OSDN Git Service

Merge 4.4.187 into android-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194         unsigned int gup_flags = FOLL_FORCE;
195
196 #ifdef CONFIG_STACK_GROWSUP
197         if (write) {
198                 ret = expand_downwards(bprm->vma, pos);
199                 if (ret < 0)
200                         return NULL;
201         }
202 #endif
203
204         if (write)
205                 gup_flags |= FOLL_WRITE;
206
207         ret = get_user_pages(current, bprm->mm, pos, 1, gup_flags,
208                         &page, NULL);
209         if (ret <= 0)
210                 return NULL;
211
212         if (write) {
213                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214                 unsigned long ptr_size, limit;
215
216                 /*
217                  * Since the stack will hold pointers to the strings, we
218                  * must account for them as well.
219                  *
220                  * The size calculation is the entire vma while each arg page is
221                  * built, so each time we get here it's calculating how far it
222                  * is currently (rather than each call being just the newly
223                  * added size from the arg page).  As a result, we need to
224                  * always add the entire size of the pointers, so that on the
225                  * last call to get_arg_page() we'll actually have the entire
226                  * correct size.
227                  */
228                 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
229                 if (ptr_size > ULONG_MAX - size)
230                         goto fail;
231                 size += ptr_size;
232
233                 acct_arg_size(bprm, size / PAGE_SIZE);
234
235                 /*
236                  * We've historically supported up to 32 pages (ARG_MAX)
237                  * of argument strings even with small stacks
238                  */
239                 if (size <= ARG_MAX)
240                         return page;
241
242                 /*
243                  * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
244                  * (whichever is smaller) for the argv+env strings.
245                  * This ensures that:
246                  *  - the remaining binfmt code will not run out of stack space,
247                  *  - the program will have a reasonable amount of stack left
248                  *    to work from.
249                  */
250                 limit = _STK_LIM / 4 * 3;
251                 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
252                 if (size > limit)
253                         goto fail;
254         }
255
256         return page;
257
258 fail:
259         put_page(page);
260         return NULL;
261 }
262
263 static void put_arg_page(struct page *page)
264 {
265         put_page(page);
266 }
267
268 static void free_arg_page(struct linux_binprm *bprm, int i)
269 {
270 }
271
272 static void free_arg_pages(struct linux_binprm *bprm)
273 {
274 }
275
276 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
277                 struct page *page)
278 {
279         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
280 }
281
282 static int __bprm_mm_init(struct linux_binprm *bprm)
283 {
284         int err;
285         struct vm_area_struct *vma = NULL;
286         struct mm_struct *mm = bprm->mm;
287
288         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
289         if (!vma)
290                 return -ENOMEM;
291
292         down_write(&mm->mmap_sem);
293         vma->vm_mm = mm;
294
295         /*
296          * Place the stack at the largest stack address the architecture
297          * supports. Later, we'll move this to an appropriate place. We don't
298          * use STACK_TOP because that can depend on attributes which aren't
299          * configured yet.
300          */
301         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
302         vma->vm_end = STACK_TOP_MAX;
303         vma->vm_start = vma->vm_end - PAGE_SIZE;
304         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
305         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
306         INIT_LIST_HEAD(&vma->anon_vma_chain);
307
308         err = insert_vm_struct(mm, vma);
309         if (err)
310                 goto err;
311
312         mm->stack_vm = mm->total_vm = 1;
313         arch_bprm_mm_init(mm, vma);
314         up_write(&mm->mmap_sem);
315         bprm->p = vma->vm_end - sizeof(void *);
316         return 0;
317 err:
318         up_write(&mm->mmap_sem);
319         bprm->vma = NULL;
320         kmem_cache_free(vm_area_cachep, vma);
321         return err;
322 }
323
324 static bool valid_arg_len(struct linux_binprm *bprm, long len)
325 {
326         return len <= MAX_ARG_STRLEN;
327 }
328
329 #else
330
331 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
332 {
333 }
334
335 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
336                 int write)
337 {
338         struct page *page;
339
340         page = bprm->page[pos / PAGE_SIZE];
341         if (!page && write) {
342                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
343                 if (!page)
344                         return NULL;
345                 bprm->page[pos / PAGE_SIZE] = page;
346         }
347
348         return page;
349 }
350
351 static void put_arg_page(struct page *page)
352 {
353 }
354
355 static void free_arg_page(struct linux_binprm *bprm, int i)
356 {
357         if (bprm->page[i]) {
358                 __free_page(bprm->page[i]);
359                 bprm->page[i] = NULL;
360         }
361 }
362
363 static void free_arg_pages(struct linux_binprm *bprm)
364 {
365         int i;
366
367         for (i = 0; i < MAX_ARG_PAGES; i++)
368                 free_arg_page(bprm, i);
369 }
370
371 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
372                 struct page *page)
373 {
374 }
375
376 static int __bprm_mm_init(struct linux_binprm *bprm)
377 {
378         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
379         return 0;
380 }
381
382 static bool valid_arg_len(struct linux_binprm *bprm, long len)
383 {
384         return len <= bprm->p;
385 }
386
387 #endif /* CONFIG_MMU */
388
389 /*
390  * Create a new mm_struct and populate it with a temporary stack
391  * vm_area_struct.  We don't have enough context at this point to set the stack
392  * flags, permissions, and offset, so we use temporary values.  We'll update
393  * them later in setup_arg_pages().
