OSDN Git Service

NFS: Fix bool initialization/comparison
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return true;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return false;
196
197         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198         if (!batch)
199                 return false;
200
201         tlb->batch_count++;
202         batch->next = NULL;
203         batch->nr   = 0;
204         batch->max  = MAX_GATHER_BATCH;
205
206         tlb->active->next = batch;
207         tlb->active = batch;
208
209         return true;
210 }
211
212 /* tlb_gather_mmu
213  *      Called to initialize an (on-stack) mmu_gather structure for page-table
214  *      tear-down from @mm. The @fullmm argument is used when @mm is without
215  *      users and we're going to destroy the full address space (exit/execve).
216  */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219         tlb->mm = mm;
220
221         /* Is it from 0 to ~0? */
222         tlb->fullmm     = !(start | (end+1));
223         tlb->need_flush_all = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233
234         __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         if (!tlb->end)
240                 return;
241
242         tlb_flush(tlb);
243         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb_table_flush(tlb);
246 #endif
247         __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263         tlb_flush_mmu_tlbonly(tlb);
264         tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268  *      Called at the end of the shootdown operation to free up any resources
269  *      that were required.
270  */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273         struct mmu_gather_batch *batch, *next;
274
275         tlb_flush_mmu(tlb);
276
277         /* keep the page table cache within bounds */
278         check_pgt_cache();
279
280         for (batch = tlb->local.next; batch; batch = next) {
281                 next = batch->next;
282                 free_pages((unsigned long)batch, 0);
283         }
284         tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *      handling the additional races in SMP caused by other CPUs caching valid
290  *      mappings in their TLBs. Returns the number of free page slots left.
291  *      When out of page slots we must call tlb_flush_mmu().
292  */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295         struct mmu_gather_batch *batch;
296
297         VM_BUG_ON(!tlb->end);
298
299         batch = tlb->active;
300         batch->pages[batch->nr++] = page;
301         if (batch->nr == batch->max) {
302                 if (!tlb_next_batch(tlb))
303                         return 0;
304                 batch = tlb->active;
305         }
306         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308         return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321         /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326         /*
327          * This isn't an RCU grace period and hence the page-tables cannot be
328          * assumed to be actually RCU-freed.
329          *
330          * It is however sufficient for software page-table walkers that rely on
331          * IRQ disabling. See the comment near struct mmu_table_batch.
332          */
333         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334         __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339         struct mmu_table_batch *batch;
340         int i;
341
342         batch = container_of(head, struct mmu_table_batch, rcu);
343
344         for (i = 0; i < batch->nr; i++)
345                 __tlb_remove_table(batch->tables[i]);
346
347         free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352         struct mmu_table_batch **batch = &tlb->batch;
353
354         if (*batch) {
355                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356                 *batch = NULL;
357         }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         if (*batch == NULL) {
365                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
366                 if (*batch == NULL) {
367                         tlb_remove_table_one(table);
368                         return;
369                 }
370                 (*batch)->nr = 0;
371         }
372         (*batch)->tables[(*batch)->nr++] = table;
373         if ((*batch)->nr == MAX_TABLE_BATCH)
374                 tlb_table_flush(tlb);
375 }
376
377 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
378
379 /*
380  * Note: this doesn't free the actual pages themselves. That
381  * has been handled earlier when unmapping all the memory regions.
382  */
383 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
384                            unsigned long addr)
385 {
386         pgtable_t token = pmd_pgtable(*pmd);
387         pmd_clear(pmd);
388         pte_free_tlb(tlb, token, addr);
389         atomic_long_dec(&tlb->mm->nr_ptes);
390 }
391
392 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
393                                 unsigned long addr, unsigned long end,
394                                 unsigned long floor, unsigned long ceiling)
395 {
396         pmd_t *pmd;
397         unsigned long next;
398         unsigned long start;
399
400         start = addr;
401         pmd = pmd_offset(pud, addr);
402         do {
403                 next = pmd_addr_end(addr, end);
404                 if (pmd_none_or_clear_bad(pmd))
405                         continue;
406                 free_pte_range(tlb, pmd, addr);
407         } while (pmd++, addr = next, addr != end);
408
409         start &= PUD_MASK;
410         if (start < floor)
411                 return;
412         if (ceiling) {
413                 ceiling &= PUD_MASK;
414                 if (!ceiling)
415                         return;
416         }
417         if (end - 1 > ceiling - 1)
418                 return;
419
420         pmd = pmd_offset(pud, start);
421         pud_clear(pud);
422         pmd_free_tlb(tlb, pmd, start);
423         mm_dec_nr_pmds(tlb->mm);
424 }
425
426 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
427                                 unsigned long addr, unsigned long end,
428                                 unsigned long floor, unsigned long ceiling)
429 {
430         pud_t *pud;
431         unsigned long next;
432         unsigned long start;
433
434         start = addr;
435         pud = pud_offset(pgd, addr);
436         do {
437                 next = pud_addr_end(addr, end);
438                 if (pud_none_or_clear_bad(pud))
439                         continue;
440                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
441         } while (pud++, addr = next, addr != end);
442
443         start &= PGDIR_MASK;
444         if (start < floor)
445                 return;
446         if (ceiling) {
447                 ceiling &= PGDIR_MASK;
448                 if (!ceiling)
449                         return;
450         }
451         if (end - 1 > ceiling - 1)
452                 return;
453
454         pud = pud_offset(pgd, start);
455         pgd_clear(pgd);
456         pud_free_tlb(tlb, pud, start);
457 }
458
459 /*
460  * This function frees user-level page tables of a process.
461  */
462 void free_pgd_range(struct mmu_gather *tlb,
463                         unsigned long addr, unsigned long end,
464                         unsigned long floor, unsigned long ceiling)
465 {
466         pgd_t *pgd;
467         unsigned long next;
468
469         /*
470          * The next few lines have given us lots of grief...
471          *
472          * Why are we testing PMD* at this top level?  Because often
473          * there will be no work to do at all, and we'd prefer not to
474          * go all the way down to the bottom just to discover that.
475          *
476          * Why all these "- 1"s?  Because 0 represents both the bottom
477          * of the address space and the top of it (using -1 for the
478          * top wouldn't help much: the masks would do the wrong thing).
479          * The rule is that addr 0 and floor 0 refer to the bottom of
480          * the address space, but end 0 and ceiling 0 refer to the top
481          * Comparisons need to use "end - 1" and "ceiling - 1" (though
482          * that end 0 case should be mythical).
483          *
484          * Wherever addr is brought up or ceiling brought down, we must
485          * be careful to reject "the opposite 0" before it confuses the
486          * subsequent tests.  But what about where end is brought down
487          * by PMD_SIZE below? no, end can't go down to 0 there.
488          *
489          * Whereas we round start (addr) and ceiling down, by different
490          * masks at different levels, in order to test whether a table
491          * now has no other vmas using it, so can be freed, we don't
492          * bother to round floor or end up - the tests don't need that.
493          */
494
495         addr &= PMD_MASK;
496         if (addr < floor) {
497                 addr += PMD_SIZE;
498                 if (!addr)
499                         return;
500         }
501         if (ceiling) {
502                 ceiling &= PMD_MASK;
503                 if (!ceiling)
504                         return;
505         }
506         if (end - 1 > ceiling - 1)
507                 end -= PMD_SIZE;
508         if (addr > end - 1)
509                 return;
510
511         pgd = pgd_offset(tlb->mm, addr);
512         do {
513                 next = pgd_addr_end(addr, end);
514                 if (pgd_none_or_clear_bad(pgd))
515                         continue;
516                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
517         } while (pgd++, addr = next, addr != end);
518 }
519
520 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
521                 unsigned long floor, unsigned long ceiling)
522 {
523         while (vma) {
524                 struct vm_area_struct *next = vma->vm_next;
525                 unsigned long addr = vma->vm_start;
526
527                 /*
528                  * Hide vma from rmap and truncate_pagecache before freeing
529                  * pgtables
530                  */
531                 unlink_anon_vmas(vma);
532                 unlink_file_vma(vma);
533
534                 if (is_vm_hugetlb_page(vma)) {
535                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
536                                 floor, next? next->vm_start: ceiling);
537                 } else {
538                         /*
539                          * Optimization: gather nearby vmas into one call down
540                          */
541                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
542                                && !is_vm_hugetlb_page(next)) {
543                                 vma = next;
544                                 next = vma->vm_next;
545                                 unlink_anon_vmas(vma);
546                                 unlink_file_vma(vma);
547                         }
548                         free_pgd_range(tlb, addr, vma->vm_end,
549                                 floor, next? next->vm_start: ceiling);
550                 }
551                 vma = next;
552         }
553 }
554
555 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
556                 pmd_t *pmd, unsigned long address)
557 {
558         spinlock_t *ptl;
559         pgtable_t new = pte_alloc_one(mm, address);
560         int wait_split_huge_page;
561         if (!new)
562                 return -ENOMEM;
563
564         /*
565          * Ensure all pte setup (eg. pte page lock and page clearing) are
566          * visible before the pte is made visible to other CPUs by being
567          * put into page tables.
568          *
569          * The other side of the story is the pointer chasing in the page
570          * table walking code (when walking the page table without locking;
571          * ie. most of the time). Fortunately, these data accesses consist
572          * of a chain of data-dependent loads, meaning most CPUs (alpha
573          * being the notable exception) will already guarantee loads are
574          * seen in-order. See the alpha page table accessors for the
575          * smp_read_barrier_depends() barriers in page table walking code.
576          */
577         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
578
579         ptl = pmd_lock(mm, pmd);
580         wait_split_huge_page = 0;
581         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
582                 atomic_long_inc(&mm->nr_ptes);
583                 pmd_populate(mm, pmd, new);
584                 new = NULL;
585         } else if (unlikely(pmd_trans_splitting(*pmd)))
586                 wait_split_huge_page = 1;
587         spin_unlock(ptl);
588         if (new)
589                 pte_free(mm, new);
590         if (wait_split_huge_page)
591                 wait_split_huge_page(vma->anon_vma, pmd);
592         return 0;
593 }
594
595 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
596 {
597         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
598         if (!new)
599                 return -ENOMEM;
600
601         smp_wmb(); /* See comment in __pte_alloc */
602
603         spin_lock(&init_mm.page_table_lock);
604         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
605                 pmd_populate_kernel(&init_mm, pmd, new);
606                 new = NULL;
607         } else
608                 VM_BUG_ON(pmd_trans_splitting(*pmd));
609         spin_unlock(&init_mm.page_table_lock);
610         if (new)
611                 pte_free_kernel(&init_mm, new);
612         return 0;
613 }
614
615 static inline void init_rss_vec(int *rss)
616 {
617         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
618 }
619
620 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
621 {
622         int i;
623
624         if (current->mm == mm)
625                 sync_mm_rss(mm);
626         for (i = 0; i < NR_MM_COUNTERS; i++)
627                 if (rss[i])
628                         add_mm_counter(mm, i, rss[i]);
629 }
630
631 /*
632  * This function is called to print an error when a bad pte
633  * is found. For example, we might have a PFN-mapped pte in
634  * a region that doesn't allow it.
635  *
636  * The calling function must still handle the error.
637  */
638 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
639                           pte_t pte, struct page *page)
640 {
641         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
642         pud_t *pud = pud_offset(pgd, addr);
643         pmd_t *pmd = pmd_offset(pud, addr);
644         struct address_space *mapping;
645         pgoff_t index;
646         static unsigned long resume;
647         static unsigned long nr_shown;
648         static unsigned long nr_unshown;
649
650         /*
651          * Allow a burst of 60 reports, then keep quiet for that minute;
652          * or allow a steady drip of one report per second.
653          */
654         if (nr_shown == 60) {
655                 if (time_before(jiffies, resume)) {
656                         nr_unshown++;
657                         return;
658                 }
659                 if (nr_unshown) {
660                         printk(KERN_ALERT
661                                 "BUG: Bad page map: %lu messages suppressed\n",
662                                 nr_unshown);
663                         nr_unshown = 0;
664                 }
665                 nr_shown = 0;
666         }
667         if (nr_shown++ == 0)
668                 resume = jiffies + 60 * HZ;
669
670         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
671         index = linear_page_index(vma, addr);
672
673         printk(KERN_ALERT
674                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
675                 current->comm,
676                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
677         if (page)
678                 dump_page(page, "bad pte");
679         printk(KERN_ALERT
680                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
682         /*
683          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
684          */
685         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
686                  vma->vm_file,
687                  vma->vm_ops ? vma->vm_ops->fault : NULL,
688                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
689                  mapping ? mapping->a_ops->readpage : NULL);
690         dump_stack();
691         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
692 }
693
694 /*
695  * vm_normal_page -- This function gets the "struct page" associated with a pte.
696  *
697  * "Special" mappings do not wish to be associated with a "struct page" (either
698  * it doesn't exist, or it exists but they don't want to touch it). In this
699  * case, NULL is returned here. "Normal" mappings do have a struct page.
700  *
701  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702  * pte bit, in which case this function is trivial. Secondly, an architecture
703  * may not have a spare pte bit, which requires a more complicated scheme,
704  * described below.
705  *
706  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707  * special mapping (even if there are underlying and valid "struct pages").
708  * COWed pages of a VM_PFNMAP are always normal.
709  *
710  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713  * mapping will always honor the rule
714  *
715  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716  *
717  * And for normal mappings this is false.
718  *
719  * This restricts such mappings to be a linear translation from virtual address
720  * to pfn. To get around this restriction, we allow arbitrary mappings so long
721  * as the vma is not a COW mapping; in that case, we know that all ptes are
722  * special (because none can have been COWed).
723  *
724  *
725  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
726  *
727  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728  * page" backing, however the difference is that _all_ pages with a struct
729  * page (that is, those where pfn_valid is true) are refcounted and considered
730  * normal pages by the VM. The disadvantage is that pages are refcounted
731  * (which can be slower and simply not an option for some PFNMAP users). The
732  * advantage is that we don't have to follow the strict linearity rule of
733  * PFNMAP mappings in order to support COWable mappings.
