OSDN Git Service

NFS: Fix bool initialization/comparison
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 struct percpu_counter vm_committed_as;
52 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
53 int sysctl_overcommit_ratio = 50; /* default is 50% */
54 unsigned long sysctl_overcommit_kbytes __read_mostly;
55 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
56 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
57 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
58 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
59 int heap_stack_gap = 0;
60
61 atomic_long_t mmap_pages_allocated;
62
63 /*
64  * The global memory commitment made in the system can be a metric
65  * that can be used to drive ballooning decisions when Linux is hosted
66  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
67  * balancing memory across competing virtual machines that are hosted.
68  * Several metrics drive this policy engine including the guest reported
69  * memory commitment.
70  */
71 unsigned long vm_memory_committed(void)
72 {
73         return percpu_counter_read_positive(&vm_committed_as);
74 }
75
76 EXPORT_SYMBOL_GPL(vm_memory_committed);
77
78 EXPORT_SYMBOL(mem_map);
79
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache *vm_region_jar;
82 struct rb_root nommu_region_tree = RB_ROOT;
83 DECLARE_RWSEM(nommu_region_sem);
84
85 const struct vm_operations_struct generic_file_vm_ops = {
86 };
87
88 /*
89  * Return the total memory allocated for this pointer, not
90  * just what the caller asked for.
91  *
92  * Doesn't have to be accurate, i.e. may have races.
93  */
94 unsigned int kobjsize(const void *objp)
95 {
96         struct page *page;
97
98         /*
99          * If the object we have should not have ksize performed on it,
100          * return size of 0
101          */
102         if (!objp || !virt_addr_valid(objp))
103                 return 0;
104
105         page = virt_to_head_page(objp);
106
107         /*
108          * If the allocator sets PageSlab, we know the pointer came from
109          * kmalloc().
110          */
111         if (PageSlab(page))
112                 return ksize(objp);
113
114         /*
115          * If it's not a compound page, see if we have a matching VMA
116          * region. This test is intentionally done in reverse order,
117          * so if there's no VMA, we still fall through and hand back
118          * PAGE_SIZE for 0-order pages.
119          */
120         if (!PageCompound(page)) {
121                 struct vm_area_struct *vma;
122
123                 vma = find_vma(current->mm, (unsigned long)objp);
124                 if (vma)
125                         return vma->vm_end - vma->vm_start;
126         }
127
128         /*
129          * The ksize() function is only guaranteed to work for pointers
130          * returned by kmalloc(). So handle arbitrary pointers here.
131          */
132         return PAGE_SIZE << compound_order(page);
133 }
134
135 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
136                       unsigned long start, unsigned long nr_pages,
137                       unsigned int foll_flags, struct page **pages,
138                       struct vm_area_struct **vmas, int *nonblocking)
139 {
140         struct vm_area_struct *vma;
141         unsigned long vm_flags;
142         int i;
143
144         /* calculate required read or write permissions.
145          * If FOLL_FORCE is set, we only require the "MAY" flags.
146          */
147         vm_flags  = (foll_flags & FOLL_WRITE) ?
148                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
149         vm_flags &= (foll_flags & FOLL_FORCE) ?
