OSDN Git Service

Merge 4.4.179 into android-4.4-p
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_KVMALLOC]        = "kvmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_PAGE_GET]        = "page get",
49         [FAULT_ALLOC_BIO]       = "alloc bio",
50         [FAULT_ALLOC_NID]       = "alloc nid",
51         [FAULT_ORPHAN]          = "orphan",
52         [FAULT_BLOCK]           = "no more block",
53         [FAULT_DIR_DEPTH]       = "too big dir depth",
54         [FAULT_EVICT_INODE]     = "evict_inode fail",
55         [FAULT_TRUNCATE]        = "truncate fail",
56         [FAULT_IO]              = "IO error",
57         [FAULT_CHECKPOINT]      = "checkpoint error",
58 };
59
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61                                                 unsigned int rate)
62 {
63         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65         if (rate) {
66                 atomic_set(&ffi->inject_ops, 0);
67                 ffi->inject_rate = rate;
68                 ffi->inject_type = (1 << FAULT_MAX) - 1;
69         } else {
70                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71         }
72 }
73 #endif
74
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77         .scan_objects = f2fs_shrink_scan,
78         .count_objects = f2fs_shrink_count,
79         .seeks = DEFAULT_SEEKS,
80 };
81
82 enum {
83         Opt_gc_background,
84         Opt_disable_roll_forward,
85         Opt_norecovery,
86         Opt_discard,
87         Opt_nodiscard,
88         Opt_noheap,
89         Opt_heap,
90         Opt_user_xattr,
91         Opt_nouser_xattr,
92         Opt_acl,
93         Opt_noacl,
94         Opt_active_logs,
95         Opt_disable_ext_identify,
96         Opt_inline_xattr,
97         Opt_noinline_xattr,
98         Opt_inline_xattr_size,
99         Opt_inline_data,
100         Opt_inline_dentry,
101         Opt_noinline_dentry,
102         Opt_flush_merge,
103         Opt_noflush_merge,
104         Opt_nobarrier,
105         Opt_fastboot,
106         Opt_extent_cache,
107         Opt_noextent_cache,
108         Opt_noinline_data,
109         Opt_data_flush,
110         Opt_reserve_root,
111         Opt_resgid,
112         Opt_resuid,
113         Opt_mode,
114         Opt_io_size_bits,
115         Opt_fault_injection,
116         Opt_lazytime,
117         Opt_nolazytime,
118         Opt_quota,
119         Opt_noquota,
120         Opt_usrquota,
121         Opt_grpquota,
122         Opt_prjquota,
123         Opt_usrjquota,
124         Opt_grpjquota,
125         Opt_prjjquota,
126         Opt_offusrjquota,
127         Opt_offgrpjquota,
128         Opt_offprjjquota,
129         Opt_jqfmt_vfsold,
130         Opt_jqfmt_vfsv0,
131         Opt_jqfmt_vfsv1,
132         Opt_whint,
133         Opt_alloc,
134         Opt_fsync,
135         Opt_test_dummy_encryption,
136         Opt_err,
137 };
138
139 static match_table_t f2fs_tokens = {
140         {Opt_gc_background, "background_gc=%s"},
141         {Opt_disable_roll_forward, "disable_roll_forward"},
142         {Opt_norecovery, "norecovery"},
143         {Opt_discard, "discard"},
144         {Opt_nodiscard, "nodiscard"},
145         {Opt_noheap, "no_heap"},
146         {Opt_heap, "heap"},
147         {Opt_user_xattr, "user_xattr"},
148         {Opt_nouser_xattr, "nouser_xattr"},
149         {Opt_acl, "acl"},
150         {Opt_noacl, "noacl"},
151         {Opt_active_logs, "active_logs=%u"},
152         {Opt_disable_ext_identify, "disable_ext_identify"},
153         {Opt_inline_xattr, "inline_xattr"},
154         {Opt_noinline_xattr, "noinline_xattr"},
155         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
156         {Opt_inline_data, "inline_data"},
157         {Opt_inline_dentry, "inline_dentry"},
158         {Opt_noinline_dentry, "noinline_dentry"},
159         {Opt_flush_merge, "flush_merge"},
160         {Opt_noflush_merge, "noflush_merge"},
161         {Opt_nobarrier, "nobarrier"},
162         {Opt_fastboot, "fastboot"},
163         {Opt_extent_cache, "extent_cache"},
164         {Opt_noextent_cache, "noextent_cache"},
165         {Opt_noinline_data, "noinline_data"},
166         {Opt_data_flush, "data_flush"},
167         {Opt_reserve_root, "reserve_root=%u"},
168         {Opt_resgid, "resgid=%u"},
169         {Opt_resuid, "resuid=%u"},
170         {Opt_mode, "mode=%s"},
171         {Opt_io_size_bits, "io_bits=%u"},
172         {Opt_fault_injection, "fault_injection=%u"},
173         {Opt_lazytime, "lazytime"},
174         {Opt_nolazytime, "nolazytime"},
175         {Opt_quota, "quota"},
176         {Opt_noquota, "noquota"},
177         {Opt_usrquota, "usrquota"},
178         {Opt_grpquota, "grpquota"},
179         {Opt_prjquota, "prjquota"},
180         {Opt_usrjquota, "usrjquota=%s"},
181         {Opt_grpjquota, "grpjquota=%s"},
182         {Opt_prjjquota, "prjjquota=%s"},
183         {Opt_offusrjquota, "usrjquota="},
184         {Opt_offgrpjquota, "grpjquota="},
185         {Opt_offprjjquota, "prjjquota="},
186         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189         {Opt_whint, "whint_mode=%s"},
190         {Opt_alloc, "alloc_mode=%s"},
191         {Opt_fsync, "fsync_mode=%s"},
192         {Opt_test_dummy_encryption, "test_dummy_encryption"},
193         {Opt_err, NULL},
194 };
195
196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198         struct va_format vaf;
199         va_list args;
200
201         va_start(args, fmt);
202         vaf.fmt = fmt;
203         vaf.va = &args;
204         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205         va_end(args);
206 }
207
208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210         block_t limit = (sbi->user_block_count << 1) / 1000;
211
212         /* limit is 0.2% */
213         if (test_opt(sbi, RESERVE_ROOT) &&
214                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
216                 f2fs_msg(sbi->sb, KERN_INFO,
217                         "Reduce reserved blocks for root = %u",
218                         F2FS_OPTION(sbi).root_reserved_blocks);
219         }
220         if (!test_opt(sbi, RESERVE_ROOT) &&
221                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
222                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
224                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225                 f2fs_msg(sbi->sb, KERN_INFO,
226                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227                                 from_kuid_munged(&init_user_ns,
228                                         F2FS_OPTION(sbi).s_resuid),
229                                 from_kgid_munged(&init_user_ns,
230                                         F2FS_OPTION(sbi).s_resgid));
231 }
232
233 static void init_once(void *foo)
234 {
235         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236
237         inode_init_once(&fi->vfs_inode);
238 }
239
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244                                                         substring_t *args)
245 {
246         struct f2fs_sb_info *sbi = F2FS_SB(sb);
247         char *qname;
248         int ret = -EINVAL;
249
250         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251                 f2fs_msg(sb, KERN_ERR,
252                         "Cannot change journaled "
253                         "quota options when quota turned on");
254                 return -EINVAL;
255         }
256         if (f2fs_sb_has_quota_ino(sb)) {
257                 f2fs_msg(sb, KERN_INFO,
258                         "QUOTA feature is enabled, so ignore qf_name");
259                 return 0;
260         }
261
262         qname = match_strdup(args);
263         if (!qname) {
264                 f2fs_msg(sb, KERN_ERR,
265                         "Not enough memory for storing quotafile name");
266                 return -EINVAL;
267         }
268         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270                         ret = 0;
271                 else
272                         f2fs_msg(sb, KERN_ERR,
273                                  "%s quota file already specified",
274                                  QTYPE2NAME(qtype));
275                 goto errout;
276         }
277         if (strchr(qname, '/')) {
278                 f2fs_msg(sb, KERN_ERR,
279                         "quotafile must be on filesystem root");
280                 goto errout;
281         }
282         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283         set_opt(sbi, QUOTA);
284         return 0;
285 errout:
286         kfree(qname);
287         return ret;
288 }
289
290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292         struct f2fs_sb_info *sbi = F2FS_SB(sb);
293
294         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296                         " when quota turned on");
297                 return -EINVAL;
298         }
299         kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301         return 0;
302 }
303
304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306         /*
307          * We do the test below only for project quotas. 'usrquota' and
308          * 'grpquota' mount options are allowed even without quota feature
309          * to support legacy quotas in quota files.
310          */
311         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313                          "Cannot enable project quota enforcement.");
314                 return -1;
315         }
316         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319                 if (test_opt(sbi, USRQUOTA) &&
320                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321                         clear_opt(sbi, USRQUOTA);
322
323                 if (test_opt(sbi, GRPQUOTA) &&
324                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325                         clear_opt(sbi, GRPQUOTA);
326
327                 if (test_opt(sbi, PRJQUOTA) &&
328                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329                         clear_opt(sbi, PRJQUOTA);
330
331                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332                                 test_opt(sbi, PRJQUOTA)) {
333                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334                                         "format mixing");
335                         return -1;
336                 }
337
338                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340                                         "not specified");
341                         return -1;
342                 }
343         }
344
345         if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346                 f2fs_msg(sbi->sb, KERN_INFO,
347                         "QUOTA feature is enabled, so ignore jquota_fmt");
348                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
349         }
350         if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351                 f2fs_msg(sbi->sb, KERN_INFO,
352                          "Filesystem with quota feature cannot be mounted RDWR "
353                          "without CONFIG_QUOTA");
354                 return -1;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         struct request_queue *q;
364         substring_t args[MAX_OPT_ARGS];
365         char *p, *name;
366         int arg = 0;
367         kuid_t uid;
368         kgid_t gid;
369 #ifdef CONFIG_QUOTA
370         int ret;
371 #endif
372
373         if (!options)
374                 return 0;
375
376         while ((p = strsep(&options, ",")) != NULL) {
377                 int token;
378                 if (!*p)
379                         continue;
380                 /*
381                  * Initialize args struct so we know whether arg was
382                  * found; some options take optional arguments.