734  *
735  */
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
738 #else
739 # define HAVE_PTE_SPECIAL 0
740 #endif
741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742                                 pte_t pte)
743 {
744         unsigned long pfn = pte_pfn(pte);
745
746         if (HAVE_PTE_SPECIAL) {
747                 if (likely(!pte_special(pte)))
748                         goto check_pfn;
749                 if (vma->vm_ops && vma->vm_ops->find_special_page)
750                         return vma->vm_ops->find_special_page(vma, addr);
751                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752                         return NULL;
753                 if (!is_zero_pfn(pfn))
754                         print_bad_pte(vma, addr, pte, NULL);
755                 return NULL;
756         }
757
758         /* !HAVE_PTE_SPECIAL case follows: */
759
760         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761                 if (vma->vm_flags & VM_MIXEDMAP) {
762                         if (!pfn_valid(pfn))
763                                 return NULL;
764                         goto out;
765                 } else {
766                         unsigned long off;
767                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
768                         if (pfn == vma->vm_pgoff + off)
769                                 return NULL;
770                         if (!is_cow_mapping(vma->vm_flags))
771                                 return NULL;
772                 }
773         }
774
775         if (is_zero_pfn(pfn))
776                 return NULL;
777 check_pfn:
778         if (unlikely(pfn > highest_memmap_pfn)) {
779                 print_bad_pte(vma, addr, pte, NULL);
780                 return NULL;
781         }
782
783         /*
784          * NOTE! We still have PageReserved() pages in the page tables.
785          * eg. VDSO mappings can cause them to exist.
786          */
787 out:
788         return pfn_to_page(pfn);
789 }
790
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
792 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
793                                 pmd_t pmd)
794 {
795         unsigned long pfn = pmd_pfn(pmd);
796
797         /*
798          * There is no pmd_special() but there may be special pmds, e.g.
799          * in a direct-access (dax) mapping, so let's just replicate the
800          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
801          */
802         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
803                 if (vma->vm_flags & VM_MIXEDMAP) {
804                         if (!pfn_valid(pfn))
805                                 return NULL;
806                         goto out;
807                 } else {
808                         unsigned long off;
809                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
810                         if (pfn == vma->vm_pgoff + off)
811                                 return NULL;
812                         if (!is_cow_mapping(vma->vm_flags))
813                                 return NULL;
814                 }
815         }
816
817         if (is_zero_pfn(pfn))
818                 return NULL;
819         if (unlikely(pfn > highest_memmap_pfn))
820                 return NULL;
821
822         /*
823          * NOTE! We still have PageReserved() pages in the page tables.
824          * eg. VDSO mappings can cause them to exist.
825          */
826 out:
827         return pfn_to_page(pfn);
828 }
829 #endif
830
831 /*
832  * copy one vm_area from one task to the other. Assumes the page tables
833  * already present in the new task to be cleared in the whole range
834  * covered by this vma.
835  */
836
837 static inline unsigned long
838 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
839                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
840                 unsigned long addr, int *rss)
841 {
842         unsigned long vm_flags = vma->vm_flags;
843         pte_t pte = *src_pte;
844         struct page *page;
845
846         /* pte contains position in swap or file, so copy. */
847         if (unlikely(!pte_present(pte))) {
848                 swp_entry_t entry = pte_to_swp_entry(pte);
849
850                 if (likely(!non_swap_entry(entry))) {
851                         if (swap_duplicate(entry) < 0)
852                                 return entry.val;
853
854                         /* make sure dst_mm is on swapoff's mmlist. */
855                         if (unlikely(list_empty(&dst_mm->mmlist))) {
856                                 spin_lock(&mmlist_lock);
857                                 if (list_empty(&dst_mm->mmlist))
858                                         list_add(&dst_mm->mmlist,
859                                                         &src_mm->mmlist);
860                                 spin_unlock(&mmlist_lock);
861                         }
862                         rss[MM_SWAPENTS]++;
863                 } else if (is_migration_entry(entry)) {
864                         page = migration_entry_to_page(entry);
865
866                         if (PageAnon(page))
867                                 rss[MM_ANONPAGES]++;
868                         else
869                                 rss[MM_FILEPAGES]++;
870
871                         if (is_write_migration_entry(entry) &&
872                                         is_cow_mapping(vm_flags)) {
873                                 /*
874                                  * COW mappings require pages in both
875                                  * parent and child to be set to read.
876                                  */
877                                 make_migration_entry_read(&entry);
878                                 pte = swp_entry_to_pte(entry);
879                                 if (pte_swp_soft_dirty(*src_pte))
880                                         pte = pte_swp_mksoft_dirty(pte);
881                                 set_pte_at(src_mm, addr, src_pte, pte);
882                         }
883                 }
884                 goto out_set_pte;
885         }
886
887         /*
888          * If it's a COW mapping, write protect it both
889          * in the parent and the child
890          */
891         if (is_cow_mapping(vm_flags)) {
892                 ptep_set_wrprotect(src_mm, addr, src_pte);
893                 pte = pte_wrprotect(pte);
894         }
895
896         /*
897          * If it's a shared mapping, mark it clean in
898          * the child
899          */
900         if (vm_flags & VM_SHARED)
901                 pte = pte_mkclean(pte);
902         pte = pte_mkold(pte);
903
904         page = vm_normal_page(vma, addr, pte);
905         if (page) {
906                 get_page(page);
907                 page_dup_rmap(page);
908                 if (PageAnon(page))
909                         rss[MM_ANONPAGES]++;
910                 else
911                         rss[MM_FILEPAGES]++;
912         }
913
914 out_set_pte:
915         set_pte_at(dst_mm, addr, dst_pte, pte);
916         return 0;
917 }
918
919 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
920                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
921                    unsigned long addr, unsigned long end)
922 {
923         pte_t *orig_src_pte, *orig_dst_pte;
924         pte_t *src_pte, *dst_pte;
925         spinlock_t *src_ptl, *dst_ptl;
926         int progress = 0;
927         int rss[NR_MM_COUNTERS];
928         swp_entry_t entry = (swp_entry_t){0};
929
930 again:
931         init_rss_vec(rss);
932
933         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
934         if (!dst_pte)
935                 return -ENOMEM;
936         src_pte = pte_offset_map(src_pmd, addr);
937         src_ptl = pte_lockptr(src_mm, src_pmd);
938         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
939         orig_src_pte = src_pte;
940         orig_dst_pte = dst_pte;
941         arch_enter_lazy_mmu_mode();
942
943         do {
944                 /*
945                  * We are holding two locks at this point - either of them
946                  * could generate latencies in another task on another CPU.
947                  */
948                 if (progress >= 32) {
949                         progress = 0;
950                         if (need_resched() ||
951                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
952                                 break;
953                 }
954                 if (pte_none(*src_pte)) {
955                         progress++;
956                         continue;
957                 }
958                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
959                                                         vma, addr, rss);
960                 if (entry.val)
961                         break;
962                 progress += 8;
963         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
964
965         arch_leave_lazy_mmu_mode();
966         spin_unlock(src_ptl);
967         pte_unmap(orig_src_pte);
968         add_mm_rss_vec(dst_mm, rss);
969         pte_unmap_unlock(orig_dst_pte, dst_ptl);
970         cond_resched();
971
972         if (entry.val) {
973                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
974                         return -ENOMEM;
975                 progress = 0;
976         }
977         if (addr != end)
978                 goto again;
979         return 0;
980 }
981
982 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
984                 unsigned long addr, unsigned long end)
985 {
986         pmd_t *src_pmd, *dst_pmd;
987         unsigned long next;
988
989         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
990         if (!dst_pmd)
991                 return -ENOMEM;
992         src_pmd = pmd_offset(src_pud, addr);
993         do {
994                 next = pmd_addr_end(addr, end);
995                 if (pmd_trans_huge(*src_pmd)) {
996                         int err;
997                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
998                         err = copy_huge_pmd(dst_mm, src_mm,
999                                             dst_pmd, src_pmd, addr, vma);
1000                         if (err == -ENOMEM)
1001                                 return -ENOMEM;
1002                         if (!err)
1003                                 continue;
1004                         /* fall through */
1005                 }
1006                 if (pmd_none_or_clear_bad(src_pmd))
1007                         continue;
1008                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1009                                                 vma, addr, next))
1010                         return -ENOMEM;
1011         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1012         return 0;
1013 }
1014
1015 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1017                 unsigned long addr, unsigned long end)
1018 {
1019         pud_t *src_pud, *dst_pud;
1020         unsigned long next;
1021
1022         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1023         if (!dst_pud)
1024                 return -ENOMEM;
1025         src_pud = pud_offset(src_pgd, addr);
1026         do {
1027                 next = pud_addr_end(addr, end);
1028                 if (pud_none_or_clear_bad(src_pud))
1029                         continue;
1030                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1031                                                 vma, addr, next))
1032                         return -ENOMEM;
1033         } while (dst_pud++, src_pud++, addr = next, addr != end);
1034         return 0;
1035 }
1036
1037 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1038                 struct vm_area_struct *vma)
1039 {
1040         pgd_t *src_pgd, *dst_pgd;
1041         unsigned long next;
1042         unsigned long addr = vma->vm_start;
1043         unsigned long end = vma->vm_end;
1044         unsigned long mmun_start;       /* For mmu_notifiers */
1045         unsigned long mmun_end;         /* For mmu_notifiers */
1046         bool is_cow;
1047         int ret;
1048
1049         /*
1050          * Don't copy ptes where a page fault will fill them correctly.
1051          * Fork becomes much lighter when there are big shared or private
1052          * readonly mappings. The tradeoff is that copy_page_range is more
1053          * efficient than faulting.
1054          */
1055         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1056                         !vma->anon_vma)
1057                 return 0;
1058
1059         if (is_vm_hugetlb_page(vma))
1060                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1061
1062         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1063                 /*
1064                  * We do not free on error cases below as remove_vma
1065                  * gets called on error from higher level routine
1066                  */
1067                 ret = track_pfn_copy(vma);
1068                 if (ret)
1069                         return ret;
1070         }
1071
1072         /*
1073          * We need to invalidate the secondary MMU mappings only when
1074          * there could be a permission downgrade on the ptes of the
1075          * parent mm. And a permission downgrade will only happen if
1076          * is_cow_mapping() returns true.
1077          */
1078         is_cow = is_cow_mapping(vma->vm_flags);
1079         mmun_start = addr;
1080         mmun_end   = end;
1081         if (is_cow)
1082                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083                                                     mmun_end);
1084
1085         ret = 0;
1086         dst_pgd = pgd_offset(dst_mm, addr);
1087         src_pgd = pgd_offset(src_mm, addr);
1088         do {
1089                 next = pgd_addr_end(addr, end);
1090                 if (pgd_none_or_clear_bad(src_pgd))
1091                         continue;
1092                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093                                             vma, addr, next))) {
1094                         ret = -ENOMEM;
1095                         break;
1096                 }
1097         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1098
1099         if (is_cow)
1100                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1101         return ret;
1102 }
1103
1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105                                 struct vm_area_struct *vma, pmd_t *pmd,
1106                                 unsigned long addr, unsigned long end,
1107                                 struct zap_details *details)
1108 {
1109         struct mm_struct *mm = tlb->mm;
1110         int force_flush = 0;
1111         int rss[NR_MM_COUNTERS];
1112         spinlock_t *ptl;
1113         pte_t *start_pte;
1114         pte_t *pte;
1115         swp_entry_t entry;
1116
1117 again:
1118         init_rss_vec(rss);
1119         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120         pte = start_pte;
1121         flush_tlb_batched_pending(mm);
1122         arch_enter_lazy_mmu_mode();
1123         do {
1124                 pte_t ptent = *pte;
1125                 if (pte_none(ptent)) {
1126                         continue;
1127                 }
1128
1129                 if (pte_present(ptent)) {
1130                         struct page *page;
1131
1132                         page = vm_normal_page(vma, addr, ptent);
1133                         if (unlikely(details) && page) {
1134                                 /*
1135                                  * unmap_shared_mapping_pages() wants to
1136                                  * invalidate cache without truncating:
1137                                  * unmap shared but keep private pages.
1138                                  */
1139                                 if (details->check_mapping &&
1140                                     details->check_mapping != page->mapping)
1141                                         continue;
1142                         }
1143                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1144                                                         tlb->fullmm);
1145                         tlb_remove_tlb_entry(tlb, pte, addr);
1146                         if (unlikely(!page))
1147                                 continue;
1148                         if (PageAnon(page))
1149                                 rss[MM_ANONPAGES]--;
1150                         else {
1151                                 if (pte_dirty(ptent)) {
1152                                         force_flush = 1;
1153                                         set_page_dirty(page);
1154                                 }
1155                                 if (pte_young(ptent) &&
1156                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1157                                         mark_page_accessed(page);
1158                                 rss[MM_FILEPAGES]--;
1159                         }
1160                         page_remove_rmap(page);
1161                         if (unlikely(page_mapcount(page) < 0))
1162                                 print_bad_pte(vma, addr, ptent, page);
1163                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1164                                 force_flush = 1;
1165                                 addr += PAGE_SIZE;
1166                                 break;
1167                         }
1168                         continue;
1169                 }
1170                 /* If details->check_mapping, we leave swap entries. */
1171                 if (unlikely(details))
1172                         continue;
1173
1174                 entry = pte_to_swp_entry(ptent);
1175                 if (!non_swap_entry(entry))
1176                         rss[MM_SWAPENTS]--;
1177                 else if (is_migration_entry(entry)) {
1178                         struct page *page;
1179
1180                         page = migration_entry_to_page(entry);
1181
1182                         if (PageAnon(page))
1183                                 rss[MM_ANONPAGES]--;
1184                         else
1185                                 rss[MM_FILEPAGES]--;
1186                 }
1187                 if (unlikely(!free_swap_and_cache(entry)))
1188                         print_bad_pte(vma, addr, ptent, NULL);
1189                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1190         } while (pte++, addr += PAGE_SIZE, addr != end);
1191
1192         add_mm_rss_vec(mm, rss);
1193         arch_leave_lazy_mmu_mode();
1194
1195         /* Do the actual TLB flush before dropping ptl */
1196         if (force_flush)
1197                 tlb_flush_mmu_tlbonly(tlb);
1198         pte_unmap_unlock(start_pte, ptl);
1199
1200         /*
1201          * If we forced a TLB flush (either due to running out of
1202          * batch buffers or because we needed to flush dirty TLB
1203          * entries before releasing the ptl), free the batched
1204          * memory too. Restart if we didn't do everything.
