OSDN Git Service

Merge tag 'v4.4.207' into 10
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / drivers / md / persistent-data / dm-btree-remove.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59         uint32_t value_size = le32_to_cpu(n->header.value_size);
60
61         if (shift < 0) {
62                 shift = -shift;
63                 BUG_ON(shift > nr_entries);
64                 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65                 memmove(key_ptr(n, 0),
66                         key_ptr(n, shift),
67                         (nr_entries - shift) * sizeof(__le64));
68                 memmove(value_ptr(n, 0),
69                         value_ptr(n, shift),
70                         (nr_entries - shift) * value_size);
71         } else {
72                 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73                 memmove(key_ptr(n, shift),
74                         key_ptr(n, 0),
75                         nr_entries * sizeof(__le64));
76                 memmove(value_ptr(n, shift),
77                         value_ptr(n, 0),
78                         nr_entries * value_size);
79         }
80 }
81
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85         uint32_t value_size = le32_to_cpu(left->header.value_size);
86         BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87
88         if (shift < 0) {
89                 shift = -shift;
90                 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91                 memcpy(key_ptr(left, nr_left),
92                        key_ptr(right, 0),
93                        shift * sizeof(__le64));
94                 memcpy(value_ptr(left, nr_left),
95                        value_ptr(right, 0),
96                        shift * value_size);
97         } else {
98                 BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99                 memcpy(key_ptr(right, 0),
100                        key_ptr(left, nr_left - shift),
101                        shift * sizeof(__le64));
102                 memcpy(value_ptr(right, 0),
103                        value_ptr(left, nr_left - shift),
104                        shift * value_size);
105         }
106 }
107
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113         unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114         unsigned nr_to_copy = nr_entries - (index + 1);
115         uint32_t value_size = le32_to_cpu(n->header.value_size);
116         BUG_ON(index >= nr_entries);
117
118         if (nr_to_copy) {
119                 memmove(key_ptr(n, index),
120                         key_ptr(n, index + 1),
121                         nr_to_copy * sizeof(__le64));
122
123                 memmove(value_ptr(n, index),
124                         value_ptr(n, index + 1),
125                         nr_to_copy * value_size);
126         }
127
128         n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133         return le32_to_cpu(n->header.max_entries) / 3;
134 }
135
136 struct child {
137         unsigned index;
138         struct dm_block *block;
139         struct btree_node *n;
140 };
141
142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143                       struct btree_node *parent,
144                       unsigned index, struct child *result)
145 {
146         int r, inc;
147         dm_block_t root;
148
149         result->index = index;
150         root = value64(parent, index);
151
152         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153                                &result->block, &inc);
154         if (r)
155                 return r;
156
157         result->n = dm_block_data(result->block);
158
159         if (inc)
160                 inc_children(info->tm, result->n, vt);
161
162         *((__le64 *) value_ptr(parent, index)) =
163                 cpu_to_le64(dm_block_location(result->block));
164
165         return 0;
166 }
167
168 static void exit_child(struct dm_btree_info *info, struct child *c)
169 {
170         dm_tm_unlock(info->tm, c->block);
171 }
172
173 static void shift(struct btree_node *left, struct btree_node *right, int count)
174 {
175         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178         uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
179
180         BUG_ON(max_entries != r_max_entries);
181         BUG_ON(nr_left - count > max_entries);
182         BUG_ON(nr_right + count > max_entries);
183
184         if (!count)
185                 return;
186
187         if (count > 0) {
188                 node_shift(right, count);
189                 node_copy(left, right, count);
190         } else {
191                 node_copy(left, right, count);
192                 node_shift(right, count);
193         }
194
195         left->header.nr_entries = cpu_to_le32(nr_left - count);
196         right->header.nr_entries = cpu_to_le32(nr_right + count);
197 }
198
199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200                          struct child *l, struct child *r)
201 {
202         struct btree_node *left = l->n;
203         struct btree_node *right = r->n;
204         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206         /*
207          * Ensure the number of entries in each child will be greater
208          * than or equal to (max_entries / 3 + 1), so no matter which
209          * child is used for removal, the number will still be not
210          * less than (max_entries / 3).
211          */
212         unsigned int threshold = 2 * (merge_threshold(left) + 1);
213
214         if (nr_left + nr_right < threshold) {
215                 /*
216                  * Merge
217                  */
218                 node_copy(left, right, -nr_right);
219                 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
220                 delete_at(parent, r->index);
221
222                 /*
223                  * We need to decrement the right block, but not it's
224                  * children, since they're still referenced by left.