383                  */
384                 args[0].to = args[0].from = NULL;
385                 token = match_token(p, f2fs_tokens, args);
386
387                 switch (token) {
388                 case Opt_gc_background:
389                         name = match_strdup(&args[0]);
390
391                         if (!name)
392                                 return -ENOMEM;
393                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394                                 set_opt(sbi, BG_GC);
395                                 clear_opt(sbi, FORCE_FG_GC);
396                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397                                 clear_opt(sbi, BG_GC);
398                                 clear_opt(sbi, FORCE_FG_GC);
399                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400                                 set_opt(sbi, BG_GC);
401                                 set_opt(sbi, FORCE_FG_GC);
402                         } else {
403                                 kfree(name);
404                                 return -EINVAL;
405                         }
406                         kfree(name);
407                         break;
408                 case Opt_disable_roll_forward:
409                         set_opt(sbi, DISABLE_ROLL_FORWARD);
410                         break;
411                 case Opt_norecovery:
412                         /* this option mounts f2fs with ro */
413                         set_opt(sbi, DISABLE_ROLL_FORWARD);
414                         if (!f2fs_readonly(sb))
415                                 return -EINVAL;
416                         break;
417                 case Opt_discard:
418                         q = bdev_get_queue(sb->s_bdev);
419                         if (blk_queue_discard(q)) {
420                                 set_opt(sbi, DISCARD);
421                         } else if (!f2fs_sb_has_blkzoned(sb)) {
422                                 f2fs_msg(sb, KERN_WARNING,
423                                         "mounting with \"discard\" option, but "
424                                         "the device does not support discard");
425                         }
426                         break;
427                 case Opt_nodiscard:
428                         if (f2fs_sb_has_blkzoned(sb)) {
429                                 f2fs_msg(sb, KERN_WARNING,
430                                         "discard is required for zoned block devices");
431                                 return -EINVAL;
432                         }
433                         clear_opt(sbi, DISCARD);
434                         break;
435                 case Opt_noheap:
436                         set_opt(sbi, NOHEAP);
437                         break;
438                 case Opt_heap:
439                         clear_opt(sbi, NOHEAP);
440                         break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442                 case Opt_user_xattr:
443                         set_opt(sbi, XATTR_USER);
444                         break;
445                 case Opt_nouser_xattr:
446                         clear_opt(sbi, XATTR_USER);
447                         break;
448                 case Opt_inline_xattr:
449                         set_opt(sbi, INLINE_XATTR);
450                         break;
451                 case Opt_noinline_xattr:
452                         clear_opt(sbi, INLINE_XATTR);
453                         break;
454                 case Opt_inline_xattr_size:
455                         if (args->from && match_int(args, &arg))
456                                 return -EINVAL;
457                         set_opt(sbi, INLINE_XATTR_SIZE);
458                         F2FS_OPTION(sbi).inline_xattr_size = arg;
459                         break;
460 #else
461                 case Opt_user_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "user_xattr options not supported");
464                         break;
465                 case Opt_nouser_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "nouser_xattr options not supported");
468                         break;
469                 case Opt_inline_xattr:
470                         f2fs_msg(sb, KERN_INFO,
471                                 "inline_xattr options not supported");
472                         break;
473                 case Opt_noinline_xattr:
474                         f2fs_msg(sb, KERN_INFO,
475                                 "noinline_xattr options not supported");
476                         break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479                 case Opt_acl:
480                         set_opt(sbi, POSIX_ACL);
481                         break;
482                 case Opt_noacl:
483                         clear_opt(sbi, POSIX_ACL);
484                         break;
485 #else
486                 case Opt_acl:
487                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
488                         break;
489                 case Opt_noacl:
490                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491                         break;
492 #endif
493                 case Opt_active_logs:
494                         if (args->from && match_int(args, &arg))
495                                 return -EINVAL;
496                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497                                 return -EINVAL;
498                         F2FS_OPTION(sbi).active_logs = arg;
499                         break;
500                 case Opt_disable_ext_identify:
501                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
502                         break;
503                 case Opt_inline_data:
504                         set_opt(sbi, INLINE_DATA);
505                         break;
506                 case Opt_inline_dentry:
507                         set_opt(sbi, INLINE_DENTRY);
508                         break;
509                 case Opt_noinline_dentry:
510                         clear_opt(sbi, INLINE_DENTRY);
511                         break;
512                 case Opt_flush_merge:
513                         set_opt(sbi, FLUSH_MERGE);
514                         break;
515                 case Opt_noflush_merge:
516                         clear_opt(sbi, FLUSH_MERGE);
517                         break;
518                 case Opt_nobarrier:
519                         set_opt(sbi, NOBARRIER);
520                         break;
521                 case Opt_fastboot:
522                         set_opt(sbi, FASTBOOT);
523                         break;
524                 case Opt_extent_cache:
525                         set_opt(sbi, EXTENT_CACHE);
526                         break;
527                 case Opt_noextent_cache:
528                         clear_opt(sbi, EXTENT_CACHE);
529                         break;
530                 case Opt_noinline_data:
531                         clear_opt(sbi, INLINE_DATA);
532                         break;
533                 case Opt_data_flush:
534                         set_opt(sbi, DATA_FLUSH);
535                         break;
536                 case Opt_reserve_root:
537                         if (args->from && match_int(args, &arg))
538                                 return -EINVAL;
539                         if (test_opt(sbi, RESERVE_ROOT)) {
540                                 f2fs_msg(sb, KERN_INFO,
541                                         "Preserve previous reserve_root=%u",
542                                         F2FS_OPTION(sbi).root_reserved_blocks);
543                         } else {
544                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545                                 set_opt(sbi, RESERVE_ROOT);
546                         }
547                         break;
548                 case Opt_resuid:
549                         if (args->from && match_int(args, &arg))
550                                 return -EINVAL;
551                         uid = make_kuid(current_user_ns(), arg);
552                         if (!uid_valid(uid)) {
553                                 f2fs_msg(sb, KERN_ERR,
554                                         "Invalid uid value %d", arg);
555                                 return -EINVAL;
556                         }
557                         F2FS_OPTION(sbi).s_resuid = uid;
558                         break;
559                 case Opt_resgid:
560                         if (args->from && match_int(args, &arg))
561                                 return -EINVAL;
562                         gid = make_kgid(current_user_ns(), arg);
563                         if (!gid_valid(gid)) {
564                                 f2fs_msg(sb, KERN_ERR,
565                                         "Invalid gid value %d", arg);
566                                 return -EINVAL;
567                         }
568                         F2FS_OPTION(sbi).s_resgid = gid;
569                         break;
570                 case Opt_mode:
571                         name = match_strdup(&args[0]);
572
573                         if (!name)
574                                 return -ENOMEM;
575                         if (strlen(name) == 8 &&
576                                         !strncmp(name, "adaptive", 8)) {
577                                 if (f2fs_sb_has_blkzoned(sb)) {
578                                         f2fs_msg(sb, KERN_WARNING,
579                                                  "adaptive mode is not allowed with "
580                                                  "zoned block device feature");
581                                         kfree(name);
582                                         return -EINVAL;
583                                 }
584                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585                         } else if (strlen(name) == 3 &&
586                                         !strncmp(name, "lfs", 3)) {
587                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588                         } else {
589                                 kfree(name);
590                                 return -EINVAL;
591                         }
592                         kfree(name);
593                         break;
594                 case Opt_io_size_bits:
595                         if (args->from && match_int(args, &arg))
596                                 return -EINVAL;
597                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598                                 f2fs_msg(sb, KERN_WARNING,
599                                         "Not support %d, larger than %d",
600                                         1 << arg, BIO_MAX_PAGES);
601                                 return -EINVAL;
602                         }
603                         F2FS_OPTION(sbi).write_io_size_bits = arg;
604                         break;
605                 case Opt_fault_injection:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609                         f2fs_build_fault_attr(sbi, arg);
610                         set_opt(sbi, FAULT_INJECTION);
611 #else
612                         f2fs_msg(sb, KERN_INFO,
613                                 "FAULT_INJECTION was not selected");
614 #endif
615                         break;
616                 case Opt_lazytime:
617                         sb->s_flags |= MS_LAZYTIME;
618                         break;
619                 case Opt_nolazytime:
620                         sb->s_flags &= ~MS_LAZYTIME;
621                         break;
622 #ifdef CONFIG_QUOTA
623                 case Opt_quota:
624                 case Opt_usrquota:
625                         set_opt(sbi, USRQUOTA);
626                         break;
627                 case Opt_grpquota:
628                         set_opt(sbi, GRPQUOTA);
629                         break;
630                 case Opt_prjquota:
631                         set_opt(sbi, PRJQUOTA);
632                         break;
633                 case Opt_usrjquota:
634                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635                         if (ret)
636                                 return ret;
637                         break;
638                 case Opt_grpjquota:
639                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640                         if (ret)
641                                 return ret;
642                         break;
643                 case Opt_prjjquota:
644                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645                         if (ret)
646                                 return ret;
647                         break;
648                 case Opt_offusrjquota:
649                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
650                         if (ret)
651                                 return ret;
652                         break;
653                 case Opt_offgrpjquota:
654                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655                         if (ret)
656                                 return ret;
657                         break;
658                 case Opt_offprjjquota:
659                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660                         if (ret)
661                                 return ret;
662                         break;
663                 case Opt_jqfmt_vfsold:
664                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665                         break;
666                 case Opt_jqfmt_vfsv0:
667                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668                         break;
669                 case Opt_jqfmt_vfsv1:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671                         break;
672                 case Opt_noquota:
673                         clear_opt(sbi, QUOTA);
674                         clear_opt(sbi, USRQUOTA);
675                         clear_opt(sbi, GRPQUOTA);
676                         clear_opt(sbi, PRJQUOTA);
677                         break;
678 #else
679                 case Opt_quota:
680                 case Opt_usrquota:
681                 case Opt_grpquota:
682                 case Opt_prjquota:
683                 case Opt_usrjquota:
684                 case Opt_grpjquota:
685                 case Opt_prjjquota:
686                 case Opt_offusrjquota:
687                 case Opt_offgrpjquota:
688                 case Opt_offprjjquota:
689                 case Opt_jqfmt_vfsold:
690                 case Opt_jqfmt_vfsv0:
691                 case Opt_jqfmt_vfsv1:
692                 case Opt_noquota:
693                         f2fs_msg(sb, KERN_INFO,
694                                         "quota operations not supported");
695                         break;
696 #endif
697                 case Opt_whint:
698                         name = match_strdup(&args[0]);
699                         if (!name)
700                                 return -ENOMEM;
701                         if (strlen(name) == 10 &&
702                                         !strncmp(name, "user-based", 10)) {
703                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704                         } else if (strlen(name) == 3 &&
705                                         !strncmp(name, "off", 3)) {
706                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707                         } else if (strlen(name) == 8 &&
708                                         !strncmp(name, "fs-based", 8)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710                         } else {
711                                 kfree(name);
712                                 return -EINVAL;
713                         }
714                         kfree(name);
715                         break;
716                 case Opt_alloc:
717                         name = match_strdup(&args[0]);
718                         if (!name)
719                                 return -ENOMEM;
720
721                         if (strlen(name) == 7 &&
722                                         !strncmp(name, "default", 7)) {
723                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724                         } else if (strlen(name) == 5 &&
725                                         !strncmp(name, "reuse", 5)) {
726                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727                         } else {
728                                 kfree(name);
729                                 return -EINVAL;
730                         }
731                         kfree(name);
732                         break;
733                 case Opt_fsync:
734                         name = match_strdup(&args[0]);
735                         if (!name)
736                                 return -ENOMEM;
737                         if (strlen(name) == 5 &&
738                                         !strncmp(name, "posix", 5)) {
739                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740                         } else if (strlen(name) == 6 &&
741                                         !strncmp(name, "strict", 6)) {
742                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743                         } else if (strlen(name) == 9 &&
744                                         !strncmp(name, "nobarrier", 9)) {
745                                 F2FS_OPTION(sbi).fsync_mode =
746                                                         FSYNC_MODE_NOBARRIER;
747                         } else {
748                                 kfree(name);
749                                 return -EINVAL;
750                         }
751                         kfree(name);
752                         break;
753                 case Opt_test_dummy_encryption:
754 #ifdef CONFIG_F2FS_FS_ENCRYPTION
755                         if (!f2fs_sb_has_encrypt(sb)) {
756                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
757                                 return -EINVAL;
758                         }
759
760                         F2FS_OPTION(sbi).test_dummy_encryption = true;
761                         f2fs_msg(sb, KERN_INFO,
762                                         "Test dummy encryption mode enabled");
763 #else
764                         f2fs_msg(sb, KERN_INFO,
765                                         "Test dummy encryption mount option ignored");
766 #endif
767                         break;
768                 default:
769                         f2fs_msg(sb, KERN_ERR,
770                                 "Unrecognized mount option \"%s\" or missing value",
771                                 p);
772                         return -EINVAL;
773                 }
774         }
775 #ifdef CONFIG_QUOTA
776         if (f2fs_check_quota_options(sbi))
777                 return -EINVAL;
778 #endif
779
780         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
781                 f2fs_msg(sb, KERN_ERR,
782                                 "Should set mode=lfs with %uKB-sized IO",
783                                 F2FS_IO_SIZE_KB(sbi));
784                 return -EINVAL;
785         }
786
787         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
788                 if (!f2fs_sb_has_extra_attr(sb) ||
789                         !f2fs_sb_has_flexible_inline_xattr(sb)) {
790                         f2fs_msg(sb, KERN_ERR,
791                                         "extra_attr or flexible_inline_xattr "
792                                         "feature is off");
793                         return -EINVAL;
794                 }
795                 if (!test_opt(sbi, INLINE_XATTR)) {
796                         f2fs_msg(sb, KERN_ERR,
797                                         "inline_xattr_size option should be "
798                                         "set with inline_xattr option");
799                         return -EINVAL;
800                 }
801                 if (!F2FS_OPTION(sbi).inline_xattr_size ||
802                         F2FS_OPTION(sbi).inline_xattr_size >=
803                                         DEF_ADDRS_PER_INODE -
804                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
805                                         DEF_INLINE_RESERVED_SIZE -
806                                         DEF_MIN_INLINE_SIZE) {
807                         f2fs_msg(sb, KERN_ERR,
808                                         "inline xattr size is out of range");
809                         return -EINVAL;
810                 }
811         }
812
813         /* Not pass down write hints if the number of active logs is lesser
814          * than NR_CURSEG_TYPE.
