OSDN Git Service

ARM: dts: at91: sama5d3: define clock rate range for tcb1
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg) {
376                         kfree(nrg);
377                         return -ENOMEM;
378                 }
379
380                 spin_lock(&resv->lock);
381                 list_add(&trg->link, &resv->region_cache);
382                 resv->region_cache_count++;
383                 goto retry_locked;
384         }
385
386         /* Locate the region we are before or in. */
387         list_for_each_entry(rg, head, link)
388                 if (f <= rg->to)
389                         break;
390
391         /* If we are below the current region then a new region is required.
392          * Subtle, allocate a new region at the position but make it zero
393          * size such that we can guarantee to record the reservation. */
394         if (&rg->link == head || t < rg->from) {
395                 if (!nrg) {
396                         resv->adds_in_progress--;
397                         spin_unlock(&resv->lock);
398                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399                         if (!nrg)
400                                 return -ENOMEM;
401
402                         nrg->from = f;
403                         nrg->to   = f;
404                         INIT_LIST_HEAD(&nrg->link);
405                         goto retry;
406                 }
407
408                 list_add(&nrg->link, rg->link.prev);
409                 chg = t - f;
410                 goto out_nrg;
411         }
412
413         /* Round our left edge to the current segment if it encloses us. */
414         if (f > rg->from)
415                 f = rg->from;
416         chg = t - f;
417
418         /* Check for and consume any regions we now overlap with. */
419         list_for_each_entry(rg, rg->link.prev, link) {
420                 if (&rg->link == head)
421                         break;
422                 if (rg->from > t)
423                         goto out;
424
425                 /* We overlap with this area, if it extends further than
426                  * us then we must extend ourselves.  Account for its
427                  * existing reservation. */
428                 if (rg->to > t) {
429                         chg += rg->to - t;
430                         t = rg->to;
431                 }
432                 chg -= rg->to - rg->from;
433         }
434
435 out:
436         spin_unlock(&resv->lock);
437         /*  We already know we raced and no longer need the new region */
438         kfree(nrg);
439         return chg;
440 out_nrg:
441         spin_unlock(&resv->lock);
442         return chg;
443 }
444
445 /*
446  * Abort the in progress add operation.  The adds_in_progress field
447  * of the resv_map keeps track of the operations in progress between
448  * calls to region_chg and region_add.  Operations are sometimes
449  * aborted after the call to region_chg.  In such cases, region_abort
450  * is called to decrement the adds_in_progress counter.
451  *
452  * NOTE: The range arguments [f, t) are not needed or used in this
453  * routine.  They are kept to make reading the calling code easier as
454  * arguments will match the associated region_chg call.
455  */
456 static void region_abort(struct resv_map *resv, long f, long t)
457 {
458         spin_lock(&resv->lock);
459         VM_BUG_ON(!resv->region_cache_count);
460         resv->adds_in_progress--;
461         spin_unlock(&resv->lock);
462 }
463
464 /*
465  * Delete the specified range [f, t) from the reserve map.  If the
466  * t parameter is LONG_MAX, this indicates that ALL regions after f
467  * should be deleted.  Locate the regions which intersect [f, t)
468  * and either trim, delete or split the existing regions.
469  *
470  * Returns the number of huge pages deleted from the reserve map.
471  * In the normal case, the return value is zero or more.  In the
472  * case where a region must be split, a new region descriptor must
473  * be allocated.  If the allocation fails, -ENOMEM will be returned.
474  * NOTE: If the parameter t == LONG_MAX, then we will never split
475  * a region and possibly return -ENOMEM.  Callers specifying
476  * t == LONG_MAX do not need to check for -ENOMEM error.
477  */
478 static long region_del(struct resv_map *resv, long f, long t)
479 {
480         struct list_head *head = &resv->regions;
481         struct file_region *rg, *trg;
482         struct file_region *nrg = NULL;
483         long del = 0;
484
485 retry:
486         spin_lock(&resv->lock);
487         list_for_each_entry_safe(rg, trg, head, link) {
488                 /*
489                  * Skip regions before the range to be deleted.  file_region
490                  * ranges are normally of the form [from, to).  However, there
491                  * may be a "placeholder" entry in the map which is of the form
492                  * (from, to) with from == to.  Check for placeholder entries
493                  * at the beginning of the range to be deleted.
494                  */
495                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496                         continue;
497
498                 if (rg->from >= t)
499                         break;
500
501                 if (f > rg->from && t < rg->to) { /* Must split region */
502                         /*
503                          * Check for an entry in the cache before dropping
504                          * lock and attempting allocation.
505                          */
506                         if (!nrg &&
507                             resv->region_cache_count > resv->adds_in_progress) {
508                                 nrg = list_first_entry(&resv->region_cache,
509                                                         struct file_region,
510                                                         link);
511                                 list_del(&nrg->link);
512                                 resv->region_cache_count--;
513                         }
514
515                         if (!nrg) {
516                                 spin_unlock(&resv->lock);
517                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518                                 if (!nrg)
519                                         return -ENOMEM;
520                                 goto retry;
521                         }
522
523                         del += t - f;
524
525                         /* New entry for end of split region */
526                         nrg->from = t;
527                         nrg->to = rg->to;
528                         INIT_LIST_HEAD(&nrg->link);
529
530                         /* Original entry is trimmed */
531                         rg->to = f;
532
533                         list_add(&nrg->link, &rg->link);
534                         nrg = NULL;
535                         break;
536                 }
537
538                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539                         del += rg->to - rg->from;
540                         list_del(&rg->link);
541                         kfree(rg);
542                         continue;
543                 }
544
545                 if (f <= rg->from) {    /* Trim beginning of region */
546                         del += t - rg->from;
547                         rg->from = t;
548                 } else {                /* Trim end of region */
549                         del += rg->to - f;
550                         rg->to = f;
551                 }
552         }
553
554         spin_unlock(&resv->lock);
555         kfree(nrg);
556         return del;
557 }
558
559 /*
560  * A rare out of memory error was encountered which prevented removal of
561  * the reserve map region for a page.  The huge page itself was free'ed
562  * and removed from the page cache.  This routine will adjust the subpool
563  * usage count, and the global reserve count if needed.  By incrementing
564  * these counts, the reserve map entry which could not be deleted will
565  * appear as a "reserved" entry instead of simply dangling with incorrect
566  * counts.
567  */
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
569 {
570         struct hugepage_subpool *spool = subpool_inode(inode);
571         long rsv_adjust;
572
573         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574         if (restore_reserve && rsv_adjust) {
575                 struct hstate *h = hstate_inode(inode);
576
577                 hugetlb_acct_memory(h, 1);
578         }
579 }
580
581 /*
582  * Count and return the number of huge pages in the reserve map
583  * that intersect with the range [f, t).
584  */
585 static long region_count(struct resv_map *resv, long f, long t)
586 {
587         struct list_head *head = &resv->regions;
588         struct file_region *rg;
589         long chg = 0;
590
591         spin_lock(&resv->lock);
592         /* Locate each segment we overlap with, and count that overlap. */
593         list_for_each_entry(rg, head, link) {
594                 long seg_from;
595                 long seg_to;
596
597                 if (rg->to <= f)
598                         continue;
599                 if (rg->from >= t)
600                         break;
601
602                 seg_from = max(rg->from, f);
603                 seg_to = min(rg->to, t);
604
605                 chg += seg_to - seg_from;
606         }
607         spin_unlock(&resv->lock);
608
609         return chg;
610 }
611
612 /*
613  * Convert the address within this vma to the page offset within
614  * the mapping, in pagecache page units; huge pages here.
615  */
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617                         struct vm_area_struct *vma, unsigned long address)
618 {
619         return ((address - vma->vm_start) >> huge_page_shift(h)) +
620                         (vma->vm_pgoff >> huge_page_order(h));
621 }
622
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624                                      unsigned long address)
625 {
626         return vma_hugecache_offset(hstate_vma(vma), vma, address);
627 }
628
629 /*
630  * Return the size of the pages allocated when backing a VMA. In the majority
631  * cases this will be same size as used by the page table entries.
632  */
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
634 {
635         struct hstate *hstate;
636
637         if (!is_vm_hugetlb_page(vma))
638                 return PAGE_SIZE;
639
640         hstate = hstate_vma(vma);
641
642         return 1UL << huge_page_shift(hstate);
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific version of this
650  * function is required.
651  */
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657 #endif
658
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689         return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693                                                         unsigned long value)
694 {
695         vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703         if (!resv_map || !rg) {
704                 kfree(resv_map);
705                 kfree(rg);
706                 return NULL;
707         }
708
709         kref_init(&resv_map->refs);
710         spin_lock_init(&resv_map->lock);
711         INIT_LIST_HEAD(&resv_map->regions);
712
713         resv_map->adds_in_progress = 0;
714
715         INIT_LIST_HEAD(&resv_map->region_cache);
716         list_add(&rg->link, &resv_map->region_cache);
717         resv_map->region_cache_count = 1;
718
719         return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725         struct list_head *head = &resv_map->region_cache;
726         struct file_region *rg, *trg;
727
728         /* Clear out any active regions before we release the map. */
729         region_del(resv_map, 0, LONG_MAX);
730
731         /* ... and any entries left in the cache */
732         list_for_each_entry_safe(rg, trg, head, link) {
733                 list_del(&rg->link);
734                 kfree(rg);
735         }
736
737         VM_BUG_ON(resv_map->adds_in_progress);
738
739         kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744         return inode->i_mapping->private_data;
745 }
746
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748 {
749         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750         if (vma->vm_flags & VM_MAYSHARE) {
751                 struct address_space *mapping = vma->vm_file->f_mapping;
752                 struct inode *inode = mapping->host;
753
754                 return inode_resv_map(inode);
755
756         } else {
757                 return (struct resv_map *)(get_vma_private_data(vma) &
758                                                         ~HPAGE_RESV_MASK);
759         }
760 }
761
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763 {
764         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766
767         set_vma_private_data(vma, (get_vma_private_data(vma) &
768                                 HPAGE_RESV_MASK) | (unsigned long)map);
769 }
770
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
772 {
773         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775
776         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 }
778
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
780 {
781         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782
783         return (get_vma_private_data(vma) & flag) != 0;
784 }
785
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
788 {
789         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790         if (!(vma->vm_flags & VM_MAYSHARE))
791                 vma->vm_private_data = (void *)0;
792 }
793
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796 {
797         if (vma->vm_flags & VM_NORESERVE) {
798                 /*
799                  * This address is already reserved by other process(chg == 0),
800                  * so, we should decrement reserved count. Without decrementing,
801                  * reserve count remains after releasing inode, because this
802                  * allocated page will go into page cache and is regarded as
803                  * coming from reserved pool in releasing step.  Currently, we
804                  * don't have any other solution to deal with this situation
805                  * properly, so add work-around here.
806                  */
807                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808                         return true;
809                 else
810                         return false;
811         }
812
813         /* Shared mappings always use reserves */
814         if (vma->vm_flags & VM_MAYSHARE) {
815                 /*
816                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
817                  * be a region map for all pages.  The only situation where
818                  * there is no region map is if a hole was punched via
819                  * fallocate.  In this case, there really are no reverves to
820                  * use.  This situation is indicated if chg != 0.
821                  */
822                 if (chg)
823                         return false;
824                 else
825                         return true;
826         }
827
828         /*
829          * Only the process that called mmap() has reserves for
830          * private mappings.
831          */
832         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833                 return true;
834
835         return false;
836 }
837
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
839 {
840         int nid = page_to_nid(page);
841         list_move(&page->lru, &h->hugepage_freelists[nid]);
842         h->free_huge_pages++;
843         h->free_huge_pages_node[nid]++;
844 }
845
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
847 {
848         struct page *page;
849
850         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851                 if (!is_migrate_isolate_page(page))
852                         break;
853         /*
854          * if 'non-isolated free hugepage' not found on the list,
855          * the allocation fails.
856          */
857         if (&h->hugepage_freelists[nid] == &page->lru)
858                 return NULL;
859         list_move(&page->lru, &h->hugepage_activelist);
860         set_page_refcounted(page);
861         h->free_huge_pages--;
862         h->free_huge_pages_node[nid]--;
863         return page;
864 }
865
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
868 {
869         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870                 return GFP_HIGHUSER_MOVABLE;
871         else
872                 return GFP_HIGHUSER;
873 }
874
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876                                 struct vm_area_struct *vma,
877                                 unsigned long address, int avoid_reserve,
878                                 long chg)
879 {
880         struct page *page = NULL;
881         struct mempolicy *mpol;
882         nodemask_t *nodemask;
883         struct zonelist *zonelist;
884         struct zone *zone;
885         struct zoneref *z;
886         unsigned int cpuset_mems_cookie;
887
888         /*
889          * A child process with MAP_PRIVATE mappings created by their parent
890          * have no page reserves. This check ensures that reservations are
891          * not "stolen". The child may still get SIGKILLed
892          */
893         if (!vma_has_reserves(vma, chg) &&
894                         h->free_huge_pages - h->resv_huge_pages == 0)
895                 goto err;
896
897         /* If reserves cannot be used, ensure enough pages are in the pool */
898         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899                 goto err;
900
901 retry_cpuset:
902         cpuset_mems_cookie = read_mems_allowed_begin();
903         zonelist = huge_zonelist(vma, address,
904                                         htlb_alloc_mask(h), &mpol, &nodemask);
905
906         for_each_zone_zonelist_nodemask(zone, z, zonelist,
907                                                 MAX_NR_ZONES - 1, nodemask) {
908                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
910                         if (page) {
911                                 if (avoid_reserve)
912                                         break;
913                                 if (!vma_has_reserves(vma, chg))
914                                         break;
915
916                                 SetPagePrivate(page);
917                                 h->resv_huge_pages--;
918                                 break;
919                         }
920                 }
921         }
922
923         mpol_cond_put(mpol);
924         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925                 goto retry_cpuset;
926         return page;
927
928 err:
929         return NULL;
930 }
931
932 /*
933  * common helper functions for hstate_next_node_to_{alloc|free}.
934  * We may have allocated or freed a huge page based on a different
935  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936  * be outside of *nodes_allowed.  Ensure that we use an allowed
937  * node for alloc or free.
938  */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         nid = next_node(nid, *nodes_allowed);
942         if (nid == MAX_NUMNODES)
943                 nid = first_node(*nodes_allowed);
944         VM_BUG_ON(nid >= MAX_NUMNODES);
945
946         return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951         if (!node_isset(nid, *nodes_allowed))
952                 nid = next_node_allowed(nid, nodes_allowed);
953         return nid;
954 }
955
956 /*
957  * returns the previously saved node ["this node"] from which to
958  * allocate a persistent huge page for the pool and advance the
959  * next node from which to allocate, handling wrap at end of node
960  * mask.
961  */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963                                         nodemask_t *nodes_allowed)
964 {
965         int nid;
966
967         VM_BUG_ON(!nodes_allowed);
968
969         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972         return nid;
973 }
974
975 /*
976  * helper for free_pool_huge_page() - return the previously saved
977  * node ["this node"] from which to free a huge page.  Advance the
978  * next node id whether or not we find a free huge page to free so
979  * that the next attempt to free addresses the next node.
