OSDN Git Service

f2fs: update multi-dev metadata in resize_fs
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         struct radix_tree_iter iter;
354         bool switched = false;
355         void **slot;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against mapping->tree_lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         spin_lock_irq(&mapping->tree_lock);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under underwriteback.
394          */
395         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396                                    PAGECACHE_TAG_DIRTY) {
397                 struct page *page = radix_tree_deref_slot_protected(slot,
398                                                         &mapping->tree_lock);
399                 if (likely(page) && PageDirty(page)) {
400                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
401                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
402                 }
403         }
404
405         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406                                    PAGECACHE_TAG_WRITEBACK) {
407                 struct page *page = radix_tree_deref_slot_protected(slot,
408                                                         &mapping->tree_lock);
409                 if (likely(page)) {
410                         WARN_ON_ONCE(!PageWriteback(page));
411                         __dec_wb_stat(old_wb, WB_WRITEBACK);
412                         __inc_wb_stat(new_wb, WB_WRITEBACK);
413                 }
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  The specific list
420          * @inode was on is ignored and the inode is put on ->b_dirty which
421          * is always correct including from ->b_dirty_time.  The transfer
422          * preserves @inode->dirtied_when ordering.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 struct inode *pos;
426
427                 inode_io_list_del_locked(inode, old_wb);
428                 inode->i_wb = new_wb;
429                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430                         if (time_after_eq(inode->dirtied_when,
431                                           pos->dirtied_when))
432                                 break;
433                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         spin_unlock_irq(&mapping->tree_lock);
451         spin_unlock(&inode->i_lock);
452         spin_unlock(&new_wb->list_lock);
453         spin_unlock(&old_wb->list_lock);
454
455         up_read(&bdi->wb_switch_rwsem);
456
457         if (switched) {
458                 wb_wakeup(new_wb);
459                 wb_put(old_wb);
460         }
461         wb_put(new_wb);
462
463         iput(inode);
464         kfree(isw);
465
466         atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471         struct inode_switch_wbs_context *isw = container_of(rcu_head,
472                                 struct inode_switch_wbs_context, rcu_head);
473
474         /* needs to grab bh-unsafe locks, bounce to work item */
475         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476         queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489         struct backing_dev_info *bdi = inode_to_bdi(inode);
490         struct cgroup_subsys_state *memcg_css;
491         struct inode_switch_wbs_context *isw;
492
493         /* noop if seems to be already in progress */
494         if (inode->i_state & I_WB_SWITCH)
495                 return;
496
497         /*
498          * Avoid starting new switches while sync_inodes_sb() is in
499          * progress.  Otherwise, if the down_write protected issue path
500          * blocks heavily, we might end up starting a large number of
501          * switches which will block on the rwsem.
502          */
503         if (!down_read_trylock(&bdi->wb_switch_rwsem))
504                 return;
505
506         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507         if (!isw)
508                 goto out_unlock;
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css)
514                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515         rcu_read_unlock();
516         if (!isw->new_wb)
517                 goto out_free;
518
519         /* while holding I_WB_SWITCH, no one else can update the association */
520         spin_lock(&inode->i_lock);
521         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523             inode_to_wb(inode) == isw->new_wb) {
524                 spin_unlock(&inode->i_lock);
525                 goto out_free;
526         }
527         inode->i_state |= I_WB_SWITCH;
528         spin_unlock(&inode->i_lock);
529
530         ihold(inode);
531         isw->inode = inode;
532
533         /*
534          * In addition to synchronizing among switchers, I_WB_SWITCH tells
535          * the RCU protected stat update paths to grab the mapping's
536          * tree_lock so that stat transfer can synchronize against them.
537          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538          */
539         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541         atomic_inc(&isw_nr_in_flight);
542
543         goto out_unlock;
544
545 out_free:
546         if (isw->new_wb)
547                 wb_put(isw->new_wb);
548         kfree(isw);
549 out_unlock:
550         up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564                                  struct inode *inode)
565 {
566         if (!inode_cgwb_enabled(inode)) {
567                 spin_unlock(&inode->i_lock);
568                 return;
569         }
570
571         wbc->wb = inode_to_wb(inode);
572         wbc->inode = inode;
573
574         wbc->wb_id = wbc->wb->memcg_css->id;
575         wbc->wb_lcand_id = inode->i_wb_frn_winner;
576         wbc->wb_tcand_id = 0;
577         wbc->wb_bytes = 0;
578         wbc->wb_lcand_bytes = 0;
579         wbc->wb_tcand_bytes = 0;
580
581         wb_get(wbc->wb);
582         spin_unlock(&inode->i_lock);
583
584         /*
585          * A dying wb indicates that either the blkcg associated with the
586          * memcg changed or the associated memcg is dying.  In the first
587          * case, a replacement wb should already be available and we should
588          * refresh the wb immediately.  In the second case, trying to
589          * refresh will keep failing.
590          */
591         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
592                 inode_switch_wbs(inode, wbc->wb_id);
593 }
594
595 /**
596  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
597  * @wbc: writeback_control of the just finished writeback
598  *
599  * To be called after a writeback attempt of an inode finishes and undoes
600  * wbc_attach_and_unlock_inode().  Can be called under any context.
601  *
602  * As concurrent write sharing of an inode is expected to be very rare and
603  * memcg only tracks page ownership on first-use basis severely confining
604  * the usefulness of such sharing, cgroup writeback tracks ownership
605  * per-inode.  While the support for concurrent write sharing of an inode
606  * is deemed unnecessary, an inode being written to by different cgroups at
607  * different points in time is a lot more common, and, more importantly,
608  * charging only by first-use can too readily lead to grossly incorrect
609  * behaviors (single foreign page can lead to gigabytes of writeback to be
610  * incorrectly attributed).
611  *
612  * To resolve this issue, cgroup writeback detects the majority dirtier of
613  * an inode and transfers the ownership to it.  To avoid unnnecessary
614  * oscillation, the detection mechanism keeps track of history and gives
615  * out the switch verdict only if the foreign usage pattern is stable over
616  * a certain amount of time and/or writeback attempts.
617  *
618  * On each writeback attempt, @wbc tries to detect the majority writer
619  * using Boyer-Moore majority vote algorithm.  In addition to the byte
620  * count from the majority voting, it also counts the bytes written for the
621  * current wb and the last round's winner wb (max of last round's current
622  * wb, the winner from two rounds ago, and the last round's majority
623  * candidate).  Keeping track of the historical winner helps the algorithm
624  * to semi-reliably detect the most active writer even when it's not the
625  * absolute majority.
626  *
627  * Once the winner of the round is determined, whether the winner is
628  * foreign or not and how much IO time the round consumed is recorded in
629  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
630  * over a certain threshold, the switch verdict is given.
631  */
632 void wbc_detach_inode(struct writeback_control *wbc)
633 {
634         struct bdi_writeback *wb = wbc->wb;
635         struct inode *inode = wbc->inode;
636         unsigned long avg_time, max_bytes, max_time;
637         u16 history;
638         int max_id;
639
640         if (!wb)
641                 return;
642
643         history = inode->i_wb_frn_history;
644         avg_time = inode->i_wb_frn_avg_time;
645
646         /* pick the winner of this round */
647         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
648             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_id;
650                 max_bytes = wbc->wb_bytes;
651         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
652                 max_id = wbc->wb_lcand_id;
653                 max_bytes = wbc->wb_lcand_bytes;
654         } else {
655                 max_id = wbc->wb_tcand_id;
656                 max_bytes = wbc->wb_tcand_bytes;
657         }
658
659         /*
660          * Calculate the amount of IO time the winner consumed and fold it
661          * into the running average kept per inode.  If the consumed IO
662          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
663          * deciding whether to switch or not.  This is to prevent one-off
664          * small dirtiers from skewing the verdict.
665          */
666         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
667                                 wb->avg_write_bandwidth);
668         if (avg_time)
669                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
670                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
671         else
672                 avg_time = max_time;    /* immediate catch up on first run */
673
674         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
675                 int slots;
676
677                 /*
678                  * The switch verdict is reached if foreign wb's consume
679                  * more than a certain proportion of IO time in a
680                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
681                  * history mask where each bit represents one sixteenth of
682                  * the period.  Determine the number of slots to shift into
683                  * history from @max_time.