394  */
395 static int bprm_mm_init(struct linux_binprm *bprm)
396 {
397         int err;
398         struct mm_struct *mm = NULL;
399
400         bprm->mm = mm = mm_alloc();
401         err = -ENOMEM;
402         if (!mm)
403                 goto err;
404
405         err = __bprm_mm_init(bprm);
406         if (err)
407                 goto err;
408
409         return 0;
410
411 err:
412         if (mm) {
413                 bprm->mm = NULL;
414                 mmdrop(mm);
415         }
416
417         return err;
418 }
419
420 struct user_arg_ptr {
421 #ifdef CONFIG_COMPAT
422         bool is_compat;
423 #endif
424         union {
425                 const char __user *const __user *native;
426 #ifdef CONFIG_COMPAT
427                 const compat_uptr_t __user *compat;
428 #endif
429         } ptr;
430 };
431
432 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
433 {
434         const char __user *native;
435
436 #ifdef CONFIG_COMPAT
437         if (unlikely(argv.is_compat)) {
438                 compat_uptr_t compat;
439
440                 if (get_user(compat, argv.ptr.compat + nr))
441                         return ERR_PTR(-EFAULT);
442
443                 return compat_ptr(compat);
444         }
445 #endif
446
447         if (get_user(native, argv.ptr.native + nr))
448                 return ERR_PTR(-EFAULT);
449
450         return native;
451 }
452
453 /*
454  * count() counts the number of strings in array ARGV.
455  */
456 static int count(struct user_arg_ptr argv, int max)
457 {
458         int i = 0;
459
460         if (argv.ptr.native != NULL) {
461                 for (;;) {
462                         const char __user *p = get_user_arg_ptr(argv, i);
463
464                         if (!p)
465                                 break;
466
467                         if (IS_ERR(p))
468                                 return -EFAULT;
469
470                         if (i >= max)
471                                 return -E2BIG;
472                         ++i;
473
474                         if (fatal_signal_pending(current))
475                                 return -ERESTARTNOHAND;
476                         cond_resched();
477                 }
478         }
479         return i;
480 }
481
482 /*
483  * 'copy_strings()' copies argument/environment strings from the old
484  * processes's memory to the new process's stack.  The call to get_user_pages()
485  * ensures the destination page is created and not swapped out.
486  */
487 static int copy_strings(int argc, struct user_arg_ptr argv,
488                         struct linux_binprm *bprm)
489 {
490         struct page *kmapped_page = NULL;
491         char *kaddr = NULL;
492         unsigned long kpos = 0;
493         int ret;
494
495         while (argc-- > 0) {
496                 const char __user *str;
497                 int len;
498                 unsigned long pos;
499
500                 ret = -EFAULT;
501                 str = get_user_arg_ptr(argv, argc);
502                 if (IS_ERR(str))
503                         goto out;
504
505                 len = strnlen_user(str, MAX_ARG_STRLEN);
506                 if (!len)
507                         goto out;
508
509                 ret = -E2BIG;
510                 if (!valid_arg_len(bprm, len))
511                         goto out;
512
513                 /* We're going to work our way backwords. */
514                 pos = bprm->p;
515                 str += len;
516                 bprm->p -= len;
517
518                 while (len > 0) {
519                         int offset, bytes_to_copy;
520
521                         if (fatal_signal_pending(current)) {
522                                 ret = -ERESTARTNOHAND;
523                                 goto out;
524                         }
525                         cond_resched();
526
527                         offset = pos % PAGE_SIZE;
528                         if (offset == 0)
529                                 offset = PAGE_SIZE;
530
531                         bytes_to_copy = offset;
532                         if (bytes_to_copy > len)
533                                 bytes_to_copy = len;
534
535                         offset -= bytes_to_copy;
536                         pos -= bytes_to_copy;
537                         str -= bytes_to_copy;
538                         len -= bytes_to_copy;
539
540                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
541                                 struct page *page;
542
543                                 page = get_arg_page(bprm, pos, 1);
544                                 if (!page) {
545                                         ret = -E2BIG;
546                                         goto out;
547                                 }
548
549                                 if (kmapped_page) {
550                                         flush_kernel_dcache_page(kmapped_page);
551                                         kunmap(kmapped_page);
552                                         put_arg_page(kmapped_page);
553                                 }
554                                 kmapped_page = page;
555                                 kaddr = kmap(kmapped_page);
556                                 kpos = pos & PAGE_MASK;
557                                 flush_arg_page(bprm, kpos, kmapped_page);
558                         }
559                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
560                                 ret = -EFAULT;
561                                 goto out;
562                         }
563                 }
564         }
565         ret = 0;
566 out:
567         if (kmapped_page) {
568                 flush_kernel_dcache_page(kmapped_page);
569                 kunmap(kmapped_page);
570                 put_arg_page(kmapped_page);
571         }
572         return ret;
573 }
574
575 /*
576  * Like copy_strings, but get argv and its values from kernel memory.
577  */
578 int copy_strings_kernel(int argc, const char *const *__argv,
579                         struct linux_binprm *bprm)
580 {
581         int r;
582         mm_segment_t oldfs = get_fs();
583         struct user_arg_ptr argv = {
584                 .ptr.native = (const char __user *const  __user *)__argv,
585         };
586
587         set_fs(KERNEL_DS);
588         r = copy_strings(argc, argv, bprm);
589         set_fs(oldfs);
590
591         return r;
592 }
593 EXPORT_SYMBOL(copy_strings_kernel);
594
595 #ifdef CONFIG_MMU
596
597 /*
598  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
599  * the binfmt code determines where the new stack should reside, we shift it to
600  * its final location.  The process proceeds as follows:
601  *
602  * 1) Use shift to calculate the new vma endpoints.
603  * 2) Extend vma to cover both the old and new ranges.  This ensures the
604  *    arguments passed to subsequent functions are consistent.
605  * 3) Move vma's page tables to the new range.
606  * 4) Free up any cleared pgd range.
607  * 5) Shrink the vma to cover only the new range.
608  */
609 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
610 {
611         struct mm_struct *mm = vma->vm_mm;
612         unsigned long old_start = vma->vm_start;
613         unsigned long old_end = vma->vm_end;
614         unsigned long length = old_end - old_start;
615         unsigned long new_start = old_start - shift;
616         unsigned long new_end = old_end - shift;
617         struct mmu_gather tlb;
618
619         BUG_ON(new_start > new_end);
620
621         /*
622          * ensure there are no vmas between where we want to go
623          * and where we are
624          */
625         if (vma != find_vma(mm, new_start))
626                 return -EFAULT;
627
628         /*
629          * cover the whole range: [new_start, old_end)
630          */
631         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
632                 return -ENOMEM;
633
634         /*
635          * move the page tables downwards, on failure we rely on
636          * process cleanup to remove whatever mess we made.