980  */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983         int nid;
984
985         VM_BUG_ON(!nodes_allowed);
986
987         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990         return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
994         for (nr_nodes = nodes_weight(*mask);                            \
995                 nr_nodes > 0 &&                                         \
996                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
997                 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1000         for (nr_nodes = nodes_weight(*mask);                            \
1001                 nr_nodes > 0 &&                                         \
1002                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1003                 nr_nodes--)
1004
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007                                         unsigned int order)
1008 {
1009         int i;
1010         int nr_pages = 1 << order;
1011         struct page *p = page + 1;
1012
1013         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014                 clear_compound_head(p);
1015                 set_page_refcounted(p);
1016         }
1017
1018         set_compound_order(page, 0);
1019         __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024         free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028                                 unsigned long nr_pages)
1029 {
1030         unsigned long end_pfn = start_pfn + nr_pages;
1031         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035                                 unsigned long nr_pages)
1036 {
1037         unsigned long i, end_pfn = start_pfn + nr_pages;
1038         struct page *page;
1039
1040         for (i = start_pfn; i < end_pfn; i++) {
1041                 if (!pfn_valid(i))
1042                         return false;
1043
1044                 page = pfn_to_page(i);
1045
1046                 if (PageReserved(page))
1047                         return false;
1048
1049                 if (page_count(page) > 0)
1050                         return false;
1051
1052                 if (PageHuge(page))
1053                         return false;
1054         }
1055
1056         return true;
1057 }
1058
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060                         unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062         unsigned long last_pfn = start_pfn + nr_pages - 1;
1063         return zone_spans_pfn(zone, last_pfn);
1064 }
1065
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 {
1068         unsigned long nr_pages = 1 << order;
1069         unsigned long ret, pfn, flags;
1070         struct zone *z;
1071
1072         z = NODE_DATA(nid)->node_zones;
1073         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074                 spin_lock_irqsave(&z->lock, flags);
1075
1076                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079                                 /*
1080                                  * We release the zone lock here because
1081                                  * alloc_contig_range() will also lock the zone
1082                                  * at some point. If there's an allocation
1083                                  * spinning on this lock, it may win the race
1084                                  * and cause alloc_contig_range() to fail...
1085                                  */
1086                                 spin_unlock_irqrestore(&z->lock, flags);
1087                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1088                                 if (!ret)
1089                                         return pfn_to_page(pfn);
1090                                 spin_lock_irqsave(&z->lock, flags);
1091                         }
1092                         pfn += nr_pages;
1093                 }
1094
1095                 spin_unlock_irqrestore(&z->lock, flags);
1096         }
1097
1098         return NULL;
1099 }
1100
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105 {
1106         struct page *page;
1107
1108         page = alloc_gigantic_page(nid, huge_page_order(h));
1109         if (page) {
1110                 prep_compound_gigantic_page(page, huge_page_order(h));
1111                 prep_new_huge_page(h, page, nid);
1112         }
1113
1114         return page;
1115 }
1116
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118                                 nodemask_t *nodes_allowed)
1119 {
1120         struct page *page = NULL;
1121         int nr_nodes, node;
1122
1123         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124                 page = alloc_fresh_gigantic_page_node(h, node);
1125                 if (page)
1126                         return 1;
1127         }
1128
1129         return 0;
1130 }
1131
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137                                                 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139                                         nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1141
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1143 {
1144         int i;
1145
1146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147                 return;
1148
1149         h->nr_huge_pages--;
1150         h->nr_huge_pages_node[page_to_nid(page)]--;
1151         for (i = 0; i < pages_per_huge_page(h); i++) {
1152                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153                                 1 << PG_referenced | 1 << PG_dirty |
1154                                 1 << PG_active | 1 << PG_private |
1155                                 1 << PG_writeback);
1156         }
1157         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159         set_page_refcounted(page);
1160         if (hstate_is_gigantic(h)) {
1161                 destroy_compound_gigantic_page(page, huge_page_order(h));
1162                 free_gigantic_page(page, huge_page_order(h));
1163         } else {
1164                 __free_pages(page, huge_page_order(h));
1165         }
1166 }
1167
1168 struct hstate *size_to_hstate(unsigned long size)
1169 {
1170         struct hstate *h;
1171
1172         for_each_hstate(h) {
1173                 if (huge_page_size(h) == size)
1174                         return h;
1175         }
1176         return NULL;
1177 }
1178
1179 /*
1180  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181  * to hstate->hugepage_activelist.)
1182  *
1183  * This function can be called for tail pages, but never returns true for them.
1184  */
1185 bool page_huge_active(struct page *page)
1186 {
1187         VM_BUG_ON_PAGE(!PageHuge(page), page);
1188         return PageHead(page) && PagePrivate(&page[1]);
1189 }
1190
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1193 {
1194         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195         SetPagePrivate(&page[1]);
1196 }
1197
1198 static void clear_page_huge_active(struct page *page)
1199 {
1200         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201         ClearPagePrivate(&page[1]);
1202 }
1203
1204 void free_huge_page(struct page *page)
1205 {
1206         /*
1207          * Can't pass hstate in here because it is called from the
1208          * compound page destructor.
1209          */
1210         struct hstate *h = page_hstate(page);
1211         int nid = page_to_nid(page);
1212         struct hugepage_subpool *spool =
1213                 (struct hugepage_subpool *)page_private(page);
1214         bool restore_reserve;
1215
1216         set_page_private(page, 0);
1217         page->mapping = NULL;
1218         BUG_ON(page_count(page));
1219         BUG_ON(page_mapcount(page));
1220         restore_reserve = PagePrivate(page);
1221         ClearPagePrivate(page);
1222
1223         /*
1224          * If PagePrivate() was set on page, page allocation consumed a
1225          * reservation.  If the page was associated with a subpool, there
1226          * would have been a page reserved in the subpool before allocation
1227          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1228          * reservtion, do not call hugepage_subpool_put_pages() as this will
1229          * remove the reserved page from the subpool.
1230          */
1231         if (!restore_reserve) {
1232                 /*
1233                  * A return code of zero implies that the subpool will be
1234                  * under its minimum size if the reservation is not restored
1235                  * after page is free.  Therefore, force restore_reserve
1236                  * operation.
1237                  */
1238                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1239                         restore_reserve = true;
1240         }
1241
1242         spin_lock(&hugetlb_lock);
1243         clear_page_huge_active(page);
1244         hugetlb_cgroup_uncharge_page(hstate_index(h),
1245                                      pages_per_huge_page(h), page);
1246         if (restore_reserve)
1247                 h->resv_huge_pages++;
1248
1249         if (h->surplus_huge_pages_node[nid]) {
1250                 /* remove the page from active list */
1251                 list_del(&page->lru);
1252                 update_and_free_page(h, page);
1253                 h->surplus_huge_pages--;
1254                 h->surplus_huge_pages_node[nid]--;
1255         } else {
1256                 arch_clear_hugepage_flags(page);
1257                 enqueue_huge_page(h, page);
1258         }
1259         spin_unlock(&hugetlb_lock);
1260 }
1261
1262 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1263 {
1264         INIT_LIST_HEAD(&page->lru);
1265         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1266         spin_lock(&hugetlb_lock);
1267         set_hugetlb_cgroup(page, NULL);
1268         h->nr_huge_pages++;
1269         h->nr_huge_pages_node[nid]++;
1270         spin_unlock(&hugetlb_lock);
1271         put_page(page); /* free it into the hugepage allocator */
1272 }
1273
1274 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1275 {
1276         int i;
1277         int nr_pages = 1 << order;
1278         struct page *p = page + 1;
1279
1280         /* we rely on prep_new_huge_page to set the destructor */
1281         set_compound_order(page, order);
1282         __SetPageHead(page);
1283         __ClearPageReserved(page);
1284         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1285                 /*
1286                  * For gigantic hugepages allocated through bootmem at
1287                  * boot, it's safer to be consistent with the not-gigantic
1288                  * hugepages and clear the PG_reserved bit from all tail pages
1289                  * too.  Otherwse drivers using get_user_pages() to access tail
1290                  * pages may get the reference counting wrong if they see
1291                  * PG_reserved set on a tail page (despite the head page not
1292                  * having PG_reserved set).  Enforcing this consistency between
1293                  * head and tail pages allows drivers to optimize away a check
1294                  * on the head page when they need know if put_page() is needed
1295                  * after get_user_pages().
1296                  */
1297                 __ClearPageReserved(p);
1298                 set_page_count(p, 0);
1299                 set_compound_head(p, page);
1300         }
1301 }
1302
1303 /*
1304  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1305  * transparent huge pages.  See the PageTransHuge() documentation for more
1306  * details.
1307  */
1308 int PageHuge(struct page *page)
1309 {
1310         if (!PageCompound(page))
1311                 return 0;
1312
1313         page = compound_head(page);
1314         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1315 }
1316 EXPORT_SYMBOL_GPL(PageHuge);
1317
1318 /*
1319  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1320  * normal or transparent huge pages.
1321  */
1322 int PageHeadHuge(struct page *page_head)
1323 {
1324         if (!PageHead(page_head))
1325                 return 0;
1326
1327         return get_compound_page_dtor(page_head) == free_huge_page;
1328 }
1329
1330 pgoff_t __basepage_index(struct page *page)
1331 {
1332         struct page *page_head = compound_head(page);
1333         pgoff_t index = page_index(page_head);
1334         unsigned long compound_idx;
1335
1336         if (!PageHuge(page_head))
1337                 return page_index(page);
1338
1339         if (compound_order(page_head) >= MAX_ORDER)
1340                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1341         else
1342                 compound_idx = page - page_head;
1343
1344         return (index << compound_order(page_head)) + compound_idx;
1345 }
1346
1347 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1348 {
1349         struct page *page;
1350
1351         page = __alloc_pages_node(nid,
1352                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1353                                                 __GFP_REPEAT|__GFP_NOWARN,
1354                 huge_page_order(h));
1355         if (page) {
1356                 prep_new_huge_page(h, page, nid);
1357         }
1358
1359         return page;
1360 }
1361
1362 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1363 {
1364         struct page *page;
1365         int nr_nodes, node;
1366         int ret = 0;
1367
1368         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1369                 page = alloc_fresh_huge_page_node(h, node);
1370                 if (page) {
1371                         ret = 1;
1372                         break;
1373                 }
1374         }
1375
1376         if (ret)
1377                 count_vm_event(HTLB_BUDDY_PGALLOC);
1378         else
1379                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1380
1381         return ret;
1382 }
1383
1384 /*
1385  * Free huge page from pool from next node to free.
1386  * Attempt to keep persistent huge pages more or less
1387  * balanced over allowed nodes.
1388  * Called with hugetlb_lock locked.
1389  */
1390 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1391                                                          bool acct_surplus)
1392 {
1393         int nr_nodes, node;
1394         int ret = 0;
1395
1396         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1397                 /*
1398                  * If we're returning unused surplus pages, only examine
1399                  * nodes with surplus pages.
1400                  */
1401                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1402                     !list_empty(&h->hugepage_freelists[node])) {
1403                         struct page *page =
1404                                 list_entry(h->hugepage_freelists[node].next,
1405                                           struct page, lru);
1406                         list_del(&page->lru);
1407                         h->free_huge_pages--;
1408                         h->free_huge_pages_node[node]--;
1409                         if (acct_surplus) {
1410                                 h->surplus_huge_pages--;
1411                                 h->surplus_huge_pages_node[node]--;
1412                         }
1413                         update_and_free_page(h, page);
1414                         ret = 1;
1415                         break;
1416                 }
1417         }
1418
1419         return ret;
1420 }
1421
1422 /*
1423  * Dissolve a given free hugepage into free buddy pages. This function does
1424  * nothing for in-use (including surplus) hugepages.
1425  */
1426 static void dissolve_free_huge_page(struct page *page)
1427 {
1428         spin_lock(&hugetlb_lock);
1429         if (PageHuge(page) && !page_count(page)) {
1430                 struct page *head = compound_head(page);
1431                 struct hstate *h = page_hstate(head);
1432                 int nid = page_to_nid(head);
1433                 list_del(&head->lru);
1434                 h->free_huge_pages--;
1435                 h->free_huge_pages_node[nid]--;
1436                 update_and_free_page(h, head);
1437         }
1438         spin_unlock(&hugetlb_lock);
1439 }
1440
1441 /*
1442  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1443  * make specified memory blocks removable from the system.
1444  * Note that this will dissolve a free gigantic hugepage completely, if any
1445  * part of it lies within the given range.
1446  */
1447 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1448 {
1449         unsigned long pfn;
1450
1451         if (!hugepages_supported())
1452                 return;
1453
1454         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1455                 dissolve_free_huge_page(pfn_to_page(pfn));
1456 }
1457
1458 /*
1459  * There are 3 ways this can get called:
1460  * 1. With vma+addr: we use the VMA's memory policy
1461  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1462  *    page from any node, and let the buddy allocator itself figure
1463  *    it out.
1464  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1465  *    strictly from 'nid'
1466  */
1467 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1468                 struct vm_area_struct *vma, unsigned long addr, int nid)
1469 {
1470         int order = huge_page_order(h);
1471         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1472         unsigned int cpuset_mems_cookie;
1473
1474         /*
1475          * We need a VMA to get a memory policy.  If we do not
1476          * have one, we use the 'nid' argument.
1477          *
1478          * The mempolicy stuff below has some non-inlined bits
1479          * and calls ->vm_ops.  That makes it hard to optimize at
1480          * compile-time, even when NUMA is off and it does
1481          * nothing.  This helps the compiler optimize it out.
1482          */
1483         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1484                 /*
1485                  * If a specific node is requested, make sure to
1486                  * get memory from there, but only when a node
1487                  * is explicitly specified.
1488                  */
1489                 if (nid != NUMA_NO_NODE)
1490                         gfp |= __GFP_THISNODE;
1491                 /*
1492                  * Make sure to call something that can handle
1493                  * nid=NUMA_NO_NODE
1494                  */
1495                 return alloc_pages_node(nid, gfp, order);
1496         }
1497
1498         /*
1499          * OK, so we have a VMA.  Fetch the mempolicy and try to
1500          * allocate a huge page with it.  We will only reach this
1501          * when CONFIG_NUMA=y.
1502          */
1503         do {
1504                 struct page *page;
1505                 struct mempolicy *mpol;
1506                 struct zonelist *zl;
1507                 nodemask_t *nodemask;
1508
1509                 cpuset_mems_cookie = read_mems_allowed_begin();
1510                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1511                 mpol_cond_put(mpol);
1512                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1513                 if (page)
1514                         return page;
1515         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1516
1517         return NULL;
1518 }
1519
1520 /*
1521  * There are two ways to allocate a huge page:
1522  * 1. When you have a VMA and an address (like a fault)
1523  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1524  *
1525  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1526  * this case which signifies that the allocation should be done with
1527  * respect for the VMA's memory policy.
1528  *
1529  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1530  * implies that memory policies will not be taken in to account.
1531  */
1532 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1533                 struct vm_area_struct *vma, unsigned long addr, int nid)
1534 {
1535         struct page *page;
1536         unsigned int r_nid;
1537
1538         if (hstate_is_gigantic(h))
1539                 return NULL;
1540
1541         /*
1542          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1543          * This makes sure the caller is picking _one_ of the modes with which
1544          * we can call this function, not both.
1545          */
1546         if (vma || (addr != -1)) {
1547                 VM_WARN_ON_ONCE(addr == -1);
1548                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1549         }
1550         /*
1551          * Assume we will successfully allocate the surplus page to
1552          * prevent racing processes from causing the surplus to exceed
1553          * overcommit
1554          *
1555          * This however introduces a different race, where a process B
1556          * tries to grow the static hugepage pool while alloc_pages() is
1557          * called by process A. B will only examine the per-node
1558          * counters in determining if surplus huge pages can be
1559          * converted to normal huge pages in adjust_pool_surplus(). A
1560          * won't be able to increment the per-node counter, until the
1561          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1562          * no more huge pages can be converted from surplus to normal
1563          * state (and doesn't try to convert again). Thus, we have a
1564          * case where a surplus huge page exists, the pool is grown, and
1565          * the surplus huge page still exists after, even though it
1566          * should just have been converted to a normal huge page. This
1567          * does not leak memory, though, as the hugepage will be freed
1568          * once it is out of use. It also does not allow the counters to
1569          * go out of whack in adjust_pool_surplus() as we don't modify
1570          * the node values until we've gotten the hugepage and only the
1571          * per-node value is checked there.