225                  */
226                 dm_tm_dec(info->tm, dm_block_location(r->block));
227         } else {
228                 /*
229                  * Rebalance.
230                  */
231                 unsigned target_left = (nr_left + nr_right) / 2;
232                 shift(left, right, nr_left - target_left);
233                 *key_ptr(parent, r->index) = right->keys[0];
234         }
235 }
236
237 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
238                       struct dm_btree_value_type *vt, unsigned left_index)
239 {
240         int r;
241         struct btree_node *parent;
242         struct child left, right;
243
244         parent = dm_block_data(shadow_current(s));
245
246         r = init_child(info, vt, parent, left_index, &left);
247         if (r)
248                 return r;
249
250         r = init_child(info, vt, parent, left_index + 1, &right);
251         if (r) {
252                 exit_child(info, &left);
253                 return r;
254         }
255
256         __rebalance2(info, parent, &left, &right);
257
258         exit_child(info, &left);
259         exit_child(info, &right);
260
261         return 0;
262 }
263
264 /*
265  * We dump as many entries from center as possible into left, then the rest
266  * in right, then rebalance2.  This wastes some cpu, but I want something
267  * simple atm.
268  */
269 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
270                                struct child *l, struct child *c, struct child *r,
271                                struct btree_node *left, struct btree_node *center, struct btree_node *right,
272                                uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
273 {
274         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
275         unsigned shift = min(max_entries - nr_left, nr_center);
276
277         BUG_ON(nr_left + shift > max_entries);
278         node_copy(left, center, -shift);
279         left->header.nr_entries = cpu_to_le32(nr_left + shift);
280
281         if (shift != nr_center) {
282                 shift = nr_center - shift;
283                 BUG_ON((nr_right + shift) > max_entries);
284                 node_shift(right, shift);
285                 node_copy(center, right, shift);
286                 right->header.nr_entries = cpu_to_le32(nr_right + shift);
287         }
288         *key_ptr(parent, r->index) = right->keys[0];
289
290         delete_at(parent, c->index);
291         r->index--;
292
293         dm_tm_dec(info->tm, dm_block_location(c->block));
294         __rebalance2(info, parent, l, r);
295 }
296
297 /*
298  * Redistributes entries among 3 sibling nodes.
299  */
300 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
301                           struct child *l, struct child *c, struct child *r,
302                           struct btree_node *left, struct btree_node *center, struct btree_node *right,
303                           uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
304 {
305         int s;
306         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
307         unsigned total = nr_left + nr_center + nr_right;
308         unsigned target_right = total / 3;
309         unsigned remainder = (target_right * 3) != total;
310         unsigned target_left = target_right + remainder;
311
312         BUG_ON(target_left > max_entries);
313         BUG_ON(target_right > max_entries);
314
315         if (nr_left < nr_right) {
316                 s = nr_left - target_left;
317
318                 if (s < 0 && nr_center < -s) {
319                         /* not enough in central node */
320                         shift(left, center, -nr_center);
321                         s += nr_center;
322                         shift(left, right, s);
323                         nr_right += s;
324                 } else
325                         shift(left, center, s);
326
327                 shift(center, right, target_right - nr_right);
328
329         } else {
330                 s = target_right - nr_right;
331                 if (s > 0 && nr_center < s) {
332                         /* not enough in central node */
333                         shift(center, right, nr_center);
334                         s -= nr_center;
335                         shift(left, right, s);
336                         nr_left -= s;
337                 } else
338                         shift(center, right, s);
339
340                 shift(left, center, nr_left - target_left);
341         }
342
343         *key_ptr(parent, c->index) = center->keys[0];
344         *key_ptr(parent, r->index) = right->keys[0];
345 }
346
347 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
348                          struct child *l, struct child *c, struct child *r)
349 {
350         struct btree_node *left = l->n;
351         struct btree_node *center = c->n;
352         struct btree_node *right = r->n;
353
354         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
355         uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
356         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
357
358         unsigned threshold = merge_threshold(left) * 4 + 1;
359
360         BUG_ON(left->header.max_entries != center->header.max_entries);
361         BUG_ON(center->header.max_entries != right->header.max_entries);
362
363         if ((nr_left + nr_center + nr_right) < threshold)
364                 delete_center_node(info, parent, l, c, r, left, center, right,
365                                    nr_left, nr_center, nr_right);
366         else
367                 redistribute3(info, parent, l, c, r, left, center, right,
368                               nr_left, nr_center, nr_right);
369 }
370
371 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
372                       struct dm_btree_value_type *vt, unsigned left_index)
373 {
374         int r;
375         struct btree_node *parent = dm_block_data(shadow_current(s));
376         struct child left, center, right;
377
378         /*
379          * FIXME: fill out an array?