1205          */
1206         if (force_flush) {
1207                 force_flush = 0;
1208                 tlb_flush_mmu_free(tlb);
1209
1210                 if (addr != end)
1211                         goto again;
1212         }
1213
1214         return addr;
1215 }
1216
1217 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1218                                 struct vm_area_struct *vma, pud_t *pud,
1219                                 unsigned long addr, unsigned long end,
1220                                 struct zap_details *details)
1221 {
1222         pmd_t *pmd;
1223         unsigned long next;
1224
1225         pmd = pmd_offset(pud, addr);
1226         do {
1227                 next = pmd_addr_end(addr, end);
1228                 if (pmd_trans_huge(*pmd)) {
1229                         if (next - addr != HPAGE_PMD_SIZE) {
1230 #ifdef CONFIG_DEBUG_VM
1231                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1232                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1233                                                 __func__, addr, end,
1234                                                 vma->vm_start,
1235                                                 vma->vm_end);
1236                                         BUG();
1237                                 }
1238 #endif
1239                                 split_huge_page_pmd(vma, addr, pmd);
1240                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241                                 goto next;
1242                         /* fall through */
1243                 }
1244                 /*
1245                  * Here there can be other concurrent MADV_DONTNEED or
1246                  * trans huge page faults running, and if the pmd is
1247                  * none or trans huge it can change under us. This is
1248                  * because MADV_DONTNEED holds the mmap_sem in read
1249                  * mode.
1250                  */
1251                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252                         goto next;
1253                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254 next:
1255                 cond_resched();
1256         } while (pmd++, addr = next, addr != end);
1257
1258         return addr;
1259 }
1260
1261 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262                                 struct vm_area_struct *vma, pgd_t *pgd,
1263                                 unsigned long addr, unsigned long end,
1264                                 struct zap_details *details)
1265 {
1266         pud_t *pud;
1267         unsigned long next;
1268
1269         pud = pud_offset(pgd, addr);
1270         do {
1271                 next = pud_addr_end(addr, end);
1272                 if (pud_none_or_clear_bad(pud))
1273                         continue;
1274                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275         } while (pud++, addr = next, addr != end);
1276
1277         return addr;
1278 }
1279
1280 static void unmap_page_range(struct mmu_gather *tlb,
1281                              struct vm_area_struct *vma,
1282                              unsigned long addr, unsigned long end,
1283                              struct zap_details *details)
1284 {
1285         pgd_t *pgd;
1286         unsigned long next;
1287
1288         if (details && !details->check_mapping)
1289                 details = NULL;
1290
1291         BUG_ON(addr >= end);
1292         tlb_start_vma(tlb, vma);
1293         pgd = pgd_offset(vma->vm_mm, addr);
1294         do {
1295                 next = pgd_addr_end(addr, end);
1296                 if (pgd_none_or_clear_bad(pgd))
1297                         continue;
1298                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299         } while (pgd++, addr = next, addr != end);
1300         tlb_end_vma(tlb, vma);
1301 }
1302
1303
1304 static void unmap_single_vma(struct mmu_gather *tlb,
1305                 struct vm_area_struct *vma, unsigned long start_addr,
1306                 unsigned long end_addr,
1307                 struct zap_details *details)
1308 {
1309         unsigned long start = max(vma->vm_start, start_addr);
1310         unsigned long end;
1311
1312         if (start >= vma->vm_end)
1313                 return;
1314         end = min(vma->vm_end, end_addr);
1315         if (end <= vma->vm_start)
1316                 return;
1317
1318         if (vma->vm_file)
1319                 uprobe_munmap(vma, start, end);
1320
1321         if (unlikely(vma->vm_flags & VM_PFNMAP))
1322                 untrack_pfn(vma, 0, 0);
1323
1324         if (start != end) {
1325                 if (unlikely(is_vm_hugetlb_page(vma))) {
1326                         /*
1327                          * It is undesirable to test vma->vm_file as it
1328                          * should be non-null for valid hugetlb area.
1329                          * However, vm_file will be NULL in the error
1330                          * cleanup path of mmap_region. When
1331                          * hugetlbfs ->mmap method fails,
1332                          * mmap_region() nullifies vma->vm_file
1333                          * before calling this function to clean up.
1334                          * Since no pte has actually been setup, it is
1335                          * safe to do nothing in this case.
1336                          */
1337                         if (vma->vm_file) {
1338                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1339                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1340                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1341                         }
1342                 } else
1343                         unmap_page_range(tlb, vma, start, end, details);
1344         }
1345 }
1346
1347 /**
1348  * unmap_vmas - unmap a range of memory covered by a list of vma's
1349  * @tlb: address of the caller's struct mmu_gather
1350  * @vma: the starting vma
1351  * @start_addr: virtual address at which to start unmapping
1352  * @end_addr: virtual address at which to end unmapping
1353  *
1354  * Unmap all pages in the vma list.
1355  *
1356  * Only addresses between `start' and `end' will be unmapped.
1357  *
1358  * The VMA list must be sorted in ascending virtual address order.
1359  *
1360  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1361  * range after unmap_vmas() returns.  So the only responsibility here is to
1362  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1363  * drops the lock and schedules.
1364  */
1365 void unmap_vmas(struct mmu_gather *tlb,
1366                 struct vm_area_struct *vma, unsigned long start_addr,
1367                 unsigned long end_addr)
1368 {
1369         struct mm_struct *mm = vma->vm_mm;
1370
1371         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1372         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1373                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1374         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1375 }
1376
1377 /**
1378  * zap_page_range - remove user pages in a given range
1379  * @vma: vm_area_struct holding the applicable pages
1380  * @start: starting address of pages to zap
1381  * @size: number of bytes to zap
1382  * @details: details of shared cache invalidation
1383  *
1384  * Caller must protect the VMA list
1385  */
1386 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1387                 unsigned long size, struct zap_details *details)
1388 {
1389         struct mm_struct *mm = vma->vm_mm;
1390         struct mmu_gather tlb;
1391         unsigned long end = start + size;
1392
1393         lru_add_drain();
1394         tlb_gather_mmu(&tlb, mm, start, end);
1395         update_hiwater_rss(mm);
1396         mmu_notifier_invalidate_range_start(mm, start, end);
1397         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1398                 unmap_single_vma(&tlb, vma, start, end, details);
1399         mmu_notifier_invalidate_range_end(mm, start, end);
1400         tlb_finish_mmu(&tlb, start, end);
1401 }
1402
1403 /**
1404  * zap_page_range_single - remove user pages in a given range
1405  * @vma: vm_area_struct holding the applicable pages
1406  * @address: starting address of pages to zap
1407  * @size: number of bytes to zap
1408  * @details: details of shared cache invalidation
1409  *
1410  * The range must fit into one VMA.
1411  */
1412 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1413                 unsigned long size, struct zap_details *details)
1414 {
1415         struct mm_struct *mm = vma->vm_mm;
1416         struct mmu_gather tlb;
1417         unsigned long end = address + size;
1418
1419         lru_add_drain();
1420         tlb_gather_mmu(&tlb, mm, address, end);
1421         update_hiwater_rss(mm);
1422         mmu_notifier_invalidate_range_start(mm, address, end);
1423         unmap_single_vma(&tlb, vma, address, end, details);
1424         mmu_notifier_invalidate_range_end(mm, address, end);
1425         tlb_finish_mmu(&tlb, address, end);
1426 }
1427
1428 /**
1429  * zap_vma_ptes - remove ptes mapping the vma
1430  * @vma: vm_area_struct holding ptes to be zapped
1431  * @address: starting address of pages to zap
1432  * @size: number of bytes to zap
1433  *
1434  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1435  *
1436  * The entire address range must be fully contained within the vma.
1437  *
1438  * Returns 0 if successful.
1439  */
1440 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1441                 unsigned long size)
1442 {
1443         if (address < vma->vm_start || address + size > vma->vm_end ||
1444                         !(vma->vm_flags & VM_PFNMAP))
1445                 return -1;
1446         zap_page_range_single(vma, address, size, NULL);
1447         return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1450
1451 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1452                         spinlock_t **ptl)
1453 {
1454         pgd_t * pgd = pgd_offset(mm, addr);
1455         pud_t * pud = pud_alloc(mm, pgd, addr);
1456         if (pud) {
1457                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1458                 if (pmd) {
1459                         VM_BUG_ON(pmd_trans_huge(*pmd));
1460                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1461                 }
1462         }
1463         return NULL;
1464 }
1465
1466 /*
1467  * This is the old fallback for page remapping.
1468  *
1469  * For historical reasons, it only allows reserved pages. Only
1470  * old drivers should use this, and they needed to mark their
1471  * pages reserved for the old functions anyway.
1472  */
1473 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1474                         struct page *page, pgprot_t prot)
1475 {
1476         struct mm_struct *mm = vma->vm_mm;
1477         int retval;
1478         pte_t *pte;
1479         spinlock_t *ptl;
1480
1481         retval = -EINVAL;
1482         if (PageAnon(page))
1483                 goto out;
1484         retval = -ENOMEM;
1485         flush_dcache_page(page);
1486         pte = get_locked_pte(mm, addr, &ptl);
1487         if (!pte)
1488                 goto out;
1489         retval = -EBUSY;
1490         if (!pte_none(*pte))
1491                 goto out_unlock;
1492
1493         /* Ok, finally just insert the thing.. */
1494         get_page(page);
1495         inc_mm_counter_fast(mm, MM_FILEPAGES);
1496         page_add_file_rmap(page);
1497         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1498
1499         retval = 0;
1500         pte_unmap_unlock(pte, ptl);
1501         return retval;
1502 out_unlock:
1503         pte_unmap_unlock(pte, ptl);
1504 out:
1505         return retval;
1506 }
1507
1508 /**
1509  * vm_insert_page - insert single page into user vma
1510  * @vma: user vma to map to
1511  * @addr: target user address of this page
1512  * @page: source kernel page
1513  *
1514  * This allows drivers to insert individual pages they've allocated
1515  * into a user vma.
1516  *
1517  * The page has to be a nice clean _individual_ kernel allocation.
1518  * If you allocate a compound page, you need to have marked it as
1519  * such (__GFP_COMP), or manually just split the page up yourself
1520  * (see split_page()).
1521  *
1522  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1523  * took an arbitrary page protection parameter. This doesn't allow
1524  * that. Your vma protection will have to be set up correctly, which
1525  * means that if you want a shared writable mapping, you'd better
1526  * ask for a shared writable mapping!
1527  *
1528  * The page does not need to be reserved.
1529  *
1530  * Usually this function is called from f_op->mmap() handler
1531  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1532  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1533  * function from other places, for example from page-fault handler.
1534  */
1535 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1536                         struct page *page)
1537 {
1538         if (addr < vma->vm_start || addr >= vma->vm_end)
1539                 return -EFAULT;
1540         if (!page_count(page))
1541                 return -EINVAL;
1542         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1543                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1544                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1545                 vma->vm_flags |= VM_MIXEDMAP;
1546         }
1547         return insert_page(vma, addr, page, vma->vm_page_prot);
1548 }
1549 EXPORT_SYMBOL(vm_insert_page);
1550
1551 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552                         unsigned long pfn, pgprot_t prot)
1553 {
1554         struct mm_struct *mm = vma->vm_mm;
1555         int retval;
1556         pte_t *pte, entry;
1557         spinlock_t *ptl;
1558
1559         retval = -ENOMEM;
1560         pte = get_locked_pte(mm, addr, &ptl);
1561         if (!pte)
1562                 goto out;
1563         retval = -EBUSY;
1564         if (!pte_none(*pte))
1565                 goto out_unlock;
1566
1567         /* Ok, finally just insert the thing.. */
1568         entry = pte_mkspecial(pfn_pte(pfn, prot));
1569         set_pte_at(mm, addr, pte, entry);
1570         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1571
1572         retval = 0;
1573 out_unlock:
1574         pte_unmap_unlock(pte, ptl);
1575 out:
1576         return retval;
1577 }
1578
1579 /**
1580  * vm_insert_pfn - insert single pfn into user vma
1581  * @vma: user vma to map to
1582  * @addr: target user address of this page
1583  * @pfn: source kernel pfn
1584  *
1585  * Similar to vm_insert_page, this allows drivers to insert individual pages
1586  * they've allocated into a user vma. Same comments apply.
1587  *
1588  * This function should only be called from a vm_ops->fault handler, and
1589  * in that case the handler should return NULL.
1590  *
1591  * vma cannot be a COW mapping.
1592  *
1593  * As this is called only for pages that do not currently exist, we
1594  * do not need to flush old virtual caches or the TLB.
1595  */
1596 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1597                         unsigned long pfn)
1598 {
1599         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1600 }
1601 EXPORT_SYMBOL(vm_insert_pfn);
1602
1603 /**
1604  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605  * @vma: user vma to map to
1606  * @addr: target user address of this page
1607  * @pfn: source kernel pfn
1608  * @pgprot: pgprot flags for the inserted page
1609  *
1610  * This is exactly like vm_insert_pfn, except that it allows drivers to
1611  * to override pgprot on a per-page basis.
1612  *
1613  * This only makes sense for IO mappings, and it makes no sense for
1614  * cow mappings.  In general, using multiple vmas is preferable;
1615  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616  * impractical.
1617  */
1618 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619                         unsigned long pfn, pgprot_t pgprot)
1620 {
1621         int ret;
1622         /*
1623          * Technically, architectures with pte_special can avoid all these
1624          * restrictions (same for remap_pfn_range).  However we would like
1625          * consistency in testing and feature parity among all, so we should
1626          * try to keep these invariants in place for everybody.
1627          */
1628         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630                                                 (VM_PFNMAP|VM_MIXEDMAP));
1631         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1633
1634         if (addr < vma->vm_start || addr >= vma->vm_end)
1635                 return -EFAULT;
1636         if (track_pfn_insert(vma, &pgprot, pfn))
1637                 return -EINVAL;
1638
1639         if (!pfn_modify_allowed(pfn, pgprot))
1640                 return -EACCES;
1641
1642         ret = insert_pfn(vma, addr, pfn, pgprot);
1643
1644         return ret;
1645 }
1646 EXPORT_SYMBOL(vm_insert_pfn_prot);
1647
1648 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1649                         unsigned long pfn)
1650 {
1651         pgprot_t pgprot = vma->vm_page_prot;
1652
1653         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1654
1655         if (addr < vma->vm_start || addr >= vma->vm_end)
1656                 return -EFAULT;
1657         if (track_pfn_insert(vma, &pgprot, pfn))
1658                 return -EINVAL;
1659
1660         if (!pfn_modify_allowed(pfn, pgprot))
1661                 return -EACCES;
1662
1663         /*
1664          * If we don't have pte special, then we have to use the pfn_valid()
1665          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1666          * refcount the page if pfn_valid is true (hence insert_page rather
1667          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1668          * without pte special, it would there be refcounted as a normal page.