150                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
151
152         for (i = 0; i < nr_pages; i++) {
153                 vma = find_vma(mm, start);
154                 if (!vma)
155                         goto finish_or_fault;
156
157                 /* protect what we can, including chardevs */
158                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
159                     !(vm_flags & vma->vm_flags))
160                         goto finish_or_fault;
161
162                 if (pages) {
163                         pages[i] = virt_to_page(start);
164                         if (pages[i])
165                                 page_cache_get(pages[i]);
166                 }
167                 if (vmas)
168                         vmas[i] = vma;
169                 start = (start + PAGE_SIZE) & PAGE_MASK;
170         }
171
172         return i;
173
174 finish_or_fault:
175         return i ? : -EFAULT;
176 }
177
178 /*
179  * get a list of pages in an address range belonging to the specified process
180  * and indicate the VMA that covers each page
181  * - this is potentially dodgy as we may end incrementing the page count of a
182  *   slab page or a secondary page from a compound page
183  * - don't permit access to VMAs that don't support it, such as I/O mappings
184  */
185 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
186                     unsigned long start, unsigned long nr_pages,
187                     unsigned int gup_flags, struct page **pages,
188                     struct vm_area_struct **vmas)
189 {
190         return __get_user_pages(tsk, mm, start, nr_pages,
191                                 gup_flags, pages, vmas, NULL);
192 }
193 EXPORT_SYMBOL(get_user_pages);
194
195 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
196                            unsigned long start, unsigned long nr_pages,
197                            unsigned int gup_flags, struct page **pages,
198                            int *locked)
199 {
200         return get_user_pages(tsk, mm, start, nr_pages, gup_flags,
201                               pages, NULL);
202 }
203 EXPORT_SYMBOL(get_user_pages_locked);
204
205 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
206                                unsigned long start, unsigned long nr_pages,
207                                struct page **pages, unsigned int gup_flags)
208 {
209         long ret;
210         down_read(&mm->mmap_sem);
211         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
212                                NULL, NULL);
213         up_read(&mm->mmap_sem);
214         return ret;
215 }
216 EXPORT_SYMBOL(__get_user_pages_unlocked);
217
218 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
219                              unsigned long start, unsigned long nr_pages,
220                              struct page **pages, unsigned int gup_flags)
221 {
222         return __get_user_pages_unlocked(tsk, mm, start, nr_pages,
223                                          pages, gup_flags);
224 }
225 EXPORT_SYMBOL(get_user_pages_unlocked);
226
227 /**
228  * follow_pfn - look up PFN at a user virtual address
229  * @vma: memory mapping
230  * @address: user virtual address
231  * @pfn: location to store found PFN
232  *
233  * Only IO mappings and raw PFN mappings are allowed.
234  *
235  * Returns zero and the pfn at @pfn on success, -ve otherwise.
236  */
237 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
238         unsigned long *pfn)
239 {
240         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
241                 return -EINVAL;
242
243         *pfn = address >> PAGE_SHIFT;
244         return 0;
245 }
246 EXPORT_SYMBOL(follow_pfn);
247
248 LIST_HEAD(vmap_area_list);
249
250 void vfree(const void *addr)
251 {
252         kfree(addr);
253 }
254 EXPORT_SYMBOL(vfree);
255
256 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
257 {
258         /*
259          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
260          * returns only a logical address.
261          */
262         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
263 }
264 EXPORT_SYMBOL(__vmalloc);
265
266 void *vmalloc_user(unsigned long size)
267 {
268         void *ret;
269
270         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
271                         PAGE_KERNEL);
272         if (ret) {
273                 struct vm_area_struct *vma;
274
275                 down_write(&current->mm->mmap_sem);
276                 vma = find_vma(current->mm, (unsigned long)ret);
277                 if (vma)
278                         vma->vm_flags |= VM_USERMAP;
279                 up_write(&current->mm->mmap_sem);
280         }
281
282         return ret;
283 }
284 EXPORT_SYMBOL(vmalloc_user);
285
286 struct page *vmalloc_to_page(const void *addr)
287 {
288         return virt_to_page(addr);
289 }
290 EXPORT_SYMBOL(vmalloc_to_page);
291
292 unsigned long vmalloc_to_pfn(const void *addr)
293 {
294         return page_to_pfn(virt_to_page(addr));
295 }
296 EXPORT_SYMBOL(vmalloc_to_pfn);
297
298 long vread(char *buf, char *addr, unsigned long count)
299 {
300         /* Don't allow overflow */
301         if ((unsigned long) buf + count < count)
302                 count = -(unsigned long) buf;
303
304         memcpy(buf, addr, count);
305         return count;
306 }
307
308 long vwrite(char *buf, char *addr, unsigned long count)
309 {
310         /* Don't allow overflow */
311         if ((unsigned long) addr + count < count)
312                 count = -(unsigned long) addr;
313
314         memcpy(addr, buf, count);
315         return count;
316 }
317
318 /*
319  *      vmalloc  -  allocate virtually contiguous memory
320  *
321  *      @size:          allocation size
322  *
323  *      Allocate enough pages to cover @size from the page level
324  *      allocator and map them into contiguous kernel virtual space.