380          */
381         r = init_child(info, vt, parent, left_index, &left);
382         if (r)
383                 return r;
384
385         r = init_child(info, vt, parent, left_index + 1, &center);
386         if (r) {
387                 exit_child(info, &left);
388                 return r;
389         }
390
391         r = init_child(info, vt, parent, left_index + 2, &right);
392         if (r) {
393                 exit_child(info, &left);
394                 exit_child(info, &center);
395                 return r;
396         }
397
398         __rebalance3(info, parent, &left, &center, &right);
399
400         exit_child(info, &left);
401         exit_child(info, &center);
402         exit_child(info, &right);
403
404         return 0;
405 }
406
407 static int rebalance_children(struct shadow_spine *s,
408                               struct dm_btree_info *info,
409                               struct dm_btree_value_type *vt, uint64_t key)
410 {
411         int i, r, has_left_sibling, has_right_sibling;
412         struct btree_node *n;
413
414         n = dm_block_data(shadow_current(s));
415
416         if (le32_to_cpu(n->header.nr_entries) == 1) {
417                 struct dm_block *child;
418                 dm_block_t b = value64(n, 0);
419
420                 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
421                 if (r)
422                         return r;
423
424                 memcpy(n, dm_block_data(child),
425                        dm_bm_block_size(dm_tm_get_bm(info->tm)));
426                 dm_tm_unlock(info->tm, child);
427
428                 dm_tm_dec(info->tm, dm_block_location(child));
429                 return 0;
430         }
431
432         i = lower_bound(n, key);
433         if (i < 0)
434                 return -ENODATA;
435
436         has_left_sibling = i > 0;
437         has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
438
439         if (!has_left_sibling)
440                 r = rebalance2(s, info, vt, i);
441
442         else if (!has_right_sibling)
443                 r = rebalance2(s, info, vt, i - 1);
444
445         else
446                 r = rebalance3(s, info, vt, i - 1);
447
448         return r;
449 }
450
451 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
452 {
453         int i = lower_bound(n, key);
454
455         if ((i < 0) ||
456             (i >= le32_to_cpu(n->header.nr_entries)) ||
457             (le64_to_cpu(n->keys[i]) != key))
458                 return -ENODATA;
459
460         *index = i;
461
462         return 0;
463 }
464
465 /*
466  * Prepares for removal from one level of the hierarchy.  The caller must
467  * call delete_at() to remove the entry at index.
468  */
469 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
470                       struct dm_btree_value_type *vt, dm_block_t root,
471                       uint64_t key, unsigned *index)
472 {
473         int i = *index, r;
474         struct btree_node *n;
475
476         for (;;) {
477                 r = shadow_step(s, root, vt);
478                 if (r < 0)
479                         break;
480
481                 /*
482                  * We have to patch up the parent node, ugly, but I don't
483                  * see a way to do this automatically as part of the spine
484                  * op.
485                  */
486                 if (shadow_has_parent(s)) {
487                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
488                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
489                                &location, sizeof(__le64));
490                 }
491
492                 n = dm_block_data(shadow_current(s));
493
494                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
495                         return do_leaf(n, key, index);
496
497                 r = rebalance_children(s, info, vt, key);
498                 if (r)
499                         break;
500
501                 n = dm_block_data(shadow_current(s));
502                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
503                         return do_leaf(n, key, index);
504
505                 i = lower_bound(n, key);
506
507                 /*
508                  * We know the key is present, or else
509                  * rebalance_children would have returned
510                  * -ENODATA
511                  */
512                 root = value64(n, i);
513         }
514
515         return r;
516 }
517
518 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
519                     uint64_t *keys, dm_block_t *new_root)
520 {
521         unsigned level, last_level = info->levels - 1;
522         int index = 0, r = 0;
523         struct shadow_spine spine;
524         struct btree_node *n;
525         struct dm_btree_value_type le64_vt;
526
527         init_le64_type(info->tm, &le64_vt);
528         init_shadow_spine(&spine, info);
529         for (level = 0; level < info->levels; level++) {
530                 r = remove_raw(&spine, info,
531                                (level == last_level ?