1669          */
1670         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1671                 struct page *page;
1672
1673                 page = pfn_to_page(pfn);
1674                 return insert_page(vma, addr, page, pgprot);
1675         }
1676         return insert_pfn(vma, addr, pfn, pgprot);
1677 }
1678 EXPORT_SYMBOL(vm_insert_mixed);
1679
1680 /*
1681  * maps a range of physical memory into the requested pages. the old
1682  * mappings are removed. any references to nonexistent pages results
1683  * in null mappings (currently treated as "copy-on-access")
1684  */
1685 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1686                         unsigned long addr, unsigned long end,
1687                         unsigned long pfn, pgprot_t prot)
1688 {
1689         pte_t *pte;
1690         spinlock_t *ptl;
1691         int err = 0;
1692
1693         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1694         if (!pte)
1695                 return -ENOMEM;
1696         arch_enter_lazy_mmu_mode();
1697         do {
1698                 BUG_ON(!pte_none(*pte));
1699                 if (!pfn_modify_allowed(pfn, prot)) {
1700                         err = -EACCES;
1701                         break;
1702                 }
1703                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1704                 pfn++;
1705         } while (pte++, addr += PAGE_SIZE, addr != end);
1706         arch_leave_lazy_mmu_mode();
1707         pte_unmap_unlock(pte - 1, ptl);
1708         return err;
1709 }
1710
1711 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1712                         unsigned long addr, unsigned long end,
1713                         unsigned long pfn, pgprot_t prot)
1714 {
1715         pmd_t *pmd;
1716         unsigned long next;
1717         int err;
1718
1719         pfn -= addr >> PAGE_SHIFT;
1720         pmd = pmd_alloc(mm, pud, addr);
1721         if (!pmd)
1722                 return -ENOMEM;
1723         VM_BUG_ON(pmd_trans_huge(*pmd));
1724         do {
1725                 next = pmd_addr_end(addr, end);
1726                 err = remap_pte_range(mm, pmd, addr, next,
1727                                 pfn + (addr >> PAGE_SHIFT), prot);
1728                 if (err)
1729                         return err;
1730         } while (pmd++, addr = next, addr != end);
1731         return 0;
1732 }
1733
1734 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1735                         unsigned long addr, unsigned long end,
1736                         unsigned long pfn, pgprot_t prot)
1737 {
1738         pud_t *pud;
1739         unsigned long next;
1740         int err;
1741
1742         pfn -= addr >> PAGE_SHIFT;
1743         pud = pud_alloc(mm, pgd, addr);
1744         if (!pud)
1745                 return -ENOMEM;
1746         do {
1747                 next = pud_addr_end(addr, end);
1748                 err = remap_pmd_range(mm, pud, addr, next,
1749                                 pfn + (addr >> PAGE_SHIFT), prot);
1750                 if (err)
1751                         return err;
1752         } while (pud++, addr = next, addr != end);
1753         return 0;
1754 }
1755
1756 /**
1757  * remap_pfn_range - remap kernel memory to userspace
1758  * @vma: user vma to map to
1759  * @addr: target user address to start at
1760  * @pfn: physical address of kernel memory
1761  * @size: size of map area
1762  * @prot: page protection flags for this mapping
1763  *
1764  *  Note: this is only safe if the mm semaphore is held when called.
1765  */
1766 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1767                     unsigned long pfn, unsigned long size, pgprot_t prot)
1768 {
1769         pgd_t *pgd;
1770         unsigned long next;
1771         unsigned long end = addr + PAGE_ALIGN(size);
1772         struct mm_struct *mm = vma->vm_mm;
1773         int err;
1774
1775         /*
1776          * Physically remapped pages are special. Tell the
1777          * rest of the world about it:
1778          *   VM_IO tells people not to look at these pages
1779          *      (accesses can have side effects).
1780          *   VM_PFNMAP tells the core MM that the base pages are just
1781          *      raw PFN mappings, and do not have a "struct page" associated
1782          *      with them.
1783          *   VM_DONTEXPAND
1784          *      Disable vma merging and expanding with mremap().
1785          *   VM_DONTDUMP
1786          *      Omit vma from core dump, even when VM_IO turned off.
1787          *
1788          * There's a horrible special case to handle copy-on-write
1789          * behaviour that some programs depend on. We mark the "original"
1790          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1791          * See vm_normal_page() for details.
1792          */
1793         if (is_cow_mapping(vma->vm_flags)) {
1794                 if (addr != vma->vm_start || end != vma->vm_end)
1795                         return -EINVAL;
1796                 vma->vm_pgoff = pfn;
1797         }
1798
1799         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1800         if (err)
1801                 return -EINVAL;
1802
1803         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1804
1805         BUG_ON(addr >= end);
1806         pfn -= addr >> PAGE_SHIFT;
1807         pgd = pgd_offset(mm, addr);
1808         flush_cache_range(vma, addr, end);
1809         do {
1810                 next = pgd_addr_end(addr, end);
1811                 err = remap_pud_range(mm, pgd, addr, next,
1812                                 pfn + (addr >> PAGE_SHIFT), prot);
1813                 if (err)
1814                         break;
1815         } while (pgd++, addr = next, addr != end);
1816
1817         if (err)
1818                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1819
1820         return err;
1821 }
1822 EXPORT_SYMBOL(remap_pfn_range);
1823
1824 /**
1825  * vm_iomap_memory - remap memory to userspace
1826  * @vma: user vma to map to
1827  * @start: start of area
1828  * @len: size of area
1829  *
1830  * This is a simplified io_remap_pfn_range() for common driver use. The
1831  * driver just needs to give us the physical memory range to be mapped,
1832  * we'll figure out the rest from the vma information.
1833  *
1834  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1835  * whatever write-combining details or similar.
1836  */
1837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1838 {
1839         unsigned long vm_len, pfn, pages;
1840
1841         /* Check that the physical memory area passed in looks valid */
1842         if (start + len < start)
1843                 return -EINVAL;
1844         /*
1845          * You *really* shouldn't map things that aren't page-aligned,
1846          * but we've historically allowed it because IO memory might
1847          * just have smaller alignment.
1848          */
1849         len += start & ~PAGE_MASK;
1850         pfn = start >> PAGE_SHIFT;
1851         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1852         if (pfn + pages < pfn)
1853                 return -EINVAL;
1854
1855         /* We start the mapping 'vm_pgoff' pages into the area */
1856         if (vma->vm_pgoff > pages)
1857                 return -EINVAL;
1858         pfn += vma->vm_pgoff;
1859         pages -= vma->vm_pgoff;
1860
1861         /* Can we fit all of the mapping? */
1862         vm_len = vma->vm_end - vma->vm_start;
1863         if (vm_len >> PAGE_SHIFT > pages)
1864                 return -EINVAL;
1865
1866         /* Ok, let it rip */
1867         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1868 }
1869 EXPORT_SYMBOL(vm_iomap_memory);
1870
1871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1872                                      unsigned long addr, unsigned long end,
1873                                      pte_fn_t fn, void *data)
1874 {
1875         pte_t *pte;
1876         int err;
1877         pgtable_t token;
1878         spinlock_t *uninitialized_var(ptl);
1879
1880         pte = (mm == &init_mm) ?
1881                 pte_alloc_kernel(pmd, addr) :
1882                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1883         if (!pte)
1884                 return -ENOMEM;
1885
1886         BUG_ON(pmd_huge(*pmd));
1887
1888         arch_enter_lazy_mmu_mode();
1889
1890         token = pmd_pgtable(*pmd);
1891
1892         do {
1893                 err = fn(pte++, token, addr, data);
1894                 if (err)
1895                         break;
1896         } while (addr += PAGE_SIZE, addr != end);
1897
1898         arch_leave_lazy_mmu_mode();
1899
1900         if (mm != &init_mm)
1901                 pte_unmap_unlock(pte-1, ptl);
1902         return err;
1903 }
1904
1905 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1906                                      unsigned long addr, unsigned long end,
1907                                      pte_fn_t fn, void *data)
1908 {
1909         pmd_t *pmd;
1910         unsigned long next;
1911         int err;
1912
1913         BUG_ON(pud_huge(*pud));
1914
1915         pmd = pmd_alloc(mm, pud, addr);
1916         if (!pmd)
1917                 return -ENOMEM;
1918         do {
1919                 next = pmd_addr_end(addr, end);
1920                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1921                 if (err)
1922                         break;
1923         } while (pmd++, addr = next, addr != end);
1924         return err;
1925 }
1926
1927 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1928                                      unsigned long addr, unsigned long end,
1929                                      pte_fn_t fn, void *data)
1930 {
1931         pud_t *pud;
1932         unsigned long next;
1933         int err;
1934
1935         pud = pud_alloc(mm, pgd, addr);
1936         if (!pud)
1937                 return -ENOMEM;
1938         do {
1939                 next = pud_addr_end(addr, end);
1940                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1941                 if (err)
1942                         break;
1943         } while (pud++, addr = next, addr != end);
1944         return err;
1945 }
1946
1947 /*
1948  * Scan a region of virtual memory, filling in page tables as necessary
1949  * and calling a provided function on each leaf page table.
1950  */
1951 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1952                         unsigned long size, pte_fn_t fn, void *data)
1953 {
1954         pgd_t *pgd;
1955         unsigned long next;
1956         unsigned long end = addr + size;
1957         int err;
1958
1959         BUG_ON(addr >= end);
1960         pgd = pgd_offset(mm, addr);
1961         do {
1962                 next = pgd_addr_end(addr, end);
1963                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1964                 if (err)
1965                         break;
1966         } while (pgd++, addr = next, addr != end);
1967
1968         return err;
1969 }
1970 EXPORT_SYMBOL_GPL(apply_to_page_range);
1971
1972 /*
1973  * handle_pte_fault chooses page fault handler according to an entry which was
1974  * read non-atomically.  Before making any commitment, on those architectures
1975  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1976  * parts, do_swap_page must check under lock before unmapping the pte and
1977  * proceeding (but do_wp_page is only called after already making such a check;
1978  * and do_anonymous_page can safely check later on).
1979  */
1980 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1981                                 pte_t *page_table, pte_t orig_pte)
1982 {
1983         int same = 1;
1984 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1985         if (sizeof(pte_t) > sizeof(unsigned long)) {
1986                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1987                 spin_lock(ptl);
1988                 same = pte_same(*page_table, orig_pte);
1989                 spin_unlock(ptl);
1990         }
1991 #endif
1992         pte_unmap(page_table);
1993         return same;
1994 }
1995
1996 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1997 {
1998         debug_dma_assert_idle(src);
1999
2000         /*
2001          * If the source page was a PFN mapping, we don't have
2002          * a "struct page" for it. We do a best-effort copy by
2003          * just copying from the original user address. If that
2004          * fails, we just zero-fill it. Live with it.
2005          */
2006         if (unlikely(!src)) {
2007                 void *kaddr = kmap_atomic(dst);
2008                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2009
2010                 /*
2011                  * This really shouldn't fail, because the page is there
2012                  * in the page tables. But it might just be unreadable,
2013                  * in which case we just give up and fill the result with
2014                  * zeroes.
2015                  */
2016                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2017                         clear_page(kaddr);
2018                 kunmap_atomic(kaddr);
2019                 flush_dcache_page(dst);
2020         } else
2021                 copy_user_highpage(dst, src, va, vma);
2022 }
2023
2024 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2025 {
2026         struct file *vm_file = vma->vm_file;
2027
2028         if (vm_file)
2029                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2030
2031         /*
2032          * Special mappings (e.g. VDSO) do not have any file so fake
2033          * a default GFP_KERNEL for them.
2034          */
2035         return GFP_KERNEL;
2036 }
2037
2038 /*
2039  * Notify the address space that the page is about to become writable so that
2040  * it can prohibit this or wait for the page to get into an appropriate state.
2041  *
2042  * We do this without the lock held, so that it can sleep if it needs to.
2043  */
2044 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2045                unsigned long address)
2046 {
2047         struct vm_fault vmf;
2048         int ret;
2049
2050         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2051         vmf.pgoff = page->index;
2052         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2053         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2054         vmf.page = page;
2055         vmf.cow_page = NULL;
2056
2057         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2058         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2059                 return ret;
2060         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2061                 lock_page(page);
2062                 if (!page->mapping) {
2063                         unlock_page(page);
2064                         return 0; /* retry */
2065                 }
2066                 ret |= VM_FAULT_LOCKED;
2067         } else
2068                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2069         return ret;
2070 }
2071
2072 /*
2073  * Handle write page faults for pages that can be reused in the current vma
2074  *
2075  * This can happen either due to the mapping being with the VM_SHARED flag,
2076  * or due to us being the last reference standing to the page. In either
2077  * case, all we need to do here is to mark the page as writable and update
2078  * any related book-keeping.
2079  */
2080 static inline int wp_page_reuse(struct mm_struct *mm,
2081                         struct vm_area_struct *vma, unsigned long address,
2082                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2083                         struct page *page, int page_mkwrite,
2084                         int dirty_shared)
2085         __releases(ptl)
2086 {
2087         pte_t entry;
2088         /*
2089          * Clear the pages cpupid information as the existing
2090          * information potentially belongs to a now completely
2091          * unrelated process.
2092          */
2093         if (page)
2094                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2095
2096         flush_cache_page(vma, address, pte_pfn(orig_pte));
2097         entry = pte_mkyoung(orig_pte);
2098         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2099         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2100                 update_mmu_cache(vma, address, page_table);
2101         pte_unmap_unlock(page_table, ptl);
2102
2103         if (dirty_shared) {
2104                 struct address_space *mapping;
2105                 int dirtied;
2106
2107                 if (!page_mkwrite)
2108                         lock_page(page);
2109
2110                 dirtied = set_page_dirty(page);
2111                 VM_BUG_ON_PAGE(PageAnon(page), page);
2112                 mapping = page->mapping;
2113                 unlock_page(page);
2114                 page_cache_release(page);
2115
2116                 if ((dirtied || page_mkwrite) && mapping) {
2117                         /*
2118                          * Some device drivers do not set page.mapping
2119                          * but still dirty their pages
2120                          */
2121                         balance_dirty_pages_ratelimited(mapping);
2122                 }
2123
2124                 if (!page_mkwrite)
2125                         file_update_time(vma->vm_file);
2126         }
2127
2128         return VM_FAULT_WRITE;
2129 }
2130
2131 /*
2132  * Handle the case of a page which we actually need to copy to a new page.
2133  *
2134  * Called with mmap_sem locked and the old page referenced, but
2135  * without the ptl held.