325  *
326  *      For tight control over page level allocator and protection flags
327  *      use __vmalloc() instead.
328  */
329 void *vmalloc(unsigned long size)
330 {
331        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
332 }
333 EXPORT_SYMBOL(vmalloc);
334
335 /*
336  *      vzalloc - allocate virtually contiguous memory with zero fill
337  *
338  *      @size:          allocation size
339  *
340  *      Allocate enough pages to cover @size from the page level
341  *      allocator and map them into contiguous kernel virtual space.
342  *      The memory allocated is set to zero.
343  *
344  *      For tight control over page level allocator and protection flags
345  *      use __vmalloc() instead.
346  */
347 void *vzalloc(unsigned long size)
348 {
349         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
350                         PAGE_KERNEL);
351 }
352 EXPORT_SYMBOL(vzalloc);
353
354 /**
355  * vmalloc_node - allocate memory on a specific node
356  * @size:       allocation size
357  * @node:       numa node
358  *
359  * Allocate enough pages to cover @size from the page level
360  * allocator and map them into contiguous kernel virtual space.
361  *
362  * For tight control over page level allocator and protection flags
363  * use __vmalloc() instead.
364  */
365 void *vmalloc_node(unsigned long size, int node)
366 {
367         return vmalloc(size);
368 }
369 EXPORT_SYMBOL(vmalloc_node);
370
371 /**
372  * vzalloc_node - allocate memory on a specific node with zero fill
373  * @size:       allocation size
374  * @node:       numa node
375  *
376  * Allocate enough pages to cover @size from the page level
377  * allocator and map them into contiguous kernel virtual space.
378  * The memory allocated is set to zero.
379  *
380  * For tight control over page level allocator and protection flags
381  * use __vmalloc() instead.
382  */
383 void *vzalloc_node(unsigned long size, int node)
384 {
385         return vzalloc(size);
386 }
387 EXPORT_SYMBOL(vzalloc_node);
388
389 #ifndef PAGE_KERNEL_EXEC
390 # define PAGE_KERNEL_EXEC PAGE_KERNEL
391 #endif
392
393 /**
394  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
395  *      @size:          allocation size
396  *
397  *      Kernel-internal function to allocate enough pages to cover @size
398  *      the page level allocator and map them into contiguous and
399  *      executable kernel virtual space.
400  *
401  *      For tight control over page level allocator and protection flags
402  *      use __vmalloc() instead.
403  */
404
405 void *vmalloc_exec(unsigned long size)
406 {
407         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
408 }
409
410 /**
411  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
412  *      @size:          allocation size
413  *
414  *      Allocate enough 32bit PA addressable pages to cover @size from the
415  *      page level allocator and map them into contiguous kernel virtual space.
416  */
417 void *vmalloc_32(unsigned long size)
418 {
419         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
420 }
421 EXPORT_SYMBOL(vmalloc_32);
422
423 /**
424  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
425  *      @size:          allocation size
426  *
427  * The resulting memory area is 32bit addressable and zeroed so it can be
428  * mapped to userspace without leaking data.
429  *
430  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
431  * remap_vmalloc_range() are permissible.
432  */
433 void *vmalloc_32_user(unsigned long size)
434 {
435         /*
436          * We'll have to sort out the ZONE_DMA bits for 64-bit,
437          * but for now this can simply use vmalloc_user() directly.
438          */
439         return vmalloc_user(size);
440 }
441 EXPORT_SYMBOL(vmalloc_32_user);
442
443 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
444 {
445         BUG();
446         return NULL;
447 }
448 EXPORT_SYMBOL(vmap);
449
450 void vunmap(const void *addr)
451 {
452         BUG();
453 }
454 EXPORT_SYMBOL(vunmap);
455
456 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
457 {
458         BUG();
459         return NULL;
460 }
461 EXPORT_SYMBOL(vm_map_ram);
462
463 void vm_unmap_ram(const void *mem, unsigned int count)
464 {
465         BUG();
466 }
467 EXPORT_SYMBOL(vm_unmap_ram);
468
469 void vm_unmap_aliases(void)
470 {
471 }
472 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
473
474 /*
475  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
476  * have one.