1572          */
1573         spin_lock(&hugetlb_lock);
1574         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575                 spin_unlock(&hugetlb_lock);
1576                 return NULL;
1577         } else {
1578                 h->nr_huge_pages++;
1579                 h->surplus_huge_pages++;
1580         }
1581         spin_unlock(&hugetlb_lock);
1582
1583         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1584
1585         spin_lock(&hugetlb_lock);
1586         if (page) {
1587                 INIT_LIST_HEAD(&page->lru);
1588                 r_nid = page_to_nid(page);
1589                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1590                 set_hugetlb_cgroup(page, NULL);
1591                 /*
1592                  * We incremented the global counters already
1593                  */
1594                 h->nr_huge_pages_node[r_nid]++;
1595                 h->surplus_huge_pages_node[r_nid]++;
1596                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1597         } else {
1598                 h->nr_huge_pages--;
1599                 h->surplus_huge_pages--;
1600                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1601         }
1602         spin_unlock(&hugetlb_lock);
1603
1604         return page;
1605 }
1606
1607 /*
1608  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1609  * NUMA_NO_NODE, which means that it may be allocated
1610  * anywhere.
1611  */
1612 static
1613 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1614 {
1615         unsigned long addr = -1;
1616
1617         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1618 }
1619
1620 /*
1621  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1622  */
1623 static
1624 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1625                 struct vm_area_struct *vma, unsigned long addr)
1626 {
1627         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1628 }
1629
1630 /*
1631  * This allocation function is useful in the context where vma is irrelevant.
1632  * E.g. soft-offlining uses this function because it only cares physical
1633  * address of error page.
1634  */
1635 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1636 {
1637         struct page *page = NULL;
1638
1639         spin_lock(&hugetlb_lock);
1640         if (h->free_huge_pages - h->resv_huge_pages > 0)
1641                 page = dequeue_huge_page_node(h, nid);
1642         spin_unlock(&hugetlb_lock);
1643
1644         if (!page)
1645                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1646
1647         return page;
1648 }
1649
1650 /*
1651  * Increase the hugetlb pool such that it can accommodate a reservation
1652  * of size 'delta'.
1653  */
1654 static int gather_surplus_pages(struct hstate *h, int delta)
1655 {
1656         struct list_head surplus_list;
1657         struct page *page, *tmp;
1658         int ret, i;
1659         int needed, allocated;
1660         bool alloc_ok = true;
1661
1662         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1663         if (needed <= 0) {
1664                 h->resv_huge_pages += delta;
1665                 return 0;
1666         }
1667
1668         allocated = 0;
1669         INIT_LIST_HEAD(&surplus_list);
1670
1671         ret = -ENOMEM;
1672 retry:
1673         spin_unlock(&hugetlb_lock);
1674         for (i = 0; i < needed; i++) {
1675                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1676                 if (!page) {
1677                         alloc_ok = false;
1678                         break;
1679                 }
1680                 list_add(&page->lru, &surplus_list);
1681         }
1682         allocated += i;
1683
1684         /*
1685          * After retaking hugetlb_lock, we need to recalculate 'needed'
1686          * because either resv_huge_pages or free_huge_pages may have changed.
1687          */
1688         spin_lock(&hugetlb_lock);
1689         needed = (h->resv_huge_pages + delta) -
1690                         (h->free_huge_pages + allocated);
1691         if (needed > 0) {
1692                 if (alloc_ok)
1693                         goto retry;
1694                 /*
1695                  * We were not able to allocate enough pages to
1696                  * satisfy the entire reservation so we free what
1697                  * we've allocated so far.
1698                  */
1699                 goto free;
1700         }
1701         /*
1702          * The surplus_list now contains _at_least_ the number of extra pages
1703          * needed to accommodate the reservation.  Add the appropriate number
1704          * of pages to the hugetlb pool and free the extras back to the buddy
1705          * allocator.  Commit the entire reservation here to prevent another
1706          * process from stealing the pages as they are added to the pool but
1707          * before they are reserved.
1708          */
1709         needed += allocated;
1710         h->resv_huge_pages += delta;
1711         ret = 0;
1712
1713         /* Free the needed pages to the hugetlb pool */
1714         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1715                 if ((--needed) < 0)
1716                         break;
1717                 /*
1718                  * This page is now managed by the hugetlb allocator and has
1719                  * no users -- drop the buddy allocator's reference.
1720                  */
1721                 put_page_testzero(page);
1722                 VM_BUG_ON_PAGE(page_count(page), page);
1723                 enqueue_huge_page(h, page);
1724         }
1725 free:
1726         spin_unlock(&hugetlb_lock);
1727
1728         /* Free unnecessary surplus pages to the buddy allocator */
1729         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1730                 put_page(page);
1731         spin_lock(&hugetlb_lock);
1732
1733         return ret;
1734 }
1735
1736 /*
1737  * This routine has two main purposes:
1738  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1739  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1740  *    to the associated reservation map.
1741  * 2) Free any unused surplus pages that may have been allocated to satisfy
1742  *    the reservation.  As many as unused_resv_pages may be freed.
1743  *
1744  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1745  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1746  * we must make sure nobody else can claim pages we are in the process of
1747  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1748  * number of huge pages we plan to free when dropping the lock.
1749  */
1750 static void return_unused_surplus_pages(struct hstate *h,
1751                                         unsigned long unused_resv_pages)
1752 {
1753         unsigned long nr_pages;
1754
1755         /* Cannot return gigantic pages currently */
1756         if (hstate_is_gigantic(h))
1757                 goto out;
1758
1759         /*
1760          * Part (or even all) of the reservation could have been backed
1761          * by pre-allocated pages. Only free surplus pages.
1762          */
1763         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1764
1765         /*
1766          * We want to release as many surplus pages as possible, spread
1767          * evenly across all nodes with memory. Iterate across these nodes
1768          * until we can no longer free unreserved surplus pages. This occurs
1769          * when the nodes with surplus pages have no free pages.
1770          * free_pool_huge_page() will balance the the freed pages across the
1771          * on-line nodes with memory and will handle the hstate accounting.
1772          *
1773          * Note that we decrement resv_huge_pages as we free the pages.  If
1774          * we drop the lock, resv_huge_pages will still be sufficiently large
1775          * to cover subsequent pages we may free.
1776          */
1777         while (nr_pages--) {
1778                 h->resv_huge_pages--;
1779                 unused_resv_pages--;
1780                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1781                         goto out;
1782                 cond_resched_lock(&hugetlb_lock);
1783         }
1784
1785 out:
1786         /* Fully uncommit the reservation */
1787         h->resv_huge_pages -= unused_resv_pages;
1788 }
1789
1790
1791 /*
1792  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1793  * are used by the huge page allocation routines to manage reservations.
1794  *
1795  * vma_needs_reservation is called to determine if the huge page at addr
1796  * within the vma has an associated reservation.  If a reservation is
1797  * needed, the value 1 is returned.  The caller is then responsible for
1798  * managing the global reservation and subpool usage counts.  After
1799  * the huge page has been allocated, vma_commit_reservation is called
1800  * to add the page to the reservation map.  If the page allocation fails,
1801  * the reservation must be ended instead of committed.  vma_end_reservation
1802  * is called in such cases.
1803  *
1804  * In the normal case, vma_commit_reservation returns the same value
1805  * as the preceding vma_needs_reservation call.  The only time this
1806  * is not the case is if a reserve map was changed between calls.  It
1807  * is the responsibility of the caller to notice the difference and
1808  * take appropriate action.
1809  */
1810 enum vma_resv_mode {
1811         VMA_NEEDS_RESV,
1812         VMA_COMMIT_RESV,
1813         VMA_END_RESV,
1814 };
1815 static long __vma_reservation_common(struct hstate *h,
1816                                 struct vm_area_struct *vma, unsigned long addr,
1817                                 enum vma_resv_mode mode)
1818 {
1819         struct resv_map *resv;
1820         pgoff_t idx;
1821         long ret;
1822
1823         resv = vma_resv_map(vma);
1824         if (!resv)
1825                 return 1;
1826
1827         idx = vma_hugecache_offset(h, vma, addr);
1828         switch (mode) {
1829         case VMA_NEEDS_RESV:
1830                 ret = region_chg(resv, idx, idx + 1);
1831                 break;
1832         case VMA_COMMIT_RESV:
1833                 ret = region_add(resv, idx, idx + 1);
1834                 break;
1835         case VMA_END_RESV:
1836                 region_abort(resv, idx, idx + 1);
1837                 ret = 0;
1838                 break;
1839         default:
1840                 BUG();
1841         }
1842
1843         if (vma->vm_flags & VM_MAYSHARE)
1844                 return ret;
1845         else
1846                 return ret < 0 ? ret : 0;
1847 }
1848
1849 static long vma_needs_reservation(struct hstate *h,
1850                         struct vm_area_struct *vma, unsigned long addr)
1851 {
1852         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1853 }
1854
1855 static long vma_commit_reservation(struct hstate *h,
1856                         struct vm_area_struct *vma, unsigned long addr)
1857 {
1858         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1859 }
1860
1861 static void vma_end_reservation(struct hstate *h,
1862                         struct vm_area_struct *vma, unsigned long addr)
1863 {
1864         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1865 }
1866
1867 struct page *alloc_huge_page(struct vm_area_struct *vma,
1868                                     unsigned long addr, int avoid_reserve)
1869 {
1870         struct hugepage_subpool *spool = subpool_vma(vma);
1871         struct hstate *h = hstate_vma(vma);
1872         struct page *page;
1873         long map_chg, map_commit;
1874         long gbl_chg;
1875         int ret, idx;
1876         struct hugetlb_cgroup *h_cg;
1877
1878         idx = hstate_index(h);
1879         /*
1880          * Examine the region/reserve map to determine if the process
1881          * has a reservation for the page to be allocated.  A return
1882          * code of zero indicates a reservation exists (no change).
1883          */
1884         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1885         if (map_chg < 0)
1886                 return ERR_PTR(-ENOMEM);
1887
1888         /*
1889          * Processes that did not create the mapping will have no
1890          * reserves as indicated by the region/reserve map. Check
1891          * that the allocation will not exceed the subpool limit.
1892          * Allocations for MAP_NORESERVE mappings also need to be
1893          * checked against any subpool limit.
1894          */
1895         if (map_chg || avoid_reserve) {
1896                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1897                 if (gbl_chg < 0) {
1898                         vma_end_reservation(h, vma, addr);
1899                         return ERR_PTR(-ENOSPC);
1900                 }
1901
1902                 /*
1903                  * Even though there was no reservation in the region/reserve
1904                  * map, there could be reservations associated with the
1905                  * subpool that can be used.  This would be indicated if the
1906                  * return value of hugepage_subpool_get_pages() is zero.
1907                  * However, if avoid_reserve is specified we still avoid even
1908                  * the subpool reservations.
1909                  */
1910                 if (avoid_reserve)
1911                         gbl_chg = 1;
1912         }
1913
1914         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1915         if (ret)
1916                 goto out_subpool_put;
1917
1918         spin_lock(&hugetlb_lock);
1919         /*
1920          * glb_chg is passed to indicate whether or not a page must be taken
1921          * from the global free pool (global change).  gbl_chg == 0 indicates
1922          * a reservation exists for the allocation.
1923          */
1924         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1925         if (!page) {
1926                 spin_unlock(&hugetlb_lock);
1927                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1928                 if (!page)
1929                         goto out_uncharge_cgroup;
1930                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1931                         SetPagePrivate(page);
1932                         h->resv_huge_pages--;
1933                 }
1934                 spin_lock(&hugetlb_lock);
1935                 list_move(&page->lru, &h->hugepage_activelist);
1936                 /* Fall through */
1937         }
1938         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1939         spin_unlock(&hugetlb_lock);
1940
1941         set_page_private(page, (unsigned long)spool);
1942
1943         map_commit = vma_commit_reservation(h, vma, addr);
1944         if (unlikely(map_chg > map_commit)) {
1945                 /*
1946                  * The page was added to the reservation map between
1947                  * vma_needs_reservation and vma_commit_reservation.
1948                  * This indicates a race with hugetlb_reserve_pages.
1949                  * Adjust for the subpool count incremented above AND
1950                  * in hugetlb_reserve_pages for the same page.  Also,
1951                  * the reservation count added in hugetlb_reserve_pages
1952                  * no longer applies.
1953                  */
1954                 long rsv_adjust;
1955
1956                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1957                 hugetlb_acct_memory(h, -rsv_adjust);
1958         }
1959         return page;
1960
1961 out_uncharge_cgroup:
1962         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1963 out_subpool_put:
1964         if (map_chg || avoid_reserve)
1965                 hugepage_subpool_put_pages(spool, 1);
1966         vma_end_reservation(h, vma, addr);
1967         return ERR_PTR(-ENOSPC);
1968 }
1969
1970 /*
1971  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1972  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1973  * where no ERR_VALUE is expected to be returned.
1974  */
1975 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1976                                 unsigned long addr, int avoid_reserve)
1977 {
1978         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1979         if (IS_ERR(page))
1980                 page = NULL;
1981         return page;
1982 }
1983
1984 int __weak alloc_bootmem_huge_page(struct hstate *h)
1985 {
1986         struct huge_bootmem_page *m;
1987         int nr_nodes, node;
1988
1989         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1990                 void *addr;
1991
1992                 addr = memblock_virt_alloc_try_nid_nopanic(
1993                                 huge_page_size(h), huge_page_size(h),
1994                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1995                 if (addr) {
1996                         /*
1997                          * Use the beginning of the huge page to store the
1998                          * huge_bootmem_page struct (until gather_bootmem
1999                          * puts them into the mem_map).
2000                          */
2001                         m = addr;
2002                         goto found;
2003                 }
2004         }
2005         return 0;
2006
2007 found:
2008         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2009         /* Put them into a private list first because mem_map is not up yet */
2010         list_add(&m->list, &huge_boot_pages);
2011         m->hstate = h;
2012         return 1;
2013 }
2014
2015 static void __init prep_compound_huge_page(struct page *page,
2016                 unsigned int order)
2017 {
2018         if (unlikely(order > (MAX_ORDER - 1)))
2019                 prep_compound_gigantic_page(page, order);
2020         else
2021                 prep_compound_page(page, order);
2022 }
2023
2024 /* Put bootmem huge pages into the standard lists after mem_map is up */
2025 static void __init gather_bootmem_prealloc(void)
2026 {
2027         struct huge_bootmem_page *m;
2028
2029         list_for_each_entry(m, &huge_boot_pages, list) {
2030                 struct hstate *h = m->hstate;
2031                 struct page *page;
2032
2033 #ifdef CONFIG_HIGHMEM
2034                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2035                 memblock_free_late(__pa(m),
2036                                    sizeof(struct huge_bootmem_page));
2037 #else
2038                 page = virt_to_page(m);
2039 #endif
2040                 WARN_ON(page_count(page) != 1);
2041                 prep_compound_huge_page(page, h->order);
2042                 WARN_ON(PageReserved(page));
2043                 prep_new_huge_page(h, page, page_to_nid(page));
2044                 /*
2045                  * If we had gigantic hugepages allocated at boot time, we need
2046                  * to restore the 'stolen' pages to totalram_pages in order to
2047                  * fix confusing memory reports from free(1) and another
2048                  * side-effects, like CommitLimit going negative.