637          */
638         if (length != move_page_tables(vma, old_start,
639                                        vma, new_start, length, false))
640                 return -ENOMEM;
641
642         lru_add_drain();
643         tlb_gather_mmu(&tlb, mm, old_start, old_end);
644         if (new_end > old_start) {
645                 /*
646                  * when the old and new regions overlap clear from new_end.
647                  */
648                 free_pgd_range(&tlb, new_end, old_end, new_end,
649                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
650         } else {
651                 /*
652                  * otherwise, clean from old_start; this is done to not touch
653                  * the address space in [new_end, old_start) some architectures
654                  * have constraints on va-space that make this illegal (IA64) -
655                  * for the others its just a little faster.
656                  */
657                 free_pgd_range(&tlb, old_start, old_end, new_end,
658                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
659         }
660         tlb_finish_mmu(&tlb, old_start, old_end);
661
662         /*
663          * Shrink the vma to just the new range.  Always succeeds.
664          */
665         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
666
667         return 0;
668 }
669
670 /*
671  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
672  * the stack is optionally relocated, and some extra space is added.
673  */
674 int setup_arg_pages(struct linux_binprm *bprm,
675                     unsigned long stack_top,
676                     int executable_stack)
677 {
678         unsigned long ret;
679         unsigned long stack_shift;
680         struct mm_struct *mm = current->mm;
681         struct vm_area_struct *vma = bprm->vma;
682         struct vm_area_struct *prev = NULL;
683         unsigned long vm_flags;
684         unsigned long stack_base;
685         unsigned long stack_size;
686         unsigned long stack_expand;
687         unsigned long rlim_stack;
688
689 #ifdef CONFIG_STACK_GROWSUP
690         /* Limit stack size */
691         stack_base = rlimit_max(RLIMIT_STACK);
692         if (stack_base > STACK_SIZE_MAX)
693                 stack_base = STACK_SIZE_MAX;
694
695         /* Add space for stack randomization. */
696         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
697
698         /* Make sure we didn't let the argument array grow too large. */
699         if (vma->vm_end - vma->vm_start > stack_base)
700                 return -ENOMEM;
701
702         stack_base = PAGE_ALIGN(stack_top - stack_base);
703
704         stack_shift = vma->vm_start - stack_base;
705         mm->arg_start = bprm->p - stack_shift;
706         bprm->p = vma->vm_end - stack_shift;
707 #else
708         stack_top = arch_align_stack(stack_top);
709         stack_top = PAGE_ALIGN(stack_top);
710
711         if (unlikely(stack_top < mmap_min_addr) ||
712             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
713                 return -ENOMEM;
714
715         stack_shift = vma->vm_end - stack_top;
716
717         bprm->p -= stack_shift;
718         mm->arg_start = bprm->p;
719 #endif
720
721         if (bprm->loader)
722                 bprm->loader -= stack_shift;
723         bprm->exec -= stack_shift;
724
725         down_write(&mm->mmap_sem);
726         vm_flags = VM_STACK_FLAGS;
727
728         /*
729          * Adjust stack execute permissions; explicitly enable for
730          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
731          * (arch default) otherwise.
732          */
733         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
734                 vm_flags |= VM_EXEC;
735         else if (executable_stack == EXSTACK_DISABLE_X)
736                 vm_flags &= ~VM_EXEC;
737         vm_flags |= mm->def_flags;
738         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
739
740         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
741                         vm_flags);
742         if (ret)
743                 goto out_unlock;
744         BUG_ON(prev != vma);
745
746         /* Move stack pages down in memory. */
747         if (stack_shift) {
748                 ret = shift_arg_pages(vma, stack_shift);
749                 if (ret)
750                         goto out_unlock;
751         }
752
753         /* mprotect_fixup is overkill to remove the temporary stack flags */
754         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
755
756         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
757         stack_size = vma->vm_end - vma->vm_start;
758         /*
759          * Align this down to a page boundary as expand_stack
760          * will align it up.
761          */
762         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
763 #ifdef CONFIG_STACK_GROWSUP
764         if (stack_size + stack_expand > rlim_stack)
765                 stack_base = vma->vm_start + rlim_stack;
766         else
767                 stack_base = vma->vm_end + stack_expand;
768 #else
769         if (stack_size + stack_expand > rlim_stack)
770                 stack_base = vma->vm_end - rlim_stack;
771         else
772                 stack_base = vma->vm_start - stack_expand;
773 #endif
774         current->mm->start_stack = bprm->p;
775         ret = expand_stack(vma, stack_base);
776         if (ret)
777                 ret = -EFAULT;
778
779 out_unlock:
780         up_write(&mm->mmap_sem);
781         return ret;
782 }
783 EXPORT_SYMBOL(setup_arg_pages);
784
785 #endif /* CONFIG_MMU */
786
787 static struct file *do_open_execat(int fd, struct filename *name, int flags)
788 {
789         struct file *file;
790         int err;
791         struct open_flags open_exec_flags = {
792                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
793                 .acc_mode = MAY_EXEC | MAY_OPEN,
794                 .intent = LOOKUP_OPEN,
795                 .lookup_flags = LOOKUP_FOLLOW,
796         };
797
798         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
799                 return ERR_PTR(-EINVAL);
800         if (flags & AT_SYMLINK_NOFOLLOW)
801                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
802         if (flags & AT_EMPTY_PATH)
803                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
804
805         file = do_filp_open(fd, name, &open_exec_flags);
806         if (IS_ERR(file))
807                 goto out;
808
809         err = -EACCES;
810         if (!S_ISREG(file_inode(file)->i_mode))
811                 goto exit;
812
813         if (path_noexec(&file->f_path))
814                 goto exit;
815
816         err = deny_write_access(file);
817         if (err)
818                 goto exit;
819
820         if (name->name[0] != '\0')
821                 fsnotify_open(file);
822
823 out:
824         return file;
825
826 exit:
827         fput(file);
828         return ERR_PTR(err);
829 }
830
831 struct file *open_exec(const char *name)
832 {
833         struct filename *filename = getname_kernel(name);
834         struct file *f = ERR_CAST(filename);
835
836         if (!IS_ERR(filename)) {
837                 f = do_open_execat(AT_FDCWD, filename, 0);
838                 putname(filename);
839         }
840         return f;
841 }
842 EXPORT_SYMBOL(open_exec);
843
844 int kernel_read(struct file *file, loff_t offset,
845                 char *addr, unsigned long count)
846 {
847         mm_segment_t old_fs;
848         loff_t pos = offset;
849         int result;
850
851         old_fs = get_fs();
852         set_fs(get_ds());
853         /* The cast to a user pointer is valid due to the set_fs() */
854         result = vfs_read(file, (void __user *)addr, count, &pos);
855         set_fs(old_fs);
856         return result;
857 }
858
859 EXPORT_SYMBOL(kernel_read);
860
861 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
862 {
863         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
864         if (res > 0)
865                 flush_icache_range(addr, addr + len);
866         return res;
867 }
868 EXPORT_SYMBOL(read_code);
869
870 static int exec_mmap(struct mm_struct *mm)
871 {
872         struct task_struct *tsk;
873         struct mm_struct *old_mm, *active_mm;
874
875         /* Notify parent that we're no longer interested in the old VM */
876         tsk = current;
877         old_mm = current->mm;
878         mm_release(tsk, old_mm);
879
880         if (old_mm) {
881                 sync_mm_rss(old_mm);
882                 /*
883                  * Make sure that if there is a core dump in progress
884                  * for the old mm, we get out and die instead of going
885                  * through with the exec.  We must hold mmap_sem around
886                  * checking core_state and changing tsk->mm.