477  */
478 void __weak vmalloc_sync_all(void)
479 {
480 }
481
482 /**
483  *      alloc_vm_area - allocate a range of kernel address space
484  *      @size:          size of the area
485  *
486  *      Returns:        NULL on failure, vm_struct on success
487  *
488  *      This function reserves a range of kernel address space, and
489  *      allocates pagetables to map that range.  No actual mappings
490  *      are created.  If the kernel address space is not shared
491  *      between processes, it syncs the pagetable across all
492  *      processes.
493  */
494 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
495 {
496         BUG();
497         return NULL;
498 }
499 EXPORT_SYMBOL_GPL(alloc_vm_area);
500
501 void free_vm_area(struct vm_struct *area)
502 {
503         BUG();
504 }
505 EXPORT_SYMBOL_GPL(free_vm_area);
506
507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
508                    struct page *page)
509 {
510         return -EINVAL;
511 }
512 EXPORT_SYMBOL(vm_insert_page);
513
514 /*
515  *  sys_brk() for the most part doesn't need the global kernel
516  *  lock, except when an application is doing something nasty
517  *  like trying to un-brk an area that has already been mapped
518  *  to a regular file.  in this case, the unmapping will need
519  *  to invoke file system routines that need the global lock.
520  */
521 SYSCALL_DEFINE1(brk, unsigned long, brk)
522 {
523         struct mm_struct *mm = current->mm;
524
525         if (brk < mm->start_brk || brk > mm->context.end_brk)
526                 return mm->brk;
527
528         if (mm->brk == brk)
529                 return mm->brk;
530
531         /*
532          * Always allow shrinking brk
533          */
534         if (brk <= mm->brk) {
535                 mm->brk = brk;
536                 return brk;
537         }
538
539         /*
540          * Ok, looks good - let it rip.
541          */
542         flush_icache_range(mm->brk, brk);
543         return mm->brk = brk;
544 }
545
546 /*
547  * initialise the VMA and region record slabs
548  */
549 void __init mmap_init(void)
550 {
551         int ret;
552
553         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
554         VM_BUG_ON(ret);
555         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
556 }
557
558 /*
559  * validate the region tree
560  * - the caller must hold the region lock
561  */
562 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
563 static noinline void validate_nommu_regions(void)
564 {
565         struct vm_region *region, *last;
566         struct rb_node *p, *lastp;
567
568         lastp = rb_first(&nommu_region_tree);
569         if (!lastp)
570                 return;
571
572         last = rb_entry(lastp, struct vm_region, vm_rb);
573         BUG_ON(last->vm_end <= last->vm_start);
574         BUG_ON(last->vm_top < last->vm_end);
575
576         while ((p = rb_next(lastp))) {
577                 region = rb_entry(p, struct vm_region, vm_rb);
578                 last = rb_entry(lastp, struct vm_region, vm_rb);
579
580                 BUG_ON(region->vm_end <= region->vm_start);
581                 BUG_ON(region->vm_top < region->vm_end);
582                 BUG_ON(region->vm_start < last->vm_top);
583
584                 lastp = p;
585         }
586 }
587 #else
588 static void validate_nommu_regions(void)
589 {
590 }
591 #endif
592
593 /*
594  * add a region into the global tree
595  */
596 static void add_nommu_region(struct vm_region *region)
597 {
598         struct vm_region *pregion;
599         struct rb_node **p, *parent;
600
601         validate_nommu_regions();
602
603         parent = NULL;
604         p = &nommu_region_tree.rb_node;
605         while (*p) {
606                 parent = *p;
607                 pregion = rb_entry(parent, struct vm_region, vm_rb);
608                 if (region->vm_start < pregion->vm_start)
609                         p = &(*p)->rb_left;
610                 else if (region->vm_start > pregion->vm_start)
611                         p = &(*p)->rb_right;
612                 else if (pregion == region)
613                         return;
614                 else
615                         BUG();
616         }
617
618         rb_link_node(&region->vm_rb, parent, p);
619         rb_insert_color(&region->vm_rb, &nommu_region_tree);
620
621         validate_nommu_regions();
622 }
623
624 /*
625  * delete a region from the global tree
626  */
627 static void delete_nommu_region(struct vm_region *region)
628 {