815          */
816         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
817                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
818         return 0;
819 }
820
821 static struct inode *f2fs_alloc_inode(struct super_block *sb)
822 {
823         struct f2fs_inode_info *fi;
824
825         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
826         if (!fi)
827                 return NULL;
828
829         init_once((void *) fi);
830
831         /* Initialize f2fs-specific inode info */
832         atomic_set(&fi->dirty_pages, 0);
833         fi->i_current_depth = 1;
834         init_rwsem(&fi->i_sem);
835         INIT_LIST_HEAD(&fi->dirty_list);
836         INIT_LIST_HEAD(&fi->gdirty_list);
837         INIT_LIST_HEAD(&fi->inmem_ilist);
838         INIT_LIST_HEAD(&fi->inmem_pages);
839         mutex_init(&fi->inmem_lock);
840         init_rwsem(&fi->dio_rwsem[READ]);
841         init_rwsem(&fi->dio_rwsem[WRITE]);
842         init_rwsem(&fi->i_mmap_sem);
843         init_rwsem(&fi->i_xattr_sem);
844
845         /* Will be used by directory only */
846         fi->i_dir_level = F2FS_SB(sb)->dir_level;
847
848         return &fi->vfs_inode;
849 }
850
851 static int f2fs_drop_inode(struct inode *inode)
852 {
853         int ret;
854         /*
855          * This is to avoid a deadlock condition like below.
856          * writeback_single_inode(inode)
857          *  - f2fs_write_data_page
858          *    - f2fs_gc -> iput -> evict
859          *       - inode_wait_for_writeback(inode)
860          */
861         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
862                 if (!inode->i_nlink && !is_bad_inode(inode)) {
863                         /* to avoid evict_inode call simultaneously */
864                         atomic_inc(&inode->i_count);
865                         spin_unlock(&inode->i_lock);
866
867                         /* some remained atomic pages should discarded */
868                         if (f2fs_is_atomic_file(inode))
869                                 drop_inmem_pages(inode);
870
871                         /* should remain fi->extent_tree for writepage */
872                         f2fs_destroy_extent_node(inode);
873
874                         sb_start_intwrite(inode->i_sb);
875                         f2fs_i_size_write(inode, 0);
876
877                         if (F2FS_HAS_BLOCKS(inode))
878                                 f2fs_truncate(inode);
879
880                         sb_end_intwrite(inode->i_sb);
881
882                         spin_lock(&inode->i_lock);
883                         atomic_dec(&inode->i_count);
884                 }
885                 trace_f2fs_drop_inode(inode, 0);
886                 return 0;
887         }
888         ret = generic_drop_inode(inode);
889         trace_f2fs_drop_inode(inode, ret);
890         return ret;
891 }
892
893 int f2fs_inode_dirtied(struct inode *inode, bool sync)
894 {
895         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
896         int ret = 0;
897
898         spin_lock(&sbi->inode_lock[DIRTY_META]);
899         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
900                 ret = 1;
901         } else {
902                 set_inode_flag(inode, FI_DIRTY_INODE);
903                 stat_inc_dirty_inode(sbi, DIRTY_META);
904         }
905         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
906                 list_add_tail(&F2FS_I(inode)->gdirty_list,
907                                 &sbi->inode_list[DIRTY_META]);
908                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
909         }
910         spin_unlock(&sbi->inode_lock[DIRTY_META]);
911         return ret;
912 }
913
914 void f2fs_inode_synced(struct inode *inode)
915 {
916         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917
918         spin_lock(&sbi->inode_lock[DIRTY_META]);
919         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
920                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
921                 return;
922         }
923         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
924                 list_del_init(&F2FS_I(inode)->gdirty_list);
925                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
926         }
927         clear_inode_flag(inode, FI_DIRTY_INODE);
928         clear_inode_flag(inode, FI_AUTO_RECOVER);
929         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
930         spin_unlock(&sbi->inode_lock[DIRTY_META]);
931 }
932
933 /*
934  * f2fs_dirty_inode() is called from __mark_inode_dirty()
935  *
936  * We should call set_dirty_inode to write the dirty inode through write_inode.
937  */
938 static void f2fs_dirty_inode(struct inode *inode, int flags)
939 {
940         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
941
942         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
943                         inode->i_ino == F2FS_META_INO(sbi))
944                 return;
945
946         if (flags == I_DIRTY_TIME)
947                 return;
948
949         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
950                 clear_inode_flag(inode, FI_AUTO_RECOVER);
951
952         f2fs_inode_dirtied(inode, false);
953 }
954
955 static void f2fs_i_callback(struct rcu_head *head)
956 {
957         struct inode *inode = container_of(head, struct inode, i_rcu);
958         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
959 }
960
961 static void f2fs_destroy_inode(struct inode *inode)
962 {
963         call_rcu(&inode->i_rcu, f2fs_i_callback);
964 }
965
966 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
967 {
968         percpu_counter_destroy(&sbi->alloc_valid_block_count);
969         percpu_counter_destroy(&sbi->total_valid_inode_count);
970 }
971
972 static void destroy_device_list(struct f2fs_sb_info *sbi)
973 {
974         int i;
975
976         for (i = 0; i < sbi->s_ndevs; i++) {
977                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
978 #ifdef CONFIG_BLK_DEV_ZONED
979                 kfree(FDEV(i).blkz_type);
980 #endif
981         }
982         kfree(sbi->devs);
983 }
984
985 static void f2fs_put_super(struct super_block *sb)
986 {
987         struct f2fs_sb_info *sbi = F2FS_SB(sb);
988         int i;
989         bool dropped;
990
991         f2fs_quota_off_umount(sb);
992
993         /* prevent remaining shrinker jobs */
994         mutex_lock(&sbi->umount_mutex);
995
996         /*
997          * We don't need to do checkpoint when superblock is clean.
998          * But, the previous checkpoint was not done by umount, it needs to do
999          * clean checkpoint again.
1000          */
1001         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1002                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1003                 struct cp_control cpc = {
1004                         .reason = CP_UMOUNT,
1005                 };
1006                 write_checkpoint(sbi, &cpc);
1007         }
1008
1009         /* be sure to wait for any on-going discard commands */
1010         dropped = f2fs_wait_discard_bios(sbi);
1011
1012         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1013                 struct cp_control cpc = {
1014                         .reason = CP_UMOUNT | CP_TRIMMED,
1015                 };
1016                 write_checkpoint(sbi, &cpc);
1017         }
1018
1019         /* write_checkpoint can update stat informaion */
1020         f2fs_destroy_stats(sbi);
1021
1022         /*
1023          * normally superblock is clean, so we need to release this.
1024          * In addition, EIO will skip do checkpoint, we need this as well.
1025          */
1026         release_ino_entry(sbi, true);
1027
1028         f2fs_leave_shrinker(sbi);
1029         mutex_unlock(&sbi->umount_mutex);
1030
1031         /* our cp_error case, we can wait for any writeback page */
1032         f2fs_flush_merged_writes(sbi);
1033
1034         iput(sbi->node_inode);
1035         iput(sbi->meta_inode);
1036
1037         /* destroy f2fs internal modules */
1038         destroy_node_manager(sbi);
1039         destroy_segment_manager(sbi);
1040
1041         kfree(sbi->ckpt);
1042
1043         f2fs_unregister_sysfs(sbi);
1044
1045         sb->s_fs_info = NULL;
1046         if (sbi->s_chksum_driver)
1047                 crypto_free_shash(sbi->s_chksum_driver);
1048         kfree(sbi->raw_super);
1049
1050         destroy_device_list(sbi);
1051         if (sbi->write_io_dummy)
1052                 mempool_destroy(sbi->write_io_dummy);
1053 #ifdef CONFIG_QUOTA
1054         for (i = 0; i < MAXQUOTAS; i++)
1055                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1056 #endif
1057         destroy_percpu_info(sbi);
1058         for (i = 0; i < NR_PAGE_TYPE; i++)
1059                 kfree(sbi->write_io[i]);
1060         kfree(sbi);
1061 }
1062
1063 int f2fs_sync_fs(struct super_block *sb, int sync)
1064 {
1065         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1066         int err = 0;
1067
1068         if (unlikely(f2fs_cp_error(sbi)))
1069                 return 0;
1070
1071         trace_f2fs_sync_fs(sb, sync);
1072
1073         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1074                 return -EAGAIN;
1075
1076         if (sync) {
1077                 struct cp_control cpc;
1078
1079                 cpc.reason = __get_cp_reason(sbi);
1080
1081                 mutex_lock(&sbi->gc_mutex);
1082                 err = write_checkpoint(sbi, &cpc);
1083                 mutex_unlock(&sbi->gc_mutex);
1084         }
1085         f2fs_trace_ios(NULL, 1);
1086
1087         return err;
1088 }
1089
1090 static int f2fs_freeze(struct super_block *sb)
1091 {
1092         if (f2fs_readonly(sb))
1093                 return 0;
1094
1095         /* IO error happened before */
1096         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1097                 return -EIO;
1098
1099         /* must be clean, since sync_filesystem() was already called */
1100         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1101                 return -EINVAL;
1102         return 0;
1103 }
1104
1105 static int f2fs_unfreeze(struct super_block *sb)
1106 {
1107         return 0;
1108 }
1109
1110 #ifdef CONFIG_QUOTA
1111 static int f2fs_statfs_project(struct super_block *sb,
1112                                 kprojid_t projid, struct kstatfs *buf)
1113 {
1114         struct kqid qid;
1115         struct dquot *dquot;
1116         u64 limit;
1117         u64 curblock;
1118
1119         qid = make_kqid_projid(projid);
1120         dquot = dqget(sb, qid);
1121         if (IS_ERR(dquot))
1122                 return PTR_ERR(dquot);
1123         spin_lock(&dq_data_lock);
1124
1125         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1126                  dquot->dq_dqb.dqb_bsoftlimit :
1127                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1128         if (limit && buf->f_blocks > limit) {
1129                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1130                 buf->f_blocks = limit;
1131                 buf->f_bfree = buf->f_bavail =
1132                         (buf->f_blocks > curblock) ?
1133                          (buf->f_blocks - curblock) : 0;
1134         }
1135
1136         limit = dquot->dq_dqb.dqb_isoftlimit ?