532                                 &info->value_type : &le64_vt),
533                                root, keys[level], (unsigned *)&index);
534                 if (r < 0)
535                         break;
536
537                 n = dm_block_data(shadow_current(&spine));
538                 if (level != last_level) {
539                         root = value64(n, index);
540                         continue;
541                 }
542
543                 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
544
545                 if (info->value_type.dec)
546                         info->value_type.dec(info->value_type.context,
547                                              value_ptr(n, index));
548
549                 delete_at(n, index);
550         }
551
552         *new_root = shadow_root(&spine);
553         exit_shadow_spine(&spine);
554
555         return r;
556 }
557 EXPORT_SYMBOL_GPL(dm_btree_remove);
558
559 /*----------------------------------------------------------------*/
560
561 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
562                           struct dm_btree_value_type *vt, dm_block_t root,
563                           uint64_t key, int *index)
564 {
565         int i = *index, r;
566         struct btree_node *n;
567
568         for (;;) {
569                 r = shadow_step(s, root, vt);
570                 if (r < 0)
571                         break;
572
573                 /*
574                  * We have to patch up the parent node, ugly, but I don't
575                  * see a way to do this automatically as part of the spine
576                  * op.
577                  */
578                 if (shadow_has_parent(s)) {
579                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
580                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
581                                &location, sizeof(__le64));
582                 }
583
584                 n = dm_block_data(shadow_current(s));
585
586                 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
587                         *index = lower_bound(n, key);
588                         return 0;
589                 }
590
591                 r = rebalance_children(s, info, vt, key);
592                 if (r)
593                         break;
594
595                 n = dm_block_data(shadow_current(s));
596                 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
597                         *index = lower_bound(n, key);
598                         return 0;
599                 }
600
601                 i = lower_bound(n, key);
602
603                 /*
604                  * We know the key is present, or else
605                  * rebalance_children would have returned
606                  * -ENODATA
607                  */
608                 root = value64(n, i);
609         }
610
611         return r;
612 }
613
614 static int remove_one(struct dm_btree_info *info, dm_block_t root,
615                       uint64_t *keys, uint64_t end_key,
616                       dm_block_t *new_root, unsigned *nr_removed)
617 {
618         unsigned level, last_level = info->levels - 1;
619         int index = 0, r = 0;
620         struct shadow_spine spine;
621         struct btree_node *n;
622         struct dm_btree_value_type le64_vt;
623         uint64_t k;
624
625         init_le64_type(info->tm, &le64_vt);
626         init_shadow_spine(&spine, info);
627         for (level = 0; level < last_level; level++) {
628                 r = remove_raw(&spine, info, &le64_vt,
629                                root, keys[level], (unsigned *) &index);
630                 if (r < 0)
631                         goto out;
632
633                 n = dm_block_data(shadow_current(&spine));
634                 root = value64(n, index);
635         }
636
637         r = remove_nearest(&spine, info, &info->value_type,
638                            root, keys[last_level], &index);
639         if (r < 0)
640                 goto out;
641
642         n = dm_block_data(shadow_current(&spine));
643
644         if (index < 0)
645                 index = 0;
646
647         if (index >= le32_to_cpu(n->header.nr_entries)) {
648                 r = -ENODATA;
649                 goto out;
650         }
651
652         k = le64_to_cpu(n->keys[index]);
653         if (k >= keys[last_level] && k < end_key) {
654                 if (info->value_type.dec)
655                         info->value_type.dec(info->value_type.context,
656                                              value_ptr(n, index));
657
658                 delete_at(n, index);
659                 keys[last_level] = k + 1ull;
660
661         } else
662                 r = -ENODATA;
663
664 out:
665         *new_root = shadow_root(&spine);
666         exit_shadow_spine(&spine);
667
668         return r;
669 }
670
671 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
672                            uint64_t *first_key, uint64_t end_key,
673                            dm_block_t *new_root, unsigned *nr_removed)
674 {
675         int r;
676
677         *nr_removed = 0;
678         do {
679                 r = remove_one(info, root, first_key, end_key, &root, nr_removed);
680                 if (!r)
681                         (*nr_removed)++;
682         } while (!r);
683
684         *new_root = root;
685         return r == -ENODATA ? 0 : r;
686 }
687 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);