2136  *
2137  * High level logic flow:
2138  *
2139  * - Allocate a page, copy the content of the old page to the new one.
2140  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2141  * - Take the PTL. If the pte changed, bail out and release the allocated page
2142  * - If the pte is still the way we remember it, update the page table and all
2143  *   relevant references. This includes dropping the reference the page-table
2144  *   held to the old page, as well as updating the rmap.
2145  * - In any case, unlock the PTL and drop the reference we took to the old page.
2146  */
2147 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2148                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2149                         pte_t orig_pte, struct page *old_page)
2150 {
2151         struct page *new_page = NULL;
2152         spinlock_t *ptl = NULL;
2153         pte_t entry;
2154         int page_copied = 0;
2155         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2156         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2157         struct mem_cgroup *memcg;
2158
2159         if (unlikely(anon_vma_prepare(vma)))
2160                 goto oom;
2161
2162         if (is_zero_pfn(pte_pfn(orig_pte))) {
2163                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2164                 if (!new_page)
2165                         goto oom;
2166         } else {
2167                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2168                 if (!new_page)
2169                         goto oom;
2170                 cow_user_page(new_page, old_page, address, vma);
2171         }
2172
2173         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2174                 goto oom_free_new;
2175
2176         __SetPageUptodate(new_page);
2177
2178         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2179
2180         /*
2181          * Re-check the pte - we dropped the lock
2182          */
2183         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2184         if (likely(pte_same(*page_table, orig_pte))) {
2185                 if (old_page) {
2186                         if (!PageAnon(old_page)) {
2187                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2188                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2189                         }
2190                 } else {
2191                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2192                 }
2193                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2194                 entry = mk_pte(new_page, vma->vm_page_prot);
2195                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2196                 /*
2197                  * Clear the pte entry and flush it first, before updating the
2198                  * pte with the new entry. This will avoid a race condition
2199                  * seen in the presence of one thread doing SMC and another
2200                  * thread doing COW.
2201                  */
2202                 ptep_clear_flush_notify(vma, address, page_table);
2203                 page_add_new_anon_rmap(new_page, vma, address);
2204                 mem_cgroup_commit_charge(new_page, memcg, false);
2205                 lru_cache_add_active_or_unevictable(new_page, vma);
2206                 /*
2207                  * We call the notify macro here because, when using secondary
2208                  * mmu page tables (such as kvm shadow page tables), we want the
2209                  * new page to be mapped directly into the secondary page table.
2210                  */
2211                 set_pte_at_notify(mm, address, page_table, entry);
2212                 update_mmu_cache(vma, address, page_table);
2213                 if (old_page) {
2214                         /*
2215                          * Only after switching the pte to the new page may
2216                          * we remove the mapcount here. Otherwise another
2217                          * process may come and find the rmap count decremented
2218                          * before the pte is switched to the new page, and
2219                          * "reuse" the old page writing into it while our pte
2220                          * here still points into it and can be read by other
2221                          * threads.
2222                          *
2223                          * The critical issue is to order this
2224                          * page_remove_rmap with the ptp_clear_flush above.
2225                          * Those stores are ordered by (if nothing else,)
2226                          * the barrier present in the atomic_add_negative
2227                          * in page_remove_rmap.
2228                          *
2229                          * Then the TLB flush in ptep_clear_flush ensures that
2230                          * no process can access the old page before the
2231                          * decremented mapcount is visible. And the old page
2232                          * cannot be reused until after the decremented
2233                          * mapcount is visible. So transitively, TLBs to
2234                          * old page will be flushed before it can be reused.
2235                          */
2236                         page_remove_rmap(old_page);
2237                 }
2238
2239                 /* Free the old page.. */
2240                 new_page = old_page;
2241                 page_copied = 1;
2242         } else {
2243                 mem_cgroup_cancel_charge(new_page, memcg);
2244         }
2245
2246         if (new_page)
2247                 page_cache_release(new_page);
2248
2249         pte_unmap_unlock(page_table, ptl);
2250         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2251         if (old_page) {
2252                 /*
2253                  * Don't let another task, with possibly unlocked vma,
2254                  * keep the mlocked page.
2255                  */
2256                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2257                         lock_page(old_page);    /* LRU manipulation */
2258                         munlock_vma_page(old_page);
2259                         unlock_page(old_page);
2260                 }
2261                 page_cache_release(old_page);
2262         }
2263         return page_copied ? VM_FAULT_WRITE : 0;
2264 oom_free_new:
2265         page_cache_release(new_page);
2266 oom:
2267         if (old_page)
2268                 page_cache_release(old_page);
2269         return VM_FAULT_OOM;
2270 }
2271
2272 /*
2273  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2274  * mapping
2275  */
2276 static int wp_pfn_shared(struct mm_struct *mm,
2277                         struct vm_area_struct *vma, unsigned long address,
2278                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2279                         pmd_t *pmd)
2280 {
2281         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2282                 struct vm_fault vmf = {
2283                         .page = NULL,
2284                         .pgoff = linear_page_index(vma, address),
2285                         .virtual_address = (void __user *)(address & PAGE_MASK),
2286                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2287                 };
2288                 int ret;
2289
2290                 pte_unmap_unlock(page_table, ptl);
2291                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2292                 if (ret & VM_FAULT_ERROR)
2293                         return ret;
2294                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2295                 /*
2296                  * We might have raced with another page fault while we
2297                  * released the pte_offset_map_lock.
2298                  */
2299                 if (!pte_same(*page_table, orig_pte)) {
2300                         pte_unmap_unlock(page_table, ptl);
2301                         return 0;
2302                 }
2303         }
2304         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2305                              NULL, 0, 0);
2306 }
2307
2308 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2309                           unsigned long address, pte_t *page_table,
2310                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2311                           struct page *old_page)
2312         __releases(ptl)
2313 {
2314         int page_mkwrite = 0;
2315
2316         page_cache_get(old_page);
2317
2318         /*
2319          * Only catch write-faults on shared writable pages,
2320          * read-only shared pages can get COWed by
2321          * get_user_pages(.write=1, .force=1).
2322          */
2323         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2324                 int tmp;
2325
2326                 pte_unmap_unlock(page_table, ptl);
2327                 tmp = do_page_mkwrite(vma, old_page, address);
2328                 if (unlikely(!tmp || (tmp &
2329                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2330                         page_cache_release(old_page);
2331                         return tmp;
2332                 }
2333                 /*
2334                  * Since we dropped the lock we need to revalidate
2335                  * the PTE as someone else may have changed it.  If
2336                  * they did, we just return, as we can count on the
2337                  * MMU to tell us if they didn't also make it writable.
2338                  */
2339                 page_table = pte_offset_map_lock(mm, pmd, address,
2340                                                  &ptl);
2341                 if (!pte_same(*page_table, orig_pte)) {
2342                         unlock_page(old_page);
2343                         pte_unmap_unlock(page_table, ptl);
2344                         page_cache_release(old_page);
2345                         return 0;
2346                 }
2347                 page_mkwrite = 1;
2348         }
2349
2350         return wp_page_reuse(mm, vma, address, page_table, ptl,
2351                              orig_pte, old_page, page_mkwrite, 1);
2352 }
2353
2354 /*
2355  * This routine handles present pages, when users try to write
2356  * to a shared page. It is done by copying the page to a new address
2357  * and decrementing the shared-page counter for the old page.
2358  *
2359  * Note that this routine assumes that the protection checks have been
2360  * done by the caller (the low-level page fault routine in most cases).
2361  * Thus we can safely just mark it writable once we've done any necessary
2362  * COW.
2363  *
2364  * We also mark the page dirty at this point even though the page will
2365  * change only once the write actually happens. This avoids a few races,
2366  * and potentially makes it more efficient.
2367  *
2368  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2369  * but allow concurrent faults), with pte both mapped and locked.
2370  * We return with mmap_sem still held, but pte unmapped and unlocked.
2371  */
2372 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2373                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2374                 spinlock_t *ptl, pte_t orig_pte)
2375         __releases(ptl)
2376 {
2377         struct page *old_page;
2378
2379         old_page = vm_normal_page(vma, address, orig_pte);
2380         if (!old_page) {
2381                 /*
2382                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2383                  * VM_PFNMAP VMA.
2384                  *
2385                  * We should not cow pages in a shared writeable mapping.
2386                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2387                  */
2388                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2389                                      (VM_WRITE|VM_SHARED))
2390                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2391                                              orig_pte, pmd);
2392
2393                 pte_unmap_unlock(page_table, ptl);
2394                 return wp_page_copy(mm, vma, address, page_table, pmd,
2395                                     orig_pte, old_page);
2396         }
2397
2398         /*
2399          * Take out anonymous pages first, anonymous shared vmas are
2400          * not dirty accountable.
2401          */
2402         if (PageAnon(old_page) && !PageKsm(old_page)) {
2403                 if (!trylock_page(old_page)) {
2404                         page_cache_get(old_page);
2405                         pte_unmap_unlock(page_table, ptl);
2406                         lock_page(old_page);
2407                         page_table = pte_offset_map_lock(mm, pmd, address,
2408                                                          &ptl);
2409                         if (!pte_same(*page_table, orig_pte)) {
2410                                 unlock_page(old_page);
2411                                 pte_unmap_unlock(page_table, ptl);
2412                                 page_cache_release(old_page);
2413                                 return 0;
2414                         }
2415                         page_cache_release(old_page);
2416                 }
2417                 if (reuse_swap_page(old_page)) {
2418                         /*
2419                          * The page is all ours.  Move it to our anon_vma so
2420                          * the rmap code will not search our parent or siblings.
2421                          * Protected against the rmap code by the page lock.
2422                          */
2423                         page_move_anon_rmap(old_page, vma, address);
2424                         unlock_page(old_page);
2425                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2426                                              orig_pte, old_page, 0, 0);
2427                 }
2428                 unlock_page(old_page);
2429         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2430                                         (VM_WRITE|VM_SHARED))) {
2431                 return wp_page_shared(mm, vma, address, page_table, pmd,
2432                                       ptl, orig_pte, old_page);
2433         }
2434
2435         /*
2436          * Ok, we need to copy. Oh, well..
2437          */
2438         page_cache_get(old_page);
2439
2440         pte_unmap_unlock(page_table, ptl);
2441         return wp_page_copy(mm, vma, address, page_table, pmd,
2442                             orig_pte, old_page);
2443 }
2444
2445 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2446                 unsigned long start_addr, unsigned long end_addr,
2447                 struct zap_details *details)
2448 {
2449         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2450 }
2451
2452 static inline void unmap_mapping_range_tree(struct rb_root *root,
2453                                             struct zap_details *details)
2454 {
2455         struct vm_area_struct *vma;
2456         pgoff_t vba, vea, zba, zea;
2457
2458         vma_interval_tree_foreach(vma, root,
2459                         details->first_index, details->last_index) {
2460
2461                 vba = vma->vm_pgoff;
2462                 vea = vba + vma_pages(vma) - 1;
2463                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2464                 zba = details->first_index;
2465                 if (zba < vba)
2466                         zba = vba;
2467                 zea = details->last_index;
2468                 if (zea > vea)
2469                         zea = vea;
2470
2471                 unmap_mapping_range_vma(vma,
2472                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2473                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2474                                 details);
2475         }
2476 }
2477
2478 /**
2479  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2480  * address_space corresponding to the specified page range in the underlying
2481  * file.
2482  *
2483  * @mapping: the address space containing mmaps to be unmapped.
2484  * @holebegin: byte in first page to unmap, relative to the start of
2485  * the underlying file.  This will be rounded down to a PAGE_SIZE
2486  * boundary.  Note that this is different from truncate_pagecache(), which
2487  * must keep the partial page.  In contrast, we must get rid of
2488  * partial pages.
2489  * @holelen: size of prospective hole in bytes.  This will be rounded
2490  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2491  * end of the file.
2492  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2493  * but 0 when invalidating pagecache, don't throw away private data.
2494  */
2495 void unmap_mapping_range(struct address_space *mapping,
2496                 loff_t const holebegin, loff_t const holelen, int even_cows)
2497 {
2498         struct zap_details details;
2499         pgoff_t hba = holebegin >> PAGE_SHIFT;
2500         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2501
2502         /* Check for overflow. */
2503         if (sizeof(holelen) > sizeof(hlen)) {
2504                 long long holeend =
2505                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2506                 if (holeend & ~(long long)ULONG_MAX)
2507                         hlen = ULONG_MAX - hba + 1;
2508         }
2509
2510         details.check_mapping = even_cows? NULL: mapping;
2511         details.first_index = hba;
2512         details.last_index = hba + hlen - 1;
2513         if (details.last_index < details.first_index)
2514                 details.last_index = ULONG_MAX;
2515
2516
2517         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2518         i_mmap_lock_write(mapping);
2519         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2520                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2521         i_mmap_unlock_write(mapping);
2522 }
2523 EXPORT_SYMBOL(unmap_mapping_range);
2524
2525 /*
2526  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527  * but allow concurrent faults), and pte mapped but not yet locked.
2528  * We return with pte unmapped and unlocked.
2529  *
2530  * We return with the mmap_sem locked or unlocked in the same cases
2531  * as does filemap_fault().
2532  */
2533 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2534                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2535                 unsigned int flags, pte_t orig_pte)
2536 {
2537         spinlock_t *ptl;
2538         struct page *page, *swapcache;
2539         struct mem_cgroup *memcg;
2540         swp_entry_t entry;
2541         pte_t pte;
2542         int locked;
2543         int exclusive = 0;
2544         int ret = 0;
2545
2546         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2547                 goto out;
2548
2549         entry = pte_to_swp_entry(orig_pte);
2550         if (unlikely(non_swap_entry(entry))) {
2551                 if (is_migration_entry(entry)) {
2552                         migration_entry_wait(mm, pmd, address);
2553                 } else if (is_hwpoison_entry(entry)) {
2554                         ret = VM_FAULT_HWPOISON;
2555                 } else {
2556                         print_bad_pte(vma, address, orig_pte, NULL);
2557                         ret = VM_FAULT_SIGBUS;
2558                 }
2559                 goto out;
2560         }
2561         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2562         page = lookup_swap_cache(entry);
2563         if (!page) {
2564                 page = swapin_readahead(entry,
2565                                         GFP_HIGHUSER_MOVABLE, vma, address);
2566                 if (!page) {
2567                         /*
2568                          * Back out if somebody else faulted in this pte
2569                          * while we released the pte lock.