1137                 dquot->dq_dqb.dqb_isoftlimit :
1138                 dquot->dq_dqb.dqb_ihardlimit;
1139         if (limit && buf->f_files > limit) {
1140                 buf->f_files = limit;
1141                 buf->f_ffree =
1142                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1143                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1144         }
1145
1146         spin_unlock(&dq_data_lock);
1147         dqput(dquot);
1148         return 0;
1149 }
1150 #endif
1151
1152 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1153 {
1154         struct super_block *sb = dentry->d_sb;
1155         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1156         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1157         block_t total_count, user_block_count, start_count;
1158         u64 avail_node_count;
1159
1160         total_count = le64_to_cpu(sbi->raw_super->block_count);
1161         user_block_count = sbi->user_block_count;
1162         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1163         buf->f_type = F2FS_SUPER_MAGIC;
1164         buf->f_bsize = sbi->blocksize;
1165
1166         buf->f_blocks = total_count - start_count;
1167         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1168                                                 sbi->current_reserved_blocks;
1169         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1170                 buf->f_bavail = buf->f_bfree -
1171                                 F2FS_OPTION(sbi).root_reserved_blocks;
1172         else
1173                 buf->f_bavail = 0;
1174
1175         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1176                                                 F2FS_RESERVED_NODE_NUM;
1177
1178         if (avail_node_count > user_block_count) {
1179                 buf->f_files = user_block_count;
1180                 buf->f_ffree = buf->f_bavail;
1181         } else {
1182                 buf->f_files = avail_node_count;
1183                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1184                                         buf->f_bavail);
1185         }
1186
1187         buf->f_namelen = F2FS_NAME_LEN;
1188         buf->f_fsid.val[0] = (u32)id;
1189         buf->f_fsid.val[1] = (u32)(id >> 32);
1190
1191 #ifdef CONFIG_QUOTA
1192         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1193                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1194                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1195         }
1196 #endif
1197         return 0;
1198 }
1199
1200 static inline void f2fs_show_quota_options(struct seq_file *seq,
1201                                            struct super_block *sb)
1202 {
1203 #ifdef CONFIG_QUOTA
1204         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1205
1206         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1207                 char *fmtname = "";
1208
1209                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1210                 case QFMT_VFS_OLD:
1211                         fmtname = "vfsold";
1212                         break;
1213                 case QFMT_VFS_V0:
1214                         fmtname = "vfsv0";
1215                         break;
1216                 case QFMT_VFS_V1:
1217                         fmtname = "vfsv1";
1218                         break;
1219                 }
1220                 seq_printf(seq, ",jqfmt=%s", fmtname);
1221         }
1222
1223         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1224                 seq_show_option(seq, "usrjquota",
1225                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1226
1227         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1228                 seq_show_option(seq, "grpjquota",
1229                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1230
1231         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1232                 seq_show_option(seq, "prjjquota",
1233                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1234 #endif
1235 }
1236
1237 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1238 {
1239         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1240
1241         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1242                 if (test_opt(sbi, FORCE_FG_GC))
1243                         seq_printf(seq, ",background_gc=%s", "sync");
1244                 else
1245                         seq_printf(seq, ",background_gc=%s", "on");
1246         } else {
1247                 seq_printf(seq, ",background_gc=%s", "off");
1248         }
1249         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1250                 seq_puts(seq, ",disable_roll_forward");
1251         if (test_opt(sbi, DISCARD))
1252                 seq_puts(seq, ",discard");
1253         if (test_opt(sbi, NOHEAP))
1254                 seq_puts(seq, ",no_heap");
1255         else
1256                 seq_puts(seq, ",heap");
1257 #ifdef CONFIG_F2FS_FS_XATTR
1258         if (test_opt(sbi, XATTR_USER))
1259                 seq_puts(seq, ",user_xattr");
1260         else
1261                 seq_puts(seq, ",nouser_xattr");
1262         if (test_opt(sbi, INLINE_XATTR))
1263                 seq_puts(seq, ",inline_xattr");
1264         else
1265                 seq_puts(seq, ",noinline_xattr");
1266         if (test_opt(sbi, INLINE_XATTR_SIZE))
1267                 seq_printf(seq, ",inline_xattr_size=%u",
1268                                         F2FS_OPTION(sbi).inline_xattr_size);
1269 #endif
1270 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1271         if (test_opt(sbi, POSIX_ACL))
1272                 seq_puts(seq, ",acl");
1273         else
1274                 seq_puts(seq, ",noacl");
1275 #endif
1276         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1277                 seq_puts(seq, ",disable_ext_identify");
1278         if (test_opt(sbi, INLINE_DATA))
1279                 seq_puts(seq, ",inline_data");
1280         else
1281                 seq_puts(seq, ",noinline_data");
1282         if (test_opt(sbi, INLINE_DENTRY))
1283                 seq_puts(seq, ",inline_dentry");
1284         else
1285                 seq_puts(seq, ",noinline_dentry");
1286         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1287                 seq_puts(seq, ",flush_merge");
1288         if (test_opt(sbi, NOBARRIER))
1289                 seq_puts(seq, ",nobarrier");
1290         if (test_opt(sbi, FASTBOOT))
1291                 seq_puts(seq, ",fastboot");
1292         if (test_opt(sbi, EXTENT_CACHE))
1293                 seq_puts(seq, ",extent_cache");
1294         else
1295                 seq_puts(seq, ",noextent_cache");
1296         if (test_opt(sbi, DATA_FLUSH))
1297                 seq_puts(seq, ",data_flush");
1298
1299         seq_puts(seq, ",mode=");
1300         if (test_opt(sbi, ADAPTIVE))
1301                 seq_puts(seq, "adaptive");
1302         else if (test_opt(sbi, LFS))
1303                 seq_puts(seq, "lfs");
1304         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1305         if (test_opt(sbi, RESERVE_ROOT))
1306                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1307                                 F2FS_OPTION(sbi).root_reserved_blocks,
1308                                 from_kuid_munged(&init_user_ns,
1309                                         F2FS_OPTION(sbi).s_resuid),
1310                                 from_kgid_munged(&init_user_ns,
1311                                         F2FS_OPTION(sbi).s_resgid));
1312         if (F2FS_IO_SIZE_BITS(sbi))
1313                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1314 #ifdef CONFIG_F2FS_FAULT_INJECTION
1315         if (test_opt(sbi, FAULT_INJECTION))
1316                 seq_printf(seq, ",fault_injection=%u",
1317                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1318 #endif
1319 #ifdef CONFIG_QUOTA
1320         if (test_opt(sbi, QUOTA))
1321                 seq_puts(seq, ",quota");
1322         if (test_opt(sbi, USRQUOTA))
1323                 seq_puts(seq, ",usrquota");
1324         if (test_opt(sbi, GRPQUOTA))
1325                 seq_puts(seq, ",grpquota");
1326         if (test_opt(sbi, PRJQUOTA))
1327                 seq_puts(seq, ",prjquota");
1328 #endif
1329         f2fs_show_quota_options(seq, sbi->sb);
1330         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1331                 seq_printf(seq, ",whint_mode=%s", "user-based");
1332         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1333                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1334 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1335         if (F2FS_OPTION(sbi).test_dummy_encryption)
1336                 seq_puts(seq, ",test_dummy_encryption");
1337 #endif
1338
1339         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1340                 seq_printf(seq, ",alloc_mode=%s", "default");
1341         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1342                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1343
1344         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1345                 seq_printf(seq, ",fsync_mode=%s", "posix");
1346         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1347                 seq_printf(seq, ",fsync_mode=%s", "strict");
1348         return 0;
1349 }
1350
1351 static void default_options(struct f2fs_sb_info *sbi)
1352 {
1353         /* init some FS parameters */
1354         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1355         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1356         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1357         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1358         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1359         F2FS_OPTION(sbi).test_dummy_encryption = false;
1360         sbi->readdir_ra = 1;
1361
1362         set_opt(sbi, BG_GC);
1363         set_opt(sbi, INLINE_XATTR);
1364         set_opt(sbi, INLINE_DATA);
1365         set_opt(sbi, INLINE_DENTRY);
1366         set_opt(sbi, EXTENT_CACHE);
1367         set_opt(sbi, NOHEAP);
1368         sbi->sb->s_flags |= MS_LAZYTIME;
1369         set_opt(sbi, FLUSH_MERGE);
1370         if (f2fs_sb_has_blkzoned(sbi->sb)) {
1371                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1372                 set_opt(sbi, DISCARD);
1373         } else {
1374                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1375         }
1376
1377 #ifdef CONFIG_F2FS_FS_XATTR
1378         set_opt(sbi, XATTR_USER);
1379 #endif
1380 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1381         set_opt(sbi, POSIX_ACL);
1382 #endif
1383
1384 #ifdef CONFIG_F2FS_FAULT_INJECTION
1385         f2fs_build_fault_attr(sbi, 0);
1386 #endif
1387 }
1388
1389 #ifdef CONFIG_QUOTA
1390 static int f2fs_enable_quotas(struct super_block *sb);
1391 #endif
1392 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1393 {
1394         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1395         struct f2fs_mount_info org_mount_opt;
1396         unsigned long old_sb_flags;
1397         int err;
1398         bool need_restart_gc = false;
1399         bool need_stop_gc = false;
1400         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1401 #ifdef CONFIG_QUOTA
1402         int i, j;
1403 #endif
1404
1405         /*
1406          * Save the old mount options in case we
1407          * need to restore them.
1408          */
1409         org_mount_opt = sbi->mount_opt;
1410         old_sb_flags = sb->s_flags;
1411
1412 #ifdef CONFIG_QUOTA
1413         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1414         for (i = 0; i < MAXQUOTAS; i++) {
1415                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1416                         org_mount_opt.s_qf_names[i] =
1417                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1418                                 GFP_KERNEL);
1419                         if (!org_mount_opt.s_qf_names[i]) {
1420                                 for (j = 0; j < i; j++)
1421                                         kfree(org_mount_opt.s_qf_names[j]);
1422                                 return -ENOMEM;
1423                         }
1424                 } else {
1425                         org_mount_opt.s_qf_names[i] = NULL;
1426                 }
1427         }
1428 #endif
1429
1430         /* recover superblocks we couldn't write due to previous RO mount */
1431         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1432                 err = f2fs_commit_super(sbi, false);
1433                 f2fs_msg(sb, KERN_INFO,
1434                         "Try to recover all the superblocks, ret: %d", err);
1435                 if (!err)
1436                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1437         }
1438
1439         default_options(sbi);
1440
1441         /* parse mount options */
1442         err = parse_options(sb, data);
1443         if (err)
1444                 goto restore_opts;
1445
1446         /*
1447          * Previous and new state of filesystem is RO,
1448          * so skip checking GC and FLUSH_MERGE conditions.
1449          */
1450         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1451                 goto skip;
1452
1453 #ifdef CONFIG_QUOTA
1454         if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1455                 err = dquot_suspend(sb, -1);
1456                 if (err < 0)
1457                         goto restore_opts;
1458         } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1459                 /* dquot_resume needs RW */
1460                 sb->s_flags &= ~MS_RDONLY;
1461                 if (sb_any_quota_suspended(sb)) {
1462                         dquot_resume(sb, -1);
1463                 } else if (f2fs_sb_has_quota_ino(sb)) {
1464                         err = f2fs_enable_quotas(sb);
1465                         if (err)
1466                                 goto restore_opts;
1467                 }
1468         }
1469 #endif
1470         /* disallow enable/disable extent_cache dynamically */
1471         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1472                 err = -EINVAL;
1473                 f2fs_msg(sbi->sb, KERN_WARNING,
1474                                 "switch extent_cache option is not allowed");
1475                 goto restore_opts;
1476         }
1477
1478         /*
1479          * We stop the GC thread if FS is mounted as RO
1480          * or if background_gc = off is passed in mount
1481          * option. Also sync the filesystem.
1482          */
1483         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1484                 if (sbi->gc_thread) {
1485                         stop_gc_thread(sbi);
1486                         need_restart_gc = true;
1487                 }
1488         } else if (!sbi->gc_thread) {
1489                 err = start_gc_thread(sbi);
1490                 if (err)
1491                         goto restore_opts;
1492                 need_stop_gc = true;
1493         }
1494
1495         if (*flags & MS_RDONLY ||
1496                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1497                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1498                 sync_inodes_sb(sb);
1499
1500                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1501                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1502                 f2fs_sync_fs(sb, 1);
1503                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1504         }
1505
1506         /*
1507          * We stop issue flush thread if FS is mounted as RO
1508          * or if flush_merge is not passed in mount option.