684                  */
685                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
686                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
687                 history <<= slots;
688                 if (wbc->wb_id != max_id)
689                         history |= (1U << slots) - 1;
690
691                 /*
692                  * Switch if the current wb isn't the consistent winner.
693                  * If there are multiple closely competing dirtiers, the
694                  * inode may switch across them repeatedly over time, which
695                  * is okay.  The main goal is avoiding keeping an inode on
696                  * the wrong wb for an extended period of time.
697                  */
698                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699                         inode_switch_wbs(inode, max_id);
700         }
701
702         /*
703          * Multiple instances of this function may race to update the
704          * following fields but we don't mind occassional inaccuracies.
705          */
706         inode->i_wb_frn_winner = max_id;
707         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708         inode->i_wb_frn_history = history;
709
710         wb_put(wbc->wb);
711         wbc->wb = NULL;
712 }
713
714 /**
715  * wbc_account_io - account IO issued during writeback
716  * @wbc: writeback_control of the writeback in progress
717  * @page: page being written out
718  * @bytes: number of bytes being written out
719  *
720  * @bytes from @page are about to written out during the writeback
721  * controlled by @wbc.  Keep the book for foreign inode detection.  See
722  * wbc_detach_inode().
723  */
724 void wbc_account_io(struct writeback_control *wbc, struct page *page,
725                     size_t bytes)
726 {
727         int id;
728
729         /*
730          * pageout() path doesn't attach @wbc to the inode being written
731          * out.  This is intentional as we don't want the function to block
732          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
733          * regular writeback instead of writing things out itself.
734          */
735         if (!wbc->wb)
736                 return;
737
738         rcu_read_lock();
739         id = mem_cgroup_css_from_page(page)->id;
740         rcu_read_unlock();
741
742         if (id == wbc->wb_id) {
743                 wbc->wb_bytes += bytes;
744                 return;
745         }
746
747         if (id == wbc->wb_lcand_id)
748                 wbc->wb_lcand_bytes += bytes;
749
750         /* Boyer-Moore majority vote algorithm */
751         if (!wbc->wb_tcand_bytes)
752                 wbc->wb_tcand_id = id;
753         if (id == wbc->wb_tcand_id)
754                 wbc->wb_tcand_bytes += bytes;
755         else
756                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
757 }
758 EXPORT_SYMBOL_GPL(wbc_account_io);
759
760 /**
761  * inode_congested - test whether an inode is congested
762  * @inode: inode to test for congestion (may be NULL)
763  * @cong_bits: mask of WB_[a]sync_congested bits to test
764  *
765  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
766  * bits to test and the return value is the mask of set bits.
767  *
768  * If cgroup writeback is enabled for @inode, the congestion state is
769  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
770  * associated with @inode is congested; otherwise, the root wb's congestion
771  * state is used.
772  *
773  * @inode is allowed to be NULL as this function is often called on
774  * mapping->host which is NULL for the swapper space.
775  */
776 int inode_congested(struct inode *inode, int cong_bits)
777 {
778         /*
779          * Once set, ->i_wb never becomes NULL while the inode is alive.
780          * Start transaction iff ->i_wb is visible.
781          */
782         if (inode && inode_to_wb_is_valid(inode)) {
783                 struct bdi_writeback *wb;
784                 struct wb_lock_cookie lock_cookie = {};
785                 bool congested;
786
787                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
788                 congested = wb_congested(wb, cong_bits);
789                 unlocked_inode_to_wb_end(inode, &lock_cookie);
790                 return congested;
791         }
792
793         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
794 }
795 EXPORT_SYMBOL_GPL(inode_congested);
796
797 /**
798  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
799  * @wb: target bdi_writeback to split @nr_pages to
800  * @nr_pages: number of pages to write for the whole bdi
801  *
802  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
803  * relation to the total write bandwidth of all wb's w/ dirty inodes on
804  * @wb->bdi.
805  */
806 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
807 {
808         unsigned long this_bw = wb->avg_write_bandwidth;
809         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
810
811         if (nr_pages == LONG_MAX)
812                 return LONG_MAX;
813
814         /*
815          * This may be called on clean wb's and proportional distribution
816          * may not make sense, just use the original @nr_pages in those
817          * cases.  In general, we wanna err on the side of writing more.
818          */
819         if (!tot_bw || this_bw >= tot_bw)
820                 return nr_pages;
821         else
822                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
823 }
824
825 /**
826  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827  * @bdi: target backing_dev_info
828  * @base_work: wb_writeback_work to issue
829  * @skip_if_busy: skip wb's which already have writeback in progress
830  *
831  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
833  * distributed to the busy wbs according to each wb's proportion in the
834  * total active write bandwidth of @bdi.
835  */
836 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
837                                   struct wb_writeback_work *base_work,
838                                   bool skip_if_busy)
839 {
840         struct bdi_writeback *last_wb = NULL;
841         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
842                                               struct bdi_writeback, bdi_node);
843
844         might_sleep();
845 restart:
846         rcu_read_lock();
847         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
848                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
849                 struct wb_writeback_work fallback_work;
850                 struct wb_writeback_work *work;
851                 long nr_pages;
852
853                 if (last_wb) {
854                         wb_put(last_wb);
855                         last_wb = NULL;
856                 }
857
858                 /* SYNC_ALL writes out I_DIRTY_TIME too */
859                 if (!wb_has_dirty_io(wb) &&
860                     (base_work->sync_mode == WB_SYNC_NONE ||
861                      list_empty(&wb->b_dirty_time)))
862                         continue;
863                 if (skip_if_busy && writeback_in_progress(wb))
864                         continue;
865
866                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
867
868                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
869                 if (work) {
870                         *work = *base_work;
871                         work->nr_pages = nr_pages;
872                         work->auto_free = 1;
873                         wb_queue_work(wb, work);
874                         continue;
875                 }
876
877                 /* alloc failed, execute synchronously using on-stack fallback */
878                 work = &fallback_work;
879                 *work = *base_work;
880                 work->nr_pages = nr_pages;
881                 work->auto_free = 0;
882                 work->done = &fallback_work_done;
883
884                 wb_queue_work(wb, work);
885
886                 /*
887                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
888                  * continuing iteration from @wb after dropping and
889                  * regrabbing rcu read lock.
890                  */
891                 wb_get(wb);
892                 last_wb = wb;
893
894                 rcu_read_unlock();
895                 wb_wait_for_completion(bdi, &fallback_work_done);
896                 goto restart;
897         }
898         rcu_read_unlock();
899
900         if (last_wb)
901                 wb_put(last_wb);
902 }
903
904 /**
905  * cgroup_writeback_umount - flush inode wb switches for umount
906  *
907  * This function is called when a super_block is about to be destroyed and
908  * flushes in-flight inode wb switches.  An inode wb switch goes through
909  * RCU and then workqueue, so the two need to be flushed in order to ensure
910  * that all previously scheduled switches are finished.  As wb switches are
911  * rare occurrences and synchronize_rcu() can take a while, perform
912  * flushing iff wb switches are in flight.
913  */
914 void cgroup_writeback_umount(void)
915 {
916         if (atomic_read(&isw_nr_in_flight)) {
917                 /*
918                  * Use rcu_barrier() to wait for all pending callbacks to
919                  * ensure that all in-flight wb switches are in the workqueue.