2049                  */
2050                 if (hstate_is_gigantic(h))
2051                         adjust_managed_page_count(page, 1 << h->order);
2052                 cond_resched();
2053         }
2054 }
2055
2056 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2057 {
2058         unsigned long i;
2059
2060         for (i = 0; i < h->max_huge_pages; ++i) {
2061                 if (hstate_is_gigantic(h)) {
2062                         if (!alloc_bootmem_huge_page(h))
2063                                 break;
2064                 } else if (!alloc_fresh_huge_page(h,
2065                                          &node_states[N_MEMORY]))
2066                         break;
2067         }
2068         h->max_huge_pages = i;
2069 }
2070
2071 static void __init hugetlb_init_hstates(void)
2072 {
2073         struct hstate *h;
2074
2075         for_each_hstate(h) {
2076                 if (minimum_order > huge_page_order(h))
2077                         minimum_order = huge_page_order(h);
2078
2079                 /* oversize hugepages were init'ed in early boot */
2080                 if (!hstate_is_gigantic(h))
2081                         hugetlb_hstate_alloc_pages(h);
2082         }
2083         VM_BUG_ON(minimum_order == UINT_MAX);
2084 }
2085
2086 static char * __init memfmt(char *buf, unsigned long n)
2087 {
2088         if (n >= (1UL << 30))
2089                 sprintf(buf, "%lu GB", n >> 30);
2090         else if (n >= (1UL << 20))
2091                 sprintf(buf, "%lu MB", n >> 20);
2092         else
2093                 sprintf(buf, "%lu KB", n >> 10);
2094         return buf;
2095 }
2096
2097 static void __init report_hugepages(void)
2098 {
2099         struct hstate *h;
2100
2101         for_each_hstate(h) {
2102                 char buf[32];
2103                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2104                         memfmt(buf, huge_page_size(h)),
2105                         h->free_huge_pages);
2106         }
2107 }
2108
2109 #ifdef CONFIG_HIGHMEM
2110 static void try_to_free_low(struct hstate *h, unsigned long count,
2111                                                 nodemask_t *nodes_allowed)
2112 {
2113         int i;
2114
2115         if (hstate_is_gigantic(h))
2116                 return;
2117
2118         for_each_node_mask(i, *nodes_allowed) {
2119                 struct page *page, *next;
2120                 struct list_head *freel = &h->hugepage_freelists[i];
2121                 list_for_each_entry_safe(page, next, freel, lru) {
2122                         if (count >= h->nr_huge_pages)
2123                                 return;
2124                         if (PageHighMem(page))
2125                                 continue;
2126                         list_del(&page->lru);
2127                         update_and_free_page(h, page);
2128                         h->free_huge_pages--;
2129                         h->free_huge_pages_node[page_to_nid(page)]--;
2130                 }
2131         }
2132 }
2133 #else
2134 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2135                                                 nodemask_t *nodes_allowed)
2136 {
2137 }
2138 #endif
2139
2140 /*
2141  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2142  * balanced by operating on them in a round-robin fashion.
2143  * Returns 1 if an adjustment was made.
2144  */
2145 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2146                                 int delta)
2147 {
2148         int nr_nodes, node;
2149
2150         VM_BUG_ON(delta != -1 && delta != 1);
2151
2152         if (delta < 0) {
2153                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2154                         if (h->surplus_huge_pages_node[node])
2155                                 goto found;
2156                 }
2157         } else {
2158                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2159                         if (h->surplus_huge_pages_node[node] <
2160                                         h->nr_huge_pages_node[node])
2161                                 goto found;
2162                 }
2163         }
2164         return 0;
2165
2166 found:
2167         h->surplus_huge_pages += delta;
2168         h->surplus_huge_pages_node[node] += delta;
2169         return 1;
2170 }
2171
2172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2173 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2174                                                 nodemask_t *nodes_allowed)
2175 {
2176         unsigned long min_count, ret;
2177
2178         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2179                 return h->max_huge_pages;
2180
2181         /*
2182          * Increase the pool size
2183          * First take pages out of surplus state.  Then make up the
2184          * remaining difference by allocating fresh huge pages.
2185          *
2186          * We might race with __alloc_buddy_huge_page() here and be unable
2187          * to convert a surplus huge page to a normal huge page. That is
2188          * not critical, though, it just means the overall size of the
2189          * pool might be one hugepage larger than it needs to be, but
2190          * within all the constraints specified by the sysctls.
2191          */
2192         spin_lock(&hugetlb_lock);
2193         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2194                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2195                         break;
2196         }
2197
2198         while (count > persistent_huge_pages(h)) {
2199                 /*
2200                  * If this allocation races such that we no longer need the
2201                  * page, free_huge_page will handle it by freeing the page
2202                  * and reducing the surplus.
2203                  */
2204                 spin_unlock(&hugetlb_lock);
2205
2206                 /* yield cpu to avoid soft lockup */
2207                 cond_resched();
2208
2209                 if (hstate_is_gigantic(h))
2210                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2211                 else
2212                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2213                 spin_lock(&hugetlb_lock);
2214                 if (!ret)
2215                         goto out;
2216
2217                 /* Bail for signals. Probably ctrl-c from user */
2218                 if (signal_pending(current))
2219                         goto out;
2220         }
2221
2222         /*
2223          * Decrease the pool size
2224          * First return free pages to the buddy allocator (being careful
2225          * to keep enough around to satisfy reservations).  Then place
2226          * pages into surplus state as needed so the pool will shrink
2227          * to the desired size as pages become free.
2228          *
2229          * By placing pages into the surplus state independent of the
2230          * overcommit value, we are allowing the surplus pool size to
2231          * exceed overcommit. There are few sane options here. Since
2232          * __alloc_buddy_huge_page() is checking the global counter,
2233          * though, we'll note that we're not allowed to exceed surplus
2234          * and won't grow the pool anywhere else. Not until one of the
2235          * sysctls are changed, or the surplus pages go out of use.
2236          */
2237         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2238         min_count = max(count, min_count);
2239         try_to_free_low(h, min_count, nodes_allowed);
2240         while (min_count < persistent_huge_pages(h)) {
2241                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2242                         break;
2243                 cond_resched_lock(&hugetlb_lock);
2244         }
2245         while (count < persistent_huge_pages(h)) {
2246                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2247                         break;
2248         }
2249 out:
2250         ret = persistent_huge_pages(h);
2251         spin_unlock(&hugetlb_lock);
2252         return ret;
2253 }
2254
2255 #define HSTATE_ATTR_RO(_name) \
2256         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2257
2258 #define HSTATE_ATTR(_name) \
2259         static struct kobj_attribute _name##_attr = \
2260                 __ATTR(_name, 0644, _name##_show, _name##_store)
2261
2262 static struct kobject *hugepages_kobj;
2263 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2264
2265 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2266
2267 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2268 {
2269         int i;
2270
2271         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2272                 if (hstate_kobjs[i] == kobj) {
2273                         if (nidp)
2274                                 *nidp = NUMA_NO_NODE;
2275                         return &hstates[i];
2276                 }
2277
2278         return kobj_to_node_hstate(kobj, nidp);
2279 }
2280
2281 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2282                                         struct kobj_attribute *attr, char *buf)
2283 {
2284         struct hstate *h;
2285         unsigned long nr_huge_pages;
2286         int nid;
2287
2288         h = kobj_to_hstate(kobj, &nid);
2289         if (nid == NUMA_NO_NODE)
2290                 nr_huge_pages = h->nr_huge_pages;
2291         else
2292                 nr_huge_pages = h->nr_huge_pages_node[nid];
2293
2294         return sprintf(buf, "%lu\n", nr_huge_pages);
2295 }
2296
2297 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2298                                            struct hstate *h, int nid,
2299                                            unsigned long count, size_t len)
2300 {
2301         int err;
2302         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2303
2304         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2305                 err = -EINVAL;
2306                 goto out;
2307         }
2308
2309         if (nid == NUMA_NO_NODE) {
2310                 /*
2311                  * global hstate attribute
2312                  */
2313                 if (!(obey_mempolicy &&
2314                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2315                         NODEMASK_FREE(nodes_allowed);
2316                         nodes_allowed = &node_states[N_MEMORY];
2317                 }
2318         } else if (nodes_allowed) {
2319                 /*
2320                  * per node hstate attribute: adjust count to global,
2321                  * but restrict alloc/free to the specified node.
2322                  */
2323                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2324                 init_nodemask_of_node(nodes_allowed, nid);
2325         } else
2326                 nodes_allowed = &node_states[N_MEMORY];
2327
2328         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2329
2330         if (nodes_allowed != &node_states[N_MEMORY])
2331                 NODEMASK_FREE(nodes_allowed);
2332
2333         return len;
2334 out:
2335         NODEMASK_FREE(nodes_allowed);
2336         return err;
2337 }
2338
2339 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2340                                          struct kobject *kobj, const char *buf,
2341                                          size_t len)
2342 {
2343         struct hstate *h;
2344         unsigned long count;
2345         int nid;
2346         int err;
2347
2348         err = kstrtoul(buf, 10, &count);
2349         if (err)
2350                 return err;
2351
2352         h = kobj_to_hstate(kobj, &nid);
2353         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2354 }
2355
2356 static ssize_t nr_hugepages_show(struct kobject *kobj,
2357                                        struct kobj_attribute *attr, char *buf)
2358 {
2359         return nr_hugepages_show_common(kobj, attr, buf);
2360 }
2361
2362 static ssize_t nr_hugepages_store(struct kobject *kobj,
2363                struct kobj_attribute *attr, const char *buf, size_t len)
2364 {
2365         return nr_hugepages_store_common(false, kobj, buf, len);
2366 }
2367 HSTATE_ATTR(nr_hugepages);
2368
2369 #ifdef CONFIG_NUMA
2370
2371 /*
2372  * hstate attribute for optionally mempolicy-based constraint on persistent
2373  * huge page alloc/free.
2374  */
2375 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2376                                        struct kobj_attribute *attr, char *buf)
2377 {
2378         return nr_hugepages_show_common(kobj, attr, buf);
2379 }
2380
2381 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2382                struct kobj_attribute *attr, const char *buf, size_t len)
2383 {
2384         return nr_hugepages_store_common(true, kobj, buf, len);
2385 }
2386 HSTATE_ATTR(nr_hugepages_mempolicy);
2387 #endif
2388
2389
2390 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2391                                         struct kobj_attribute *attr, char *buf)
2392 {
2393         struct hstate *h = kobj_to_hstate(kobj, NULL);
2394         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2395 }
2396
2397 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2398                 struct kobj_attribute *attr, const char *buf, size_t count)
2399 {
2400         int err;
2401         unsigned long input;
2402         struct hstate *h = kobj_to_hstate(kobj, NULL);
2403
2404         if (hstate_is_gigantic(h))
2405                 return -EINVAL;
2406
2407         err = kstrtoul(buf, 10, &input);
2408         if (err)
2409                 return err;
2410
2411         spin_lock(&hugetlb_lock);
2412         h->nr_overcommit_huge_pages = input;
2413         spin_unlock(&hugetlb_lock);
2414
2415         return count;
2416 }
2417 HSTATE_ATTR(nr_overcommit_hugepages);
2418
2419 static ssize_t free_hugepages_show(struct kobject *kobj,
2420                                         struct kobj_attribute *attr, char *buf)
2421 {
2422         struct hstate *h;
2423         unsigned long free_huge_pages;
2424         int nid;
2425
2426         h = kobj_to_hstate(kobj, &nid);
2427         if (nid == NUMA_NO_NODE)
2428                 free_huge_pages = h->free_huge_pages;
2429         else
2430                 free_huge_pages = h->free_huge_pages_node[nid];
2431
2432         return sprintf(buf, "%lu\n", free_huge_pages);
2433 }
2434 HSTATE_ATTR_RO(free_hugepages);
2435
2436 static ssize_t resv_hugepages_show(struct kobject *kobj,
2437                                         struct kobj_attribute *attr, char *buf)
2438 {
2439         struct hstate *h = kobj_to_hstate(kobj, NULL);
2440         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2441 }
2442 HSTATE_ATTR_RO(resv_hugepages);
2443
2444 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2445                                         struct kobj_attribute *attr, char *buf)
2446 {
2447         struct hstate *h;
2448         unsigned long surplus_huge_pages;
2449         int nid;
2450
2451         h = kobj_to_hstate(kobj, &nid);
2452         if (nid == NUMA_NO_NODE)
2453                 surplus_huge_pages = h->surplus_huge_pages;
2454         else
2455                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2456
2457         return sprintf(buf, "%lu\n", surplus_huge_pages);
2458 }
2459 HSTATE_ATTR_RO(surplus_hugepages);
2460
2461 static struct attribute *hstate_attrs[] = {
2462         &nr_hugepages_attr.attr,
2463         &nr_overcommit_hugepages_attr.attr,
2464         &free_hugepages_attr.attr,
2465         &resv_hugepages_attr.attr,
2466         &surplus_hugepages_attr.attr,
2467 #ifdef CONFIG_NUMA
2468         &nr_hugepages_mempolicy_attr.attr,
2469 #endif
2470         NULL,
2471 };
2472
2473 static struct attribute_group hstate_attr_group = {
2474         .attrs = hstate_attrs,
2475 };
2476
2477 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2478                                     struct kobject **hstate_kobjs,
2479                                     struct attribute_group *hstate_attr_group)
2480 {
2481         int retval;
2482         int hi = hstate_index(h);
2483
2484         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2485         if (!hstate_kobjs[hi])
2486                 return -ENOMEM;
2487
2488         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2489         if (retval)
2490                 kobject_put(hstate_kobjs[hi]);
2491
2492         return retval;
2493 }
2494
2495 static void __init hugetlb_sysfs_init(void)
2496 {
2497         struct hstate *h;
2498         int err;
2499
2500         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2501         if (!hugepages_kobj)
2502                 return;
2503
2504         for_each_hstate(h) {
2505                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2506                                          hstate_kobjs, &hstate_attr_group);
2507                 if (err)
2508                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2509         }
2510 }
2511
2512 #ifdef CONFIG_NUMA
2513
2514 /*
2515  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2516  * with node devices in node_devices[] using a parallel array.  The array
2517  * index of a node device or _hstate == node id.
2518  * This is here to avoid any static dependency of the node device driver, in
2519  * the base kernel, on the hugetlb module.
2520  */
2521 struct node_hstate {
2522         struct kobject          *hugepages_kobj;
2523         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2524 };
2525 static struct node_hstate node_hstates[MAX_NUMNODES];
2526
2527 /*
2528  * A subset of global hstate attributes for node devices
2529  */
2530 static struct attribute *per_node_hstate_attrs[] = {
2531         &nr_hugepages_attr.attr,
2532         &free_hugepages_attr.attr,
2533         &surplus_hugepages_attr.attr,
2534         NULL,
2535 };
2536
2537 static struct attribute_group per_node_hstate_attr_group = {
2538         .attrs = per_node_hstate_attrs,
2539 };
2540
2541 /*
2542  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2543  * Returns node id via non-NULL nidp.