1509          */
1510         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1511                 clear_opt(sbi, FLUSH_MERGE);
1512                 destroy_flush_cmd_control(sbi, false);
1513         } else {
1514                 err = create_flush_cmd_control(sbi);
1515                 if (err)
1516                         goto restore_gc;
1517         }
1518 skip:
1519 #ifdef CONFIG_QUOTA
1520         /* Release old quota file names */
1521         for (i = 0; i < MAXQUOTAS; i++)
1522                 kfree(org_mount_opt.s_qf_names[i]);
1523 #endif
1524         /* Update the POSIXACL Flag */
1525         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1526                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1527
1528         limit_reserve_root(sbi);
1529         return 0;
1530 restore_gc:
1531         if (need_restart_gc) {
1532                 if (start_gc_thread(sbi))
1533                         f2fs_msg(sbi->sb, KERN_WARNING,
1534                                 "background gc thread has stopped");
1535         } else if (need_stop_gc) {
1536                 stop_gc_thread(sbi);
1537         }
1538 restore_opts:
1539 #ifdef CONFIG_QUOTA
1540         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1541         for (i = 0; i < MAXQUOTAS; i++) {
1542                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1543                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1544         }
1545 #endif
1546         sbi->mount_opt = org_mount_opt;
1547         sb->s_flags = old_sb_flags;
1548         return err;
1549 }
1550
1551 #ifdef CONFIG_QUOTA
1552 /* Read data from quotafile */
1553 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1554                                size_t len, loff_t off)
1555 {
1556         struct inode *inode = sb_dqopt(sb)->files[type];
1557         struct address_space *mapping = inode->i_mapping;
1558         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1559         int offset = off & (sb->s_blocksize - 1);
1560         int tocopy;
1561         size_t toread;
1562         loff_t i_size = i_size_read(inode);
1563         struct page *page;
1564         char *kaddr;
1565
1566         if (off > i_size)
1567                 return 0;
1568
1569         if (off + len > i_size)
1570                 len = i_size - off;
1571         toread = len;
1572         while (toread > 0) {
1573                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1574 repeat:
1575                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1576                 if (IS_ERR(page)) {
1577                         if (PTR_ERR(page) == -ENOMEM) {
1578                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1579                                 goto repeat;
1580                         }
1581                         return PTR_ERR(page);
1582                 }
1583
1584                 lock_page(page);
1585
1586                 if (unlikely(page->mapping != mapping)) {
1587                         f2fs_put_page(page, 1);
1588                         goto repeat;
1589                 }
1590                 if (unlikely(!PageUptodate(page))) {
1591                         f2fs_put_page(page, 1);
1592                         return -EIO;
1593                 }
1594
1595                 kaddr = kmap_atomic(page);
1596                 memcpy(data, kaddr + offset, tocopy);
1597                 kunmap_atomic(kaddr);
1598                 f2fs_put_page(page, 1);
1599
1600                 offset = 0;
1601                 toread -= tocopy;
1602                 data += tocopy;
1603                 blkidx++;
1604         }
1605         return len;
1606 }
1607
1608 /* Write to quotafile */
1609 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1610                                 const char *data, size_t len, loff_t off)
1611 {
1612         struct inode *inode = sb_dqopt(sb)->files[type];
1613         struct address_space *mapping = inode->i_mapping;
1614         const struct address_space_operations *a_ops = mapping->a_ops;
1615         int offset = off & (sb->s_blocksize - 1);
1616         size_t towrite = len;
1617         struct page *page;
1618         char *kaddr;
1619         int err = 0;
1620         int tocopy;
1621
1622         while (towrite > 0) {
1623                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1624                                                                 towrite);
1625 retry:
1626                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1627                                                         &page, NULL);
1628                 if (unlikely(err)) {
1629                         if (err == -ENOMEM) {
1630                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1631                                 goto retry;
1632                         }
1633                         break;
1634                 }
1635
1636                 kaddr = kmap_atomic(page);
1637                 memcpy(kaddr + offset, data, tocopy);
1638                 kunmap_atomic(kaddr);
1639                 flush_dcache_page(page);
1640
1641                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1642                                                 page, NULL);
1643                 offset = 0;
1644                 towrite -= tocopy;
1645                 off += tocopy;
1646                 data += tocopy;
1647                 cond_resched();
1648         }
1649
1650         if (len == towrite)
1651                 return err;
1652         inode->i_mtime = inode->i_ctime = current_time(inode);
1653         f2fs_mark_inode_dirty_sync(inode, false);
1654         return len - towrite;
1655 }
1656
1657 static struct dquot **f2fs_get_dquots(struct inode *inode)
1658 {
1659         return F2FS_I(inode)->i_dquot;
1660 }
1661
1662 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1663 {
1664         return &F2FS_I(inode)->i_reserved_quota;
1665 }
1666
1667 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1668 {
1669         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1670                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1671 }
1672
1673 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1674 {
1675         int enabled = 0;
1676         int i, err;
1677
1678         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1679                 err = f2fs_enable_quotas(sbi->sb);
1680                 if (err) {
1681                         f2fs_msg(sbi->sb, KERN_ERR,
1682                                         "Cannot turn on quota_ino: %d", err);
1683                         return 0;
1684                 }
1685                 return 1;
1686         }
1687
1688         for (i = 0; i < MAXQUOTAS; i++) {
1689                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1690                         err = f2fs_quota_on_mount(sbi, i);
1691                         if (!err) {
1692                                 enabled = 1;
1693                                 continue;
1694                         }
1695                         f2fs_msg(sbi->sb, KERN_ERR,
1696                                 "Cannot turn on quotas: %d on %d", err, i);
1697                 }
1698         }
1699         return enabled;
1700 }
1701
1702 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1703                              unsigned int flags)
1704 {
1705         struct inode *qf_inode;
1706         unsigned long qf_inum;
1707         int err;
1708
1709         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1710
1711         qf_inum = f2fs_qf_ino(sb, type);
1712         if (!qf_inum)
1713                 return -EPERM;
1714
1715         qf_inode = f2fs_iget(sb, qf_inum);
1716         if (IS_ERR(qf_inode)) {
1717                 f2fs_msg(sb, KERN_ERR,
1718                         "Bad quota inode %u:%lu", type, qf_inum);
1719                 return PTR_ERR(qf_inode);
1720         }
1721
1722         /* Don't account quota for quota files to avoid recursion */
1723         qf_inode->i_flags |= S_NOQUOTA;
1724         err = dquot_enable(qf_inode, type, format_id, flags);
1725         iput(qf_inode);
1726         return err;
1727 }
1728
1729 static int f2fs_enable_quotas(struct super_block *sb)
1730 {
1731         int type, err = 0;
1732         unsigned long qf_inum;
1733         bool quota_mopt[MAXQUOTAS] = {
1734                 test_opt(F2FS_SB(sb), USRQUOTA),
1735                 test_opt(F2FS_SB(sb), GRPQUOTA),
1736                 test_opt(F2FS_SB(sb), PRJQUOTA),
1737         };
1738
1739         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1740         for (type = 0; type < MAXQUOTAS; type++) {
1741                 qf_inum = f2fs_qf_ino(sb, type);
1742                 if (qf_inum) {
1743                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1744                                 DQUOT_USAGE_ENABLED |
1745                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1746                         if (err) {
1747                                 f2fs_msg(sb, KERN_ERR,
1748                                         "Failed to enable quota tracking "
1749                                         "(type=%d, err=%d). Please run "
1750                                         "fsck to fix.", type, err);
1751                                 for (type--; type >= 0; type--)
1752                                         dquot_quota_off(sb, type);
1753                                 return err;
1754                         }
1755                 }
1756         }
1757         return 0;
1758 }
1759
1760 static int f2fs_quota_sync(struct super_block *sb, int type)
1761 {
1762         struct quota_info *dqopt = sb_dqopt(sb);
1763         int cnt;
1764         int ret;
1765
1766         ret = dquot_writeback_dquots(sb, type);
1767         if (ret)
1768                 return ret;
1769
1770         /*
1771          * Now when everything is written we can discard the pagecache so
1772          * that userspace sees the changes.
1773          */
1774         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1775                 if (type != -1 && cnt != type)
1776                         continue;
1777                 if (!sb_has_quota_active(sb, cnt))
1778                         continue;
1779
1780                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1781                 if (ret)
1782                         return ret;
1783
1784                 inode_lock(dqopt->files[cnt]);
1785                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1786                 inode_unlock(dqopt->files[cnt]);
1787         }
1788         return 0;
1789 }
1790
1791 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1792                                                         struct path *path)
1793 {
1794         struct inode *inode;
1795         int err;
1796
1797         err = f2fs_quota_sync(sb, type);
1798         if (err)
1799                 return err;
1800
1801         err = dquot_quota_on(sb, type, format_id, path);
1802         if (err)
1803                 return err;
1804
1805         inode = d_inode(path->dentry);
1806
1807         inode_lock(inode);
1808         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1809         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1810                                         S_NOATIME | S_IMMUTABLE);
1811         inode_unlock(inode);
1812         f2fs_mark_inode_dirty_sync(inode, false);
1813
1814         return 0;
1815 }
1816
1817 static int f2fs_quota_off(struct super_block *sb, int type)
1818 {
1819         struct inode *inode = sb_dqopt(sb)->files[type];
1820         int err;
1821
1822         if (!inode || !igrab(inode))
1823                 return dquot_quota_off(sb, type);
1824
1825         f2fs_quota_sync(sb, type);
1826
1827         err = dquot_quota_off(sb, type);
1828         if (err || f2fs_sb_has_quota_ino(sb))
1829                 goto out_put;
1830
1831         inode_lock(inode);
1832         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1833         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1834         inode_unlock(inode);
1835         f2fs_mark_inode_dirty_sync(inode, false);
1836 out_put:
1837         iput(inode);
1838         return err;
1839 }
1840
1841 void f2fs_quota_off_umount(struct super_block *sb)
1842 {
1843         int type;
1844
1845         for (type = 0; type < MAXQUOTAS; type++)
1846                 f2fs_quota_off(sb, type);
1847 }
1848
1849 #if 0
1850 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1851 {
1852         *projid = F2FS_I(inode)->i_projid;
1853         return 0;
1854 }
1855 #endif
1856
1857 static const struct dquot_operations f2fs_quota_operations = {
1858         .get_reserved_space = f2fs_get_reserved_space,
1859         .write_dquot    = dquot_commit,
1860         .acquire_dquot  = dquot_acquire,
1861         .release_dquot  = dquot_release,
1862         .mark_dirty     = dquot_mark_dquot_dirty,
1863         .write_info     = dquot_commit_info,
1864         .alloc_dquot    = dquot_alloc,
1865         .destroy_dquot  = dquot_destroy,
1866 #if 0
1867         .get_projid     = f2fs_get_projid,
1868         .get_next_id    = dquot_get_next_id,
1869 #endif
1870 };
1871
1872 static const struct quotactl_ops f2fs_quotactl_ops = {
1873         .quota_on       = f2fs_quota_on,
1874         .quota_off      = f2fs_quota_off,
1875         .quota_sync     = f2fs_quota_sync,
1876         .get_state      = dquot_get_state,
1877         .set_info       = dquot_set_dqinfo,
1878         .get_dqblk      = dquot_get_dqblk,
1879         .set_dqblk      = dquot_set_dqblk,
1880 };
1881 #else
1882 void f2fs_quota_off_umount(struct super_block *sb)
1883 {
1884 }
1885 #endif
1886
1887 static const struct super_operations f2fs_sops = {
1888         .alloc_inode    = f2fs_alloc_inode,
1889         .drop_inode     = f2fs_drop_inode,
1890         .destroy_inode  = f2fs_destroy_inode,
1891         .write_inode    = f2fs_write_inode,
1892         .dirty_inode    = f2fs_dirty_inode,
1893         .show_options   = f2fs_show_options,
1894 #ifdef CONFIG_QUOTA
1895         .quota_read     = f2fs_quota_read,
1896         .quota_write    = f2fs_quota_write,
1897         .get_dquots     = f2fs_get_dquots,
1898 #endif
1899         .evict_inode    = f2fs_evict_inode,
1900         .put_super      = f2fs_put_super,
1901         .sync_fs        = f2fs_sync_fs,
1902         .freeze_fs      = f2fs_freeze,
1903         .unfreeze_fs    = f2fs_unfreeze,
1904         .statfs         = f2fs_statfs,
1905         .remount_fs     = f2fs_remount,
1906 };
1907
1908 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1909 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1910 {
1911         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1912                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1913                                 ctx, len, NULL);
1914 }
1915
1916 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1917                                                         void *fs_data)
1918 {
1919         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1920
1921         /*
1922          * Encrypting the root directory is not allowed because fsck
1923          * expects lost+found directory to exist and remain unencrypted
1924          * if LOST_FOUND feature is enabled.
1925          *
1926          */
1927         if (f2fs_sb_has_lost_found(sbi->sb) &&
1928                         inode->i_ino == F2FS_ROOT_INO(sbi))
1929                 return -EPERM;
1930
1931         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1932                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1933                                 ctx, len, fs_data, XATTR_CREATE);
1934 }
1935
1936 static bool f2fs_dummy_context(struct inode *inode)
1937 {
1938         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1939 }
1940
1941 static unsigned f2fs_max_namelen(struct inode *inode)
1942 {
1943         return S_ISLNK(inode->i_mode) ?
1944                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1945 }
1946
1947 static const struct fscrypt_operations f2fs_cryptops = {
1948         .key_prefix     = "f2fs:",
1949         .get_context    = f2fs_get_context,
1950         .set_context    = f2fs_set_context,
1951         .dummy_context  = f2fs_dummy_context,
1952         .empty_dir      = f2fs_empty_dir,
1953         .max_namelen    = f2fs_max_namelen,
1954 };
1955 #endif
1956
1957 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1958                 u64 ino, u32 generation)
1959 {
1960         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1961         struct inode *inode;
1962
1963         if (check_nid_range(sbi, ino))
1964                 return ERR_PTR(-ESTALE);
1965
1966         /*
1967          * f2fs_iget isn't quite right if the inode is currently unallocated!
1968          * However f2fs_iget currently does appropriate checks to handle stale
1969          * inodes so everything is OK.
1970          */
1971         inode = f2fs_iget(sb, ino);
1972         if (IS_ERR(inode))
1973                 return ERR_CAST(inode);
1974         if (unlikely(generation && inode->i_generation != generation)) {
1975                 /* we didn't find the right inode.. */
1976                 iput(inode);
1977                 return ERR_PTR(-ESTALE);
1978         }
1979         return inode;
1980 }
1981
1982 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1983                 int fh_len, int fh_type)
1984 {
1985         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1986                                     f2fs_nfs_get_inode);
1987 }
1988
1989 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1990                 int fh_len, int fh_type)
1991 {
1992         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1993                                     f2fs_nfs_get_inode);
1994 }
1995
1996 static const struct export_operations f2fs_export_ops = {
1997         .fh_to_dentry = f2fs_fh_to_dentry,
1998         .fh_to_parent = f2fs_fh_to_parent,
1999         .get_parent = f2fs_get_parent,
2000 };
2001
2002 static loff_t max_file_blocks(void)
2003 {
2004         loff_t result = 0;
2005         loff_t leaf_count = ADDRS_PER_BLOCK;
2006
2007         /*
2008          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2009          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2010          * space in inode.i_addr, it will be more safe to reassign
2011          * result as zero.