2570                          */
2571                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2572                         if (likely(pte_same(*page_table, orig_pte)))
2573                                 ret = VM_FAULT_OOM;
2574                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575                         goto unlock;
2576                 }
2577
2578                 /* Had to read the page from swap area: Major fault */
2579                 ret = VM_FAULT_MAJOR;
2580                 count_vm_event(PGMAJFAULT);
2581                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2582         } else if (PageHWPoison(page)) {
2583                 /*
2584                  * hwpoisoned dirty swapcache pages are kept for killing
2585                  * owner processes (which may be unknown at hwpoison time)
2586                  */
2587                 ret = VM_FAULT_HWPOISON;
2588                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2589                 swapcache = page;
2590                 goto out_release;
2591         }
2592
2593         swapcache = page;
2594         locked = lock_page_or_retry(page, mm, flags);
2595
2596         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2597         if (!locked) {
2598                 ret |= VM_FAULT_RETRY;
2599                 goto out_release;
2600         }
2601
2602         /*
2603          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2604          * release the swapcache from under us.  The page pin, and pte_same
2605          * test below, are not enough to exclude that.  Even if it is still
2606          * swapcache, we need to check that the page's swap has not changed.
2607          */
2608         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2609                 goto out_page;
2610
2611         page = ksm_might_need_to_copy(page, vma, address);
2612         if (unlikely(!page)) {
2613                 ret = VM_FAULT_OOM;
2614                 page = swapcache;
2615                 goto out_page;
2616         }
2617
2618         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2619                 ret = VM_FAULT_OOM;
2620                 goto out_page;
2621         }
2622
2623         /*
2624          * Back out if somebody else already faulted in this pte.
2625          */
2626         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2627         if (unlikely(!pte_same(*page_table, orig_pte)))
2628                 goto out_nomap;
2629
2630         if (unlikely(!PageUptodate(page))) {
2631                 ret = VM_FAULT_SIGBUS;
2632                 goto out_nomap;
2633         }
2634
2635         /*
2636          * The page isn't present yet, go ahead with the fault.
2637          *
2638          * Be careful about the sequence of operations here.
2639          * To get its accounting right, reuse_swap_page() must be called
2640          * while the page is counted on swap but not yet in mapcount i.e.
2641          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2642          * must be called after the swap_free(), or it will never succeed.
2643          */
2644
2645         inc_mm_counter_fast(mm, MM_ANONPAGES);
2646         dec_mm_counter_fast(mm, MM_SWAPENTS);
2647         pte = mk_pte(page, vma->vm_page_prot);
2648         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2649                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2650                 flags &= ~FAULT_FLAG_WRITE;
2651                 ret |= VM_FAULT_WRITE;
2652                 exclusive = 1;
2653         }
2654         flush_icache_page(vma, page);
2655         if (pte_swp_soft_dirty(orig_pte))
2656                 pte = pte_mksoft_dirty(pte);
2657         set_pte_at(mm, address, page_table, pte);
2658         if (page == swapcache) {
2659                 do_page_add_anon_rmap(page, vma, address, exclusive);
2660                 mem_cgroup_commit_charge(page, memcg, true);
2661         } else { /* ksm created a completely new copy */
2662                 page_add_new_anon_rmap(page, vma, address);
2663                 mem_cgroup_commit_charge(page, memcg, false);
2664                 lru_cache_add_active_or_unevictable(page, vma);
2665         }
2666
2667         swap_free(entry);
2668         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2669                 try_to_free_swap(page);
2670         unlock_page(page);
2671         if (page != swapcache) {
2672                 /*
2673                  * Hold the lock to avoid the swap entry to be reused
2674                  * until we take the PT lock for the pte_same() check
2675                  * (to avoid false positives from pte_same). For
2676                  * further safety release the lock after the swap_free
2677                  * so that the swap count won't change under a
2678                  * parallel locked swapcache.
2679                  */
2680                 unlock_page(swapcache);
2681                 page_cache_release(swapcache);
2682         }
2683
2684         if (flags & FAULT_FLAG_WRITE) {
2685                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2686                 if (ret & VM_FAULT_ERROR)
2687                         ret &= VM_FAULT_ERROR;
2688                 goto out;
2689         }
2690
2691         /* No need to invalidate - it was non-present before */
2692         update_mmu_cache(vma, address, page_table);
2693 unlock:
2694         pte_unmap_unlock(page_table, ptl);
2695 out:
2696         return ret;
2697 out_nomap:
2698         mem_cgroup_cancel_charge(page, memcg);
2699         pte_unmap_unlock(page_table, ptl);
2700 out_page:
2701         unlock_page(page);
2702 out_release:
2703         page_cache_release(page);
2704         if (page != swapcache) {
2705                 unlock_page(swapcache);
2706                 page_cache_release(swapcache);
2707         }
2708         return ret;
2709 }
2710
2711 /*
2712  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713  * but allow concurrent faults), and pte mapped but not yet locked.
2714  * We return with mmap_sem still held, but pte unmapped and unlocked.
2715  */
2716 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2717                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2718                 unsigned int flags)
2719 {
2720         struct mem_cgroup *memcg;
2721         struct page *page;
2722         spinlock_t *ptl;
2723         pte_t entry;
2724
2725         pte_unmap(page_table);
2726
2727         /* File mapping without ->vm_ops ? */
2728         if (vma->vm_flags & VM_SHARED)
2729                 return VM_FAULT_SIGBUS;
2730
2731         /* Use the zero-page for reads */
2732         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2733                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2734                                                 vma->vm_page_prot));
2735                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2736                 if (!pte_none(*page_table))
2737                         goto unlock;
2738                 /* Deliver the page fault to userland, check inside PT lock */
2739                 if (userfaultfd_missing(vma)) {
2740                         pte_unmap_unlock(page_table, ptl);
2741                         return handle_userfault(vma, address, flags,
2742                                                 VM_UFFD_MISSING);
2743                 }
2744                 goto setpte;
2745         }
2746
2747         /* Allocate our own private page. */
2748         if (unlikely(anon_vma_prepare(vma)))
2749                 goto oom;
2750         page = alloc_zeroed_user_highpage_movable(vma, address);
2751         if (!page)
2752                 goto oom;
2753
2754         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2755                 goto oom_free_page;
2756
2757         /*
2758          * The memory barrier inside __SetPageUptodate makes sure that
2759          * preceeding stores to the page contents become visible before
2760          * the set_pte_at() write.
2761          */
2762         __SetPageUptodate(page);
2763
2764         entry = mk_pte(page, vma->vm_page_prot);
2765         if (vma->vm_flags & VM_WRITE)
2766                 entry = pte_mkwrite(pte_mkdirty(entry));
2767
2768         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2769         if (!pte_none(*page_table))
2770                 goto release;
2771
2772         /* Deliver the page fault to userland, check inside PT lock */
2773         if (userfaultfd_missing(vma)) {
2774                 pte_unmap_unlock(page_table, ptl);
2775                 mem_cgroup_cancel_charge(page, memcg);
2776                 page_cache_release(page);
2777                 return handle_userfault(vma, address, flags,
2778                                         VM_UFFD_MISSING);
2779         }
2780
2781         inc_mm_counter_fast(mm, MM_ANONPAGES);
2782         page_add_new_anon_rmap(page, vma, address);
2783         mem_cgroup_commit_charge(page, memcg, false);
2784         lru_cache_add_active_or_unevictable(page, vma);
2785 setpte:
2786         set_pte_at(mm, address, page_table, entry);
2787
2788         /* No need to invalidate - it was non-present before */
2789         update_mmu_cache(vma, address, page_table);
2790 unlock:
2791         pte_unmap_unlock(page_table, ptl);
2792         return 0;
2793 release:
2794         mem_cgroup_cancel_charge(page, memcg);
2795         page_cache_release(page);
2796         goto unlock;
2797 oom_free_page:
2798         page_cache_release(page);
2799 oom:
2800         return VM_FAULT_OOM;
2801 }
2802
2803 /*
2804  * The mmap_sem must have been held on entry, and may have been
2805  * released depending on flags and vma->vm_ops->fault() return value.
2806  * See filemap_fault() and __lock_page_retry().
2807  */
2808 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2809                         pgoff_t pgoff, unsigned int flags,
2810                         struct page *cow_page, struct page **page)
2811 {
2812         struct vm_fault vmf;
2813         int ret;
2814
2815         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2816         vmf.pgoff = pgoff;
2817         vmf.flags = flags;
2818         vmf.page = NULL;
2819         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2820         vmf.cow_page = cow_page;
2821
2822         ret = vma->vm_ops->fault(vma, &vmf);
2823         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2824                 return ret;
2825         if (!vmf.page)
2826                 goto out;
2827
2828         if (unlikely(PageHWPoison(vmf.page))) {
2829                 if (ret & VM_FAULT_LOCKED)
2830                         unlock_page(vmf.page);
2831                 page_cache_release(vmf.page);
2832                 return VM_FAULT_HWPOISON;
2833         }
2834
2835         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2836                 lock_page(vmf.page);
2837         else
2838                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2839
2840  out:
2841         *page = vmf.page;
2842         return ret;
2843 }
2844
2845 /**
2846  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2847  *
2848  * @vma: virtual memory area
2849  * @address: user virtual address
2850  * @page: page to map
2851  * @pte: pointer to target page table entry
2852  * @write: true, if new entry is writable
2853  * @anon: true, if it's anonymous page
2854  *
2855  * Caller must hold page table lock relevant for @pte.
2856  *
2857  * Target users are page handler itself and implementations of
2858  * vm_ops->map_pages.
2859  */
2860 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2861                 struct page *page, pte_t *pte, bool write, bool anon)
2862 {
2863         pte_t entry;
2864
2865         flush_icache_page(vma, page);
2866         entry = mk_pte(page, vma->vm_page_prot);
2867         if (write)
2868                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2869         if (anon) {
2870                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2871                 page_add_new_anon_rmap(page, vma, address);
2872         } else {
2873                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2874                 page_add_file_rmap(page);
2875         }
2876         set_pte_at(vma->vm_mm, address, pte, entry);
2877
2878         /* no need to invalidate: a not-present page won't be cached */
2879         update_mmu_cache(vma, address, pte);
2880 }
2881
2882 static unsigned long fault_around_bytes __read_mostly =
2883         rounddown_pow_of_two(65536);
2884
2885 #ifdef CONFIG_DEBUG_FS
2886 static int fault_around_bytes_get(void *data, u64 *val)
2887 {
2888         *val = fault_around_bytes;
2889         return 0;
2890 }
2891
2892 /*
2893  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2894  * rounded down to nearest page order. It's what do_fault_around() expects to
2895  * see.
2896  */
2897 static int fault_around_bytes_set(void *data, u64 val)
2898 {
2899         if (val / PAGE_SIZE > PTRS_PER_PTE)
2900                 return -EINVAL;
2901         if (val > PAGE_SIZE)
2902                 fault_around_bytes = rounddown_pow_of_two(val);
2903         else
2904                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2905         return 0;
2906 }
2907 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2908                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2909
2910 static int __init fault_around_debugfs(void)
2911 {
2912         void *ret;
2913
2914         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2915                         &fault_around_bytes_fops);
2916         if (!ret)
2917                 pr_warn("Failed to create fault_around_bytes in debugfs");
2918         return 0;
2919 }
2920 late_initcall(fault_around_debugfs);
2921 #endif
2922
2923 /*
2924  * do_fault_around() tries to map few pages around the fault address. The hope
2925  * is that the pages will be needed soon and this will lower the number of
2926  * faults to handle.
2927  *
2928  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2929  * not ready to be mapped: not up-to-date, locked, etc.
2930  *
2931  * This function is called with the page table lock taken. In the split ptlock
2932  * case the page table lock only protects only those entries which belong to
2933  * the page table corresponding to the fault address.
2934  *
2935  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2936  * only once.
2937  *
2938  * fault_around_pages() defines how many pages we'll try to map.
2939  * do_fault_around() expects it to return a power of two less than or equal to
2940  * PTRS_PER_PTE.
2941  *
2942  * The virtual address of the area that we map is naturally aligned to the
2943  * fault_around_pages() value (and therefore to page order).  This way it's
2944  * easier to guarantee that we don't cross page table boundaries.
2945  */
2946 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2947                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2948 {
2949         unsigned long start_addr, nr_pages, mask;
2950         pgoff_t max_pgoff;
2951         struct vm_fault vmf;
2952         int off;
2953
2954         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2955         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2956
2957         start_addr = max(address & mask, vma->vm_start);
2958         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2959         pte -= off;
2960         pgoff -= off;
2961
2962         /*
2963          *  max_pgoff is either end of page table or end of vma
2964          *  or fault_around_pages() from pgoff, depending what is nearest.
2965          */
2966         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2967                 PTRS_PER_PTE - 1;
2968         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2969                         pgoff + nr_pages - 1);
2970
2971         /* Check if it makes any sense to call ->map_pages */
2972         while (!pte_none(*pte)) {
2973                 if (++pgoff > max_pgoff)
2974                         return;
2975                 start_addr += PAGE_SIZE;
2976                 if (start_addr >= vma->vm_end)
2977                         return;
2978                 pte++;
2979         }
2980
2981         vmf.virtual_address = (void __user *) start_addr;
2982         vmf.pte = pte;
2983         vmf.pgoff = pgoff;
2984         vmf.max_pgoff = max_pgoff;
2985         vmf.flags = flags;
2986         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2987         vma->vm_ops->map_pages(vma, &vmf);
2988 }
2989
2990 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2991                 unsigned long address, pmd_t *pmd,
2992                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2993 {
2994         struct page *fault_page;
2995         spinlock_t *ptl;
2996         pte_t *pte;
2997         int ret = 0;
2998
2999         /*
3000          * Let's call ->map_pages() first and use ->fault() as fallback
3001          * if page by the offset is not ready to be mapped (cold cache or
3002          * something).