920                  */
921                 rcu_barrier();
922                 flush_workqueue(isw_wq);
923         }
924 }
925
926 static int __init cgroup_writeback_init(void)
927 {
928         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
929         if (!isw_wq)
930                 return -ENOMEM;
931         return 0;
932 }
933 fs_initcall(cgroup_writeback_init);
934
935 #else   /* CONFIG_CGROUP_WRITEBACK */
936
937 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
938 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
939
940 static struct bdi_writeback *
941 locked_inode_to_wb_and_lock_list(struct inode *inode)
942         __releases(&inode->i_lock)
943         __acquires(&wb->list_lock)
944 {
945         struct bdi_writeback *wb = inode_to_wb(inode);
946
947         spin_unlock(&inode->i_lock);
948         spin_lock(&wb->list_lock);
949         return wb;
950 }
951
952 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
953         __acquires(&wb->list_lock)
954 {
955         struct bdi_writeback *wb = inode_to_wb(inode);
956
957         spin_lock(&wb->list_lock);
958         return wb;
959 }
960
961 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
962 {
963         return nr_pages;
964 }
965
966 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
967                                   struct wb_writeback_work *base_work,
968                                   bool skip_if_busy)
969 {
970         might_sleep();
971
972         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
973                 base_work->auto_free = 0;
974                 wb_queue_work(&bdi->wb, base_work);
975         }
976 }
977
978 #endif  /* CONFIG_CGROUP_WRITEBACK */
979
980 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
981                         bool range_cyclic, enum wb_reason reason)
982 {
983         struct wb_writeback_work *work;
984
985         if (!wb_has_dirty_io(wb))
986                 return;
987
988         /*
989          * This is WB_SYNC_NONE writeback, so if allocation fails just
990          * wakeup the thread for old dirty data writeback
991          */
992         work = kzalloc(sizeof(*work), GFP_ATOMIC);
993         if (!work) {
994                 trace_writeback_nowork(wb);
995                 wb_wakeup(wb);
996                 return;
997         }
998
999         work->sync_mode = WB_SYNC_NONE;
1000         work->nr_pages  = nr_pages;
1001         work->range_cyclic = range_cyclic;
1002         work->reason    = reason;
1003         work->auto_free = 1;
1004
1005         wb_queue_work(wb, work);
1006 }
1007
1008 /**
1009  * wb_start_background_writeback - start background writeback
1010  * @wb: bdi_writback to write from
1011  *
1012  * Description:
1013  *   This makes sure WB_SYNC_NONE background writeback happens. When
1014  *   this function returns, it is only guaranteed that for given wb
1015  *   some IO is happening if we are over background dirty threshold.
1016  *   Caller need not hold sb s_umount semaphore.
1017  */
1018 void wb_start_background_writeback(struct bdi_writeback *wb)
1019 {
1020         /*
1021          * We just wake up the flusher thread. It will perform background
1022          * writeback as soon as there is no other work to do.
1023          */
1024         trace_writeback_wake_background(wb);
1025         wb_wakeup(wb);
1026 }
1027
1028 /*
1029  * Remove the inode from the writeback list it is on.
1030  */
1031 void inode_io_list_del(struct inode *inode)
1032 {
1033         struct bdi_writeback *wb;
1034
1035         wb = inode_to_wb_and_lock_list(inode);
1036         inode_io_list_del_locked(inode, wb);
1037         spin_unlock(&wb->list_lock);
1038 }
1039
1040 /*
1041  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1042  * furthest end of its superblock's dirty-inode list.
1043  *
1044  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1045  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1046  * the case then the inode must have been redirtied while it was being written
1047  * out and we don't reset its dirtied_when.
1048  */
1049 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1050 {
1051         if (!list_empty(&wb->b_dirty)) {
1052                 struct inode *tail;
1053
1054                 tail = wb_inode(wb->b_dirty.next);
1055                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1056                         inode->dirtied_when = jiffies;
1057         }
1058         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1059 }
1060
1061 /*
1062  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1063  */
1064 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1065 {
1066         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1067 }
1068
1069 static void inode_sync_complete(struct inode *inode)
1070 {
1071         inode->i_state &= ~I_SYNC;
1072         /* If inode is clean an unused, put it into LRU now... */
1073         inode_add_lru(inode);
1074         /* Waiters must see I_SYNC cleared before being woken up */
1075         smp_mb();
1076         wake_up_bit(&inode->i_state, __I_SYNC);
1077 }
1078
1079 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1080 {
1081         bool ret = time_after(inode->dirtied_when, t);
1082 #ifndef CONFIG_64BIT
1083         /*
1084          * For inodes being constantly redirtied, dirtied_when can get stuck.
1085          * It _appears_ to be in the future, but is actually in distant past.
1086          * This test is necessary to prevent such wrapped-around relative times
1087          * from permanently stopping the whole bdi writeback.
1088          */
1089         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1090 #endif
1091         return ret;
1092 }
1093
1094 #define EXPIRE_DIRTY_ATIME 0x0001
1095
1096 /*
1097  * Move expired (dirtied before work->older_than_this) dirty inodes from
1098  * @delaying_queue to @dispatch_queue.
1099  */
1100 static int move_expired_inodes(struct list_head *delaying_queue,
1101                                struct list_head *dispatch_queue,
1102                                int flags,
1103                                struct wb_writeback_work *work)
1104 {
1105         unsigned long *older_than_this = NULL;
1106         unsigned long expire_time;
1107         LIST_HEAD(tmp);
1108         struct list_head *pos, *node;
1109         struct super_block *sb = NULL;
1110         struct inode *inode;
1111         int do_sb_sort = 0;
1112         int moved = 0;
1113
1114         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1115                 older_than_this = work->older_than_this;
1116         else if (!work->for_sync) {
1117                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1118                 older_than_this = &expire_time;
1119         }
1120         while (!list_empty(delaying_queue)) {
1121                 inode = wb_inode(delaying_queue->prev);
1122                 if (older_than_this &&
1123                     inode_dirtied_after(inode, *older_than_this))
1124                         break;
1125                 list_move(&inode->i_io_list, &tmp);
1126                 moved++;
1127                 if (flags & EXPIRE_DIRTY_ATIME)
1128                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1129                 if (sb_is_blkdev_sb(inode->i_sb))
1130                         continue;
1131                 if (sb && sb != inode->i_sb)
1132                         do_sb_sort = 1;
1133                 sb = inode->i_sb;
1134         }
1135
1136         /* just one sb in list, splice to dispatch_queue and we're done */
1137         if (!do_sb_sort) {
1138                 list_splice(&tmp, dispatch_queue);
1139                 goto out;
1140         }
1141
1142         /* Move inodes from one superblock together */
1143         while (!list_empty(&tmp)) {
1144                 sb = wb_inode(tmp.prev)->i_sb;
1145                 list_for_each_prev_safe(pos, node, &tmp) {
1146                         inode = wb_inode(pos);
1147                         if (inode->i_sb == sb)
1148                                 list_move(&inode->i_io_list, dispatch_queue);
1149                 }
1150         }
1151 out:
1152         return moved;
1153 }
1154
1155 /*
1156  * Queue all expired dirty inodes for io, eldest first.
1157  * Before
1158  *         newly dirtied     b_dirty    b_io    b_more_io
1159  *         =============>    gf         edc     BA
1160  * After
1161  *         newly dirtied     b_dirty    b_io    b_more_io
1162  *         =============>    g          fBAedc
1163  *                                           |
1164  *                                           +--> dequeue for IO
1165  */
1166 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1167 {
1168         int moved;
1169
1170         assert_spin_locked(&wb->list_lock);
1171         list_splice_init(&wb->b_more_io, &wb->b_io);
1172         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1173         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1174                                      EXPIRE_DIRTY_ATIME, work);
1175         if (moved)
1176                 wb_io_lists_populated(wb);
1177         trace_writeback_queue_io(wb, work, moved);
1178 }
1179
1180 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1181 {
1182         int ret;
1183
1184         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1185                 trace_writeback_write_inode_start(inode, wbc);
1186                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1187                 trace_writeback_write_inode(inode, wbc);
1188                 return ret;
1189         }
1190         return 0;
1191 }
1192
1193 /*
1194  * Wait for writeback on an inode to complete. Called with i_lock held.
1195  * Caller must make sure inode cannot go away when we drop i_lock.
1196  */
1197 static void __inode_wait_for_writeback(struct inode *inode)
1198         __releases(inode->i_lock)
1199         __acquires(inode->i_lock)
1200 {
1201         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1202         wait_queue_head_t *wqh;
1203
1204         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1205         while (inode->i_state & I_SYNC) {
1206                 spin_unlock(&inode->i_lock);
1207                 __wait_on_bit(wqh, &wq, bit_wait,
1208                               TASK_UNINTERRUPTIBLE);
1209                 spin_lock(&inode->i_lock);
1210         }
1211 }
1212
1213 /*
1214  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1215  */
1216 void inode_wait_for_writeback(struct inode *inode)
1217 {
1218         spin_lock(&inode->i_lock);
1219         __inode_wait_for_writeback(inode);
1220         spin_unlock(&inode->i_lock);
1221 }
1222
1223 /*
1224  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1225  * held and drops it. It is aimed for callers not holding any inode reference
1226  * so once i_lock is dropped, inode can go away.