2012          */
2013
2014         /* two direct node blocks */
2015         result += (leaf_count * 2);
2016
2017         /* two indirect node blocks */
2018         leaf_count *= NIDS_PER_BLOCK;
2019         result += (leaf_count * 2);
2020
2021         /* one double indirect node block */
2022         leaf_count *= NIDS_PER_BLOCK;
2023         result += leaf_count;
2024
2025         return result;
2026 }
2027
2028 static int __f2fs_commit_super(struct buffer_head *bh,
2029                         struct f2fs_super_block *super)
2030 {
2031         lock_buffer(bh);
2032         if (super)
2033                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2034         set_buffer_dirty(bh);
2035         unlock_buffer(bh);
2036
2037         /* it's rare case, we can do fua all the time */
2038         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
2039 }
2040
2041 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2042                                         struct buffer_head *bh)
2043 {
2044         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2045                                         (bh->b_data + F2FS_SUPER_OFFSET);
2046         struct super_block *sb = sbi->sb;
2047         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2048         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2049         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2050         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2051         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2052         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2053         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2054         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2055         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2056         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2057         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2058         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2059         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2060         u64 main_end_blkaddr = main_blkaddr +
2061                                 (segment_count_main << log_blocks_per_seg);
2062         u64 seg_end_blkaddr = segment0_blkaddr +
2063                                 (segment_count << log_blocks_per_seg);
2064
2065         if (segment0_blkaddr != cp_blkaddr) {
2066                 f2fs_msg(sb, KERN_INFO,
2067                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2068                         segment0_blkaddr, cp_blkaddr);
2069                 return true;
2070         }
2071
2072         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2073                                                         sit_blkaddr) {
2074                 f2fs_msg(sb, KERN_INFO,
2075                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2076                         cp_blkaddr, sit_blkaddr,
2077                         segment_count_ckpt << log_blocks_per_seg);
2078                 return true;
2079         }
2080
2081         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2082                                                         nat_blkaddr) {
2083                 f2fs_msg(sb, KERN_INFO,
2084                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2085                         sit_blkaddr, nat_blkaddr,
2086                         segment_count_sit << log_blocks_per_seg);
2087                 return true;
2088         }
2089
2090         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2091                                                         ssa_blkaddr) {
2092                 f2fs_msg(sb, KERN_INFO,
2093                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2094                         nat_blkaddr, ssa_blkaddr,
2095                         segment_count_nat << log_blocks_per_seg);
2096                 return true;
2097         }
2098
2099         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2100                                                         main_blkaddr) {
2101                 f2fs_msg(sb, KERN_INFO,
2102                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2103                         ssa_blkaddr, main_blkaddr,
2104                         segment_count_ssa << log_blocks_per_seg);
2105                 return true;
2106         }
2107
2108         if (main_end_blkaddr > seg_end_blkaddr) {
2109                 f2fs_msg(sb, KERN_INFO,
2110                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2111                         main_blkaddr,
2112                         segment0_blkaddr +
2113                                 (segment_count << log_blocks_per_seg),
2114                         segment_count_main << log_blocks_per_seg);
2115                 return true;
2116         } else if (main_end_blkaddr < seg_end_blkaddr) {
2117                 int err = 0;
2118                 char *res;
2119
2120                 /* fix in-memory information all the time */
2121                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2122                                 segment0_blkaddr) >> log_blocks_per_seg);
2123
2124                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2125                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2126                         res = "internally";
2127                 } else {
2128                         err = __f2fs_commit_super(bh, NULL);
2129                         res = err ? "failed" : "done";
2130                 }
2131                 f2fs_msg(sb, KERN_INFO,
2132                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2133                         res, main_blkaddr,
2134                         segment0_blkaddr +
2135                                 (segment_count << log_blocks_per_seg),
2136                         segment_count_main << log_blocks_per_seg);
2137                 if (err)
2138                         return true;
2139         }
2140         return false;
2141 }
2142
2143 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2144                                 struct buffer_head *bh)
2145 {
2146         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2147                                         (bh->b_data + F2FS_SUPER_OFFSET);
2148         struct super_block *sb = sbi->sb;
2149         unsigned int blocksize;
2150
2151         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2152                 f2fs_msg(sb, KERN_INFO,
2153                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2154                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2155                 return 1;
2156         }
2157
2158         /* Currently, support only 4KB page cache size */
2159         if (F2FS_BLKSIZE != PAGE_SIZE) {
2160                 f2fs_msg(sb, KERN_INFO,
2161                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2162                         PAGE_SIZE);
2163                 return 1;
2164         }
2165
2166         /* Currently, support only 4KB block size */
2167         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2168         if (blocksize != F2FS_BLKSIZE) {
2169                 f2fs_msg(sb, KERN_INFO,
2170                         "Invalid blocksize (%u), supports only 4KB\n",
2171                         blocksize);
2172                 return 1;
2173         }
2174
2175         /* check log blocks per segment */
2176         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2177                 f2fs_msg(sb, KERN_INFO,
2178                         "Invalid log blocks per segment (%u)\n",
2179                         le32_to_cpu(raw_super->log_blocks_per_seg));
2180                 return 1;
2181         }
2182
2183         /* Currently, support 512/1024/2048/4096 bytes sector size */
2184         if (le32_to_cpu(raw_super->log_sectorsize) >
2185                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2186                 le32_to_cpu(raw_super->log_sectorsize) <
2187                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2188                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2189                         le32_to_cpu(raw_super->log_sectorsize));
2190                 return 1;
2191         }
2192         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2193                 le32_to_cpu(raw_super->log_sectorsize) !=
2194                         F2FS_MAX_LOG_SECTOR_SIZE) {
2195                 f2fs_msg(sb, KERN_INFO,
2196                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2197                         le32_to_cpu(raw_super->log_sectors_per_block),
2198                         le32_to_cpu(raw_super->log_sectorsize));
2199                 return 1;
2200         }
2201
2202         /* check reserved ino info */
2203         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2204                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2205                 le32_to_cpu(raw_super->root_ino) != 3) {
2206                 f2fs_msg(sb, KERN_INFO,
2207                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2208                         le32_to_cpu(raw_super->node_ino),
2209                         le32_to_cpu(raw_super->meta_ino),
2210                         le32_to_cpu(raw_super->root_ino));
2211                 return 1;
2212         }
2213
2214         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2215                 f2fs_msg(sb, KERN_INFO,
2216                         "Invalid segment count (%u)",
2217                         le32_to_cpu(raw_super->segment_count));
2218                 return 1;
2219         }
2220
2221         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2222         if (sanity_check_area_boundary(sbi, bh))
2223                 return 1;
2224
2225         return 0;
2226 }
2227
2228 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2229 {
2230         unsigned int total, fsmeta;
2231         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2232         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2233         unsigned int ovp_segments, reserved_segments;
2234         unsigned int main_segs, blocks_per_seg;
2235         unsigned int sit_segs, nat_segs;
2236         unsigned int sit_bitmap_size, nat_bitmap_size;
2237         unsigned int log_blocks_per_seg;
2238         int i, j;
2239
2240         total = le32_to_cpu(raw_super->segment_count);
2241         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2242         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2243         fsmeta += sit_segs;
2244         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2245         fsmeta += nat_segs;
2246         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2247         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2248
2249         if (unlikely(fsmeta >= total))
2250                 return 1;
2251
2252         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2253         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2254
2255         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2256                         ovp_segments == 0 || reserved_segments == 0)) {
2257                 f2fs_msg(sbi->sb, KERN_ERR,
2258                         "Wrong layout: check mkfs.f2fs version");
2259                 return 1;
2260         }
2261
2262         main_segs = le32_to_cpu(raw_super->segment_count_main);
2263         blocks_per_seg = sbi->blocks_per_seg;
2264
2265         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2266                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2267                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2268                         return 1;
2269                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2270                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2271                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2272                                 f2fs_msg(sbi->sb, KERN_ERR,
2273                                         "Node segment (%u, %u) has the same "
2274                                         "segno: %u", i, j,
2275                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2276                                 return 1;
2277                         }
2278                 }
2279         }
2280         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2281                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2282                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2283                         return 1;
2284                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2285                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2286                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2287                                 f2fs_msg(sbi->sb, KERN_ERR,
2288                                         "Data segment (%u, %u) has the same "
2289                                         "segno: %u", i, j,
2290                                         le32_to_cpu(ckpt->cur_data_segno[i]));
2291                                 return 1;
2292                         }
2293                 }
2294         }
2295         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2296                 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2297                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2298                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2299                                 f2fs_msg(sbi->sb, KERN_ERR,
2300                                         "Data segment (%u) and Data segment (%u)"
2301                                         " has the same segno: %u", i, j,
2302                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2303                                 return 1;
2304                         }
2305                 }
2306         }
2307
2308         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2309         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2310         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2311
2312         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2313                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2314                 f2fs_msg(sbi->sb, KERN_ERR,
2315                         "Wrong bitmap size: sit: %u, nat:%u",
2316                         sit_bitmap_size, nat_bitmap_size);
2317                 return 1;
2318         }
2319
2320         if (unlikely(f2fs_cp_error(sbi))) {
2321                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2322                 return 1;
2323         }
2324         return 0;
2325 }
2326
2327 static void init_sb_info(struct f2fs_sb_info *sbi)
2328 {
2329         struct f2fs_super_block *raw_super = sbi->raw_super;
2330         int i, j;
2331
2332         sbi->log_sectors_per_block =
2333                 le32_to_cpu(raw_super->log_sectors_per_block);
2334         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2335         sbi->blocksize = 1 << sbi->log_blocksize;
2336         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2337         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2338         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2339         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2340         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2341         sbi->total_node_count =
2342                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2343                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2344         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2345         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2346         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2347         sbi->cur_victim_sec = NULL_SECNO;
2348         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2349
2350         sbi->dir_level = DEF_DIR_LEVEL;
2351         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2352         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2353         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2354
2355         for (i = 0; i < NR_COUNT_TYPE; i++)
2356                 atomic_set(&sbi->nr_pages[i], 0);
2357
2358         atomic_set(&sbi->wb_sync_req, 0);
2359
2360         INIT_LIST_HEAD(&sbi->s_list);
2361         mutex_init(&sbi->umount_mutex);
2362         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2363                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2364                         mutex_init(&sbi->wio_mutex[i][j]);
2365         spin_lock_init(&sbi->cp_lock);
2366
2367         sbi->dirty_device = 0;
2368         spin_lock_init(&sbi->dev_lock);
2369
2370         init_rwsem(&sbi->sb_lock);
2371 }
2372
2373 static int init_percpu_info(struct f2fs_sb_info *sbi)
2374 {
2375         int err;
2376
2377         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2378         if (err)
2379                 return err;
2380
2381         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2382                                                                 GFP_KERNEL);
2383 }
2384
2385 #ifdef CONFIG_BLK_DEV_ZONED
2386 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2387 {
2388         struct block_device *bdev = FDEV(devi).bdev;
2389         sector_t nr_sectors = bdev->bd_part->nr_sects;
2390         sector_t sector = 0;
2391         struct blk_zone *zones;
2392         unsigned int i, nr_zones;
2393         unsigned int n = 0;
2394         int err = -EIO;
2395
2396         if (!f2fs_sb_has_blkzoned(sbi->sb))
2397                 return 0;
2398
2399         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2400                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2401                 return -EINVAL;
2402         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2403         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2404                                 __ilog2_u32(sbi->blocks_per_blkz))
2405                 return -EINVAL;
2406         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2407         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2408                                         sbi->log_blocks_per_blkz;
2409         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2410                 FDEV(devi).nr_blkz++;
2411
2412         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2413                                                                 GFP_KERNEL);
2414         if (!FDEV(devi).blkz_type)
2415                 return -ENOMEM;
2416
2417 #define F2FS_REPORT_NR_ZONES   4096
2418
2419         zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2420                                 F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2421         if (!zones)
2422                 return -ENOMEM;
2423
2424         /* Get block zones type */
2425         while (zones && sector < nr_sectors) {
2426
2427                 nr_zones = F2FS_REPORT_NR_ZONES;
2428                 err = blkdev_report_zones(bdev, sector,
2429                                           zones, &nr_zones,
2430                                           GFP_KERNEL);
2431                 if (err)
2432                         break;
2433                 if (!nr_zones) {
2434                         err = -EIO;
2435                         break;
2436                 }
2437
2438                 for (i = 0; i < nr_zones; i++) {
2439                         FDEV(devi).blkz_type[n] = zones[i].type;
2440                         sector += zones[i].len;
2441                         n++;
2442                 }
2443         }
2444
2445         kfree(zones);
2446
2447         return err;
2448 }
2449 #endif
2450
2451 /*
2452  * Read f2fs raw super block.