3003          */
3004         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3005                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3006                 do_fault_around(vma, address, pte, pgoff, flags);
3007                 if (!pte_same(*pte, orig_pte))
3008                         goto unlock_out;
3009                 pte_unmap_unlock(pte, ptl);
3010         }
3011
3012         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3013         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3014                 return ret;
3015
3016         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3017         if (unlikely(!pte_same(*pte, orig_pte))) {
3018                 pte_unmap_unlock(pte, ptl);
3019                 unlock_page(fault_page);
3020                 page_cache_release(fault_page);
3021                 return ret;
3022         }
3023         do_set_pte(vma, address, fault_page, pte, false, false);
3024         unlock_page(fault_page);
3025 unlock_out:
3026         pte_unmap_unlock(pte, ptl);
3027         return ret;
3028 }
3029
3030 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3031                 unsigned long address, pmd_t *pmd,
3032                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3033 {
3034         struct page *fault_page, *new_page;
3035         struct mem_cgroup *memcg;
3036         spinlock_t *ptl;
3037         pte_t *pte;
3038         int ret;
3039
3040         if (unlikely(anon_vma_prepare(vma)))
3041                 return VM_FAULT_OOM;
3042
3043         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3044         if (!new_page)
3045                 return VM_FAULT_OOM;
3046
3047         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3048                 page_cache_release(new_page);
3049                 return VM_FAULT_OOM;
3050         }
3051
3052         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3053         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3054                 goto uncharge_out;
3055
3056         if (fault_page)
3057                 copy_user_highpage(new_page, fault_page, address, vma);
3058         __SetPageUptodate(new_page);
3059
3060         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3061         if (unlikely(!pte_same(*pte, orig_pte))) {
3062                 pte_unmap_unlock(pte, ptl);
3063                 if (fault_page) {
3064                         unlock_page(fault_page);
3065                         page_cache_release(fault_page);
3066                 } else {
3067                         /*
3068                          * The fault handler has no page to lock, so it holds
3069                          * i_mmap_lock for read to protect against truncate.
3070                          */
3071                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3072                 }
3073                 goto uncharge_out;
3074         }
3075         do_set_pte(vma, address, new_page, pte, true, true);
3076         mem_cgroup_commit_charge(new_page, memcg, false);
3077         lru_cache_add_active_or_unevictable(new_page, vma);
3078         pte_unmap_unlock(pte, ptl);
3079         if (fault_page) {
3080                 unlock_page(fault_page);
3081                 page_cache_release(fault_page);
3082         } else {
3083                 /*
3084                  * The fault handler has no page to lock, so it holds
3085                  * i_mmap_lock for read to protect against truncate.
3086                  */
3087                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3088         }
3089         return ret;
3090 uncharge_out:
3091         mem_cgroup_cancel_charge(new_page, memcg);
3092         page_cache_release(new_page);
3093         return ret;
3094 }
3095
3096 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3097                 unsigned long address, pmd_t *pmd,
3098                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3099 {
3100         struct page *fault_page;
3101         struct address_space *mapping;
3102         spinlock_t *ptl;
3103         pte_t *pte;
3104         int dirtied = 0;
3105         int ret, tmp;
3106
3107         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3108         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3109                 return ret;
3110
3111         /*
3112          * Check if the backing address space wants to know that the page is
3113          * about to become writable
3114          */
3115         if (vma->vm_ops->page_mkwrite) {
3116                 unlock_page(fault_page);
3117                 tmp = do_page_mkwrite(vma, fault_page, address);
3118                 if (unlikely(!tmp ||
3119                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3120                         page_cache_release(fault_page);
3121                         return tmp;
3122                 }
3123         }
3124
3125         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3126         if (unlikely(!pte_same(*pte, orig_pte))) {
3127                 pte_unmap_unlock(pte, ptl);
3128                 unlock_page(fault_page);
3129                 page_cache_release(fault_page);
3130                 return ret;
3131         }
3132         do_set_pte(vma, address, fault_page, pte, true, false);
3133         pte_unmap_unlock(pte, ptl);
3134
3135         if (set_page_dirty(fault_page))
3136                 dirtied = 1;
3137         /*
3138          * Take a local copy of the address_space - page.mapping may be zeroed
3139          * by truncate after unlock_page().   The address_space itself remains
3140          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3141          * release semantics to prevent the compiler from undoing this copying.
3142          */
3143         mapping = fault_page->mapping;
3144         unlock_page(fault_page);
3145         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3146                 /*
3147                  * Some device drivers do not set page.mapping but still
3148                  * dirty their pages
3149                  */
3150                 balance_dirty_pages_ratelimited(mapping);
3151         }
3152
3153         if (!vma->vm_ops->page_mkwrite)
3154                 file_update_time(vma->vm_file);
3155
3156         return ret;
3157 }
3158
3159 /*
3160  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161  * but allow concurrent faults).
3162  * The mmap_sem may have been released depending on flags and our
3163  * return value.  See filemap_fault() and __lock_page_or_retry().
3164  */
3165 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3166                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3167                 unsigned int flags, pte_t orig_pte)
3168 {
3169         pgoff_t pgoff = (((address & PAGE_MASK)
3170                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3171
3172         pte_unmap(page_table);
3173         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3174         if (!vma->vm_ops->fault)
3175                 return VM_FAULT_SIGBUS;
3176         if (!(flags & FAULT_FLAG_WRITE))
3177                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3178                                 orig_pte);
3179         if (!(vma->vm_flags & VM_SHARED))
3180                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3181                                 orig_pte);
3182         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3183 }
3184
3185 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3186                                 unsigned long addr, int page_nid,
3187                                 int *flags)
3188 {
3189         get_page(page);
3190
3191         count_vm_numa_event(NUMA_HINT_FAULTS);
3192         if (page_nid == numa_node_id()) {
3193                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3194                 *flags |= TNF_FAULT_LOCAL;
3195         }
3196
3197         return mpol_misplaced(page, vma, addr);
3198 }
3199
3200 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3201                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3202 {
3203         struct page *page = NULL;
3204         spinlock_t *ptl;
3205         int page_nid = -1;
3206         int last_cpupid;
3207         int target_nid;
3208         bool migrated = false;
3209         bool was_writable = pte_write(pte);
3210         int flags = 0;
3211
3212         /* A PROT_NONE fault should not end up here */
3213         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3214
3215         /*
3216         * The "pte" at this point cannot be used safely without
3217         * validation through pte_unmap_same(). It's of NUMA type but
3218         * the pfn may be screwed if the read is non atomic.
3219         *
3220         * We can safely just do a "set_pte_at()", because the old
3221         * page table entry is not accessible, so there would be no
3222         * concurrent hardware modifications to the PTE.
3223         */
3224         ptl = pte_lockptr(mm, pmd);
3225         spin_lock(ptl);
3226         if (unlikely(!pte_same(*ptep, pte))) {
3227                 pte_unmap_unlock(ptep, ptl);
3228                 goto out;
3229         }
3230
3231         /* Make it present again */
3232         pte = pte_modify(pte, vma->vm_page_prot);
3233         pte = pte_mkyoung(pte);
3234         if (was_writable)
3235                 pte = pte_mkwrite(pte);
3236         set_pte_at(mm, addr, ptep, pte);
3237         update_mmu_cache(vma, addr, ptep);
3238
3239         page = vm_normal_page(vma, addr, pte);
3240         if (!page) {
3241                 pte_unmap_unlock(ptep, ptl);
3242                 return 0;
3243         }
3244
3245         /*
3246          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3247          * much anyway since they can be in shared cache state. This misses
3248          * the case where a mapping is writable but the process never writes
3249          * to it but pte_write gets cleared during protection updates and
3250          * pte_dirty has unpredictable behaviour between PTE scan updates,
3251          * background writeback, dirty balancing and application behaviour.
3252          */
3253         if (!(vma->vm_flags & VM_WRITE))
3254                 flags |= TNF_NO_GROUP;
3255
3256         /*
3257          * Flag if the page is shared between multiple address spaces. This
3258          * is later used when determining whether to group tasks together
3259          */
3260         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3261                 flags |= TNF_SHARED;
3262
3263         last_cpupid = page_cpupid_last(page);
3264         page_nid = page_to_nid(page);
3265         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3266         pte_unmap_unlock(ptep, ptl);
3267         if (target_nid == -1) {
3268                 put_page(page);
3269                 goto out;
3270         }
3271
3272         /* Migrate to the requested node */
3273         migrated = migrate_misplaced_page(page, vma, target_nid);
3274         if (migrated) {
3275                 page_nid = target_nid;
3276                 flags |= TNF_MIGRATED;
3277         } else
3278                 flags |= TNF_MIGRATE_FAIL;
3279
3280 out:
3281         if (page_nid != -1)
3282                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3283         return 0;
3284 }
3285
3286 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3287                         unsigned long address, pmd_t *pmd, unsigned int flags)
3288 {
3289         if (vma_is_anonymous(vma))
3290                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3291         if (vma->vm_ops->pmd_fault)
3292                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3293         return VM_FAULT_FALLBACK;
3294 }
3295
3296 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3297                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3298                         unsigned int flags)
3299 {
3300         if (vma_is_anonymous(vma))
3301                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3302         if (vma->vm_ops->pmd_fault)
3303                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3304         return VM_FAULT_FALLBACK;
3305 }
3306
3307 /*
3308  * These routines also need to handle stuff like marking pages dirty
3309  * and/or accessed for architectures that don't do it in hardware (most
3310  * RISC architectures).  The early dirtying is also good on the i386.
3311  *
3312  * There is also a hook called "update_mmu_cache()" that architectures
3313  * with external mmu caches can use to update those (ie the Sparc or
3314  * PowerPC hashed page tables that act as extended TLBs).
3315  *
3316  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3317  * but allow concurrent faults), and pte mapped but not yet locked.
3318  * We return with pte unmapped and unlocked.
3319  *
3320  * The mmap_sem may have been released depending on flags and our
3321  * return value.  See filemap_fault() and __lock_page_or_retry().
3322  */
3323 static int handle_pte_fault(struct mm_struct *mm,
3324                      struct vm_area_struct *vma, unsigned long address,
3325                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3326 {
3327         pte_t entry;
3328         spinlock_t *ptl;
3329
3330         /*
3331          * some architectures can have larger ptes than wordsize,
3332          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3333          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3334          * The code below just needs a consistent view for the ifs and
3335          * we later double check anyway with the ptl lock held. So here
3336          * a barrier will do.
3337          */
3338         entry = *pte;
3339         barrier();
3340         if (!pte_present(entry)) {
3341                 if (pte_none(entry)) {
3342                         if (vma_is_anonymous(vma))
3343                                 return do_anonymous_page(mm, vma, address,
3344                                                          pte, pmd, flags);
3345                         else
3346                                 return do_fault(mm, vma, address, pte, pmd,
3347                                                 flags, entry);
3348                 }
3349                 return do_swap_page(mm, vma, address,
3350                                         pte, pmd, flags, entry);
3351         }
3352
3353         if (pte_protnone(entry))
3354                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3355
3356         ptl = pte_lockptr(mm, pmd);
3357         spin_lock(ptl);
3358         if (unlikely(!pte_same(*pte, entry)))
3359                 goto unlock;
3360         if (flags & FAULT_FLAG_WRITE) {
3361                 if (!pte_write(entry))
3362                         return do_wp_page(mm, vma, address,
3363                                         pte, pmd, ptl, entry);
3364                 entry = pte_mkdirty(entry);
3365         }
3366         entry = pte_mkyoung(entry);
3367         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3368                 update_mmu_cache(vma, address, pte);
3369         } else {
3370                 /*
3371                  * This is needed only for protection faults but the arch code
3372                  * is not yet telling us if this is a protection fault or not.
3373                  * This still avoids useless tlb flushes for .text page faults
3374                  * with threads.
3375                  */
3376                 if (flags & FAULT_FLAG_WRITE)
3377                         flush_tlb_fix_spurious_fault(vma, address);
3378         }
3379 unlock:
3380         pte_unmap_unlock(pte, ptl);
3381         return 0;
3382 }
3383
3384 /*
3385  * By the time we get here, we already hold the mm semaphore
3386  *
3387  * The mmap_sem may have been released depending on flags and our
3388  * return value.  See filemap_fault() and __lock_page_or_retry().
3389  */
3390 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3391                              unsigned long address, unsigned int flags)
3392 {
3393         pgd_t *pgd;
3394         pud_t *pud;
3395         pmd_t *pmd;
3396         pte_t *pte;
3397
3398         if (unlikely(is_vm_hugetlb_page(vma)))
3399                 return hugetlb_fault(mm, vma, address, flags);
3400
3401         pgd = pgd_offset(mm, address);
3402         pud = pud_alloc(mm, pgd, address);
3403         if (!pud)
3404                 return VM_FAULT_OOM;
3405         pmd = pmd_alloc(mm, pud, address);
3406         if (!pmd)
3407                 return VM_FAULT_OOM;
3408         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3409                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3410                 if (!(ret & VM_FAULT_FALLBACK))
3411                         return ret;
3412         } else {
3413                 pmd_t orig_pmd = *pmd;
3414                 int ret;
3415
3416                 barrier();
3417                 if (pmd_trans_huge(orig_pmd)) {
3418                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3419
3420                         /*
3421                          * If the pmd is splitting, return and retry the
3422                          * the fault.  Alternative: wait until the split
3423                          * is done, and goto retry.
3424                          */
3425                         if (pmd_trans_splitting(orig_pmd))
3426                                 return 0;
3427
3428                         if (pmd_protnone(orig_pmd))
3429                                 return do_huge_pmd_numa_page(mm, vma, address,
3430                                                              orig_pmd, pmd);
3431
3432                         if (dirty && !pmd_write(orig_pmd)) {
3433                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3434                                                         orig_pmd, flags);
3435                                 if (!(ret & VM_FAULT_FALLBACK))
3436                                         return ret;
3437                         } else {
3438                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3439                                                       orig_pmd, dirty);
3440                                 return 0;
3441                         }
3442                 }
3443         }
3444
3445         /*
3446          * Use __pte_alloc instead of pte_alloc_map, because we can't
3447          * run pte_offset_map on the pmd, if an huge pmd could
3448          * materialize from under us from a different thread.
3449          */
3450         if (unlikely(pmd_none(*pmd)) &&
3451             unlikely(__pte_alloc(mm, vma, pmd, address)))
3452                 return VM_FAULT_OOM;
3453         /*
3454          * If a huge pmd materialized under us just retry later.  Use
3455          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3456          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3457          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3458          * in a different thread of this mm, in turn leading to a misleading
3459          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3460          * regular pmd that we can walk with pte_offset_map() and we can do that
3461          * through an atomic read in C, which is what pmd_trans_unstable()
3462          * provides.
3463          */
3464         if (unlikely(pmd_trans_unstable(pmd)))
3465                 return 0;
3466         /*
3467          * A regular pmd is established and it can't morph into a huge pmd
3468          * from under us anymore at this point because we hold the mmap_sem
3469          * read mode and khugepaged takes it in write mode. So now it's
3470          * safe to run pte_offset_map().