629         BUG_ON(!nommu_region_tree.rb_node);
630
631         validate_nommu_regions();
632         rb_erase(&region->vm_rb, &nommu_region_tree);
633         validate_nommu_regions();
634 }
635
636 /*
637  * free a contiguous series of pages
638  */
639 static void free_page_series(unsigned long from, unsigned long to)
640 {
641         for (; from < to; from += PAGE_SIZE) {
642                 struct page *page = virt_to_page(from);
643
644                 atomic_long_dec(&mmap_pages_allocated);
645                 put_page(page);
646         }
647 }
648
649 /*
650  * release a reference to a region
651  * - the caller must hold the region semaphore for writing, which this releases
652  * - the region may not have been added to the tree yet, in which case vm_top
653  *   will equal vm_start
654  */
655 static void __put_nommu_region(struct vm_region *region)
656         __releases(nommu_region_sem)
657 {
658         BUG_ON(!nommu_region_tree.rb_node);
659
660         if (--region->vm_usage == 0) {
661                 if (region->vm_top > region->vm_start)
662                         delete_nommu_region(region);
663                 up_write(&nommu_region_sem);
664
665                 if (region->vm_file)
666                         fput(region->vm_file);
667
668                 /* IO memory and memory shared directly out of the pagecache
669                  * from ramfs/tmpfs mustn't be released here */
670                 if (region->vm_flags & VM_MAPPED_COPY)
671                         free_page_series(region->vm_start, region->vm_top);
672                 kmem_cache_free(vm_region_jar, region);
673         } else {
674                 up_write(&nommu_region_sem);
675         }
676 }
677
678 /*
679  * release a reference to a region
680  */
681 static void put_nommu_region(struct vm_region *region)
682 {
683         down_write(&nommu_region_sem);
684         __put_nommu_region(region);
685 }
686
687 /*
688  * update protection on a vma
689  */
690 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
691 {
692 #ifdef CONFIG_MPU
693         struct mm_struct *mm = vma->vm_mm;
694         long start = vma->vm_start & PAGE_MASK;
695         while (start < vma->vm_end) {
696                 protect_page(mm, start, flags);
697                 start += PAGE_SIZE;
698         }
699         update_protections(mm);
700 #endif
701 }
702
703 /*
704  * add a VMA into a process's mm_struct in the appropriate place in the list
705  * and tree and add to the address space's page tree also if not an anonymous
706  * page
707  * - should be called with mm->mmap_sem held writelocked
708  */
709 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
710 {
711         struct vm_area_struct *pvma, *prev;
712         struct address_space *mapping;
713         struct rb_node **p, *parent, *rb_prev;
714
715         BUG_ON(!vma->vm_region);
716
717         mm->map_count++;
718         vma->vm_mm = mm;
719
720         protect_vma(vma, vma->vm_flags);
721
722         /* add the VMA to the mapping */
723         if (vma->vm_file) {
724                 mapping = vma->vm_file->f_mapping;
725
726                 i_mmap_lock_write(mapping);
727                 flush_dcache_mmap_lock(mapping);
728                 vma_interval_tree_insert(vma, &mapping->i_mmap);
729                 flush_dcache_mmap_unlock(mapping);
730                 i_mmap_unlock_write(mapping);
731         }
732
733         /* add the VMA to the tree */
734         parent = rb_prev = NULL;
735         p = &mm->mm_rb.rb_node;
736         while (*p) {
737                 parent = *p;
738                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
739
740                 /* sort by: start addr, end addr, VMA struct addr in that order
741                  * (the latter is necessary as we may get identical VMAs) */
742                 if (vma->vm_start < pvma->vm_start)
743                         p = &(*p)->rb_left;
744                 else if (vma->vm_start > pvma->vm_start) {
745                         rb_prev = parent;
746                         p = &(*p)->rb_right;
747                 } else if (vma->vm_end < pvma->vm_end)
748                         p = &(*p)->rb_left;
749                 else if (vma->vm_end > pvma->vm_end) {
750                         rb_prev = parent;
751                         p = &(*p)->rb_right;
752                 } else if (vma < pvma)
753                         p = &(*p)->rb_left;
754                 else if (vma > pvma) {
755                         rb_prev = parent;