2453  * Because we have two copies of super block, so read both of them
2454  * to get the first valid one. If any one of them is broken, we pass
2455  * them recovery flag back to the caller.
2456  */
2457 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2458                         struct f2fs_super_block **raw_super,
2459                         int *valid_super_block, int *recovery)
2460 {
2461         struct super_block *sb = sbi->sb;
2462         int block;
2463         struct buffer_head *bh;
2464         struct f2fs_super_block *super;
2465         int err = 0;
2466
2467         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2468         if (!super)
2469                 return -ENOMEM;
2470
2471         for (block = 0; block < 2; block++) {
2472                 bh = sb_bread(sb, block);
2473                 if (!bh) {
2474                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2475                                 block + 1);
2476                         err = -EIO;
2477                         continue;
2478                 }
2479
2480                 /* sanity checking of raw super */
2481                 if (sanity_check_raw_super(sbi, bh)) {
2482                         f2fs_msg(sb, KERN_ERR,
2483                                 "Can't find valid F2FS filesystem in %dth superblock",
2484                                 block + 1);
2485                         err = -EINVAL;
2486                         brelse(bh);
2487                         continue;
2488                 }
2489
2490                 if (!*raw_super) {
2491                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2492                                                         sizeof(*super));
2493                         *valid_super_block = block;
2494                         *raw_super = super;
2495                 }
2496                 brelse(bh);
2497         }
2498
2499         /* Fail to read any one of the superblocks*/
2500         if (err < 0)
2501                 *recovery = 1;
2502
2503         /* No valid superblock */
2504         if (!*raw_super)
2505                 kfree(super);
2506         else
2507                 err = 0;
2508
2509         return err;
2510 }
2511
2512 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2513 {
2514         struct buffer_head *bh;
2515         int err;
2516
2517         if ((recover && f2fs_readonly(sbi->sb)) ||
2518                                 bdev_read_only(sbi->sb->s_bdev)) {
2519                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2520                 return -EROFS;
2521         }
2522
2523         /* write back-up superblock first */
2524         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2525         if (!bh)
2526                 return -EIO;
2527         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2528         brelse(bh);
2529
2530         /* if we are in recovery path, skip writing valid superblock */
2531         if (recover || err)
2532                 return err;
2533
2534         /* write current valid superblock */
2535         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2536         if (!bh)
2537                 return -EIO;
2538         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2539         brelse(bh);
2540         return err;
2541 }
2542
2543 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2544 {
2545         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2546         unsigned int max_devices = MAX_DEVICES;
2547         int i;
2548
2549         /* Initialize single device information */
2550         if (!RDEV(0).path[0]) {
2551 #ifdef CONFIG_BLK_DEV_ZONED
2552                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2553                         return 0;
2554                 max_devices = 1;
2555 #else
2556                 return 0;
2557 #endif
2558         }
2559
2560         /*
2561          * Initialize multiple devices information, or single
2562          * zoned block device information.
2563          */
2564         sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2565                                                 max_devices, GFP_KERNEL);
2566         if (!sbi->devs)
2567                 return -ENOMEM;
2568
2569         for (i = 0; i < max_devices; i++) {
2570
2571                 if (i > 0 && !RDEV(i).path[0])
2572                         break;
2573
2574                 if (max_devices == 1) {
2575                         /* Single zoned block device mount */
2576                         FDEV(0).bdev =
2577                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2578                                         sbi->sb->s_mode, sbi->sb->s_type);
2579                 } else {
2580                         /* Multi-device mount */
2581                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2582                         FDEV(i).total_segments =
2583                                 le32_to_cpu(RDEV(i).total_segments);
2584                         if (i == 0) {
2585                                 FDEV(i).start_blk = 0;
2586                                 FDEV(i).end_blk = FDEV(i).start_blk +
2587                                     (FDEV(i).total_segments <<
2588                                     sbi->log_blocks_per_seg) - 1 +
2589                                     le32_to_cpu(raw_super->segment0_blkaddr);
2590                         } else {
2591                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2592                                 FDEV(i).end_blk = FDEV(i).start_blk +
2593                                         (FDEV(i).total_segments <<
2594                                         sbi->log_blocks_per_seg) - 1;
2595                         }
2596                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2597                                         sbi->sb->s_mode, sbi->sb->s_type);
2598                 }
2599                 if (IS_ERR(FDEV(i).bdev))
2600                         return PTR_ERR(FDEV(i).bdev);
2601
2602                 /* to release errored devices */
2603                 sbi->s_ndevs = i + 1;
2604
2605 #ifdef CONFIG_BLK_DEV_ZONED
2606                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2607                                 !f2fs_sb_has_blkzoned(sbi->sb)) {
2608                         f2fs_msg(sbi->sb, KERN_ERR,
2609                                 "Zoned block device feature not enabled\n");
2610                         return -EINVAL;
2611                 }
2612                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2613                         if (init_blkz_info(sbi, i)) {
2614                                 f2fs_msg(sbi->sb, KERN_ERR,
2615                                         "Failed to initialize F2FS blkzone information");
2616                                 return -EINVAL;
2617                         }
2618                         if (max_devices == 1)
2619                                 break;
2620                         f2fs_msg(sbi->sb, KERN_INFO,
2621                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2622                                 i, FDEV(i).path,
2623                                 FDEV(i).total_segments,
2624                                 FDEV(i).start_blk, FDEV(i).end_blk,
2625                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2626                                 "Host-aware" : "Host-managed");
2627                         continue;
2628                 }
2629 #endif
2630                 f2fs_msg(sbi->sb, KERN_INFO,
2631                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2632                                 i, FDEV(i).path,
2633                                 FDEV(i).total_segments,
2634                                 FDEV(i).start_blk, FDEV(i).end_blk);
2635         }
2636         f2fs_msg(sbi->sb, KERN_INFO,
2637                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2638         return 0;
2639 }
2640
2641 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2642 {
2643         struct f2fs_sm_info *sm_i = SM_I(sbi);
2644
2645         /* adjust parameters according to the volume size */
2646         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2647                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2648                 sm_i->dcc_info->discard_granularity = 1;
2649                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2650         }
2651 }
2652
2653 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2654 {
2655         struct f2fs_sb_info *sbi;
2656         struct f2fs_super_block *raw_super;
2657         struct inode *root;
2658         int err;
2659         bool retry = true, need_fsck = false;
2660         char *options = NULL;
2661         int recovery, i, valid_super_block;
2662         struct curseg_info *seg_i;
2663
2664 try_onemore:
2665         err = -EINVAL;
2666         raw_super = NULL;
2667         valid_super_block = -1;
2668         recovery = 0;
2669
2670         /* allocate memory for f2fs-specific super block info */
2671         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2672         if (!sbi)
2673                 return -ENOMEM;
2674
2675         sbi->sb = sb;
2676
2677         /* Load the checksum driver */
2678         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2679         if (IS_ERR(sbi->s_chksum_driver)) {
2680                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2681                 err = PTR_ERR(sbi->s_chksum_driver);
2682                 sbi->s_chksum_driver = NULL;
2683                 goto free_sbi;
2684         }
2685
2686         /* set a block size */
2687         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2688                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2689                 goto free_sbi;
2690         }
2691
2692         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2693                                                                 &recovery);
2694         if (err)
2695                 goto free_sbi;
2696
2697         sb->s_fs_info = sbi;
2698         sbi->raw_super = raw_super;
2699
2700         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2701         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2702
2703         /* precompute checksum seed for metadata */
2704         if (f2fs_sb_has_inode_chksum(sb))
2705                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2706                                                 sizeof(raw_super->uuid));
2707
2708         /*
2709          * The BLKZONED feature indicates that the drive was formatted with
2710          * zone alignment optimization. This is optional for host-aware
2711          * devices, but mandatory for host-managed zoned block devices.
2712          */
2713 #ifndef CONFIG_BLK_DEV_ZONED
2714         if (f2fs_sb_has_blkzoned(sb)) {
2715                 f2fs_msg(sb, KERN_ERR,
2716                          "Zoned block device support is not enabled\n");
2717                 err = -EOPNOTSUPP;
2718                 goto free_sb_buf;
2719         }
2720 #endif
2721         default_options(sbi);
2722         /* parse mount options */
2723         options = kstrdup((const char *)data, GFP_KERNEL);
2724         if (data && !options) {
2725                 err = -ENOMEM;
2726                 goto free_sb_buf;
2727         }
2728
2729         err = parse_options(sb, options);
2730         if (err)
2731                 goto free_options;
2732
2733         sbi->max_file_blocks = max_file_blocks();
2734         sb->s_maxbytes = sbi->max_file_blocks <<
2735                                 le32_to_cpu(raw_super->log_blocksize);
2736         sb->s_max_links = F2FS_LINK_MAX;
2737         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2738
2739 #ifdef CONFIG_QUOTA
2740         sb->dq_op = &f2fs_quota_operations;
2741         if (f2fs_sb_has_quota_ino(sb))
2742                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2743         else
2744                 sb->s_qcop = &f2fs_quotactl_ops;
2745         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2746
2747         if (f2fs_sb_has_quota_ino(sbi->sb)) {
2748                 for (i = 0; i < MAXQUOTAS; i++) {
2749                         if (f2fs_qf_ino(sbi->sb, i))
2750                                 sbi->nquota_files++;
2751                 }
2752         }
2753 #endif
2754
2755         sb->s_op = &f2fs_sops;
2756 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2757         sb->s_cop = &f2fs_cryptops;
2758 #endif
2759         sb->s_xattr = f2fs_xattr_handlers;
2760         sb->s_export_op = &f2fs_export_ops;
2761         sb->s_magic = F2FS_SUPER_MAGIC;
2762         sb->s_time_gran = 1;
2763         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2764                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2765         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2766         sb->s_iflags |= SB_I_CGROUPWB;
2767
2768         /* init f2fs-specific super block info */
2769         sbi->valid_super_block = valid_super_block;
2770         mutex_init(&sbi->gc_mutex);
2771         mutex_init(&sbi->cp_mutex);
2772         init_rwsem(&sbi->node_write);
2773         init_rwsem(&sbi->node_change);
2774
2775         /* disallow all the data/node/meta page writes */
2776         set_sbi_flag(sbi, SBI_POR_DOING);
2777         spin_lock_init(&sbi->stat_lock);
2778
2779         /* init iostat info */
2780         spin_lock_init(&sbi->iostat_lock);
2781         sbi->iostat_enable = false;
2782
2783         for (i = 0; i < NR_PAGE_TYPE; i++) {
2784                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2785                 int j;
2786
2787                 sbi->write_io[i] = f2fs_kmalloc(sbi,
2788                                         n * sizeof(struct f2fs_bio_info),
2789                                         GFP_KERNEL);
2790                 if (!sbi->write_io[i]) {
2791                         err = -ENOMEM;
2792                         goto free_options;
2793                 }
2794
2795                 for (j = HOT; j < n; j++) {
2796                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2797                         sbi->write_io[i][j].sbi = sbi;
2798                         sbi->write_io[i][j].bio = NULL;
2799                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2800                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2801                 }
2802         }
2803
2804         init_rwsem(&sbi->cp_rwsem);
2805         init_waitqueue_head(&sbi->cp_wait);
2806         init_sb_info(sbi);
2807
2808         err = init_percpu_info(sbi);
2809         if (err)
2810                 goto free_bio_info;
2811
2812         if (F2FS_IO_SIZE(sbi) > 1) {
2813                 sbi->write_io_dummy =
2814                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2815                 if (!sbi->write_io_dummy) {
2816                         err = -ENOMEM;
2817                         goto free_percpu;
2818                 }
2819         }
2820
2821         /* get an inode for meta space */
2822         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2823         if (IS_ERR(sbi->meta_inode)) {
2824                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2825                 err = PTR_ERR(sbi->meta_inode);
2826                 goto free_io_dummy;
2827         }
2828
2829         err = get_valid_checkpoint(sbi);
2830         if (err) {
2831                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2832                 goto free_meta_inode;
2833         }
2834
2835         /* Initialize device list */
2836         err = f2fs_scan_devices(sbi);
2837         if (err) {
2838                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2839                 goto free_devices;
2840         }
2841
2842         sbi->total_valid_node_count =
2843                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2844         percpu_counter_set(&sbi->total_valid_inode_count,
2845                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2846         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2847         sbi->total_valid_block_count =
2848                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2849         sbi->last_valid_block_count = sbi->total_valid_block_count;
2850         sbi->reserved_blocks = 0;
2851         sbi->current_reserved_blocks = 0;
2852         limit_reserve_root(sbi);
2853
2854         for (i = 0; i < NR_INODE_TYPE; i++) {
2855                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2856                 spin_lock_init(&sbi->inode_lock[i]);
2857         }
2858
2859         init_extent_cache_info(sbi);
2860
2861         init_ino_entry_info(sbi);
2862
2863         /* setup f2fs internal modules */
2864         err = build_segment_manager(sbi);
2865         if (err) {
2866                 f2fs_msg(sb, KERN_ERR,
2867                         "Failed to initialize F2FS segment manager");
2868                 goto free_sm;
2869         }
2870         err = build_node_manager(sbi);
2871         if (err) {
2872                 f2fs_msg(sb, KERN_ERR,
2873                         "Failed to initialize F2FS node manager");
2874                 goto free_nm;
2875         }
2876
2877         /* For write statistics */
2878         if (sb->s_bdev->bd_part)
2879                 sbi->sectors_written_start =
2880                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2881
2882         /* Read accumulated write IO statistics if exists */
2883         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2884         if (__exist_node_summaries(sbi))
2885                 sbi->kbytes_written =
2886                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2887
2888         build_gc_manager(sbi);
2889
2890         /* get an inode for node space */
2891         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2892         if (IS_ERR(sbi->node_inode)) {
2893                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2894                 err = PTR_ERR(sbi->node_inode);
2895                 goto free_nm;
2896         }
2897
2898         err = f2fs_build_stats(sbi);
2899         if (err)
2900                 goto free_node_inode;
2901
2902         /* read root inode and dentry */
2903         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2904         if (IS_ERR(root)) {
2905                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2906                 err = PTR_ERR(root);
2907                 goto free_stats;
2908         }
2909         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2910                 iput(root);
2911                 err = -EINVAL;
2912                 goto free_node_inode;
2913         }
2914
2915         sb->s_root = d_make_root(root); /* allocate root dentry */
2916         if (!sb->s_root) {
2917                 err = -ENOMEM;
2918                 goto free_root_inode;
2919         }
2920
2921         err = f2fs_register_sysfs(sbi);
2922         if (err)
2923                 goto free_root_inode;
2924
2925 #ifdef CONFIG_QUOTA
2926         /*
2927          * Turn on quotas which were not enabled for read-only mounts if
2928          * filesystem has quota feature, so that they are updated correctly.