887                  */
888                 down_read(&old_mm->mmap_sem);
889                 if (unlikely(old_mm->core_state)) {
890                         up_read(&old_mm->mmap_sem);
891                         return -EINTR;
892                 }
893         }
894         task_lock(tsk);
895         active_mm = tsk->active_mm;
896         tsk->mm = mm;
897         tsk->active_mm = mm;
898         activate_mm(active_mm, mm);
899         tsk->mm->vmacache_seqnum = 0;
900         vmacache_flush(tsk);
901         task_unlock(tsk);
902         if (old_mm) {
903                 up_read(&old_mm->mmap_sem);
904                 BUG_ON(active_mm != old_mm);
905                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
906                 mm_update_next_owner(old_mm);
907                 mmput(old_mm);
908                 return 0;
909         }
910         mmdrop(active_mm);
911         return 0;
912 }
913
914 /*
915  * This function makes sure the current process has its own signal table,
916  * so that flush_signal_handlers can later reset the handlers without
917  * disturbing other processes.  (Other processes might share the signal
918  * table via the CLONE_SIGHAND option to clone().)
919  */
920 static int de_thread(struct task_struct *tsk)
921 {
922         struct signal_struct *sig = tsk->signal;
923         struct sighand_struct *oldsighand = tsk->sighand;
924         spinlock_t *lock = &oldsighand->siglock;
925
926         if (thread_group_empty(tsk))
927                 goto no_thread_group;
928
929         /*
930          * Kill all other threads in the thread group.
931          */
932         spin_lock_irq(lock);
933         if (signal_group_exit(sig)) {
934                 /*
935                  * Another group action in progress, just
936                  * return so that the signal is processed.
937                  */
938                 spin_unlock_irq(lock);
939                 return -EAGAIN;
940         }
941
942         sig->group_exit_task = tsk;
943         sig->notify_count = zap_other_threads(tsk);
944         if (!thread_group_leader(tsk))
945                 sig->notify_count--;
946
947         while (sig->notify_count) {
948                 __set_current_state(TASK_KILLABLE);
949                 spin_unlock_irq(lock);
950                 schedule();
951                 if (unlikely(__fatal_signal_pending(tsk)))
952                         goto killed;
953                 spin_lock_irq(lock);
954         }
955         spin_unlock_irq(lock);
956
957         /*
958          * At this point all other threads have exited, all we have to
959          * do is to wait for the thread group leader to become inactive,
960          * and to assume its PID:
961          */
962         if (!thread_group_leader(tsk)) {
963                 struct task_struct *leader = tsk->group_leader;
964
965                 for (;;) {
966                         threadgroup_change_begin(tsk);
967                         write_lock_irq(&tasklist_lock);
968                         /*
969                          * Do this under tasklist_lock to ensure that
970                          * exit_notify() can't miss ->group_exit_task
971                          */
972                         sig->notify_count = -1;
973                         if (likely(leader->exit_state))
974                                 break;
975                         __set_current_state(TASK_KILLABLE);
976                         write_unlock_irq(&tasklist_lock);
977                         threadgroup_change_end(tsk);
978                         schedule();
979                         if (unlikely(__fatal_signal_pending(tsk)))
980                                 goto killed;
981                 }
982
983                 /*
984                  * The only record we have of the real-time age of a
985                  * process, regardless of execs it's done, is start_time.
986                  * All the past CPU time is accumulated in signal_struct
987                  * from sister threads now dead.  But in this non-leader
988                  * exec, nothing survives from the original leader thread,
989                  * whose birth marks the true age of this process now.
990                  * When we take on its identity by switching to its PID, we
991                  * also take its birthdate (always earlier than our own).
992                  */
993                 tsk->start_time = leader->start_time;
994                 tsk->real_start_time = leader->real_start_time;
995
996                 BUG_ON(!same_thread_group(leader, tsk));
997                 BUG_ON(has_group_leader_pid(tsk));
998                 /*
999                  * An exec() starts a new thread group with the
1000                  * TGID of the previous thread group. Rehash the
1001                  * two threads with a switched PID, and release
1002                  * the former thread group leader:
1003                  */
1004
1005                 /* Become a process group leader with the old leader's pid.
1006                  * The old leader becomes a thread of the this thread group.
1007                  * Note: The old leader also uses this pid until release_task
1008                  *       is called.  Odd but simple and correct.