1227  */
1228 static void inode_sleep_on_writeback(struct inode *inode)
1229         __releases(inode->i_lock)
1230 {
1231         DEFINE_WAIT(wait);
1232         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1233         int sleep;
1234
1235         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1236         sleep = inode->i_state & I_SYNC;
1237         spin_unlock(&inode->i_lock);
1238         if (sleep)
1239                 schedule();
1240         finish_wait(wqh, &wait);
1241 }
1242
1243 /*
1244  * Find proper writeback list for the inode depending on its current state and
1245  * possibly also change of its state while we were doing writeback.  Here we
1246  * handle things such as livelock prevention or fairness of writeback among
1247  * inodes. This function can be called only by flusher thread - noone else
1248  * processes all inodes in writeback lists and requeueing inodes behind flusher
1249  * thread's back can have unexpected consequences.
1250  */
1251 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1252                           struct writeback_control *wbc)
1253 {
1254         if (inode->i_state & I_FREEING)
1255                 return;
1256
1257         /*
1258          * Sync livelock prevention. Each inode is tagged and synced in one
1259          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1260          * the dirty time to prevent enqueue and sync it again.
1261          */
1262         if ((inode->i_state & I_DIRTY) &&
1263             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1264                 inode->dirtied_when = jiffies;
1265
1266         if (wbc->pages_skipped) {
1267                 /*
1268                  * writeback is not making progress due to locked
1269                  * buffers. Skip this inode for now.
1270                  */
1271                 redirty_tail(inode, wb);
1272                 return;
1273         }
1274
1275         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1276                 /*
1277                  * We didn't write back all the pages.  nfs_writepages()
1278                  * sometimes bales out without doing anything.
1279                  */
1280                 if (wbc->nr_to_write <= 0) {
1281                         /* Slice used up. Queue for next turn. */
1282                         requeue_io(inode, wb);
1283                 } else {
1284                         /*
1285                          * Writeback blocked by something other than
1286                          * congestion. Delay the inode for some time to
1287                          * avoid spinning on the CPU (100% iowait)
1288                          * retrying writeback of the dirty page/inode
1289                          * that cannot be performed immediately.
1290                          */
1291                         redirty_tail(inode, wb);
1292                 }
1293         } else if (inode->i_state & I_DIRTY) {
1294                 /*
1295                  * Filesystems can dirty the inode during writeback operations,
1296                  * such as delayed allocation during submission or metadata
1297                  * updates after data IO completion.
1298                  */
1299                 redirty_tail(inode, wb);
1300         } else if (inode->i_state & I_DIRTY_TIME) {
1301                 inode->dirtied_when = jiffies;
1302                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1303         } else {
1304                 /* The inode is clean. Remove from writeback lists. */
1305                 inode_io_list_del_locked(inode, wb);
1306         }
1307 }
1308
1309 /*
1310  * Write out an inode and its dirty pages. Do not update the writeback list
1311  * linkage. That is left to the caller. The caller is also responsible for
1312  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1313  */
1314 static int
1315 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1316 {
1317         struct address_space *mapping = inode->i_mapping;
1318         long nr_to_write = wbc->nr_to_write;
1319         unsigned dirty;
1320         int ret;
1321
1322         WARN_ON(!(inode->i_state & I_SYNC));
1323
1324         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1325
1326         ret = do_writepages(mapping, wbc);
1327
1328         /*
1329          * Make sure to wait on the data before writing out the metadata.
1330          * This is important for filesystems that modify metadata on data
1331          * I/O completion. We don't do it for sync(2) writeback because it has a
1332          * separate, external IO completion path and ->sync_fs for guaranteeing
1333          * inode metadata is written back correctly.
1334          */
1335         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1336                 int err = filemap_fdatawait(mapping);
1337                 if (ret == 0)
1338                         ret = err;
1339         }
1340
1341         /*
1342          * Some filesystems may redirty the inode during the writeback
1343          * due to delalloc, clear dirty metadata flags right before
1344          * write_inode()
1345          */
1346         spin_lock(&inode->i_lock);
1347
1348         dirty = inode->i_state & I_DIRTY;
1349         if (inode->i_state & I_DIRTY_TIME) {
1350                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1351                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1352                     unlikely(time_after(jiffies,
1353                                         (inode->dirtied_time_when +
1354                                          dirtytime_expire_interval * HZ)))) {
1355                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1356                         trace_writeback_lazytime(inode);
1357                 }
1358         } else
1359                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1360         inode->i_state &= ~dirty;
1361
1362         /*
1363          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1364          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1365          * either they see the I_DIRTY bits cleared or we see the dirtied
1366          * inode.
1367          *
1368          * I_DIRTY_PAGES is always cleared together above even if @mapping
1369          * still has dirty pages.  The flag is reinstated after smp_mb() if
1370          * necessary.  This guarantees that either __mark_inode_dirty()
1371          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1372          */
1373         smp_mb();
1374
1375         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1376                 inode->i_state |= I_DIRTY_PAGES;
1377
1378         spin_unlock(&inode->i_lock);
1379
1380         if (dirty & I_DIRTY_TIME)
1381                 mark_inode_dirty_sync(inode);
1382         /* Don't write the inode if only I_DIRTY_PAGES was set */
1383         if (dirty & ~I_DIRTY_PAGES) {
1384                 int err = write_inode(inode, wbc);
1385                 if (ret == 0)
1386                         ret = err;
1387         }
1388         trace_writeback_single_inode(inode, wbc, nr_to_write);
1389         return ret;
1390 }
1391
1392 /*
1393  * Write out an inode's dirty pages. Either the caller has an active reference
1394  * on the inode or the inode has I_WILL_FREE set.
1395  *
1396  * This function is designed to be called for writing back one inode which
1397  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1398  * and does more profound writeback list handling in writeback_sb_inodes().
1399  */
1400 static int writeback_single_inode(struct inode *inode,
1401                                   struct writeback_control *wbc)
1402 {
1403         struct bdi_writeback *wb;
1404         int ret = 0;
1405
1406         spin_lock(&inode->i_lock);
1407         if (!atomic_read(&inode->i_count))
1408                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1409         else
1410                 WARN_ON(inode->i_state & I_WILL_FREE);
1411
1412         if (inode->i_state & I_SYNC) {
1413                 if (wbc->sync_mode != WB_SYNC_ALL)
1414                         goto out;
1415                 /*
1416                  * It's a data-integrity sync. We must wait. Since callers hold
1417                  * inode reference or inode has I_WILL_FREE set, it cannot go
1418                  * away under us.
1419                  */
1420                 __inode_wait_for_writeback(inode);
1421         }
1422         WARN_ON(inode->i_state & I_SYNC);
1423         /*
1424          * Skip inode if it is clean and we have no outstanding writeback in
1425          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1426          * function since flusher thread may be doing for example sync in
1427          * parallel and if we move the inode, it could get skipped. So here we
1428          * make sure inode is on some writeback list and leave it there unless
1429          * we have completely cleaned the inode.
1430          */
1431         if (!(inode->i_state & I_DIRTY_ALL) &&
1432             (wbc->sync_mode != WB_SYNC_ALL ||
1433              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1434                 goto out;
1435         inode->i_state |= I_SYNC;
1436         wbc_attach_and_unlock_inode(wbc, inode);
1437
1438         ret = __writeback_single_inode(inode, wbc);
1439
1440         wbc_detach_inode(wbc);
1441
1442         wb = inode_to_wb_and_lock_list(inode);
1443         spin_lock(&inode->i_lock);
1444         /*
1445          * If inode is clean, remove it from writeback lists. Otherwise don't
1446          * touch it. See comment above for explanation.
1447          */
1448         if (!(inode->i_state & I_DIRTY_ALL))
1449                 inode_io_list_del_locked(inode, wb);
1450         spin_unlock(&wb->list_lock);
1451         inode_sync_complete(inode);
1452 out:
1453         spin_unlock(&inode->i_lock);
1454         return ret;
1455 }
1456
1457 static long writeback_chunk_size(struct bdi_writeback *wb,
1458                                  struct wb_writeback_work *work)
1459 {
1460         long pages;
1461
1462         /*
1463          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1464          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1465          * here avoids calling into writeback_inodes_wb() more than once.