2544  */
2545 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2546 {
2547         int nid;
2548
2549         for (nid = 0; nid < nr_node_ids; nid++) {
2550                 struct node_hstate *nhs = &node_hstates[nid];
2551                 int i;
2552                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2553                         if (nhs->hstate_kobjs[i] == kobj) {
2554                                 if (nidp)
2555                                         *nidp = nid;
2556                                 return &hstates[i];
2557                         }
2558         }
2559
2560         BUG();
2561         return NULL;
2562 }
2563
2564 /*
2565  * Unregister hstate attributes from a single node device.
2566  * No-op if no hstate attributes attached.
2567  */
2568 static void hugetlb_unregister_node(struct node *node)
2569 {
2570         struct hstate *h;
2571         struct node_hstate *nhs = &node_hstates[node->dev.id];
2572
2573         if (!nhs->hugepages_kobj)
2574                 return;         /* no hstate attributes */
2575
2576         for_each_hstate(h) {
2577                 int idx = hstate_index(h);
2578                 if (nhs->hstate_kobjs[idx]) {
2579                         kobject_put(nhs->hstate_kobjs[idx]);
2580                         nhs->hstate_kobjs[idx] = NULL;
2581                 }
2582         }
2583
2584         kobject_put(nhs->hugepages_kobj);
2585         nhs->hugepages_kobj = NULL;
2586 }
2587
2588 /*
2589  * hugetlb module exit:  unregister hstate attributes from node devices
2590  * that have them.
2591  */
2592 static void hugetlb_unregister_all_nodes(void)
2593 {
2594         int nid;
2595
2596         /*
2597          * disable node device registrations.
2598          */
2599         register_hugetlbfs_with_node(NULL, NULL);
2600
2601         /*
2602          * remove hstate attributes from any nodes that have them.
2603          */
2604         for (nid = 0; nid < nr_node_ids; nid++)
2605                 hugetlb_unregister_node(node_devices[nid]);
2606 }
2607
2608 /*
2609  * Register hstate attributes for a single node device.
2610  * No-op if attributes already registered.
2611  */
2612 static void hugetlb_register_node(struct node *node)
2613 {
2614         struct hstate *h;
2615         struct node_hstate *nhs = &node_hstates[node->dev.id];
2616         int err;
2617
2618         if (nhs->hugepages_kobj)
2619                 return;         /* already allocated */
2620
2621         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2622                                                         &node->dev.kobj);
2623         if (!nhs->hugepages_kobj)
2624                 return;
2625
2626         for_each_hstate(h) {
2627                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2628                                                 nhs->hstate_kobjs,
2629                                                 &per_node_hstate_attr_group);
2630                 if (err) {
2631                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2632                                 h->name, node->dev.id);
2633                         hugetlb_unregister_node(node);
2634                         break;
2635                 }
2636         }
2637 }
2638
2639 /*
2640  * hugetlb init time:  register hstate attributes for all registered node
2641  * devices of nodes that have memory.  All on-line nodes should have
2642  * registered their associated device by this time.
2643  */
2644 static void __init hugetlb_register_all_nodes(void)
2645 {
2646         int nid;
2647
2648         for_each_node_state(nid, N_MEMORY) {
2649                 struct node *node = node_devices[nid];
2650                 if (node->dev.id == nid)
2651                         hugetlb_register_node(node);
2652         }
2653
2654         /*
2655          * Let the node device driver know we're here so it can
2656          * [un]register hstate attributes on node hotplug.
2657          */
2658         register_hugetlbfs_with_node(hugetlb_register_node,
2659                                      hugetlb_unregister_node);
2660 }
2661 #else   /* !CONFIG_NUMA */
2662
2663 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2664 {
2665         BUG();
2666         if (nidp)
2667                 *nidp = -1;
2668         return NULL;
2669 }
2670
2671 static void hugetlb_unregister_all_nodes(void) { }
2672
2673 static void hugetlb_register_all_nodes(void) { }
2674
2675 #endif
2676
2677 static void __exit hugetlb_exit(void)
2678 {
2679         struct hstate *h;
2680
2681         hugetlb_unregister_all_nodes();
2682
2683         for_each_hstate(h) {
2684                 kobject_put(hstate_kobjs[hstate_index(h)]);
2685         }
2686
2687         kobject_put(hugepages_kobj);
2688         kfree(hugetlb_fault_mutex_table);
2689 }
2690 module_exit(hugetlb_exit);
2691
2692 static int __init hugetlb_init(void)
2693 {
2694         int i;
2695
2696         if (!hugepages_supported())
2697                 return 0;
2698
2699         if (!size_to_hstate(default_hstate_size)) {
2700                 default_hstate_size = HPAGE_SIZE;
2701                 if (!size_to_hstate(default_hstate_size))
2702                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2703         }
2704         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2705         if (default_hstate_max_huge_pages)
2706                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2707
2708         hugetlb_init_hstates();
2709         gather_bootmem_prealloc();
2710         report_hugepages();
2711
2712         hugetlb_sysfs_init();
2713         hugetlb_register_all_nodes();
2714         hugetlb_cgroup_file_init();
2715
2716 #ifdef CONFIG_SMP
2717         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2718 #else
2719         num_fault_mutexes = 1;
2720 #endif
2721         hugetlb_fault_mutex_table =
2722                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2723         BUG_ON(!hugetlb_fault_mutex_table);
2724
2725         for (i = 0; i < num_fault_mutexes; i++)
2726                 mutex_init(&hugetlb_fault_mutex_table[i]);
2727         return 0;
2728 }
2729 module_init(hugetlb_init);
2730
2731 /* Should be called on processing a hugepagesz=... option */
2732 void __init hugetlb_add_hstate(unsigned int order)
2733 {
2734         struct hstate *h;
2735         unsigned long i;
2736
2737         if (size_to_hstate(PAGE_SIZE << order)) {
2738                 pr_warning("hugepagesz= specified twice, ignoring\n");
2739                 return;
2740         }
2741         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2742         BUG_ON(order == 0);
2743         h = &hstates[hugetlb_max_hstate++];
2744         h->order = order;
2745         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2746         h->nr_huge_pages = 0;
2747         h->free_huge_pages = 0;
2748         for (i = 0; i < MAX_NUMNODES; ++i)
2749                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2750         INIT_LIST_HEAD(&h->hugepage_activelist);
2751         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2752         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2753         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2754                                         huge_page_size(h)/1024);
2755
2756         parsed_hstate = h;
2757 }
2758
2759 static int __init hugetlb_nrpages_setup(char *s)
2760 {
2761         unsigned long *mhp;
2762         static unsigned long *last_mhp;
2763
2764         /*
2765          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2766          * so this hugepages= parameter goes to the "default hstate".
2767          */
2768         if (!hugetlb_max_hstate)
2769                 mhp = &default_hstate_max_huge_pages;
2770         else
2771                 mhp = &parsed_hstate->max_huge_pages;
2772
2773         if (mhp == last_mhp) {
2774                 pr_warning("hugepages= specified twice without "
2775                            "interleaving hugepagesz=, ignoring\n");
2776                 return 1;
2777         }
2778
2779         if (sscanf(s, "%lu", mhp) <= 0)
2780                 *mhp = 0;
2781
2782         /*
2783          * Global state is always initialized later in hugetlb_init.
2784          * But we need to allocate >= MAX_ORDER hstates here early to still
2785          * use the bootmem allocator.
2786          */
2787         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2788                 hugetlb_hstate_alloc_pages(parsed_hstate);
2789
2790         last_mhp = mhp;
2791
2792         return 1;
2793 }
2794 __setup("hugepages=", hugetlb_nrpages_setup);
2795
2796 static int __init hugetlb_default_setup(char *s)
2797 {
2798         default_hstate_size = memparse(s, &s);
2799         return 1;
2800 }
2801 __setup("default_hugepagesz=", hugetlb_default_setup);
2802
2803 static unsigned int cpuset_mems_nr(unsigned int *array)
2804 {
2805         int node;
2806         unsigned int nr = 0;
2807
2808         for_each_node_mask(node, cpuset_current_mems_allowed)
2809                 nr += array[node];
2810
2811         return nr;
2812 }
2813
2814 #ifdef CONFIG_SYSCTL
2815 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2816                          struct ctl_table *table, int write,
2817                          void __user *buffer, size_t *length, loff_t *ppos)
2818 {
2819         struct hstate *h = &default_hstate;
2820         unsigned long tmp = h->max_huge_pages;
2821         int ret;
2822
2823         if (!hugepages_supported())
2824                 return -ENOTSUPP;
2825
2826         table->data = &tmp;
2827         table->maxlen = sizeof(unsigned long);
2828         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2829         if (ret)
2830                 goto out;
2831
2832         if (write)
2833                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2834                                                   NUMA_NO_NODE, tmp, *length);
2835 out:
2836         return ret;
2837 }
2838
2839 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2840                           void __user *buffer, size_t *length, loff_t *ppos)
2841 {
2842
2843         return hugetlb_sysctl_handler_common(false, table, write,
2844                                                         buffer, length, ppos);
2845 }
2846
2847 #ifdef CONFIG_NUMA
2848 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2849                           void __user *buffer, size_t *length, loff_t *ppos)
2850 {
2851         return hugetlb_sysctl_handler_common(true, table, write,
2852                                                         buffer, length, ppos);
2853 }
2854 #endif /* CONFIG_NUMA */
2855
2856 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2857                         void __user *buffer,
2858                         size_t *length, loff_t *ppos)
2859 {
2860         struct hstate *h = &default_hstate;
2861         unsigned long tmp;
2862         int ret;
2863
2864         if (!hugepages_supported())
2865                 return -ENOTSUPP;
2866
2867         tmp = h->nr_overcommit_huge_pages;
2868
2869         if (write && hstate_is_gigantic(h))
2870                 return -EINVAL;
2871
2872         table->data = &tmp;
2873         table->maxlen = sizeof(unsigned long);
2874         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2875         if (ret)
2876                 goto out;
2877
2878         if (write) {
2879                 spin_lock(&hugetlb_lock);
2880                 h->nr_overcommit_huge_pages = tmp;
2881                 spin_unlock(&hugetlb_lock);
2882         }
2883 out:
2884         return ret;
2885 }
2886
2887 #endif /* CONFIG_SYSCTL */
2888
2889 void hugetlb_report_meminfo(struct seq_file *m)
2890 {
2891         struct hstate *h = &default_hstate;
2892         if (!hugepages_supported())
2893                 return;
2894         seq_printf(m,
2895                         "HugePages_Total:   %5lu\n"
2896                         "HugePages_Free:    %5lu\n"
2897                         "HugePages_Rsvd:    %5lu\n"
2898                         "HugePages_Surp:    %5lu\n"
2899                         "Hugepagesize:   %8lu kB\n",
2900                         h->nr_huge_pages,
2901                         h->free_huge_pages,
2902                         h->resv_huge_pages,
2903                         h->surplus_huge_pages,
2904                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2905 }
2906
2907 int hugetlb_report_node_meminfo(int nid, char *buf)
2908 {
2909         struct hstate *h = &default_hstate;
2910         if (!hugepages_supported())
2911                 return 0;
2912         return sprintf(buf,
2913                 "Node %d HugePages_Total: %5u\n"
2914                 "Node %d HugePages_Free:  %5u\n"
2915                 "Node %d HugePages_Surp:  %5u\n",
2916                 nid, h->nr_huge_pages_node[nid],
2917                 nid, h->free_huge_pages_node[nid],
2918                 nid, h->surplus_huge_pages_node[nid]);
2919 }
2920
2921 void hugetlb_show_meminfo(void)
2922 {
2923         struct hstate *h;
2924         int nid;
2925
2926         if (!hugepages_supported())
2927                 return;
2928
2929         for_each_node_state(nid, N_MEMORY)
2930                 for_each_hstate(h)
2931                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2932                                 nid,
2933                                 h->nr_huge_pages_node[nid],
2934                                 h->free_huge_pages_node[nid],
2935                                 h->surplus_huge_pages_node[nid],
2936                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2937 }
2938
2939 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2940 {
2941         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2942                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2943 }
2944
2945 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2946 unsigned long hugetlb_total_pages(void)
2947 {
2948         struct hstate *h;
2949         unsigned long nr_total_pages = 0;
2950
2951         for_each_hstate(h)
2952                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2953         return nr_total_pages;
2954 }
2955
2956 static int hugetlb_acct_memory(struct hstate *h, long delta)
2957 {
2958         int ret = -ENOMEM;
2959
2960         spin_lock(&hugetlb_lock);
2961         /*
2962          * When cpuset is configured, it breaks the strict hugetlb page
2963          * reservation as the accounting is done on a global variable. Such
2964          * reservation is completely rubbish in the presence of cpuset because
2965          * the reservation is not checked against page availability for the
2966          * current cpuset. Application can still potentially OOM'ed by kernel
2967          * with lack of free htlb page in cpuset that the task is in.
2968          * Attempt to enforce strict accounting with cpuset is almost
2969          * impossible (or too ugly) because cpuset is too fluid that
2970          * task or memory node can be dynamically moved between cpusets.
2971          *
2972          * The change of semantics for shared hugetlb mapping with cpuset is
2973          * undesirable. However, in order to preserve some of the semantics,
2974          * we fall back to check against current free page availability as
2975          * a best attempt and hopefully to minimize the impact of changing
2976          * semantics that cpuset has.
2977          */
2978         if (delta > 0) {
2979                 if (gather_surplus_pages(h, delta) < 0)
2980                         goto out;
2981
2982                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2983                         return_unused_surplus_pages(h, delta);
2984                         goto out;
2985                 }
2986         }
2987
2988         ret = 0;
2989         if (delta < 0)
2990                 return_unused_surplus_pages(h, (unsigned long) -delta);
2991
2992 out:
2993         spin_unlock(&hugetlb_lock);
2994         return ret;
2995 }
2996
2997 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2998 {
2999         struct resv_map *resv = vma_resv_map(vma);
3000
3001         /*
3002          * This new VMA should share its siblings reservation map if present.
3003          * The VMA will only ever have a valid reservation map pointer where
3004          * it is being copied for another still existing VMA.  As that VMA
3005          * has a reference to the reservation map it cannot disappear until
3006          * after this open call completes.  It is therefore safe to take a
3007          * new reference here without additional locking.
3008          */
3009         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3010                 kref_get(&resv->refs);
3011 }
3012
3013 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3014 {
3015         struct hstate *h = hstate_vma(vma);
3016         struct resv_map *resv = vma_resv_map(vma);
3017         struct hugepage_subpool *spool = subpool_vma(vma);
3018         unsigned long reserve, start, end;
3019         long gbl_reserve;
3020
3021         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3022                 return;
3023
3024         start = vma_hugecache_offset(h, vma, vma->vm_start);
3025         end = vma_hugecache_offset(h, vma, vma->vm_end);
3026
3027         reserve = (end - start) - region_count(resv, start, end);
3028
3029         kref_put(&resv->refs, resv_map_release);
3030
3031         if (reserve) {
3032                 /*
3033                  * Decrement reserve counts.  The global reserve count may be
3034                  * adjusted if the subpool has a minimum size.
3035                  */
3036                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3037                 hugetlb_acct_memory(h, -gbl_reserve);
3038         }
3039 }
3040
3041 /*
3042  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3043  * handle_mm_fault() to try to instantiate regular-sized pages in the
3044  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3045  * this far.