1009                  */
1010                 tsk->pid = leader->pid;
1011                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1012                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1013                 transfer_pid(leader, tsk, PIDTYPE_SID);
1014
1015                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1016                 list_replace_init(&leader->sibling, &tsk->sibling);
1017
1018                 tsk->group_leader = tsk;
1019                 leader->group_leader = tsk;
1020
1021                 tsk->exit_signal = SIGCHLD;
1022                 leader->exit_signal = -1;
1023
1024                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1025                 leader->exit_state = EXIT_DEAD;
1026
1027                 /*
1028                  * We are going to release_task()->ptrace_unlink() silently,
1029                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1030                  * the tracer wont't block again waiting for this thread.
1031                  */
1032                 if (unlikely(leader->ptrace))
1033                         __wake_up_parent(leader, leader->parent);
1034                 write_unlock_irq(&tasklist_lock);
1035                 threadgroup_change_end(tsk);
1036
1037                 release_task(leader);
1038         }
1039
1040         sig->group_exit_task = NULL;
1041         sig->notify_count = 0;
1042
1043 no_thread_group:
1044         /* we have changed execution domain */
1045         tsk->exit_signal = SIGCHLD;
1046
1047         exit_itimers(sig);
1048         flush_itimer_signals();
1049
1050         if (atomic_read(&oldsighand->count) != 1) {
1051                 struct sighand_struct *newsighand;
1052                 /*
1053                  * This ->sighand is shared with the CLONE_SIGHAND
1054                  * but not CLONE_THREAD task, switch to the new one.
1055                  */
1056                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1057                 if (!newsighand)
1058                         return -ENOMEM;
1059
1060                 atomic_set(&newsighand->count, 1);
1061                 memcpy(newsighand->action, oldsighand->action,
1062                        sizeof(newsighand->action));
1063
1064                 write_lock_irq(&tasklist_lock);
1065                 spin_lock(&oldsighand->siglock);
1066                 rcu_assign_pointer(tsk->sighand, newsighand);
1067                 spin_unlock(&oldsighand->siglock);
1068                 write_unlock_irq(&tasklist_lock);
1069
1070                 __cleanup_sighand(oldsighand);
1071         }
1072
1073         BUG_ON(!thread_group_leader(tsk));
1074         return 0;
1075
1076 killed:
1077         /* protects against exit_notify() and __exit_signal() */
1078         read_lock(&tasklist_lock);
1079         sig->group_exit_task = NULL;
1080         sig->notify_count = 0;
1081         read_unlock(&tasklist_lock);
1082         return -EAGAIN;
1083 }
1084
1085 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1086 {
1087         task_lock(tsk);
1088         strncpy(buf, tsk->comm, buf_size);
1089         task_unlock(tsk);
1090         return buf;
1091 }
1092 EXPORT_SYMBOL_GPL(__get_task_comm);
1093
1094 /*
1095  * These functions flushes out all traces of the currently running executable
1096  * so that a new one can be started
1097  */
1098
1099 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1100 {
1101         task_lock(tsk);
1102         trace_task_rename(tsk, buf);
1103         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1104         task_unlock(tsk);
1105         perf_event_comm(tsk, exec);
1106 }
1107
1108 int flush_old_exec(struct linux_binprm * bprm)
1109 {
1110         int retval;
1111
1112         /*
1113          * Make sure we have a private signal table and that
1114          * we are unassociated from the previous thread group.
1115          */
1116         retval = de_thread(current);
1117         if (retval)
1118                 goto out;
1119
1120         /*
1121          * Must be called _before_ exec_mmap() as bprm->mm is
1122          * not visibile until then. This also enables the update
1123          * to be lockless.
1124          */
1125         set_mm_exe_file(bprm->mm, bprm->file);
1126
1127         /*
1128          * Release all of the old mmap stuff
1129          */
1130         acct_arg_size(bprm, 0);
1131         retval = exec_mmap(bprm->mm);
1132         if (retval)
1133                 goto out;
1134
1135         bprm->mm = NULL;                /* We're using it now */
1136
1137         set_fs(USER_DS);
1138         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1139                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1140         flush_thread();
1141         current->personality &= ~bprm->per_clear;
1142
1143         /*
1144          * We have to apply CLOEXEC before we change whether the process is
1145          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1146          * trying to access the should-be-closed file descriptors of a process
1147          * undergoing exec(2).
1148          */
1149         do_close_on_exec(current->files);
1150         return 0;
1151
1152 out:
1153         return retval;
1154 }
1155 EXPORT_SYMBOL(flush_old_exec);
1156
1157 void would_dump(struct linux_binprm *bprm, struct file *file)
1158 {
1159         struct inode *inode = file_inode(file);
1160
1161         if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1162                 struct user_namespace *old, *user_ns;
1163
1164                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1165
1166                 /* Ensure mm->user_ns contains the executable */
1167                 user_ns = old = bprm->mm->user_ns;
1168                 while ((user_ns != &init_user_ns) &&
1169                        !privileged_wrt_inode_uidgid(user_ns, inode))
1170                         user_ns = user_ns->parent;
1171
1172                 if (old != user_ns) {
1173                         bprm->mm->user_ns = get_user_ns(user_ns);
1174                         put_user_ns(old);
1175                 }
1176         }
1177 }
1178 EXPORT_SYMBOL(would_dump);
1179
1180 void setup_new_exec(struct linux_binprm * bprm)
1181 {
1182         arch_pick_mmap_layout(current->mm);
1183
1184         /* This is the point of no return */
1185         current->sas_ss_sp = current->sas_ss_size = 0;
1186
1187         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1188                 set_dumpable(current->mm, SUID_DUMP_USER);
1189         else
1190                 set_dumpable(current->mm, suid_dumpable);
1191
1192         perf_event_exec();
1193         __set_task_comm(current, kbasename(bprm->filename), true);
1194
1195         /* Set the new mm task size. We have to do that late because it may
1196          * depend on TIF_32BIT which is only updated in flush_thread() on
1197          * some architectures like powerpc
1198          */
1199         current->mm->task_size = TASK_SIZE;
1200
1201         /* install the new credentials */
1202         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1203             !gid_eq(bprm->cred->gid, current_egid())) {
1204                 current->pdeath_signal = 0;
1205         } else {
1206                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1207                         set_dumpable(current->mm, suid_dumpable);
1208         }
1209
1210         /* An exec changes our domain. We are no longer part of the thread
1211            group */
1212         current->self_exec_id++;
1213         flush_signal_handlers(current, 0);
1214 }
1215 EXPORT_SYMBOL(setup_new_exec);
1216
1217 /*
1218  * Prepare credentials and lock ->cred_guard_mutex.