1466          *
1467          * The intended call sequence for WB_SYNC_ALL writeback is:
1468          *
1469          *      wb_writeback()
1470          *          writeback_sb_inodes()       <== called only once
1471          *              write_cache_pages()     <== called once for each inode
1472          *                   (quickly) tag currently dirty pages
1473          *                   (maybe slowly) sync all tagged pages
1474          */
1475         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1476                 pages = LONG_MAX;
1477         else {
1478                 pages = min(wb->avg_write_bandwidth / 2,
1479                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1480                 pages = min(pages, work->nr_pages);
1481                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1482                                    MIN_WRITEBACK_PAGES);
1483         }
1484
1485         return pages;
1486 }
1487
1488 /*
1489  * Write a portion of b_io inodes which belong to @sb.
1490  *
1491  * Return the number of pages and/or inodes written.
1492  *
1493  * NOTE! This is called with wb->list_lock held, and will
1494  * unlock and relock that for each inode it ends up doing
1495  * IO for.
1496  */
1497 static long writeback_sb_inodes(struct super_block *sb,
1498                                 struct bdi_writeback *wb,
1499                                 struct wb_writeback_work *work)
1500 {
1501         struct writeback_control wbc = {
1502                 .sync_mode              = work->sync_mode,
1503                 .tagged_writepages      = work->tagged_writepages,
1504                 .for_kupdate            = work->for_kupdate,
1505                 .for_background         = work->for_background,
1506                 .for_sync               = work->for_sync,
1507                 .range_cyclic           = work->range_cyclic,
1508                 .range_start            = 0,
1509                 .range_end              = LLONG_MAX,
1510         };
1511         unsigned long start_time = jiffies;
1512         long write_chunk;
1513         long wrote = 0;  /* count both pages and inodes */
1514
1515         while (!list_empty(&wb->b_io)) {
1516                 struct inode *inode = wb_inode(wb->b_io.prev);
1517                 struct bdi_writeback *tmp_wb;
1518
1519                 if (inode->i_sb != sb) {
1520                         if (work->sb) {
1521                                 /*
1522                                  * We only want to write back data for this
1523                                  * superblock, move all inodes not belonging
1524                                  * to it back onto the dirty list.
1525                                  */
1526                                 redirty_tail(inode, wb);
1527                                 continue;
1528                         }
1529
1530                         /*
1531                          * The inode belongs to a different superblock.
1532                          * Bounce back to the caller to unpin this and
1533                          * pin the next superblock.
1534                          */
1535                         break;
1536                 }
1537
1538                 /*
1539                  * Don't bother with new inodes or inodes being freed, first
1540                  * kind does not need periodic writeout yet, and for the latter
1541                  * kind writeout is handled by the freer.
1542                  */
1543                 spin_lock(&inode->i_lock);
1544                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1545                         spin_unlock(&inode->i_lock);
1546                         redirty_tail(inode, wb);
1547                         continue;
1548                 }
1549                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1550                         /*
1551                          * If this inode is locked for writeback and we are not
1552                          * doing writeback-for-data-integrity, move it to
1553                          * b_more_io so that writeback can proceed with the
1554                          * other inodes on s_io.
1555                          *
1556                          * We'll have another go at writing back this inode
1557                          * when we completed a full scan of b_io.
1558                          */
1559                         spin_unlock(&inode->i_lock);
1560                         requeue_io(inode, wb);
1561                         trace_writeback_sb_inodes_requeue(inode);
1562                         continue;
1563                 }
1564                 spin_unlock(&wb->list_lock);
1565
1566                 /*
1567                  * We already requeued the inode if it had I_SYNC set and we
1568                  * are doing WB_SYNC_NONE writeback. So this catches only the
1569                  * WB_SYNC_ALL case.
1570                  */
1571                 if (inode->i_state & I_SYNC) {
1572                         /* Wait for I_SYNC. This function drops i_lock... */
1573                         inode_sleep_on_writeback(inode);
1574                         /* Inode may be gone, start again */
1575                         spin_lock(&wb->list_lock);
1576                         continue;
1577                 }
1578                 inode->i_state |= I_SYNC;
1579                 wbc_attach_and_unlock_inode(&wbc, inode);
1580
1581                 write_chunk = writeback_chunk_size(wb, work);
1582                 wbc.nr_to_write = write_chunk;
1583                 wbc.pages_skipped = 0;
1584
1585                 /*
1586                  * We use I_SYNC to pin the inode in memory. While it is set
1587                  * evict_inode() will wait so the inode cannot be freed.
1588                  */
1589                 __writeback_single_inode(inode, &wbc);
1590
1591                 wbc_detach_inode(&wbc);
1592                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1593                 wrote += write_chunk - wbc.nr_to_write;
1594
1595                 if (need_resched()) {
1596                         /*
1597                          * We're trying to balance between building up a nice
1598                          * long list of IOs to improve our merge rate, and
1599                          * getting those IOs out quickly for anyone throttling
1600                          * in balance_dirty_pages().  cond_resched() doesn't
1601                          * unplug, so get our IOs out the door before we
1602                          * give up the CPU.
1603                          */
1604                         blk_flush_plug(current);
1605                         cond_resched();
1606                 }
1607
1608                 /*
1609                  * Requeue @inode if still dirty.  Be careful as @inode may
1610                  * have been switched to another wb in the meantime.
1611                  */
1612                 tmp_wb = inode_to_wb_and_lock_list(inode);
1613                 spin_lock(&inode->i_lock);
1614                 if (!(inode->i_state & I_DIRTY_ALL))
1615                         wrote++;
1616                 requeue_inode(inode, tmp_wb, &wbc);
1617                 inode_sync_complete(inode);
1618                 spin_unlock(&inode->i_lock);
1619
1620                 if (unlikely(tmp_wb != wb)) {
1621                         spin_unlock(&tmp_wb->list_lock);
1622                         spin_lock(&wb->list_lock);
1623                 }
1624
1625                 /*
1626                  * bail out to wb_writeback() often enough to check
1627                  * background threshold and other termination conditions.
1628                  */
1629                 if (wrote) {
1630                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1631                                 break;
1632                         if (work->nr_pages <= 0)
1633                                 break;
1634                 }
1635         }
1636         return wrote;
1637 }
1638
1639 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1640                                   struct wb_writeback_work *work)
1641 {
1642         unsigned long start_time = jiffies;
1643         long wrote = 0;
1644
1645         while (!list_empty(&wb->b_io)) {
1646                 struct inode *inode = wb_inode(wb->b_io.prev);
1647                 struct super_block *sb = inode->i_sb;
1648
1649                 if (!trylock_super(sb)) {
1650                         /*
1651                          * trylock_super() may fail consistently due to
1652                          * s_umount being grabbed by someone else. Don't use
1653                          * requeue_io() to avoid busy retrying the inode/sb.
1654                          */
1655                         redirty_tail(inode, wb);
1656                         continue;
1657                 }
1658                 wrote += writeback_sb_inodes(sb, wb, work);
1659                 up_read(&sb->s_umount);
1660
1661                 /* refer to the same tests at the end of writeback_sb_inodes */
1662                 if (wrote) {
1663                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1664                                 break;
1665                         if (work->nr_pages <= 0)
1666                                 break;
1667                 }
1668         }
1669         /* Leave any unwritten inodes on b_io */
1670         return wrote;
1671 }
1672
1673 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1674                                 enum wb_reason reason)
1675 {
1676         struct wb_writeback_work work = {
1677                 .nr_pages       = nr_pages,
1678                 .sync_mode      = WB_SYNC_NONE,
1679                 .range_cyclic   = 1,
1680                 .reason         = reason,
1681         };
1682         struct blk_plug plug;
1683
1684         blk_start_plug(&plug);
1685         spin_lock(&wb->list_lock);
1686         if (list_empty(&wb->b_io))
1687                 queue_io(wb, &work);
1688         __writeback_inodes_wb(wb, &work);
1689         spin_unlock(&wb->list_lock);
1690         blk_finish_plug(&plug);
1691
1692         return nr_pages - work.nr_pages;
1693 }
1694
1695 /*
1696  * Explicit flushing or periodic writeback of "old" data.
