device(ti, tc->pool_dev);
3590         if (tc->origin_dev)
3591                 dm_put_device(ti, tc->origin_dev);
3592         kfree(tc);
3593
3594         mutex_unlock(&dm_thin_pool_table.mutex);
3595 }
3596
3597 /*
3598  * Thin target parameters:
3599  *
3600  * <pool_dev> <dev_id> [origin_dev]
3601  *
3602  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3603  * dev_id: the internal device identifier
3604  * origin_dev: a device external to the pool that should act as the origin
3605  *
3606  * If the pool device has discards disabled, they get disabled for the thin
3607  * device as well.
3608  */
3609 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3610 {
3611         int r;
3612         struct thin_c *tc;
3613         struct dm_dev *pool_dev, *origin_dev;
3614         struct mapped_device *pool_md;
3615         unsigned long flags;
3616
3617         mutex_lock(&dm_thin_pool_table.mutex);
3618
3619         if (argc != 2 && argc != 3) {
3620                 ti->error = "Invalid argument count";
3621                 r = -EINVAL;
3622                 goto out_unlock;
3623         }
3624
3625         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3626         if (!tc) {
3627                 ti->error = "Out of memory";
3628                 r = -ENOMEM;
3629                 goto out_unlock;
3630         }
3631         spin_lock_init(&tc->lock);
3632         INIT_LIST_HEAD(&tc->deferred_cells);
3633         bio_list_init(&tc->deferred_bio_list);
3634         bio_list_init(&tc->retry_on_resume_list);
3635         tc->sort_bio_list = RB_ROOT;
3636
3637         if (argc == 3) {
3638                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3639                 if (r) {
3640                         ti->error = "Error opening origin device";
3641                         goto bad_origin_dev;
3642                 }
3643                 tc->origin_dev = origin_dev;
3644         }
3645
3646         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3647         if (r) {
3648                 ti->error = "Error opening pool device";
3649                 goto bad_pool_dev;
3650         }
3651         tc->pool_dev = pool_dev;
3652
3653         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3654                 ti->error = "Invalid device id";
3655                 r = -EINVAL;
3656                 goto bad_common;
3657         }
3658
3659         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3660         if (!pool_md) {
3661                 ti->error = "Couldn't get pool mapped device";
3662                 r = -EINVAL;
3663                 goto bad_common;
3664         }
3665
3666         tc->pool = __pool_table_lookup(pool_md);
3667         if (!tc->pool) {
3668                 ti->error = "Couldn't find pool object";
3669                 r = -EINVAL;
3670                 goto bad_pool_lookup;
3671         }
3672         __pool_inc(tc->pool);
3673
3674         if (get_pool_mode(tc->pool) == PM_FAIL) {
3675                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3676                 r = -EINVAL;
3677                 goto bad_thin_open;
3678         }
3679
3680         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3681         if (r) {
3682                 ti->error = "Couldn't open thin internal device";
3683                 goto bad_thin_open;
3684         }
3685
3686         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3687         if (r)
3688                 goto bad_target_max_io_len;
3689
3690         ti->num_flush_bios = 1;
3691         ti->flush_supported = true;
3692         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3693
3694         /* In case the pool supports discards, pass them on. */
3695         ti->discard_zeroes_data_unsupported = true;
3696         if (tc->pool->pf.discard_enabled) {
3697                 ti->discards_supported = true;
3698                 ti->num_discard_bios = 1;
3699                 /* Discard bios must be split on a block boundary */
3700                 ti->split_discard_bios = true;
3701         }
3702
3703         dm_put(pool_md);
3704
3705         mutex_unlock(&dm_thin_pool_table.mutex);
3706
3707         atomic_set(&tc->refcount, 1);
3708         init_completion(&tc->can_destroy);
3709
3710         spin_lock_irqsave(&tc->pool->lock, flags);
3711         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3712         spin_unlock_irqrestore(&tc->pool->lock, flags);
3713         /*
3714          * This synchronize_rcu() call is needed here otherwise we risk a
3715          * wake_worker() call finding no bios to process (because the newly
3716          * added tc isn't yet visible).  So this reduces latency since we
3717          * aren't then dependent on the periodic commit to wake_worker().
3718          */
3719         synchronize_rcu();
3720
3721         return 0;
3722
3723 bad_target_max_io_len:
3724         dm_pool_close_thin_device(tc->td);
3725 bad_thin_open:
3726         __pool_dec(tc->pool);
3727 bad_pool_lookup:
3728         dm_put(pool_md);
3729 bad_common:
3730         dm_put_device(ti, tc->pool_dev);
3731 bad_pool_dev:
3732         if (tc->origin_dev)
3733                 dm_put_device(ti, tc->origin_dev);
3734 bad_origin_dev:
3735         kfree(tc);
3736 out_unlock:
3737         mutex_unlock(&dm_thin_pool_table.mutex);
3738
3739         return r;
3740 }
3741
3742 static int thin_map(struct dm_target *ti, struct bio *bio)
3743 {
3744         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3745
3746         return thin_bio_map(ti, bio);
3747 }
3748
3749 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3750 {
3751         unsigned long flags;
3752         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3753         struct list_head work;
3754         struct dm_thin_new_mapping *m, *tmp;
3755         struct pool *pool = h->tc->pool;
3756
3757         if (h->shared_read_entry) {
3758                 INIT_LIST_HEAD(&work);
3759                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3760
3761                 spin_lock_irqsave(&pool->lock, flags);
3762                 list_for_each_entry_safe(m, tmp, &work, list) {
3763                         list_del(&m->list);
3764                         __complete_mapping_preparation(m);
3765                 }
3766                 spin_unlock_irqrestore(&pool->lock, flags);
3767         }
3768
3769         if (h->all_io_entry) {
3770                 INIT_LIST_HEAD(&work);
3771                 dm_deferred_entry_dec(h->all_io_entry, &work);
3772                 if (!list_empty(&work)) {
3773                         spin_lock_irqsave(&pool->lock, flags);
3774                         list_for_each_entry_safe(m, tmp, &work, list)
3775                                 list_add_tail(&m->list, &pool->prepared_discards);
3776                         spin_unlock_irqrestore(&pool->lock, flags);
3777                         wake_worker(pool);
3778                 }
3779         }
3780
3781         return 0;
3782 }
3783
3784 static void thin_presuspend(struct dm_target *ti)
3785 {
3786         struct thin_c *tc = ti->private;
3787
3788         if (dm_noflush_suspending(ti))
3789                 noflush_work(tc, do_noflush_start);
3790 }
3791
3792 static void thin_postsuspend(struct dm_target *ti)
3793 {
3794         struct thin_c *tc = ti->private;
3795
3796         /*
3797          * The dm_noflush_suspending flag has been cleared by now, so
3798          * unfortunately we must always run this.