1219  * install_exec_creds() commits the new creds and drops the lock.
1220  * Or, if exec fails before, free_bprm() should release ->cred and
1221  * and unlock.
1222  */
1223 int prepare_bprm_creds(struct linux_binprm *bprm)
1224 {
1225         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1226                 return -ERESTARTNOINTR;
1227
1228         bprm->cred = prepare_exec_creds();
1229         if (likely(bprm->cred))
1230                 return 0;
1231
1232         mutex_unlock(&current->signal->cred_guard_mutex);
1233         return -ENOMEM;
1234 }
1235
1236 static void free_bprm(struct linux_binprm *bprm)
1237 {
1238         free_arg_pages(bprm);
1239         if (bprm->cred) {
1240                 mutex_unlock(&current->signal->cred_guard_mutex);
1241                 abort_creds(bprm->cred);
1242         }
1243         if (bprm->file) {
1244                 allow_write_access(bprm->file);
1245                 fput(bprm->file);
1246         }
1247         /* If a binfmt changed the interp, free it. */
1248         if (bprm->interp != bprm->filename)
1249                 kfree(bprm->interp);
1250         kfree(bprm);
1251 }
1252
1253 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1254 {
1255         /* If a binfmt changed the interp, free it first. */
1256         if (bprm->interp != bprm->filename)
1257                 kfree(bprm->interp);
1258         bprm->interp = kstrdup(interp, GFP_KERNEL);
1259         if (!bprm->interp)
1260                 return -ENOMEM;
1261         return 0;
1262 }
1263 EXPORT_SYMBOL(bprm_change_interp);
1264
1265 /*
1266  * install the new credentials for this executable
1267  */
1268 void install_exec_creds(struct linux_binprm *bprm)
1269 {
1270         security_bprm_committing_creds(bprm);
1271
1272         commit_creds(bprm->cred);
1273         bprm->cred = NULL;
1274
1275         /*
1276          * Disable monitoring for regular users
1277          * when executing setuid binaries. Must
1278          * wait until new credentials are committed
1279          * by commit_creds() above
1280          */
1281         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1282                 perf_event_exit_task(current);
1283         /*
1284          * cred_guard_mutex must be held at least to this point to prevent
1285          * ptrace_attach() from altering our determination of the task's
1286          * credentials; any time after this it may be unlocked.
1287          */
1288         security_bprm_committed_creds(bprm);
1289         mutex_unlock(&current->signal->cred_guard_mutex);
1290 }
1291 EXPORT_SYMBOL(install_exec_creds);
1292
1293 /*
1294  * determine how safe it is to execute the proposed program
1295  * - the caller must hold ->cred_guard_mutex to protect against
1296  *   PTRACE_ATTACH or seccomp thread-sync
1297  */
1298 static void check_unsafe_exec(struct linux_binprm *bprm)
1299 {
1300         struct task_struct *p = current, *t;
1301         unsigned n_fs;
1302
1303         if (p->ptrace) {
1304                 if (ptracer_capable(p, current_user_ns()))
1305                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1306                 else
1307                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1308         }
1309
1310         /*
1311          * This isn't strictly necessary, but it makes it harder for LSMs to
1312          * mess up.
1313          */
1314         if (task_no_new_privs(current))
1315                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1316
1317         t = p;
1318         n_fs = 1;
1319         spin_lock(&p->fs->lock);
1320         rcu_read_lock();
1321         while_each_thread(p, t) {
1322                 if (t->fs == p->fs)
1323                         n_fs++;
1324         }
1325         rcu_read_unlock();
1326
1327         if (p->fs->users > n_fs)
1328                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1329         else
1330                 p->fs->in_exec = 1;
1331         spin_unlock(&p->fs->lock);
1332 }
1333
1334 static void bprm_fill_uid(struct linux_binprm *bprm)
1335 {
1336         struct inode *inode;
1337         unsigned int mode;
1338         kuid_t uid;
1339         kgid_t gid;
1340
1341         /* clear any previous set[ug]id data from a previous binary */
1342         bprm->cred->euid = current_euid();
1343         bprm->cred->egid = current_egid();
1344
1345         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1346                 return;
1347
1348         if (task_no_new_privs(current))
1349                 return;
1350
1351         inode = file_inode(bprm->file);
1352         mode = READ_ONCE(inode->i_mode);
1353         if (!(mode & (S_ISUID|S_ISGID)))
1354                 return;
1355
1356         /* Be careful if suid/sgid is set */
1357         mutex_lock(&inode->i_mutex);
1358
1359         /* reload atomically mode/uid/gid now that lock held */
1360         mode = inode->i_mode;
1361         uid = inode->i_uid;
1362         gid = inode->i_gid;
1363         mutex_unlock(&inode->i_mutex);
1364
1365         /* We ignore suid/sgid if there are no mappings for them in the ns */
1366         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1367                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1368                 return;
1369
1370         if (mode & S_ISUID) {
1371                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1372                 bprm->cred->euid = uid;
1373         }
1374
1375         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1376                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1377                 bprm->cred->egid = gid;
1378         }
1379 }
1380
1381 /*
1382  * Fill the binprm structure from the inode.
1383  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1384  *
1385  * This may be called multiple times for binary chains (scripts for example).
1386  */
1387 int prepare_binprm(struct linux_binprm *bprm)
1388 {
1389         int retval;
1390
1391         bprm_fill_uid(bprm);
1392
1393         /* fill in binprm security blob */
1394         retval = security_bprm_set_creds(bprm);
1395         if (retval)
1396                 return retval;
1397         bprm->cred_prepared = 1;
1398
1399         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1400         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1401 }
1402
1403 EXPORT_SYMBOL(prepare_binprm);
1404
1405 /*
1406  * Arguments are '\0' separated strings found at the location bprm->p
1407  * points to; chop off the first by relocating brpm->p to right after
1408  * the first '\0' encountered.