1697  *
1698  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1699  * dirtying-time in the inode's address_space.  So this periodic writeback code
1700  * just walks the superblock inode list, writing back any inodes which are
1701  * older than a specific point in time.
1702  *
1703  * Try to run once per dirty_writeback_interval.  But if a writeback event
1704  * takes longer than a dirty_writeback_interval interval, then leave a
1705  * one-second gap.
1706  *
1707  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1708  * all dirty pages if they are all attached to "old" mappings.
1709  */
1710 static long wb_writeback(struct bdi_writeback *wb,
1711                          struct wb_writeback_work *work)
1712 {
1713         unsigned long wb_start = jiffies;
1714         long nr_pages = work->nr_pages;
1715         unsigned long oldest_jif;
1716         struct inode *inode;
1717         long progress;
1718         struct blk_plug plug;
1719
1720         oldest_jif = jiffies;
1721         work->older_than_this = &oldest_jif;
1722
1723         blk_start_plug(&plug);
1724         spin_lock(&wb->list_lock);
1725         for (;;) {
1726                 /*
1727                  * Stop writeback when nr_pages has been consumed
1728                  */
1729                 if (work->nr_pages <= 0)
1730                         break;
1731
1732                 /*
1733                  * Background writeout and kupdate-style writeback may
1734                  * run forever. Stop them if there is other work to do
1735                  * so that e.g. sync can proceed. They'll be restarted
1736                  * after the other works are all done.
1737                  */
1738                 if ((work->for_background || work->for_kupdate) &&
1739                     !list_empty(&wb->work_list))
1740                         break;
1741
1742                 /*
1743                  * For background writeout, stop when we are below the
1744                  * background dirty threshold
1745                  */
1746                 if (work->for_background && !wb_over_bg_thresh(wb))
1747                         break;
1748
1749                 /*
1750                  * Kupdate and background works are special and we want to
1751                  * include all inodes that need writing. Livelock avoidance is
1752                  * handled by these works yielding to any other work so we are
1753                  * safe.
1754                  */
1755                 if (work->for_kupdate) {
1756                         oldest_jif = jiffies - (30 * HZ);
1757                 } else if (work->for_background)
1758                         oldest_jif = jiffies;
1759
1760                 trace_writeback_start(wb, work);
1761                 if (list_empty(&wb->b_io))
1762                         queue_io(wb, work);
1763                 if (work->sb)
1764                         progress = writeback_sb_inodes(work->sb, wb, work);
1765                 else
1766                         progress = __writeback_inodes_wb(wb, work);
1767                 trace_writeback_written(wb, work);
1768
1769                 wb_update_bandwidth(wb, wb_start);
1770
1771                 /*
1772                  * Did we write something? Try for more
1773                  *
1774                  * Dirty inodes are moved to b_io for writeback in batches.
1775                  * The completion of the current batch does not necessarily
1776                  * mean the overall work is done. So we keep looping as long
1777                  * as made some progress on cleaning pages or inodes.
1778                  */
1779                 if (progress)
1780                         continue;
1781                 /*
1782                  * No more inodes for IO, bail
1783                  */
1784                 if (list_empty(&wb->b_more_io))
1785                         break;
1786                 /*
1787                  * Nothing written. Wait for some inode to
1788                  * become available for writeback. Otherwise
1789                  * we'll just busyloop.
1790                  */
1791                 if (!list_empty(&wb->b_more_io))  {
1792                         trace_writeback_wait(wb, work);
1793                         inode = wb_inode(wb->b_more_io.prev);
1794                         spin_lock(&inode->i_lock);
1795                         spin_unlock(&wb->list_lock);
1796                         /* This function drops i_lock... */
1797                         inode_sleep_on_writeback(inode);
1798                         spin_lock(&wb->list_lock);
1799                 }
1800         }
1801         spin_unlock(&wb->list_lock);
1802         blk_finish_plug(&plug);
1803
1804         return nr_pages - work->nr_pages;
1805 }
1806
1807 /*
1808  * Return the next wb_writeback_work struct that hasn't been processed yet.
1809  */
1810 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1811 {
1812         struct wb_writeback_work *work = NULL;
1813
1814         spin_lock_bh(&wb->work_lock);
1815         if (!list_empty(&wb->work_list)) {
1816                 work = list_entry(wb->work_list.next,
1817                                   struct wb_writeback_work, list);
1818                 list_del_init(&work->list);
1819         }
1820         spin_unlock_bh(&wb->work_lock);
1821         return work;
1822 }
1823
1824 /*
1825  * Add in the number of potentially dirty inodes, because each inode
1826  * write can dirty pagecache in the underlying blockdev.
1827  */
1828 static unsigned long get_nr_dirty_pages(void)
1829 {
1830         return global_page_state(NR_FILE_DIRTY) +
1831                 global_page_state(NR_UNSTABLE_NFS) +
1832                 get_nr_dirty_inodes();
1833 }
1834
1835 static long wb_check_background_flush(struct bdi_writeback *wb)
1836 {
1837         if (wb_over_bg_thresh(wb)) {
1838
1839                 struct wb_writeback_work work = {
1840                         .nr_pages       = LONG_MAX,
1841                         .sync_mode      = WB_SYNC_NONE,
1842                         .for_background = 1,
1843                         .range_cyclic   = 1,
1844                         .reason         = WB_REASON_BACKGROUND,
1845                 };
1846
1847                 return wb_writeback(wb, &work);
1848         }
1849
1850         return 0;
1851 }
1852
1853 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1854 {
1855         unsigned long expired;
1856         long nr_pages;
1857
1858         /*
1859          * When set to zero, disable periodic writeback
1860          */
1861         if (!dirty_writeback_interval)
1862                 return 0;
1863
1864         expired = wb->last_old_flush +
1865                         msecs_to_jiffies(dirty_writeback_interval * 10);
1866         if (time_before(jiffies, expired))
1867                 return 0;
1868
1869         wb->last_old_flush = jiffies;
1870         nr_pages = get_nr_dirty_pages();
1871
1872         if (nr_pages) {
1873                 struct wb_writeback_work work = {
1874                         .nr_pages       = nr_pages,
1875                         .sync_mode      = WB_SYNC_NONE,
1876                         .for_kupdate    = 1,
1877                         .range_cyclic   = 1,
1878                         .reason         = WB_REASON_PERIODIC,
1879                 };
1880
1881                 return wb_writeback(wb, &work);
1882         }
1883
1884         return 0;
1885 }
1886
1887 /*
1888  * Retrieve work items and do the writeback they describe
1889  */
1890 static long wb_do_writeback(struct bdi_writeback *wb)
1891 {
1892         struct wb_writeback_work *work;
1893         long wrote = 0;
1894
1895         set_bit(WB_writeback_running, &wb->state);
1896         while ((work = get_next_work_item(wb)) != NULL) {
1897                 trace_writeback_exec(wb, work);
1898                 wrote += wb_writeback(wb, work);
1899                 finish_writeback_work(wb, work);
1900         }
1901
1902         /*
1903          * Check for periodic writeback, kupdated() style
1904          */
1905         wrote += wb_check_old_data_flush(wb);
1906         wrote += wb_check_background_flush(wb);
1907         clear_bit(WB_writeback_running, &wb->state);
1908
1909         return wrote;
1910 }
1911
1912 /*
1913  * Handle writeback of dirty data for the device backed by this bdi. Also
1914  * reschedules periodically and does kupdated style flushing.
1915  */
1916 void wb_workfn(struct work_struct *work)
1917 {
1918         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1919                                                 struct bdi_writeback, dwork);
1920         long pages_written;
1921
1922         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1923         current->flags |= PF_SWAPWRITE;
1924
1925         if (likely(!current_is_workqueue_rescuer() ||
1926                    !test_bit(WB_registered, &wb->state))) {
1927                 /*
1928                  * The normal path.  Keep writing back @wb until its
1929                  * work_list is empty.  Note that this path is also taken
1930                  * if @wb is shutting down even when we're running off the
1931                  * rescuer as work_list needs to be drained.
1932                  */
1933                 do {
1934                         pages_written = wb_do_writeback(wb);
1935                         trace_writeback_pages_written(pages_written);
1936                 } while (!list_empty(&wb->work_list));
1937         } else {
1938                 /*
1939                  * bdi_wq can't get enough workers and we're running off
1940                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1941                  * enough for efficient IO.