3471          */
3472         pte = pte_offset_map(pmd, address);
3473
3474         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3475 }
3476
3477 /*
3478  * By the time we get here, we already hold the mm semaphore
3479  *
3480  * The mmap_sem may have been released depending on flags and our
3481  * return value.  See filemap_fault() and __lock_page_or_retry().
3482  */
3483 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3484                     unsigned long address, unsigned int flags)
3485 {
3486         int ret;
3487
3488         __set_current_state(TASK_RUNNING);
3489
3490         count_vm_event(PGFAULT);
3491         mem_cgroup_count_vm_event(mm, PGFAULT);
3492
3493         /* do counter updates before entering really critical section. */
3494         check_sync_rss_stat(current);
3495
3496         /*
3497          * Enable the memcg OOM handling for faults triggered in user
3498          * space.  Kernel faults are handled more gracefully.
3499          */
3500         if (flags & FAULT_FLAG_USER)
3501                 mem_cgroup_oom_enable();
3502
3503         ret = __handle_mm_fault(mm, vma, address, flags);
3504
3505         if (flags & FAULT_FLAG_USER) {
3506                 mem_cgroup_oom_disable();
3507                 /*
3508                  * The task may have entered a memcg OOM situation but
3509                  * if the allocation error was handled gracefully (no
3510                  * VM_FAULT_OOM), there is no need to kill anything.
3511                  * Just clean up the OOM state peacefully.
3512                  */
3513                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3514                         mem_cgroup_oom_synchronize(false);
3515         }
3516
3517         return ret;
3518 }
3519 EXPORT_SYMBOL_GPL(handle_mm_fault);
3520
3521 #ifndef __PAGETABLE_PUD_FOLDED
3522 /*
3523  * Allocate page upper directory.
3524  * We've already handled the fast-path in-line.
3525  */
3526 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3527 {
3528         pud_t *new = pud_alloc_one(mm, address);
3529         if (!new)
3530                 return -ENOMEM;
3531
3532         smp_wmb(); /* See comment in __pte_alloc */
3533
3534         spin_lock(&mm->page_table_lock);
3535         if (pgd_present(*pgd))          /* Another has populated it */
3536                 pud_free(mm, new);
3537         else
3538                 pgd_populate(mm, pgd, new);
3539         spin_unlock(&mm->page_table_lock);
3540         return 0;
3541 }
3542 #endif /* __PAGETABLE_PUD_FOLDED */
3543
3544 #ifndef __PAGETABLE_PMD_FOLDED
3545 /*
3546  * Allocate page middle directory.
3547  * We've already handled the fast-path in-line.
3548  */
3549 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3550 {
3551         pmd_t *new = pmd_alloc_one(mm, address);
3552         if (!new)
3553                 return -ENOMEM;
3554
3555         smp_wmb(); /* See comment in __pte_alloc */
3556
3557         spin_lock(&mm->page_table_lock);
3558 #ifndef __ARCH_HAS_4LEVEL_HACK
3559         if (!pud_present(*pud)) {
3560                 mm_inc_nr_pmds(mm);
3561                 pud_populate(mm, pud, new);
3562         } else  /* Another has populated it */
3563                 pmd_free(mm, new);
3564 #else
3565         if (!pgd_present(*pud)) {
3566                 mm_inc_nr_pmds(mm);
3567                 pgd_populate(mm, pud, new);
3568         } else /* Another has populated it */
3569                 pmd_free(mm, new);
3570 #endif /* __ARCH_HAS_4LEVEL_HACK */
3571         spin_unlock(&mm->page_table_lock);
3572         return 0;
3573 }
3574 #endif /* __PAGETABLE_PMD_FOLDED */
3575
3576 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3577                 pte_t **ptepp, spinlock_t **ptlp)
3578 {
3579         pgd_t *pgd;
3580         pud_t *pud;
3581         pmd_t *pmd;
3582         pte_t *ptep;
3583
3584         pgd = pgd_offset(mm, address);
3585         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3586                 goto out;
3587
3588         pud = pud_offset(pgd, address);
3589         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3590                 goto out;
3591
3592         pmd = pmd_offset(pud, address);
3593         VM_BUG_ON(pmd_trans_huge(*pmd));
3594         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3595                 goto out;
3596
3597         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3598         if (pmd_huge(*pmd))
3599                 goto out;
3600
3601         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3602         if (!ptep)
3603                 goto out;
3604         if (!pte_present(*ptep))
3605                 goto unlock;
3606         *ptepp = ptep;
3607         return 0;
3608 unlock:
3609         pte_unmap_unlock(ptep, *ptlp);
3610 out:
3611         return -EINVAL;
3612 }
3613
3614 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3615                              pte_t **ptepp, spinlock_t **ptlp)
3616 {
3617         int res;
3618
3619         /* (void) is needed to make gcc happy */
3620         (void) __cond_lock(*ptlp,
3621                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3622         return res;
3623 }
3624
3625 /**
3626  * follow_pfn - look up PFN at a user virtual address
3627  * @vma: memory mapping
3628  * @address: user virtual address
3629  * @pfn: location to store found PFN
3630  *
3631  * Only IO mappings and raw PFN mappings are allowed.
3632  *
3633  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3634  */
3635 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3636         unsigned long *pfn)
3637 {
3638         int ret = -EINVAL;
3639         spinlock_t *ptl;
3640         pte_t *ptep;
3641
3642         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3643                 return ret;
3644
3645         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3646         if (ret)
3647                 return ret;
3648         *pfn = pte_pfn(*ptep);
3649         pte_unmap_unlock(ptep, ptl);
3650         return 0;
3651 }
3652 EXPORT_SYMBOL(follow_pfn);
3653
3654 #ifdef CONFIG_HAVE_IOREMAP_PROT
3655 int follow_phys(struct vm_area_struct *vma,
3656                 unsigned long address, unsigned int flags,
3657                 unsigned long *prot, resource_size_t *phys)
3658 {
3659         int ret = -EINVAL;
3660         pte_t *ptep, pte;
3661         spinlock_t *ptl;
3662
3663         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3664                 goto out;
3665
3666         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3667                 goto out;
3668         pte = *ptep;
3669
3670         if ((flags & FOLL_WRITE) && !pte_write(pte))
3671                 goto unlock;
3672
3673         *prot = pgprot_val(pte_pgprot(pte));
3674         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3675
3676         ret = 0;
3677 unlock:
3678         pte_unmap_unlock(ptep, ptl);
3679 out:
3680         return ret;
3681 }
3682
3683 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3684                         void *buf, int len, int write)
3685 {
3686         resource_size_t phys_addr;
3687         unsigned long prot = 0;
3688         void __iomem *maddr;
3689         int offset = addr & (PAGE_SIZE-1);
3690
3691         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3692                 return -EINVAL;
3693
3694         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3695         if (!maddr)
3696                 return -ENOMEM;
3697
3698         if (write)
3699                 memcpy_toio(maddr + offset, buf, len);
3700         else
3701                 memcpy_fromio(buf, maddr + offset, len);
3702         iounmap(maddr);
3703
3704         return len;
3705 }
3706 EXPORT_SYMBOL_GPL(generic_access_phys);
3707 #endif
3708
3709 /*
3710  * Access another process' address space as given in mm.  If non-NULL, use the
3711  * given task for page fault accounting.
3712  */
3713 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3714                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3715 {
3716         struct vm_area_struct *vma;
3717         void *old_buf = buf;
3718         int write = gup_flags & FOLL_WRITE;
3719
3720         down_read(&mm->mmap_sem);
3721         /* ignore errors, just check how much was successfully transferred */
3722         while (len) {
3723                 int bytes, ret, offset;
3724                 void *maddr;
3725                 struct page *page = NULL;
3726
3727                 ret = get_user_pages(tsk, mm, addr, 1,
3728                                 gup_flags, &page, &vma);
3729                 if (ret <= 0) {
3730 #ifndef CONFIG_HAVE_IOREMAP_PROT
3731                         break;
3732 #else
3733                         /*
3734                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3735                          * we can access using slightly different code.
3736                          */
3737                         vma = find_vma(mm, addr);
3738                         if (!vma || vma->vm_start > addr)
3739                                 break;
3740                         if (vma->vm_ops && vma->vm_ops->access)
3741                                 ret = vma->vm_ops->access(vma, addr, buf,
3742                                                           len, write);
3743                         if (ret <= 0)
3744                                 break;
3745                         bytes = ret;
3746 #endif
3747                 } else {
3748                         bytes = len;
3749                         offset = addr & (PAGE_SIZE-1);
3750                         if (bytes > PAGE_SIZE-offset)
3751                                 bytes = PAGE_SIZE-offset;
3752
3753                         maddr = kmap(page);
3754                         if (write) {
3755                                 copy_to_user_page(vma, page, addr,
3756                                                   maddr + offset, buf, bytes);
3757                                 set_page_dirty_lock(page);
3758                         } else {
3759                                 copy_from_user_page(vma, page, addr,
3760                                                     buf, maddr + offset, bytes);
3761                         }
3762                         kunmap(page);
3763                         page_cache_release(page);
3764                 }
3765                 len -= bytes;
3766                 buf += bytes;
3767                 addr += bytes;
3768         }
3769         up_read(&mm->mmap_sem);
3770
3771         return buf - old_buf;
3772 }
3773
3774 /**
3775  * access_remote_vm - access another process' address space
3776  * @mm:         the mm_struct of the target address space
3777  * @addr:       start address to access
3778  * @buf:        source or destination buffer
3779  * @len:        number of bytes to transfer
3780  * @gup_flags:  flags modifying lookup behaviour
3781  *
3782  * The caller must hold a reference on @mm.
3783  */
3784 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3785                 void *buf, int len, unsigned int gup_flags)
3786 {
3787         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3788 }
3789
3790 /*
3791  * Access another process' address space.
3792  * Source/target buffer must be kernel space,
3793  * Do not walk the page table directly, use get_user_pages
3794  */
3795 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3796                 void *buf, int len, int write)
3797 {
3798         struct mm_struct *mm;
3799         int ret;
3800         unsigned int flags = FOLL_FORCE;
3801
3802         mm = get_task_mm(tsk);
3803         if (!mm)
3804                 return 0;
3805
3806         if (write)
3807                 flags |= FOLL_WRITE;
3808
3809         ret = __access_remote_vm(tsk, mm, addr, buf, len, flags);
3810
3811         mmput(mm);
3812
3813         return ret;
3814 }
3815
3816 /*
3817  * Print the name of a VMA.
3818  */
3819 void print_vma_addr(char *prefix, unsigned long ip)
3820 {
3821         struct mm_struct *mm = current->mm;
3822         struct vm_area_struct *vma;
3823
3824         /*
3825          * Do not print if we are in atomic
3826          * contexts (in exception stacks, etc.):
3827          */
3828         if (preempt_count())
3829                 return;
3830
3831         down_read(&mm->mmap_sem);
3832         vma = find_vma(mm, ip);
3833         if (vma && vma->vm_file) {
3834                 struct file *f = vma->vm_file;
3835                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3836                 if (buf) {
3837                         char *p;
3838
3839                         p = file_path(f, buf, PAGE_SIZE);
3840                         if (IS_ERR(p))
3841                                 p = "?";
3842                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3843                                         vma->vm_start,
3844                                         vma->vm_end - vma->vm_start);
3845                         free_page((unsigned long)buf);
3846                 }
3847         }
3848         up_read(&mm->mmap_sem);
3849 }
3850
3851 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3852 void __might_fault(const char *file, int line)
3853 {
3854         /*
3855          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3856          * holding the mmap_sem, this is safe because kernel memory doesn't
3857          * get paged out, therefore we'll never actually fault, and the
3858          * below annotations will generate false positives.
3859          */
3860         if (segment_eq(get_fs(), KERNEL_DS))
3861                 return;
3862         if (pagefault_disabled())
3863                 return;
3864         __might_sleep(file, line, 0);
3865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3866         if (current->mm)
3867                 might_lock_read(&current->mm->mmap_sem);
3868 #endif
3869 }
3870 EXPORT_SYMBOL(__might_fault);
3871 #endif
3872
3873 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3874 static void clear_gigantic_page(struct page *page,
3875                                 unsigned long addr,
3876                                 unsigned int pages_per_huge_page)
3877 {
3878         int i;
3879         struct page *p = page;
3880
3881         might_sleep();
3882         for (i = 0; i < pages_per_huge_page;
3883              i++, p = mem_map_next(p, page, i)) {
3884                 cond_resched();
3885                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3886         }
3887 }
3888 void clear_huge_page(struct page *page,
3889                      unsigned long addr, unsigned int pages_per_huge_page)
3890 {
3891         int i;
3892
3893         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3894                 clear_gigantic_page(page, addr, pages_per_huge_page);
3895                 return;
3896         }
3897
3898         might_sleep();
3899         for (i = 0; i < pages_per_huge_page; i++) {
3900                 cond_resched();
3901                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3902         }
3903 }
3904
3905 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3906                                     unsigned long addr,
3907                                     struct vm_area_struct *vma,
3908                                     unsigned int pages_per_huge_page)
3909 {
3910         int i;
3911         struct page *dst_base = dst;
3912         struct page *src_base = src;
3913
3914         for (i = 0; i < pages_per_huge_page; ) {
3915                 cond_resched();
3916                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3917
3918                 i++;
3919                 dst = mem_map_next(dst, dst_base, i);
3920                 src = mem_map_next(src, src_base, i);
3921         }
3922 }
3923
3924 void copy_user_huge_page(struct page *dst, struct page *src,
3925                          unsigned long addr, struct vm_area_struct *vma,
3926                          unsigned int pages_per_huge_page)
3927 {
3928         int i;
3929
3930         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3931                 copy_user_gigantic_page(dst, src, addr, vma,
3932                                         pages_per_huge_page);
3933                 return;
3934         }
3935
3936         might_sleep();
3937         for (i = 0; i < pages_per_huge_page; i++) {
3938                 cond_resched();
3939                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3940         }
3941 }
3942 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3943
3944 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3945
3946 static struct kmem_cache *page_ptl_cachep;
3947
3948 void __init ptlock_cache_init(void)
3949 {
3950         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3951                         SLAB_PANIC, NULL);
3952 }
3953
3954 bool ptlock_alloc(struct page *page)
3955 {
3956         spinlock_t *ptl;
3957
3958         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3959         if (!ptl)
3960                 return false;
3961         page->ptl = ptl;
3962         return true;
3963 }
3964
3965 void ptlock_free(struct page *page)
3966 {
3967         kmem_cache_free(page_ptl_cachep, page->ptl);
3968 }
3969 #endif