1409  */
1410 int remove_arg_zero(struct linux_binprm *bprm)
1411 {
1412         int ret = 0;
1413         unsigned long offset;
1414         char *kaddr;
1415         struct page *page;
1416
1417         if (!bprm->argc)
1418                 return 0;
1419
1420         do {
1421                 offset = bprm->p & ~PAGE_MASK;
1422                 page = get_arg_page(bprm, bprm->p, 0);
1423                 if (!page) {
1424                         ret = -EFAULT;
1425                         goto out;
1426                 }
1427                 kaddr = kmap_atomic(page);
1428
1429                 for (; offset < PAGE_SIZE && kaddr[offset];
1430                                 offset++, bprm->p++)
1431                         ;
1432
1433                 kunmap_atomic(kaddr);
1434                 put_arg_page(page);
1435
1436                 if (offset == PAGE_SIZE)
1437                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1438         } while (offset == PAGE_SIZE);
1439
1440         bprm->p++;
1441         bprm->argc--;
1442         ret = 0;
1443
1444 out:
1445         return ret;
1446 }
1447 EXPORT_SYMBOL(remove_arg_zero);
1448
1449 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1450 /*
1451  * cycle the list of binary formats handler, until one recognizes the image
1452  */
1453 int search_binary_handler(struct linux_binprm *bprm)
1454 {
1455         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1456         struct linux_binfmt *fmt;
1457         int retval;
1458
1459         /* This allows 4 levels of binfmt rewrites before failing hard. */
1460         if (bprm->recursion_depth > 5)
1461                 return -ELOOP;
1462
1463         retval = security_bprm_check(bprm);
1464         if (retval)
1465                 return retval;
1466
1467         retval = -ENOENT;
1468  retry:
1469         read_lock(&binfmt_lock);
1470         list_for_each_entry(fmt, &formats, lh) {
1471                 if (!try_module_get(fmt->module))
1472                         continue;
1473                 read_unlock(&binfmt_lock);
1474                 bprm->recursion_depth++;
1475                 retval = fmt->load_binary(bprm);
1476                 read_lock(&binfmt_lock);
1477                 put_binfmt(fmt);
1478                 bprm->recursion_depth--;
1479                 if (retval < 0 && !bprm->mm) {
1480                         /* we got to flush_old_exec() and failed after it */
1481                         read_unlock(&binfmt_lock);
1482                         force_sigsegv(SIGSEGV, current);
1483                         return retval;
1484                 }
1485                 if (retval != -ENOEXEC || !bprm->file) {
1486                         read_unlock(&binfmt_lock);
1487                         return retval;
1488                 }
1489         }
1490         read_unlock(&binfmt_lock);
1491
1492         if (need_retry) {
1493                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1494                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1495                         return retval;
1496                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1497                         return retval;
1498                 need_retry = false;
1499                 goto retry;
1500         }
1501
1502         return retval;
1503 }
1504 EXPORT_SYMBOL(search_binary_handler);
1505
1506 static int exec_binprm(struct linux_binprm *bprm)
1507 {
1508         pid_t old_pid, old_vpid;
1509         int ret;
1510
1511         /* Need to fetch pid before load_binary changes it */
1512         old_pid = current->pid;
1513         rcu_read_lock();
1514         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1515         rcu_read_unlock();
1516
1517         ret = search_binary_handler(bprm);
1518         if (ret >= 0) {
1519                 audit_bprm(bprm);
1520                 trace_sched_process_exec(current, old_pid, bprm);
1521                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1522                 proc_exec_connector(current);
1523         }
1524
1525         return ret;
1526 }
1527
1528 /*
1529  * sys_execve() executes a new program.
1530  */
1531 static int do_execveat_common(int fd, struct filename *filename,
1532                               struct user_arg_ptr argv,
1533                               struct user_arg_ptr envp,
1534                               int flags)
1535 {
1536         char *pathbuf = NULL;
1537         struct linux_binprm *bprm;
1538         struct file *file;
1539         struct files_struct *displaced;
1540         int retval;
1541
1542         if (IS_ERR(filename))
1543                 return PTR_ERR(filename);
1544
1545         /*
1546          * We move the actual failure in case of RLIMIT_NPROC excess from
1547          * set*uid() to execve() because too many poorly written programs
1548          * don't check setuid() return code.  Here we additionally recheck
1549          * whether NPROC limit is still exceeded.
1550          */
1551         if ((current->flags & PF_NPROC_EXCEEDED) &&
1552             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1553                 retval = -EAGAIN;
1554                 goto out_ret;
1555         }
1556
1557         /* We're below the limit (still or again), so we don't want to make
1558          * further execve() calls fail. */
1559         current->flags &= ~PF_NPROC_EXCEEDED;
1560
1561         retval = unshare_files(&displaced);
1562         if (retval)
1563                 goto out_ret;
1564
1565         retval = -ENOMEM;
1566         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1567         if (!bprm)
1568                 goto out_files;
1569
1570         retval = prepare_bprm_creds(bprm);
1571         if (retval)
1572                 goto out_free;
1573
1574         check_unsafe_exec(bprm);
1575         current->in_execve = 1;
1576
1577         file = do_open_execat(fd, filename, flags);
1578         retval = PTR_ERR(file);
1579         if (IS_ERR(file))
1580                 goto out_unmark;
1581
1582         sched_exec();
1583
1584         bprm->file = file;
1585         if (fd == AT_FDCWD || filename->name[0] == '/') {
1586                 bprm->filename = filename->name;
1587         } else {
1588                 if (filename->name[0] == '\0')
1589                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1590                 else
1591                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1592                                             fd, filename->name);
1593                 if (!pathbuf) {
1594                         retval = -ENOMEM;
1595                         goto out_unmark;
1596                 }
1597                 /*
1598                  * Record that a name derived from an O_CLOEXEC fd will be
1599                  * inaccessible after exec. Relies on having exclusive access to
1600                  * current->files (due to unshare_files above).