1942                  */
1943                 pages_written = writeback_inodes_wb(wb, 1024,
1944                                                     WB_REASON_FORKER_THREAD);
1945                 trace_writeback_pages_written(pages_written);
1946         }
1947
1948         if (!list_empty(&wb->work_list))
1949                 wb_wakeup(wb);
1950         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1951                 wb_wakeup_delayed(wb);
1952
1953         current->flags &= ~PF_SWAPWRITE;
1954 }
1955
1956 /*
1957  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1958  * the whole world.
1959  */
1960 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1961 {
1962         struct backing_dev_info *bdi;
1963
1964         if (!nr_pages)
1965                 nr_pages = get_nr_dirty_pages();
1966
1967         rcu_read_lock();
1968         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1969                 struct bdi_writeback *wb;
1970
1971                 if (!bdi_has_dirty_io(bdi))
1972                         continue;
1973
1974                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1975                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1976                                            false, reason);
1977         }
1978         rcu_read_unlock();
1979 }
1980
1981 /*
1982  * Wake up bdi's periodically to make sure dirtytime inodes gets
1983  * written back periodically.  We deliberately do *not* check the
1984  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1985  * kernel to be constantly waking up once there are any dirtytime
1986  * inodes on the system.  So instead we define a separate delayed work
1987  * function which gets called much more rarely.  (By default, only
1988  * once every 12 hours.)
1989  *
1990  * If there is any other write activity going on in the file system,
1991  * this function won't be necessary.  But if the only thing that has
1992  * happened on the file system is a dirtytime inode caused by an atime
1993  * update, we need this infrastructure below to make sure that inode
1994  * eventually gets pushed out to disk.
1995  */
1996 static void wakeup_dirtytime_writeback(struct work_struct *w);
1997 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1998
1999 static void wakeup_dirtytime_writeback(struct work_struct *w)
2000 {
2001         struct backing_dev_info *bdi;
2002
2003         rcu_read_lock();
2004         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2005                 struct bdi_writeback *wb;
2006
2007                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2008                         if (!list_empty(&wb->b_dirty_time))
2009                                 wb_wakeup(wb);
2010         }
2011         rcu_read_unlock();
2012         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2013 }
2014
2015 static int __init start_dirtytime_writeback(void)
2016 {
2017         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2018         return 0;
2019 }
2020 __initcall(start_dirtytime_writeback);
2021
2022 int dirtytime_interval_handler(struct ctl_table *table, int write,
2023                                void __user *buffer, size_t *lenp, loff_t *ppos)
2024 {
2025         int ret;
2026
2027         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2028         if (ret == 0 && write)
2029                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2030         return ret;
2031 }
2032
2033 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2034 {
2035         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2036                 struct dentry *dentry;
2037                 const char *name = "?";
2038
2039                 dentry = d_find_alias(inode);
2040                 if (dentry) {
2041                         spin_lock(&dentry->d_lock);
2042                         name = (const char *) dentry->d_name.name;
2043                 }
2044                 printk(KERN_DEBUG
2045                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2046                        current->comm, task_pid_nr(current), inode->i_ino,
2047                        name, inode->i_sb->s_id);
2048                 if (dentry) {
2049                         spin_unlock(&dentry->d_lock);
2050                         dput(dentry);
2051                 }
2052         }
2053 }
2054
2055 /**
2056  *      __mark_inode_dirty -    internal function
2057  *      @inode: inode to mark
2058  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2059  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2060  *      mark_inode_dirty_sync.
2061  *
2062  * Put the inode on the super block's dirty list.
2063  *
2064  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2065  * dirty list only if it is hashed or if it refers to a blockdev.
2066  * If it was not hashed, it will never be added to the dirty list
2067  * even if it is later hashed, as it will have been marked dirty already.
2068  *
2069  * In short, make sure you hash any inodes _before_ you start marking
2070  * them dirty.
2071  *
2072  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2073  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2074  * the kernel-internal blockdev inode represents the dirtying time of the
2075  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2076  * page->mapping->host, so the page-dirtying time is recorded in the internal
2077  * blockdev inode.
2078  */
2079 void __mark_inode_dirty(struct inode *inode, int flags)
2080 {
2081 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2082         struct super_block *sb = inode->i_sb;
2083         int dirtytime;
2084
2085         trace_writeback_mark_inode_dirty(inode, flags);
2086
2087         /*
2088          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2089          * dirty the inode itself
2090          */
2091         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2092                 trace_writeback_dirty_inode_start(inode, flags);
2093
2094                 if (sb->s_op->dirty_inode)
2095                         sb->s_op->dirty_inode(inode, flags);
2096
2097                 trace_writeback_dirty_inode(inode, flags);
2098         }
2099         if (flags & I_DIRTY_INODE)
2100                 flags &= ~I_DIRTY_TIME;
2101         dirtytime = flags & I_DIRTY_TIME;
2102
2103         /*
2104          * Paired with smp_mb() in __writeback_single_inode() for the
2105          * following lockless i_state test.  See there for details.
2106          */
2107         smp_mb();
2108
2109         if (((inode->i_state & flags) == flags) ||
2110             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2111                 return;
2112
2113         if (unlikely(block_dump > 1))
2114                 block_dump___mark_inode_dirty(inode);
2115
2116         spin_lock(&inode->i_lock);
2117         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2118                 goto out_unlock_inode;
2119         if ((inode->i_state & flags) != flags) {
2120                 const int was_dirty = inode->i_state & I_DIRTY;
2121
2122                 inode_attach_wb(inode, NULL);
2123
2124                 if (flags & I_DIRTY_INODE)
2125                         inode->i_state &= ~I_DIRTY_TIME;
2126                 inode->i_state |= flags;
2127
2128                 /*
2129                  * If the inode is being synced, just update its dirty state.
2130                  * The unlocker will place the inode on the appropriate
2131                  * superblock list, based upon its state.
2132                  */
2133                 if (inode->i_state & I_SYNC)
2134                         goto out_unlock_inode;
2135
2136                 /*
2137                  * Only add valid (hashed) inodes to the superblock's
2138                  * dirty list.  Add blockdev inodes as well.
2139                  */
2140                 if (!S_ISBLK(inode->i_mode)) {
2141                         if (inode_unhashed(inode))
2142                                 goto out_unlock_inode;
2143                 }
2144                 if (inode->i_state & I_FREEING)
2145                         goto out_unlock_inode;
2146
2147                 /*
2148                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2149                  * reposition it (that would break b_dirty time-ordering).
2150                  */
2151                 if (!was_dirty) {
2152                         struct bdi_writeback *wb;
2153                         struct list_head *dirty_list;
2154                         bool wakeup_bdi = false;
2155
2156                         wb = locked_inode_to_wb_and_lock_list(inode);
2157
2158                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2159                              !test_bit(WB_registered, &wb->state),
2160                              "bdi-%s not registered\n", wb->bdi->name);
2161
2162                         inode->dirtied_when = jiffies;
2163                         if (dirtytime)
2164                                 inode->dirtied_time_when = jiffies;
2165
2166                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2167                                 dirty_list = &wb->b_dirty;
2168                         else
2169                                 dirty_list = &wb->b_dirty_time;
2170
2171                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2172                                                                dirty_list);
2173
2174                         spin_unlock(&wb->list_lock);
2175                         trace_writeback_dirty_inode_enqueue(inode);
2176
2177                         /*
2178                          * If this is the first dirty inode for this bdi,
2179                          * we have to wake-up the corresponding bdi thread
2180                          * to make sure background write-back happens
2181                          * later.
2182                          */
2183                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2184                                 wb_wakeup_delayed(wb);
2185                         return;
2186                 }
2187         }
2188 out_unlock_inode:
2189         spin_unlock(&inode->i_lock);
2190
2191 #undef I_DIRTY_INODE
2192 }
2193 EXPORT_SYMBOL(__mark_inode_dirty);
2194
2195 /*
2196  * The @s_sync_lock is used to serialise concurrent sync operations
2197  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2198  * Concurrent callers will block on the s_sync_lock rather than doing contending
2199  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2200  * has been issued up to the time this function is enter is guaranteed to be
2201  * completed by the time we have gained the lock and waited for all IO that is
2202  * in progress regardless of the order callers are granted the lock.