3046  */
3047 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3048 {
3049         BUG();
3050         return 0;
3051 }
3052
3053 const struct vm_operations_struct hugetlb_vm_ops = {
3054         .fault = hugetlb_vm_op_fault,
3055         .open = hugetlb_vm_op_open,
3056         .close = hugetlb_vm_op_close,
3057 };
3058
3059 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3060                                 int writable)
3061 {
3062         pte_t entry;
3063
3064         if (writable) {
3065                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3066                                          vma->vm_page_prot)));
3067         } else {
3068                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3069                                            vma->vm_page_prot));
3070         }
3071         entry = pte_mkyoung(entry);
3072         entry = pte_mkhuge(entry);
3073         entry = arch_make_huge_pte(entry, vma, page, writable);
3074
3075         return entry;
3076 }
3077
3078 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3079                                    unsigned long address, pte_t *ptep)
3080 {
3081         pte_t entry;
3082
3083         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3084         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3085                 update_mmu_cache(vma, address, ptep);
3086 }
3087
3088 static int is_hugetlb_entry_migration(pte_t pte)
3089 {
3090         swp_entry_t swp;
3091
3092         if (huge_pte_none(pte) || pte_present(pte))
3093                 return 0;
3094         swp = pte_to_swp_entry(pte);
3095         if (non_swap_entry(swp) && is_migration_entry(swp))
3096                 return 1;
3097         else
3098                 return 0;
3099 }
3100
3101 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3102 {
3103         swp_entry_t swp;
3104
3105         if (huge_pte_none(pte) || pte_present(pte))
3106                 return 0;
3107         swp = pte_to_swp_entry(pte);
3108         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3109                 return 1;
3110         else
3111                 return 0;
3112 }
3113
3114 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3115                             struct vm_area_struct *vma)
3116 {
3117         pte_t *src_pte, *dst_pte, entry, dst_entry;
3118         struct page *ptepage;
3119         unsigned long addr;
3120         int cow;
3121         struct hstate *h = hstate_vma(vma);
3122         unsigned long sz = huge_page_size(h);
3123         unsigned long mmun_start;       /* For mmu_notifiers */
3124         unsigned long mmun_end;         /* For mmu_notifiers */
3125         int ret = 0;
3126
3127         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3128
3129         mmun_start = vma->vm_start;
3130         mmun_end = vma->vm_end;
3131         if (cow)
3132                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3133
3134         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3135                 spinlock_t *src_ptl, *dst_ptl;
3136                 src_pte = huge_pte_offset(src, addr);
3137                 if (!src_pte)
3138                         continue;
3139                 dst_pte = huge_pte_alloc(dst, addr, sz);
3140                 if (!dst_pte) {
3141                         ret = -ENOMEM;
3142                         break;
3143                 }
3144
3145                 /*
3146                  * If the pagetables are shared don't copy or take references.
3147                  * dst_pte == src_pte is the common case of src/dest sharing.
3148                  *
3149                  * However, src could have 'unshared' and dst shares with
3150                  * another vma.  If dst_pte !none, this implies sharing.
3151                  * Check here before taking page table lock, and once again
3152                  * after taking the lock below.
3153                  */
3154                 dst_entry = huge_ptep_get(dst_pte);
3155                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3156                         continue;
3157
3158                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3159                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3160                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3161                 entry = huge_ptep_get(src_pte);
3162                 dst_entry = huge_ptep_get(dst_pte);
3163                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3164                         /*
3165                          * Skip if src entry none.  Also, skip in the
3166                          * unlikely case dst entry !none as this implies
3167                          * sharing with another vma.
3168                          */
3169                         ;
3170                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3171                                     is_hugetlb_entry_hwpoisoned(entry))) {
3172                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3173
3174                         if (is_write_migration_entry(swp_entry) && cow) {
3175                                 /*
3176                                  * COW mappings require pages in both
3177                                  * parent and child to be set to read.
3178                                  */
3179                                 make_migration_entry_read(&swp_entry);
3180                                 entry = swp_entry_to_pte(swp_entry);
3181                                 set_huge_pte_at(src, addr, src_pte, entry);
3182                         }
3183                         set_huge_pte_at(dst, addr, dst_pte, entry);
3184                 } else {
3185                         if (cow) {
3186                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3187                                 mmu_notifier_invalidate_range(src, mmun_start,
3188                                                                    mmun_end);
3189                         }
3190                         entry = huge_ptep_get(src_pte);
3191                         ptepage = pte_page(entry);
3192                         get_page(ptepage);
3193                         page_dup_rmap(ptepage);
3194                         set_huge_pte_at(dst, addr, dst_pte, entry);
3195                         hugetlb_count_add(pages_per_huge_page(h), dst);
3196                 }
3197                 spin_unlock(src_ptl);
3198                 spin_unlock(dst_ptl);
3199         }
3200
3201         if (cow)
3202                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3203
3204         return ret;
3205 }
3206
3207 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3208                             unsigned long start, unsigned long end,
3209                             struct page *ref_page)
3210 {
3211         int force_flush = 0;
3212         struct mm_struct *mm = vma->vm_mm;
3213         unsigned long address;
3214         pte_t *ptep;
3215         pte_t pte;
3216         spinlock_t *ptl;
3217         struct page *page;
3218         struct hstate *h = hstate_vma(vma);
3219         unsigned long sz = huge_page_size(h);
3220         const unsigned long mmun_start = start; /* For mmu_notifiers */
3221         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3222
3223         WARN_ON(!is_vm_hugetlb_page(vma));
3224         BUG_ON(start & ~huge_page_mask(h));
3225         BUG_ON(end & ~huge_page_mask(h));
3226
3227         tlb_start_vma(tlb, vma);
3228         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3229         address = start;
3230 again:
3231         for (; address < end; address += sz) {
3232                 ptep = huge_pte_offset(mm, address);
3233                 if (!ptep)
3234                         continue;
3235
3236                 ptl = huge_pte_lock(h, mm, ptep);
3237                 if (huge_pmd_unshare(mm, &address, ptep))
3238                         goto unlock;
3239
3240                 pte = huge_ptep_get(ptep);
3241                 if (huge_pte_none(pte))
3242                         goto unlock;
3243
3244                 /*
3245                  * Migrating hugepage or HWPoisoned hugepage is already
3246                  * unmapped and its refcount is dropped, so just clear pte here.
3247                  */
3248                 if (unlikely(!pte_present(pte))) {
3249                         huge_pte_clear(mm, address, ptep);
3250                         goto unlock;
3251                 }
3252
3253                 page = pte_page(pte);
3254                 /*
3255                  * If a reference page is supplied, it is because a specific
3256                  * page is being unmapped, not a range. Ensure the page we
3257                  * are about to unmap is the actual page of interest.
3258                  */
3259                 if (ref_page) {
3260                         if (page != ref_page)
3261                                 goto unlock;
3262
3263                         /*
3264                          * Mark the VMA as having unmapped its page so that
3265                          * future faults in this VMA will fail rather than
3266                          * looking like data was lost
3267                          */
3268                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3269                 }
3270
3271                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3272                 tlb_remove_tlb_entry(tlb, ptep, address);
3273                 if (huge_pte_dirty(pte))
3274                         set_page_dirty(page);
3275
3276                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3277                 page_remove_rmap(page);
3278                 force_flush = !__tlb_remove_page(tlb, page);
3279                 if (force_flush) {
3280                         address += sz;
3281                         spin_unlock(ptl);
3282                         break;
3283                 }
3284                 /* Bail out after unmapping reference page if supplied */
3285                 if (ref_page) {
3286                         spin_unlock(ptl);
3287                         break;
3288                 }
3289 unlock:
3290                 spin_unlock(ptl);
3291         }
3292         /*
3293          * mmu_gather ran out of room to batch pages, we break out of
3294          * the PTE lock to avoid doing the potential expensive TLB invalidate
3295          * and page-free while holding it.
3296          */
3297         if (force_flush) {
3298                 force_flush = 0;
3299                 tlb_flush_mmu(tlb);
3300                 if (address < end && !ref_page)
3301                         goto again;
3302         }
3303         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3304         tlb_end_vma(tlb, vma);
3305 }
3306
3307 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3308                           struct vm_area_struct *vma, unsigned long start,
3309                           unsigned long end, struct page *ref_page)
3310 {
3311         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3312
3313         /*
3314          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3315          * test will fail on a vma being torn down, and not grab a page table
3316          * on its way out.  We're lucky that the flag has such an appropriate
3317          * name, and can in fact be safely cleared here. We could clear it
3318          * before the __unmap_hugepage_range above, but all that's necessary
3319          * is to clear it before releasing the i_mmap_rwsem. This works
3320          * because in the context this is called, the VMA is about to be
3321          * destroyed and the i_mmap_rwsem is held.
3322          */
3323         vma->vm_flags &= ~VM_MAYSHARE;
3324 }
3325
3326 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3327                           unsigned long end, struct page *ref_page)
3328 {
3329         struct mm_struct *mm;
3330         struct mmu_gather tlb;
3331
3332         mm = vma->vm_mm;
3333
3334         tlb_gather_mmu(&tlb, mm, start, end);
3335         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3336         tlb_finish_mmu(&tlb, start, end);
3337 }
3338
3339 /*
3340  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3341  * mappping it owns the reserve page for. The intention is to unmap the page
3342  * from other VMAs and let the children be SIGKILLed if they are faulting the
3343  * same region.
3344  */
3345 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3346                               struct page *page, unsigned long address)
3347 {
3348         struct hstate *h = hstate_vma(vma);
3349         struct vm_area_struct *iter_vma;
3350         struct address_space *mapping;
3351         pgoff_t pgoff;
3352
3353         /*
3354          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3355          * from page cache lookup which is in HPAGE_SIZE units.
3356          */
3357         address = address & huge_page_mask(h);
3358         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3359                         vma->vm_pgoff;
3360         mapping = file_inode(vma->vm_file)->i_mapping;
3361
3362         /*
3363          * Take the mapping lock for the duration of the table walk. As
3364          * this mapping should be shared between all the VMAs,
3365          * __unmap_hugepage_range() is called as the lock is already held
3366          */
3367         i_mmap_lock_write(mapping);
3368         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3369                 /* Do not unmap the current VMA */
3370                 if (iter_vma == vma)
3371                         continue;
3372
3373                 /*
3374                  * Shared VMAs have their own reserves and do not affect
3375                  * MAP_PRIVATE accounting but it is possible that a shared
3376                  * VMA is using the same page so check and skip such VMAs.
3377                  */
3378                 if (iter_vma->vm_flags & VM_MAYSHARE)
3379                         continue;
3380
3381                 /*
3382                  * Unmap the page from other VMAs without their own reserves.
3383                  * They get marked to be SIGKILLed if they fault in these
3384                  * areas. This is because a future no-page fault on this VMA
3385                  * could insert a zeroed page instead of the data existing
3386                  * from the time of fork. This would look like data corruption
3387                  */
3388                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3389                         unmap_hugepage_range(iter_vma, address,
3390                                              address + huge_page_size(h), page);
3391         }
3392         i_mmap_unlock_write(mapping);
3393 }
3394
3395 /*
3396  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3397  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3398  * cannot race with other handlers or page migration.
3399  * Keep the pte_same checks anyway to make transition from the mutex easier.
3400  */
3401 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3402                         unsigned long address, pte_t *ptep, pte_t pte,
3403                         struct page *pagecache_page, spinlock_t *ptl)
3404 {
3405         struct hstate *h = hstate_vma(vma);
3406         struct page *old_page, *new_page;
3407         int ret = 0, outside_reserve = 0;
3408         unsigned long mmun_start;       /* For mmu_notifiers */
3409         unsigned long mmun_end;         /* For mmu_notifiers */
3410
3411         old_page = pte_page(pte);
3412
3413 retry_avoidcopy:
3414         /* If no-one else is actually using this page, avoid the copy
3415          * and just make the page writable */
3416         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3417                 page_move_anon_rmap(old_page, vma, address);
3418                 set_huge_ptep_writable(vma, address, ptep);
3419                 return 0;
3420         }
3421
3422         /*
3423          * If the process that created a MAP_PRIVATE mapping is about to
3424          * perform a COW due to a shared page count, attempt to satisfy
3425          * the allocation without using the existing reserves. The pagecache
3426          * page is used to determine if the reserve at this address was
3427          * consumed or not. If reserves were used, a partial faulted mapping
3428          * at the time of fork() could consume its reserves on COW instead
3429          * of the full address range.
3430          */
3431         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3432                         old_page != pagecache_page)
3433                 outside_reserve = 1;
3434
3435         page_cache_get(old_page);
3436
3437         /*
3438          * Drop page table lock as buddy allocator may be called. It will
3439          * be acquired again before returning to the caller, as expected.
3440          */
3441         spin_unlock(ptl);
3442         new_page = alloc_huge_page(vma, address, outside_reserve);
3443
3444         if (IS_ERR(new_page)) {
3445                 /*
3446                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3447                  * it is due to references held by a child and an insufficient
3448                  * huge page pool. To guarantee the original mappers
3449                  * reliability, unmap the page from child processes. The child
3450                  * may get SIGKILLed if it later faults.
3451                  */
3452                 if (outside_reserve) {
3453                         page_cache_release(old_page);
3454                         BUG_ON(huge_pte_none(pte));
3455                         unmap_ref_private(mm, vma, old_page, address);
3456                         BUG_ON(huge_pte_none(pte));
3457                         spin_lock(ptl);
3458                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3459                         if (likely(ptep &&
3460                                    pte_same(huge_ptep_get(ptep), pte)))
3461                                 goto retry_avoidcopy;
3462                         /*
3463                          * race occurs while re-acquiring page table
3464                          * lock, and our job is done.
3465                          */
3466                         return 0;
3467                 }
3468
3469                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3470                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3471                 goto out_release_old;
3472         }
3473
3474         /*
3475          * When the original hugepage is shared one, it does not have
3476          * anon_vma prepared.
3477          */
3478         if (unlikely(anon_vma_prepare(vma))) {
3479                 ret = VM_FAULT_OOM;
3480                 goto out_release_all;
3481         }
3482
3483         copy_user_huge_page(new_page, old_page, address, vma,
3484                             pages_per_huge_page(h));
3485         __SetPageUptodate(new_page);
3486
3487         mmun_start = address & huge_page_mask(h);
3488         mmun_end = mmun_start + huge_page_size(h);
3489         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3490
3491         /*
3492          * Retake the page table lock to check for racing updates
3493          * before the page tables are altered
3494          */
3495         spin_lock(ptl);
3496         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3497         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3498                 ClearPagePrivate(new_page);
3499
3500                 /* Break COW */
3501                 huge_ptep_clear_flush(vma, address, ptep);
3502                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3503                 set_huge_pte_at(mm, address, ptep,
3504                                 make_huge_pte(vma, new_page, 1));
3505                 page_remove_rmap(old_page);
3506                 hugepage_add_new_anon_rmap(new_page, vma, address);
3507                 set_page_huge_active(new_page);
3508                 /* Make the old page be freed below */
3509                 new_page = old_page;
3510         }
3511         spin_unlock(ptl);
3512         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3513 out_release_all:
3514         page_cache_release(new_page);
3515 out_release_old:
3516         page_cache_release(old_page);
3517
3518         spin_lock(ptl); /* Caller expects lock to be held */
3519         return ret;
3520 }
3521
3522 /* Return the pagecache page at a given address within a VMA */
3523 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3524                         struct vm_area_struct *vma, unsigned long address)
3525 {
3526         struct address_space *mapping;
3527         pgoff_t idx;
3528
3529         mapping = vma->vm_file->f_mapping;
3530         idx = vma_hugecache_offset(h, vma, address);
3531
3532         return find_lock_page(mapping, idx);
3533 }
3534
3535 /*
3536  * Return whether there is a pagecache page to back given address within VMA.