3799          */
3800         noflush_work(tc, do_noflush_stop);
3801 }
3802
3803 static int thin_preresume(struct dm_target *ti)
3804 {
3805         struct thin_c *tc = ti->private;
3806
3807         if (tc->origin_dev)
3808                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3809
3810         return 0;
3811 }
3812
3813 /*
3814  * <nr mapped sectors> <highest mapped sector>
3815  */
3816 static void thin_status(struct dm_target *ti, status_type_t type,
3817                         unsigned status_flags, char *result, unsigned maxlen)
3818 {
3819         int r;
3820         ssize_t sz = 0;
3821         dm_block_t mapped, highest;
3822         char buf[BDEVNAME_SIZE];
3823         struct thin_c *tc = ti->private;
3824
3825         if (get_pool_mode(tc->pool) == PM_FAIL) {
3826                 DMEMIT("Fail");
3827                 return;
3828         }
3829
3830         if (!tc->td)
3831                 DMEMIT("-");
3832         else {
3833                 switch (type) {
3834                 case STATUSTYPE_INFO:
3835                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3836                         if (r) {
3837                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3838                                 goto err;
3839                         }
3840
3841                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3842                         if (r < 0) {
3843                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3844                                 goto err;
3845                         }
3846
3847                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3848                         if (r)
3849                                 DMEMIT("%llu", ((highest + 1) *
3850                                                 tc->pool->sectors_per_block) - 1);
3851                         else
3852                                 DMEMIT("-");
3853                         break;
3854
3855                 case STATUSTYPE_TABLE:
3856                         DMEMIT("%s %lu",
3857                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3858                                (unsigned long) tc->dev_id);
3859                         if (tc->origin_dev)
3860                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3861                         break;
3862                 }
3863         }
3864
3865         return;
3866
3867 err:
3868         DMEMIT("Error");
3869 }
3870
3871 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3872                       struct bio_vec *biovec, int max_size)
3873 {
3874         struct thin_c *tc = ti->private;
3875         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
3876
3877         if (!q->merge_bvec_fn)
3878                 return max_size;
3879
3880         bvm->bi_bdev = tc->pool_dev->bdev;
3881         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
3882
3883         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3884 }
3885
3886 static int thin_iterate_devices(struct dm_target *ti,
3887                                 iterate_devices_callout_fn fn, void *data)
3888 {
3889         sector_t blocks;
3890         struct thin_c *tc = ti->private;
3891         struct pool *pool = tc->pool;
3892
3893         /*
3894          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3895          * we follow a more convoluted path through to the pool's target.
3896          */
3897         if (!pool->ti)
3898                 return 0;       /* nothing is bound */
3899
3900         blocks = pool->ti->len;
3901         (void) sector_div(blocks, pool->sectors_per_block);
3902         if (blocks)
3903                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3904
3905         return 0;
3906 }
3907
3908 static struct target_type thin_target = {
3909         .name = "thin",
3910         .version = {1, 14, 0},
3911         .module = THIS_MODULE,
3912         .ctr = thin_ctr,
3913         .dtr = thin_dtr,
3914         .map = thin_map,
3915         .end_io = thin_endio,
3916         .preresume = thin_preresume,
3917         .presuspend = thin_presuspend,
3918         .postsuspend = thin_postsuspend,
3919         .status = thin_status,
3920         .merge = thin_merge,
3921         .iterate_devices = thin_iterate_devices,
3922 };
3923
3924 /*----------------------------------------------------------------*/
3925
3926 static int __init dm_thin_init(void)
3927 {
3928         int r;
3929
3930         pool_table_init();
3931
3932         r = dm_register_target(&thin_target);
3933         if (r)
3934                 return r;
3935
3936         r = dm_register_target(&pool_target);
3937         if (r)
3938                 goto bad_pool_target;
3939
3940         r = -ENOMEM;
3941
3942         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3943         if (!_new_mapping_cache)
3944                 goto bad_new_mapping_cache;
3945
3946         return 0;
3947
3948 bad_new_mapping_cache:
3949         dm_unregister_target(&pool_target);
3950 bad_pool_target:
3951         dm_unregister_target(&thin_target);
3952
3953         return r;
3954 }
3955
3956 static void dm_thin_exit(void)
3957 {
3958         dm_unregister_target(&thin_target);
3959         dm_unregister_target(&pool_target);
3960
3961         kmem_cache_destroy(_new_mapping_cache);
3962 }
3963
3964 module_init(dm_thin_init);
3965 module_exit(dm_thin_exit);
3966
3967 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3968 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3969
3970 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3971 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3972 MODULE_LICENSE("GPL");