2203  */
2204 static void wait_sb_inodes(struct super_block *sb)
2205 {
2206         struct inode *inode, *old_inode = NULL;
2207
2208         /*
2209          * We need to be protected against the filesystem going from
2210          * r/o to r/w or vice versa.
2211          */
2212         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2213
2214         mutex_lock(&sb->s_sync_lock);
2215         spin_lock(&sb->s_inode_list_lock);
2216
2217         /*
2218          * Data integrity sync. Must wait for all pages under writeback,
2219          * because there may have been pages dirtied before our sync
2220          * call, but which had writeout started before we write it out.
2221          * In which case, the inode may not be on the dirty list, but
2222          * we still have to wait for that writeout.
2223          */
2224         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2225                 struct address_space *mapping = inode->i_mapping;
2226
2227                 spin_lock(&inode->i_lock);
2228                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2229                     (mapping->nrpages == 0)) {
2230                         spin_unlock(&inode->i_lock);
2231                         continue;
2232                 }
2233                 __iget(inode);
2234                 spin_unlock(&inode->i_lock);
2235                 spin_unlock(&sb->s_inode_list_lock);
2236
2237                 /*
2238                  * We hold a reference to 'inode' so it couldn't have been
2239                  * removed from s_inodes list while we dropped the
2240                  * s_inode_list_lock.  We cannot iput the inode now as we can
2241                  * be holding the last reference and we cannot iput it under
2242                  * s_inode_list_lock. So we keep the reference and iput it
2243                  * later.
2244                  */
2245                 iput(old_inode);
2246                 old_inode = inode;
2247
2248                 /*
2249                  * We keep the error status of individual mapping so that
2250                  * applications can catch the writeback error using fsync(2).
2251                  * See filemap_fdatawait_keep_errors() for details.
2252                  */
2253                 filemap_fdatawait_keep_errors(mapping);
2254
2255                 cond_resched();
2256
2257                 spin_lock(&sb->s_inode_list_lock);
2258         }
2259         spin_unlock(&sb->s_inode_list_lock);
2260         iput(old_inode);
2261         mutex_unlock(&sb->s_sync_lock);
2262 }
2263
2264 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2265                                      enum wb_reason reason, bool skip_if_busy)
2266 {
2267         DEFINE_WB_COMPLETION_ONSTACK(done);
2268         struct wb_writeback_work work = {
2269                 .sb                     = sb,
2270                 .sync_mode              = WB_SYNC_NONE,
2271                 .tagged_writepages      = 1,
2272                 .done                   = &done,
2273                 .nr_pages               = nr,
2274                 .reason                 = reason,
2275         };
2276         struct backing_dev_info *bdi = sb->s_bdi;
2277
2278         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2279                 return;
2280         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2281
2282         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2283         wb_wait_for_completion(bdi, &done);
2284 }
2285
2286 /**
2287  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2288  * @sb: the superblock
2289  * @nr: the number of pages to write
2290  * @reason: reason why some writeback work initiated
2291  *
2292  * Start writeback on some inodes on this super_block. No guarantees are made
2293  * on how many (if any) will be written, and this function does not wait
2294  * for IO completion of submitted IO.
2295  */
2296 void writeback_inodes_sb_nr(struct super_block *sb,
2297                             unsigned long nr,
2298                             enum wb_reason reason)
2299 {
2300         __writeback_inodes_sb_nr(sb, nr, reason, false);
2301 }
2302 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2303
2304 /**
2305  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2306  * @sb: the superblock
2307  * @reason: reason why some writeback work was initiated
2308  *
2309  * Start writeback on some inodes on this super_block. No guarantees are made
2310  * on how many (if any) will be written, and this function does not wait
2311  * for IO completion of submitted IO.
2312  */
2313 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2314 {
2315         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2316 }
2317 EXPORT_SYMBOL(writeback_inodes_sb);
2318
2319 /**
2320  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2321  * @sb: the superblock
2322  * @nr: the number of pages to write
2323  * @reason: the reason of writeback
2324  *
2325  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2326  * Returns 1 if writeback was started, 0 if not.
2327  */
2328 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2329                                    enum wb_reason reason)
2330 {
2331         if (!down_read_trylock(&sb->s_umount))
2332                 return false;
2333
2334         __writeback_inodes_sb_nr(sb, nr, reason, true);
2335         up_read(&sb->s_umount);
2336         return true;
2337 }
2338 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2339
2340 /**
2341  * try_to_writeback_inodes_sb - try to start writeback if none underway
2342  * @sb: the superblock
2343  * @reason: reason why some writeback work was initiated
2344  *
2345  * Implement by try_to_writeback_inodes_sb_nr()
2346  * Returns 1 if writeback was started, 0 if not.
2347  */
2348 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2349 {
2350         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2351 }
2352 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2353
2354 /**
2355  * sync_inodes_sb       -       sync sb inode pages
2356  * @sb: the superblock
2357  *
2358  * This function writes and waits on any dirty inode belonging to this
2359  * super_block.
2360  */
2361 void sync_inodes_sb(struct super_block *sb)
2362 {
2363         DEFINE_WB_COMPLETION_ONSTACK(done);
2364         struct wb_writeback_work work = {
2365                 .sb             = sb,
2366                 .sync_mode      = WB_SYNC_ALL,
2367                 .nr_pages       = LONG_MAX,
2368                 .range_cyclic   = 0,
2369                 .done           = &done,
2370                 .reason         = WB_REASON_SYNC,
2371                 .for_sync       = 1,
2372         };
2373         struct backing_dev_info *bdi = sb->s_bdi;
2374
2375         /*
2376          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2377          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2378          * bdi_has_dirty() need to be written out too.
2379          */
2380         if (bdi == &noop_backing_dev_info)
2381                 return;
2382         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2383
2384         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2385         bdi_down_write_wb_switch_rwsem(bdi);
2386         bdi_split_work_to_wbs(bdi, &work, false);
2387         wb_wait_for_completion(bdi, &done);
2388         bdi_up_write_wb_switch_rwsem(bdi);
2389
2390         wait_sb_inodes(sb);
2391 }
2392 EXPORT_SYMBOL(sync_inodes_sb);
2393
2394 /**
2395  * write_inode_now      -       write an inode to disk
2396  * @inode: inode to write to disk
2397  * @sync: whether the write should be synchronous or not
2398  *
2399  * This function commits an inode to disk immediately if it is dirty. This is
2400  * primarily needed by knfsd.
2401  *
2402  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2403  */
2404 int write_inode_now(struct inode *inode, int sync)
2405 {
2406         struct writeback_control wbc = {
2407                 .nr_to_write = LONG_MAX,
2408                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2409                 .range_start = 0,
2410                 .range_end = LLONG_MAX,
2411         };
2412
2413         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2414                 wbc.nr_to_write = 0;
2415
2416         might_sleep();
2417         return writeback_single_inode(inode, &wbc);
2418 }
2419 EXPORT_SYMBOL(write_inode_now);
2420
2421 /**
2422  * sync_inode - write an inode and its pages to disk.
2423  * @inode: the inode to sync
2424  * @wbc: controls the writeback mode
2425  *
2426  * sync_inode() will write an inode and its pages to disk.  It will also
2427  * correctly update the inode on its superblock's dirty inode lists and will
2428  * update inode->i_state.
2429  *
2430  * The caller must have a ref on the inode.
2431  */
2432 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2433 {
2434         return writeback_single_inode(inode, wbc);
2435 }
2436 EXPORT_SYMBOL(sync_inode);
2437
2438 /**
2439  * sync_inode_metadata - write an inode to disk
2440  * @inode: the inode to sync
2441  * @wait: wait for I/O to complete.
2442  *
2443  * Write an inode to disk and adjust its dirty state after completion.
2444  *
2445  * Note: only writes the actual inode, no associated data or other metadata.
2446  */
2447 int sync_inode_metadata(struct inode *inode, int wait)
2448 {
2449         struct writeback_control wbc = {
2450                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2451                 .nr_to_write = 0, /* metadata-only */
2452         };
2453
2454         return sync_inode(inode, &wbc);
2455 }
2456 EXPORT_SYMBOL(sync_inode_metadata);