3537  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3538  */
3539 static bool hugetlbfs_pagecache_present(struct hstate *h,
3540                         struct vm_area_struct *vma, unsigned long address)
3541 {
3542         struct address_space *mapping;
3543         pgoff_t idx;
3544         struct page *page;
3545
3546         mapping = vma->vm_file->f_mapping;
3547         idx = vma_hugecache_offset(h, vma, address);
3548
3549         page = find_get_page(mapping, idx);
3550         if (page)
3551                 put_page(page);
3552         return page != NULL;
3553 }
3554
3555 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3556                            pgoff_t idx)
3557 {
3558         struct inode *inode = mapping->host;
3559         struct hstate *h = hstate_inode(inode);
3560         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3561
3562         if (err)
3563                 return err;
3564         ClearPagePrivate(page);
3565
3566         /*
3567          * set page dirty so that it will not be removed from cache/file
3568          * by non-hugetlbfs specific code paths.
3569          */
3570         set_page_dirty(page);
3571
3572         spin_lock(&inode->i_lock);
3573         inode->i_blocks += blocks_per_huge_page(h);
3574         spin_unlock(&inode->i_lock);
3575         return 0;
3576 }
3577
3578 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3579                            struct address_space *mapping, pgoff_t idx,
3580                            unsigned long address, pte_t *ptep, unsigned int flags)
3581 {
3582         struct hstate *h = hstate_vma(vma);
3583         int ret = VM_FAULT_SIGBUS;
3584         int anon_rmap = 0;
3585         unsigned long size;
3586         struct page *page;
3587         pte_t new_pte;
3588         spinlock_t *ptl;
3589         bool new_page = false;
3590
3591         /*
3592          * Currently, we are forced to kill the process in the event the
3593          * original mapper has unmapped pages from the child due to a failed
3594          * COW. Warn that such a situation has occurred as it may not be obvious
3595          */
3596         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3597                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3598                            current->pid);
3599                 return ret;
3600         }
3601
3602         /*
3603          * Use page lock to guard against racing truncation
3604          * before we get page_table_lock.
3605          */
3606 retry:
3607         page = find_lock_page(mapping, idx);
3608         if (!page) {
3609                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3610                 if (idx >= size)
3611                         goto out;
3612                 page = alloc_huge_page(vma, address, 0);
3613                 if (IS_ERR(page)) {
3614                         ret = PTR_ERR(page);
3615                         if (ret == -ENOMEM)
3616                                 ret = VM_FAULT_OOM;
3617                         else
3618                                 ret = VM_FAULT_SIGBUS;
3619                         goto out;
3620                 }
3621                 clear_huge_page(page, address, pages_per_huge_page(h));
3622                 __SetPageUptodate(page);
3623                 new_page = true;
3624
3625                 if (vma->vm_flags & VM_MAYSHARE) {
3626                         int err = huge_add_to_page_cache(page, mapping, idx);
3627                         if (err) {
3628                                 put_page(page);
3629                                 if (err == -EEXIST)
3630                                         goto retry;
3631                                 goto out;
3632                         }
3633                 } else {
3634                         lock_page(page);
3635                         if (unlikely(anon_vma_prepare(vma))) {
3636                                 ret = VM_FAULT_OOM;
3637                                 goto backout_unlocked;
3638                         }
3639                         anon_rmap = 1;
3640                 }
3641         } else {
3642                 /*
3643                  * If memory error occurs between mmap() and fault, some process
3644                  * don't have hwpoisoned swap entry for errored virtual address.
3645                  * So we need to block hugepage fault by PG_hwpoison bit check.
3646                  */
3647                 if (unlikely(PageHWPoison(page))) {
3648                         ret = VM_FAULT_HWPOISON |
3649                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3650                         goto backout_unlocked;
3651                 }
3652         }
3653
3654         /*
3655          * If we are going to COW a private mapping later, we examine the
3656          * pending reservations for this page now. This will ensure that
3657          * any allocations necessary to record that reservation occur outside
3658          * the spinlock.
3659          */
3660         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3661                 if (vma_needs_reservation(h, vma, address) < 0) {
3662                         ret = VM_FAULT_OOM;
3663                         goto backout_unlocked;
3664                 }
3665                 /* Just decrements count, does not deallocate */
3666                 vma_end_reservation(h, vma, address);
3667         }
3668
3669         ptl = huge_pte_lockptr(h, mm, ptep);
3670         spin_lock(ptl);
3671         size = i_size_read(mapping->host) >> huge_page_shift(h);
3672         if (idx >= size)
3673                 goto backout;
3674
3675         ret = 0;
3676         if (!huge_pte_none(huge_ptep_get(ptep)))
3677                 goto backout;
3678
3679         if (anon_rmap) {
3680                 ClearPagePrivate(page);
3681                 hugepage_add_new_anon_rmap(page, vma, address);
3682         } else
3683                 page_dup_rmap(page);
3684         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3685                                 && (vma->vm_flags & VM_SHARED)));
3686         set_huge_pte_at(mm, address, ptep, new_pte);
3687
3688         hugetlb_count_add(pages_per_huge_page(h), mm);
3689         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3690                 /* Optimization, do the COW without a second fault */
3691                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3692         }
3693
3694         spin_unlock(ptl);
3695
3696         /*
3697          * Only make newly allocated pages active.  Existing pages found
3698          * in the pagecache could be !page_huge_active() if they have been
3699          * isolated for migration.
3700          */
3701         if (new_page)
3702                 set_page_huge_active(page);
3703
3704         unlock_page(page);
3705 out:
3706         return ret;
3707
3708 backout:
3709         spin_unlock(ptl);
3710 backout_unlocked:
3711         unlock_page(page);
3712         put_page(page);
3713         goto out;
3714 }
3715
3716 #ifdef CONFIG_SMP
3717 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3718                             pgoff_t idx, unsigned long address)
3719 {
3720         unsigned long key[2];
3721         u32 hash;
3722
3723         key[0] = (unsigned long) mapping;
3724         key[1] = idx;
3725
3726         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3727
3728         return hash & (num_fault_mutexes - 1);
3729 }
3730 #else
3731 /*
3732  * For uniprocesor systems we always use a single mutex, so just
3733  * return 0 and avoid the hashing overhead.
3734  */
3735 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3736                             pgoff_t idx, unsigned long address)
3737 {
3738         return 0;
3739 }
3740 #endif
3741
3742 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3743                         unsigned long address, unsigned int flags)
3744 {
3745         pte_t *ptep, entry;
3746         spinlock_t *ptl;
3747         int ret;
3748         u32 hash;
3749         pgoff_t idx;
3750         struct page *page = NULL;
3751         struct page *pagecache_page = NULL;
3752         struct hstate *h = hstate_vma(vma);
3753         struct address_space *mapping;
3754         int need_wait_lock = 0;
3755
3756         address &= huge_page_mask(h);
3757
3758         ptep = huge_pte_offset(mm, address);
3759         if (ptep) {
3760                 entry = huge_ptep_get(ptep);
3761                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3762                         migration_entry_wait_huge(vma, mm, ptep);
3763                         return 0;
3764                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3765                         return VM_FAULT_HWPOISON_LARGE |
3766                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3767         } else {
3768                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3769                 if (!ptep)
3770                         return VM_FAULT_OOM;
3771         }
3772
3773         mapping = vma->vm_file->f_mapping;
3774         idx = vma_hugecache_offset(h, vma, address);
3775
3776         /*
3777          * Serialize hugepage allocation and instantiation, so that we don't
3778          * get spurious allocation failures if two CPUs race to instantiate
3779          * the same page in the page cache.
3780          */
3781         hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3782         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3783
3784         entry = huge_ptep_get(ptep);
3785         if (huge_pte_none(entry)) {
3786                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3787                 goto out_mutex;
3788         }
3789
3790         ret = 0;
3791
3792         /*
3793          * entry could be a migration/hwpoison entry at this point, so this
3794          * check prevents the kernel from going below assuming that we have
3795          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3796          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3797          * handle it.
3798          */
3799         if (!pte_present(entry))
3800                 goto out_mutex;
3801
3802         /*
3803          * If we are going to COW the mapping later, we examine the pending
3804          * reservations for this page now. This will ensure that any
3805          * allocations necessary to record that reservation occur outside the
3806          * spinlock. For private mappings, we also lookup the pagecache
3807          * page now as it is used to determine if a reservation has been
3808          * consumed.
3809          */
3810         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3811                 if (vma_needs_reservation(h, vma, address) < 0) {
3812                         ret = VM_FAULT_OOM;
3813                         goto out_mutex;
3814                 }
3815                 /* Just decrements count, does not deallocate */
3816                 vma_end_reservation(h, vma, address);
3817
3818                 if (!(vma->vm_flags & VM_MAYSHARE))
3819                         pagecache_page = hugetlbfs_pagecache_page(h,
3820                                                                 vma, address);
3821         }
3822
3823         ptl = huge_pte_lock(h, mm, ptep);
3824
3825         /* Check for a racing update before calling hugetlb_cow */
3826         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3827                 goto out_ptl;
3828
3829         /*
3830          * hugetlb_cow() requires page locks of pte_page(entry) and
3831          * pagecache_page, so here we need take the former one
3832          * when page != pagecache_page or !pagecache_page.
3833          */
3834         page = pte_page(entry);
3835         if (page != pagecache_page)
3836                 if (!trylock_page(page)) {
3837                         need_wait_lock = 1;
3838                         goto out_ptl;
3839                 }
3840
3841         get_page(page);
3842
3843         if (flags & FAULT_FLAG_WRITE) {
3844                 if (!huge_pte_write(entry)) {
3845                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3846                                         pagecache_page, ptl);
3847                         goto out_put_page;
3848                 }
3849                 entry = huge_pte_mkdirty(entry);
3850         }
3851         entry = pte_mkyoung(entry);
3852         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3853                                                 flags & FAULT_FLAG_WRITE))
3854                 update_mmu_cache(vma, address, ptep);
3855 out_put_page:
3856         if (page != pagecache_page)
3857                 unlock_page(page);
3858         put_page(page);
3859 out_ptl:
3860         spin_unlock(ptl);
3861
3862         if (pagecache_page) {
3863                 unlock_page(pagecache_page);
3864                 put_page(pagecache_page);
3865         }
3866 out_mutex:
3867         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3868         /*
3869          * Generally it's safe to hold refcount during waiting page lock. But
3870          * here we just wait to defer the next page fault to avoid busy loop and
3871          * the page is not used after unlocked before returning from the current
3872          * page fault. So we are safe from accessing freed page, even if we wait
3873          * here without taking refcount.
3874          */
3875         if (need_wait_lock)
3876                 wait_on_page_locked(page);
3877         return ret;
3878 }
3879
3880 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3881                          struct page **pages, struct vm_area_struct **vmas,
3882                          unsigned long *position, unsigned long *nr_pages,
3883                          long i, unsigned int flags)
3884 {
3885         unsigned long pfn_offset;
3886         unsigned long vaddr = *position;
3887         unsigned long remainder = *nr_pages;
3888         struct hstate *h = hstate_vma(vma);
3889
3890         while (vaddr < vma->vm_end && remainder) {
3891                 pte_t *pte;
3892                 spinlock_t *ptl = NULL;
3893                 int absent;
3894                 struct page *page;
3895
3896                 /*
3897                  * If we have a pending SIGKILL, don't keep faulting pages and
3898                  * potentially allocating memory.
3899                  */
3900                 if (unlikely(fatal_signal_pending(current))) {
3901                         remainder = 0;
3902                         break;
3903                 }
3904
3905                 /*
3906                  * Some archs (sparc64, sh*) have multiple pte_ts to
3907                  * each hugepage.  We have to make sure we get the
3908                  * first, for the page indexing below to work.
3909                  *
3910                  * Note that page table lock is not held when pte is null.
3911                  */
3912                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3913                 if (pte)
3914                         ptl = huge_pte_lock(h, mm, pte);
3915                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3916
3917                 /*
3918                  * When coredumping, it suits get_dump_page if we just return
3919                  * an error where there's an empty slot with no huge pagecache
3920                  * to back it.  This way, we avoid allocating a hugepage, and
3921                  * the sparse dumpfile avoids allocating disk blocks, but its
3922                  * huge holes still show up with zeroes where they need to be.
3923                  */
3924                 if (absent && (flags & FOLL_DUMP) &&
3925                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3926                         if (pte)
3927                                 spin_unlock(ptl);
3928                         remainder = 0;
3929                         break;
3930                 }
3931
3932                 /*
3933                  * We need call hugetlb_fault for both hugepages under migration
3934                  * (in which case hugetlb_fault waits for the migration,) and
3935                  * hwpoisoned hugepages (in which case we need to prevent the
3936                  * caller from accessing to them.) In order to do this, we use
3937                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3938                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3939                  * both cases, and because we can't follow correct pages
3940                  * directly from any kind of swap entries.
3941                  */
3942                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3943                     ((flags & FOLL_WRITE) &&
3944                       !huge_pte_write(huge_ptep_get(pte)))) {
3945                         int ret;
3946
3947                         if (pte)
3948                                 spin_unlock(ptl);
3949                         ret = hugetlb_fault(mm, vma, vaddr,
3950                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3951                         if (!(ret & VM_FAULT_ERROR))
3952                                 continue;
3953
3954                         remainder = 0;
3955                         break;
3956                 }
3957
3958                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3959                 page = pte_page(huge_ptep_get(pte));
3960 same_page:
3961                 if (pages) {
3962                         pages[i] = mem_map_offset(page, pfn_offset);
3963                         get_page_foll(pages[i]);
3964                 }
3965
3966                 if (vmas)
3967                         vmas[i] = vma;
3968
3969                 vaddr += PAGE_SIZE;
3970                 ++pfn_offset;
3971                 --remainder;
3972                 ++i;
3973                 if (vaddr < vma->vm_end && remainder &&
3974                                 pfn_offset < pages_per_huge_page(h)) {
3975                         /*
3976                          * We use pfn_offset to avoid touching the pageframes
3977                          * of this compound page.
3978                          */
3979                         goto same_page;
3980                 }
3981                 spin_unlock(ptl);
3982         }
3983         *nr_pages = remainder;
3984         *position = vaddr;
3985
3986         return i ? i : -EFAULT;
3987 }
3988
3989 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3990                 unsigned long address, unsigned long end, pgprot_t newprot)
3991 {
3992         struct mm_struct *mm = vma->vm_mm;
3993         unsigned long start = address;
3994         pte_t *ptep;
3995         pte_t pte;
3996         struct hstate *h = hstate_vma(vma);
3997         unsigned long pages = 0;
3998
3999         BUG_ON(address >= end);
4000         flush_cache_range(vma, address, end);
4001
4002         mmu_notifier_invalidate_range_start(mm, start, end);
4003         i_mmap_lock_write(vma->vm_file->f_mapping);
4004         for (; address < end; address += huge_page_size(h)) {
4005                 spinlock_t *ptl;
4006                 ptep = huge_pte_offset(mm, address);
4007                 if (!ptep)
4008                         continue;
4009                 ptl = huge_pte_lock(h, mm, ptep);
4010                 if (huge_pmd_unshare(mm, &address, ptep)) {
4011                         pages++;
4012                         spin_unlock(ptl);
4013                         continue;
4014                 }
4015                 pte = huge_ptep_get(ptep);
4016                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4017                         spin_unlock(ptl);
4018                         continue;
4019                 }
4020                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4021                         swp_entry_t entry = pte_to_swp_entry(pte);
4022
4023                         if (is_write_migration_entry(entry)) {
4024                                 pte_t newpte;
4025
4026                                 make_migration_entry_read(&entry);
4027                                 newpte = swp_entry_to_pte(entry);
4028                                 set_huge_pte_at(mm, address, ptep, newpte);
4029                                 pages++;
4030                         }
4031                         spin_unlock(ptl);
4032                         continue;
4033                 }
4034                 if (!huge_pte_none(pte)) {
4035                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4036                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4037                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4038                         set_huge_pte_at(mm, address, ptep, pte);
4039                         pages++;
4040                 }
4041                 spin_unlock(ptl);
4042         }
4043         /*
4044          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4045          * may have cleared our pud entry and done put_page on the page table:
4046          * once we release i_mmap_rwsem, another task can do the final put_page
4047          * and that page table be reused and filled with junk.