1601                  */
1602                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1603                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1604                 bprm->filename = pathbuf;
1605         }
1606         bprm->interp = bprm->filename;
1607
1608         retval = bprm_mm_init(bprm);
1609         if (retval)
1610                 goto out_unmark;
1611
1612         bprm->argc = count(argv, MAX_ARG_STRINGS);
1613         if ((retval = bprm->argc) < 0)
1614                 goto out;
1615
1616         bprm->envc = count(envp, MAX_ARG_STRINGS);
1617         if ((retval = bprm->envc) < 0)
1618                 goto out;
1619
1620         retval = prepare_binprm(bprm);
1621         if (retval < 0)
1622                 goto out;
1623
1624         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1625         if (retval < 0)
1626                 goto out;
1627
1628         bprm->exec = bprm->p;
1629         retval = copy_strings(bprm->envc, envp, bprm);
1630         if (retval < 0)
1631                 goto out;
1632
1633         retval = copy_strings(bprm->argc, argv, bprm);
1634         if (retval < 0)
1635                 goto out;
1636
1637         would_dump(bprm, bprm->file);
1638
1639         retval = exec_binprm(bprm);
1640         if (retval < 0)
1641                 goto out;
1642
1643         /* execve succeeded */
1644         current->fs->in_exec = 0;
1645         current->in_execve = 0;
1646         acct_update_integrals(current);
1647         task_numa_free(current, false);
1648         free_bprm(bprm);
1649         kfree(pathbuf);
1650         putname(filename);
1651         if (displaced)
1652                 put_files_struct(displaced);
1653         return retval;
1654
1655 out:
1656         if (bprm->mm) {
1657                 acct_arg_size(bprm, 0);
1658                 mmput(bprm->mm);
1659         }
1660
1661 out_unmark:
1662         current->fs->in_exec = 0;
1663         current->in_execve = 0;
1664
1665 out_free:
1666         free_bprm(bprm);
1667         kfree(pathbuf);
1668
1669 out_files:
1670         if (displaced)
1671                 reset_files_struct(displaced);
1672 out_ret:
1673         putname(filename);
1674         return retval;
1675 }
1676
1677 int do_execve(struct filename *filename,
1678         const char __user *const __user *__argv,
1679         const char __user *const __user *__envp)
1680 {
1681         struct user_arg_ptr argv = { .ptr.native = __argv };
1682         struct user_arg_ptr envp = { .ptr.native = __envp };
1683         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1684 }
1685
1686 int do_execveat(int fd, struct filename *filename,
1687                 const char __user *const __user *__argv,
1688                 const char __user *const __user *__envp,
1689                 int flags)
1690 {
1691         struct user_arg_ptr argv = { .ptr.native = __argv };
1692         struct user_arg_ptr envp = { .ptr.native = __envp };
1693
1694         return do_execveat_common(fd, filename, argv, envp, flags);
1695 }
1696
1697 #ifdef CONFIG_COMPAT
1698 static int compat_do_execve(struct filename *filename,
1699         const compat_uptr_t __user *__argv,
1700         const compat_uptr_t __user *__envp)
1701 {
1702         struct user_arg_ptr argv = {
1703                 .is_compat = true,
1704                 .ptr.compat = __argv,
1705         };
1706         struct user_arg_ptr envp = {
1707                 .is_compat = true,
1708                 .ptr.compat = __envp,
1709         };
1710         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1711 }
1712
1713 static int compat_do_execveat(int fd, struct filename *filename,
1714                               const compat_uptr_t __user *__argv,
1715                               const compat_uptr_t __user *__envp,
1716                               int flags)
1717 {
1718         struct user_arg_ptr argv = {
1719                 .is_compat = true,
1720                 .ptr.compat = __argv,
1721         };
1722         struct user_arg_ptr envp = {
1723                 .is_compat = true,
1724                 .ptr.compat = __envp,
1725         };
1726         return do_execveat_common(fd, filename, argv, envp, flags);
1727 }
1728 #endif
1729
1730 void set_binfmt(struct linux_binfmt *new)
1731 {
1732         struct mm_struct *mm = current->mm;
1733
1734         if (mm->binfmt)
1735                 module_put(mm->binfmt->module);
1736
1737         mm->binfmt = new;
1738         if (new)
1739                 __module_get(new->module);
1740 }
1741 EXPORT_SYMBOL(set_binfmt);
1742
1743 /*
1744  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1745  */
1746 void set_dumpable(struct mm_struct *mm, int value)
1747 {
1748         unsigned long old, new;
1749
1750         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1751                 return;
1752
1753         do {
1754                 old = ACCESS_ONCE(mm->flags);
1755                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1756         } while (cmpxchg(&mm->flags, old, new) != old);
1757 }
1758
1759 SYSCALL_DEFINE3(execve,
1760                 const char __user *, filename,
1761                 const char __user *const __user *, argv,
1762                 const char __user *const __user *, envp)
1763 {
1764         return do_execve(getname(filename), argv, envp);
1765 }
1766
1767 SYSCALL_DEFINE5(execveat,
1768                 int, fd, const char __user *, filename,
1769                 const char __user *const __user *, argv,
1770                 const char __user *const __user *, envp,
1771                 int, flags)
1772 {
1773         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1774
1775         return do_execveat(fd,
1776                            getname_flags(filename, lookup_flags, NULL),
1777                            argv, envp, flags);
1778 }
1779
1780 #ifdef CONFIG_COMPAT
1781 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1782         const compat_uptr_t __user *, argv,
1783         const compat_uptr_t __user *, envp)
1784 {
1785         return compat_do_execve(getname(filename), argv, envp);
1786 }
1787
1788 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1789                        const char __user *, filename,
1790                        const compat_uptr_t __user *, argv,
1791                        const compat_uptr_t __user *, envp,
1792                        int,  flags)
1793 {
1794         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1795
1796         return compat_do_execveat(fd,
1797                                   getname_flags(filename, lookup_flags, NULL),
1798                                   argv, envp, flags);
1799 }
1800 #endif