2929          */
2930         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2931                 err = f2fs_enable_quotas(sb);
2932                 if (err) {
2933                         f2fs_msg(sb, KERN_ERR,
2934                                 "Cannot turn on quotas: error %d", err);
2935                         goto free_sysfs;
2936                 }
2937         }
2938 #endif
2939         /* if there are nt orphan nodes free them */
2940         err = recover_orphan_inodes(sbi);
2941         if (err)
2942                 goto free_meta;
2943
2944         /* recover fsynced data */
2945         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2946                 /*
2947                  * mount should be failed, when device has readonly mode, and
2948                  * previous checkpoint was not done by clean system shutdown.
2949                  */
2950                 if (bdev_read_only(sb->s_bdev) &&
2951                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2952                         err = -EROFS;
2953                         goto free_meta;
2954                 }
2955
2956                 if (need_fsck)
2957                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2958
2959                 if (!retry)
2960                         goto skip_recovery;
2961
2962                 err = recover_fsync_data(sbi, false);
2963                 if (err < 0) {
2964                         need_fsck = true;
2965                         f2fs_msg(sb, KERN_ERR,
2966                                 "Cannot recover all fsync data errno=%d", err);
2967                         goto free_meta;
2968                 }
2969         } else {
2970                 err = recover_fsync_data(sbi, true);
2971
2972                 if (!f2fs_readonly(sb) && err > 0) {
2973                         err = -EINVAL;
2974                         f2fs_msg(sb, KERN_ERR,
2975                                 "Need to recover fsync data");
2976                         goto free_meta;
2977                 }
2978         }
2979 skip_recovery:
2980         /* recover_fsync_data() cleared this already */
2981         clear_sbi_flag(sbi, SBI_POR_DOING);
2982
2983         /*
2984          * If filesystem is not mounted as read-only then
2985          * do start the gc_thread.
2986          */
2987         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2988                 /* After POR, we can run background GC thread.*/
2989                 err = start_gc_thread(sbi);
2990                 if (err)
2991                         goto free_meta;
2992         }
2993         kfree(options);
2994
2995         /* recover broken superblock */
2996         if (recovery) {
2997                 err = f2fs_commit_super(sbi, true);
2998                 f2fs_msg(sb, KERN_INFO,
2999                         "Try to recover %dth superblock, ret: %d",
3000                         sbi->valid_super_block ? 1 : 2, err);
3001         }
3002
3003         f2fs_join_shrinker(sbi);
3004
3005         f2fs_tuning_parameters(sbi);
3006
3007         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3008                                 cur_cp_version(F2FS_CKPT(sbi)));
3009         f2fs_update_time(sbi, CP_TIME);
3010         f2fs_update_time(sbi, REQ_TIME);
3011         return 0;
3012
3013 free_meta:
3014 #ifdef CONFIG_QUOTA
3015         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3016                 f2fs_quota_off_umount(sbi->sb);
3017 #endif
3018         f2fs_sync_inode_meta(sbi);
3019         /*
3020          * Some dirty meta pages can be produced by recover_orphan_inodes()
3021          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3022          * followed by write_checkpoint() through f2fs_write_node_pages(), which
3023          * falls into an infinite loop in sync_meta_pages().
3024          */
3025         truncate_inode_pages_final(META_MAPPING(sbi));
3026 #ifdef CONFIG_QUOTA
3027 free_sysfs:
3028 #endif
3029         f2fs_unregister_sysfs(sbi);
3030 free_root_inode:
3031         dput(sb->s_root);
3032         sb->s_root = NULL;
3033 free_stats:
3034         f2fs_destroy_stats(sbi);
3035 free_node_inode:
3036         release_ino_entry(sbi, true);
3037         truncate_inode_pages_final(NODE_MAPPING(sbi));
3038         iput(sbi->node_inode);
3039 free_nm:
3040         destroy_node_manager(sbi);
3041 free_sm:
3042         destroy_segment_manager(sbi);
3043 free_devices:
3044         destroy_device_list(sbi);
3045         kfree(sbi->ckpt);
3046 free_meta_inode:
3047         make_bad_inode(sbi->meta_inode);
3048         iput(sbi->meta_inode);
3049 free_io_dummy:
3050         mempool_destroy(sbi->write_io_dummy);
3051 free_percpu:
3052         destroy_percpu_info(sbi);
3053 free_bio_info:
3054         for (i = 0; i < NR_PAGE_TYPE; i++)
3055                 kfree(sbi->write_io[i]);
3056 free_options:
3057 #ifdef CONFIG_QUOTA
3058         for (i = 0; i < MAXQUOTAS; i++)
3059                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3060 #endif
3061         kfree(options);
3062 free_sb_buf:
3063         kfree(raw_super);
3064 free_sbi:
3065         if (sbi->s_chksum_driver)
3066                 crypto_free_shash(sbi->s_chksum_driver);
3067         kfree(sbi);
3068
3069         /* give only one another chance */
3070         if (retry) {
3071                 retry = false;
3072                 shrink_dcache_sb(sb);
3073                 goto try_onemore;
3074         }
3075         return err;
3076 }
3077
3078 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3079                         const char *dev_name, void *data)
3080 {
3081         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3082 }
3083
3084 static void kill_f2fs_super(struct super_block *sb)
3085 {
3086         if (sb->s_root) {
3087                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3088                 stop_gc_thread(F2FS_SB(sb));
3089                 stop_discard_thread(F2FS_SB(sb));
3090         }
3091         kill_block_super(sb);
3092 }
3093
3094 static struct file_system_type f2fs_fs_type = {
3095         .owner          = THIS_MODULE,
3096         .name           = "f2fs",
3097         .mount          = f2fs_mount,
3098         .kill_sb        = kill_f2fs_super,
3099         .fs_flags       = FS_REQUIRES_DEV,
3100 };
3101 MODULE_ALIAS_FS("f2fs");
3102
3103 static int __init init_inodecache(void)
3104 {
3105         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3106                         sizeof(struct f2fs_inode_info), 0,
3107                         SLAB_RECLAIM_ACCOUNT, NULL);
3108         if (!f2fs_inode_cachep)
3109                 return -ENOMEM;
3110         return 0;
3111 }
3112
3113 static void destroy_inodecache(void)
3114 {
3115         /*
3116          * Make sure all delayed rcu free inodes are flushed before we
3117          * destroy cache.
3118          */
3119         rcu_barrier();
3120         kmem_cache_destroy(f2fs_inode_cachep);
3121 }
3122
3123 static int __init init_f2fs_fs(void)
3124 {
3125         int err;
3126
3127         if (PAGE_SIZE != F2FS_BLKSIZE) {
3128                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3129                                 PAGE_SIZE, F2FS_BLKSIZE);
3130                 return -EINVAL;
3131         }
3132
3133         f2fs_build_trace_ios();
3134
3135         err = init_inodecache();
3136         if (err)
3137                 goto fail;
3138         err = create_node_manager_caches();
3139         if (err)
3140                 goto free_inodecache;
3141         err = create_segment_manager_caches();
3142         if (err)
3143                 goto free_node_manager_caches;
3144         err = create_checkpoint_caches();
3145         if (err)
3146                 goto free_segment_manager_caches;
3147         err = create_extent_cache();
3148         if (err)
3149                 goto free_checkpoint_caches;
3150         err = f2fs_init_sysfs();
3151         if (err)
3152                 goto free_extent_cache;
3153         err = register_shrinker(&f2fs_shrinker_info);
3154         if (err)
3155                 goto free_sysfs;
3156         err = register_filesystem(&f2fs_fs_type);
3157         if (err)
3158                 goto free_shrinker;
3159         err = f2fs_create_root_stats();
3160         if (err)
3161                 goto free_filesystem;
3162         err = f2fs_init_post_read_processing();
3163         if (err)
3164                 goto free_root_stats;
3165         return 0;
3166
3167 free_root_stats:
3168         f2fs_destroy_root_stats();
3169 free_filesystem:
3170         unregister_filesystem(&f2fs_fs_type);
3171 free_shrinker:
3172         unregister_shrinker(&f2fs_shrinker_info);
3173 free_sysfs:
3174         f2fs_exit_sysfs();
3175 free_extent_cache:
3176         destroy_extent_cache();
3177 free_checkpoint_caches:
3178         destroy_checkpoint_caches();
3179 free_segment_manager_caches:
3180         destroy_segment_manager_caches();
3181 free_node_manager_caches:
3182         destroy_node_manager_caches();
3183 free_inodecache:
3184         destroy_inodecache();
3185 fail:
3186         return err;
3187 }
3188
3189 static void __exit exit_f2fs_fs(void)
3190 {
3191         f2fs_destroy_post_read_processing();
3192         f2fs_destroy_root_stats();
3193         unregister_filesystem(&f2fs_fs_type);
3194         unregister_shrinker(&f2fs_shrinker_info);
3195         f2fs_exit_sysfs();
3196         destroy_extent_cache();
3197         destroy_checkpoint_caches();
3198         destroy_segment_manager_caches();
3199         destroy_node_manager_caches();
3200         destroy_inodecache();
3201         f2fs_destroy_trace_ios();
3202 }
3203
3204 module_init(init_f2fs_fs)
3205 module_exit(exit_f2fs_fs)
3206
3207 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3208 MODULE_DESCRIPTION("Flash Friendly File System");
3209 MODULE_LICENSE("GPL");
3210