4048          */
4049         flush_tlb_range(vma, start, end);
4050         mmu_notifier_invalidate_range(mm, start, end);
4051         i_mmap_unlock_write(vma->vm_file->f_mapping);
4052         mmu_notifier_invalidate_range_end(mm, start, end);
4053
4054         return pages << h->order;
4055 }
4056
4057 int hugetlb_reserve_pages(struct inode *inode,
4058                                         long from, long to,
4059                                         struct vm_area_struct *vma,
4060                                         vm_flags_t vm_flags)
4061 {
4062         long ret, chg;
4063         struct hstate *h = hstate_inode(inode);
4064         struct hugepage_subpool *spool = subpool_inode(inode);
4065         struct resv_map *resv_map;
4066         long gbl_reserve;
4067
4068         /* This should never happen */
4069         if (from > to) {
4070 #ifdef CONFIG_DEBUG_VM
4071                 WARN(1, "%s called with a negative range\n", __func__);
4072 #endif
4073                 return -EINVAL;
4074         }
4075
4076         /*
4077          * Only apply hugepage reservation if asked. At fault time, an
4078          * attempt will be made for VM_NORESERVE to allocate a page
4079          * without using reserves
4080          */
4081         if (vm_flags & VM_NORESERVE)
4082                 return 0;
4083
4084         /*
4085          * Shared mappings base their reservation on the number of pages that
4086          * are already allocated on behalf of the file. Private mappings need
4087          * to reserve the full area even if read-only as mprotect() may be
4088          * called to make the mapping read-write. Assume !vma is a shm mapping
4089          */
4090         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4091                 resv_map = inode_resv_map(inode);
4092
4093                 chg = region_chg(resv_map, from, to);
4094
4095         } else {
4096                 resv_map = resv_map_alloc();
4097                 if (!resv_map)
4098                         return -ENOMEM;
4099
4100                 chg = to - from;
4101
4102                 set_vma_resv_map(vma, resv_map);
4103                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4104         }
4105
4106         if (chg < 0) {
4107                 ret = chg;
4108                 goto out_err;
4109         }
4110
4111         /*
4112          * There must be enough pages in the subpool for the mapping. If
4113          * the subpool has a minimum size, there may be some global
4114          * reservations already in place (gbl_reserve).
4115          */
4116         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4117         if (gbl_reserve < 0) {
4118                 ret = -ENOSPC;
4119                 goto out_err;
4120         }
4121
4122         /*
4123          * Check enough hugepages are available for the reservation.
4124          * Hand the pages back to the subpool if there are not
4125          */
4126         ret = hugetlb_acct_memory(h, gbl_reserve);
4127         if (ret < 0) {
4128                 /* put back original number of pages, chg */
4129                 (void)hugepage_subpool_put_pages(spool, chg);
4130                 goto out_err;
4131         }
4132
4133         /*
4134          * Account for the reservations made. Shared mappings record regions
4135          * that have reservations as they are shared by multiple VMAs.
4136          * When the last VMA disappears, the region map says how much
4137          * the reservation was and the page cache tells how much of
4138          * the reservation was consumed. Private mappings are per-VMA and
4139          * only the consumed reservations are tracked. When the VMA
4140          * disappears, the original reservation is the VMA size and the
4141          * consumed reservations are stored in the map. Hence, nothing
4142          * else has to be done for private mappings here
4143          */
4144         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4145                 long add = region_add(resv_map, from, to);
4146
4147                 if (unlikely(chg > add)) {
4148                         /*
4149                          * pages in this range were added to the reserve
4150                          * map between region_chg and region_add.  This
4151                          * indicates a race with alloc_huge_page.  Adjust
4152                          * the subpool and reserve counts modified above
4153                          * based on the difference.
4154                          */
4155                         long rsv_adjust;
4156
4157                         rsv_adjust = hugepage_subpool_put_pages(spool,
4158                                                                 chg - add);
4159                         hugetlb_acct_memory(h, -rsv_adjust);
4160                 }
4161         }
4162         return 0;
4163 out_err:
4164         if (!vma || vma->vm_flags & VM_MAYSHARE)
4165                 /* Don't call region_abort if region_chg failed */
4166                 if (chg >= 0)
4167                         region_abort(resv_map, from, to);
4168         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4169                 kref_put(&resv_map->refs, resv_map_release);
4170         return ret;
4171 }
4172
4173 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4174                                                                 long freed)
4175 {
4176         struct hstate *h = hstate_inode(inode);
4177         struct resv_map *resv_map = inode_resv_map(inode);
4178         long chg = 0;
4179         struct hugepage_subpool *spool = subpool_inode(inode);
4180         long gbl_reserve;
4181
4182         if (resv_map) {
4183                 chg = region_del(resv_map, start, end);
4184                 /*
4185                  * region_del() can fail in the rare case where a region
4186                  * must be split and another region descriptor can not be
4187                  * allocated.  If end == LONG_MAX, it will not fail.
4188                  */
4189                 if (chg < 0)
4190                         return chg;
4191         }
4192
4193         spin_lock(&inode->i_lock);
4194         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4195         spin_unlock(&inode->i_lock);
4196
4197         /*
4198          * If the subpool has a minimum size, the number of global
4199          * reservations to be released may be adjusted.
4200          */
4201         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4202         hugetlb_acct_memory(h, -gbl_reserve);
4203
4204         return 0;
4205 }
4206
4207 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4208 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4209                                 struct vm_area_struct *vma,
4210                                 unsigned long addr, pgoff_t idx)
4211 {
4212         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4213                                 svma->vm_start;
4214         unsigned long sbase = saddr & PUD_MASK;
4215         unsigned long s_end = sbase + PUD_SIZE;
4216
4217         /* Allow segments to share if only one is marked locked */
4218         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4219         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4220
4221         /*
4222          * match the virtual addresses, permission and the alignment of the
4223          * page table page.
4224          */
4225         if (pmd_index(addr) != pmd_index(saddr) ||
4226             vm_flags != svm_flags ||
4227             sbase < svma->vm_start || svma->vm_end < s_end)
4228                 return 0;
4229
4230         return saddr;
4231 }
4232
4233 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4234 {
4235         unsigned long base = addr & PUD_MASK;
4236         unsigned long end = base + PUD_SIZE;
4237
4238         /*
4239          * check on proper vm_flags and page table alignment
4240          */
4241         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4242                 return true;
4243         return false;
4244 }
4245
4246 /*
4247  * Determine if start,end range within vma could be mapped by shared pmd.
4248  * If yes, adjust start and end to cover range associated with possible
4249  * shared pmd mappings.
4250  */
4251 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4252                                 unsigned long *start, unsigned long *end)
4253 {
4254         unsigned long check_addr = *start;
4255
4256         if (!(vma->vm_flags & VM_MAYSHARE))
4257                 return;
4258
4259         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4260                 unsigned long a_start = check_addr & PUD_MASK;
4261                 unsigned long a_end = a_start + PUD_SIZE;
4262
4263                 /*
4264                  * If sharing is possible, adjust start/end if necessary.
4265                  */
4266                 if (range_in_vma(vma, a_start, a_end)) {
4267                         if (a_start < *start)
4268                                 *start = a_start;
4269                         if (a_end > *end)
4270                                 *end = a_end;
4271                 }
4272         }
4273 }
4274
4275 /*
4276  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4277  * and returns the corresponding pte. While this is not necessary for the
4278  * !shared pmd case because we can allocate the pmd later as well, it makes the
4279  * code much cleaner. pmd allocation is essential for the shared case because
4280  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4281  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4282  * bad pmd for sharing.
4283  */
4284 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4285 {
4286         struct vm_area_struct *vma = find_vma(mm, addr);
4287         struct address_space *mapping = vma->vm_file->f_mapping;
4288         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4289                         vma->vm_pgoff;
4290         struct vm_area_struct *svma;
4291         unsigned long saddr;
4292         pte_t *spte = NULL;
4293         pte_t *pte;
4294         spinlock_t *ptl;
4295
4296         if (!vma_shareable(vma, addr))
4297                 return (pte_t *)pmd_alloc(mm, pud, addr);
4298
4299         i_mmap_lock_write(mapping);
4300         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4301                 if (svma == vma)
4302                         continue;
4303
4304                 saddr = page_table_shareable(svma, vma, addr, idx);
4305                 if (saddr) {
4306                         spte = huge_pte_offset(svma->vm_mm, saddr);
4307                         if (spte) {
4308                                 get_page(virt_to_page(spte));
4309                                 break;
4310                         }
4311                 }
4312         }
4313
4314         if (!spte)
4315                 goto out;
4316
4317         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4318         spin_lock(ptl);
4319         if (pud_none(*pud)) {
4320                 pud_populate(mm, pud,
4321                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4322                 mm_inc_nr_pmds(mm);
4323         } else {
4324                 put_page(virt_to_page(spte));
4325         }
4326         spin_unlock(ptl);
4327 out:
4328         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4329         i_mmap_unlock_write(mapping);
4330         return pte;
4331 }
4332
4333 /*
4334  * unmap huge page backed by shared pte.
4335  *
4336  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4337  * indicated by page_count > 1, unmap is achieved by clearing pud and
4338  * decrementing the ref count. If count == 1, the pte page is not shared.
4339  *
4340  * called with page table lock held.
4341  *
4342  * returns: 1 successfully unmapped a shared pte page
4343  *          0 the underlying pte page is not shared, or it is the last user
4344  */
4345 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4346 {
4347         pgd_t *pgd = pgd_offset(mm, *addr);
4348         pud_t *pud = pud_offset(pgd, *addr);
4349
4350         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4351         if (page_count(virt_to_page(ptep)) == 1)
4352                 return 0;
4353
4354         pud_clear(pud);
4355         put_page(virt_to_page(ptep));
4356         mm_dec_nr_pmds(mm);
4357         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4358         return 1;
4359 }
4360 #define want_pmd_share()        (1)
4361 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4362 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4363 {
4364         return NULL;
4365 }
4366
4367 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4368 {
4369         return 0;
4370 }
4371
4372 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4373                                 unsigned long *start, unsigned long *end)
4374 {
4375 }
4376 #define want_pmd_share()        (0)
4377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4378
4379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4380 pte_t *huge_pte_alloc(struct mm_struct *mm,
4381                         unsigned long addr, unsigned long sz)
4382 {
4383         pgd_t *pgd;
4384         pud_t *pud;
4385         pte_t *pte = NULL;
4386
4387         pgd = pgd_offset(mm, addr);
4388         pud = pud_alloc(mm, pgd, addr);
4389         if (pud) {
4390                 if (sz == PUD_SIZE) {
4391                         pte = (pte_t *)pud;
4392                 } else {
4393                         BUG_ON(sz != PMD_SIZE);
4394                         if (want_pmd_share() && pud_none(*pud))
4395                                 pte = huge_pmd_share(mm, addr, pud);
4396                         else
4397                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4398                 }
4399         }
4400         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4401
4402         return pte;
4403 }
4404
4405 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4406 {
4407         pgd_t *pgd;
4408         pud_t *pud;
4409         pmd_t *pmd = NULL;
4410
4411         pgd = pgd_offset(mm, addr);
4412         if (pgd_present(*pgd)) {
4413                 pud = pud_offset(pgd, addr);
4414                 if (pud_present(*pud)) {
4415                         if (pud_huge(*pud))
4416                                 return (pte_t *)pud;
4417                         pmd = pmd_offset(pud, addr);
4418                 }
4419         }
4420         return (pte_t *) pmd;
4421 }
4422
4423 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4424
4425 /*
4426  * These functions are overwritable if your architecture needs its own
4427  * behavior.
4428  */
4429 struct page * __weak
4430 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4431                               int write)
4432 {
4433         return ERR_PTR(-EINVAL);
4434 }
4435
4436 struct page * __weak
4437 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4438                 pmd_t *pmd, int flags)
4439 {
4440         struct page *page = NULL;
4441         spinlock_t *ptl;
4442         pte_t pte;
4443 retry:
4444         ptl = pmd_lockptr(mm, pmd);
4445         spin_lock(ptl);
4446         /*
4447          * make sure that the address range covered by this pmd is not
4448          * unmapped from other threads.
4449          */
4450         if (!pmd_huge(*pmd))
4451                 goto out;
4452         pte = huge_ptep_get((pte_t *)pmd);
4453         if (pte_present(pte)) {
4454                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4455                 if (flags & FOLL_GET)
4456                         get_page(page);
4457         } else {
4458                 if (is_hugetlb_entry_migration(pte)) {
4459                         spin_unlock(ptl);
4460                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4461                         goto retry;
4462                 }
4463                 /*
4464                  * hwpoisoned entry is treated as no_page_table in
4465                  * follow_page_mask().
4466                  */
4467         }
4468 out:
4469         spin_unlock(ptl);
4470         return page;
4471 }
4472
4473 struct page * __weak
4474 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4475                 pud_t *pud, int flags)
4476 {
4477         if (flags & FOLL_GET)
4478                 return NULL;
4479
4480         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4481 }
4482
4483 #ifdef CONFIG_MEMORY_FAILURE
4484
4485 /*
4486  * This function is called from memory failure code.
4487  * Assume the caller holds page lock of the head page.
4488  */
4489 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4490 {
4491         struct hstate *h = page_hstate(hpage);
4492         int nid = page_to_nid(hpage);
4493         int ret = -EBUSY;
4494
4495         spin_lock(&hugetlb_lock);
4496         /*
4497          * Just checking !page_huge_active is not enough, because that could be
4498          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4499          */
4500         if (!page_huge_active(hpage) && !page_count(hpage)) {
4501                 /*
4502                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4503                  * but dangling hpage->lru can trigger list-debug warnings
4504                  * (this happens when we call unpoison_memory() on it),
4505                  * so let it point to itself with list_del_init().
4506                  */
4507                 list_del_init(&hpage->lru);
4508                 set_page_refcounted(hpage);
4509                 h->free_huge_pages--;
4510                 h->free_huge_pages_node[nid]--;
4511                 ret = 0;
4512         }
4513         spin_unlock(&hugetlb_lock);
4514         return ret;
4515 }
4516 #endif
4517
4518 bool isolate_huge_page(struct page *page, struct list_head *list)
4519 {
4520         bool ret = true;
4521
4522         VM_BUG_ON_PAGE(!PageHead(page), page);
4523         spin_lock(&hugetlb_lock);
4524         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4525                 ret = false;
4526                 goto unlock;
4527         }
4528         clear_page_huge_active(page);
4529         list_move_tail(&page->lru, list);
4530 unlock:
4531         spin_unlock(&hugetlb_lock);
4532         return ret;
4533 }
4534
4535 void putback_active_hugepage(struct page *page)
4536 {
4537         VM_BUG_ON_PAGE(!PageHead(page), page);
4538         spin_lock(&hugetlb_lock);
4539         set_page_huge_active(page);
4540         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4541         spin_unlock(&hugetlb_lock);
4542         put_page(page);
4543 }