756                         p = &(*p)->rb_right;
757                 } else
758                         BUG();
759         }
760
761         rb_link_node(&vma->vm_rb, parent, p);
762         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
763
764         /* add VMA to the VMA list also */
765         prev = NULL;
766         if (rb_prev)
767                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
768
769         __vma_link_list(mm, vma, prev, parent);
770 }
771
772 /*
773  * delete a VMA from its owning mm_struct and address space
774  */
775 static void delete_vma_from_mm(struct vm_area_struct *vma)
776 {
777         int i;
778         struct address_space *mapping;
779         struct mm_struct *mm = vma->vm_mm;
780         struct task_struct *curr = current;
781
782         protect_vma(vma, 0);
783
784         mm->map_count--;
785         for (i = 0; i < VMACACHE_SIZE; i++) {
786                 /* if the vma is cached, invalidate the entire cache */
787                 if (curr->vmacache[i] == vma) {
788                         vmacache_invalidate(mm);
789                         break;
790                 }
791         }
792
793         /* remove the VMA from the mapping */
794         if (vma->vm_file) {
795                 mapping = vma->vm_file->f_mapping;
796
797                 i_mmap_lock_write(mapping);
798                 flush_dcache_mmap_lock(mapping);
799                 vma_interval_tree_remove(vma, &mapping->i_mmap);
800                 flush_dcache_mmap_unlock(mapping);
801                 i_mmap_unlock_write(mapping);
802         }
803
804         /* remove from the MM's tree and list */
805         rb_erase(&vma->vm_rb, &mm->mm_rb);
806
807         if (vma->vm_prev)
808                 vma->vm_prev->vm_next = vma->vm_next;
809         else
810                 mm->mmap = vma->vm_next;
811
812         if (vma->vm_next)
813                 vma->vm_next->vm_prev = vma->vm_prev;
814 }
815
816 /*
817  * destroy a VMA record
818  */
819 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
820 {
821         if (vma->vm_ops && vma->vm_ops->close)
822                 vma->vm_ops->close(vma);
823         if (vma->vm_file)
824                 fput(vma->vm_file);
825         put_nommu_region(vma->vm_region);
826         kmem_cache_free(vm_area_cachep, vma);
827 }
828
829 /*
830  * look up the first VMA in which addr resides, NULL if none
831  * - should be called with mm->mmap_sem at least held readlocked
832  */
833 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
834 {
835         struct vm_area_struct *vma;
836
837         /* check the cache first */
838         vma = vmacache_find(mm, addr);
839         if (likely(vma))
840                 return vma;
841
842         /* trawl the list (there may be multiple mappings in which addr
843          * resides) */
844         for (vma = mm->mmap; vma; vma = vma->vm_next) {
845                 if (vma->vm_start > addr)
846                         return NULL;
847                 if (vma->vm_end > addr) {
848                         vmacache_update(addr, vma);
849                         return vma;
850                 }
851         }
852
853         return NULL;
854 }
855 EXPORT_SYMBOL(find_vma);
856
857 /*
858  * find a VMA
859  * - we don't extend stack VMAs under NOMMU conditions
860  */
861 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
862 {
863         return find_vma(mm, addr);
864 }
865
866 /*
867  * expand a stack to a given address
868  * - not supported under NOMMU conditions
869  */
870 int expand_stack(struct vm_area_struct *vma, unsigned long address)
871 {
872         return -ENOMEM;
873 }
874
875 /*
876  * look up the first VMA exactly that exactly matches addr
877  * - should be called with mm->mmap_sem at least held readlocked
878  */
879 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
880                                              unsigned long addr,
881                                              unsigned long len)
882 {
883         struct vm_area_struct *vma;
884         unsigned long end = addr + len;
885
886         /* check the cache first */
887         vma = vmacache_find_exact(mm, addr, end);
888         if (vma)
889                 return vma;
890
891         /* trawl the list (there may be multiple mappings in which addr
892          * resides) */
893         for (vma = mm->mmap; vma; vma = vma->vm_next) {
894                 if (vma->vm_start < addr)
895                         continue;
896                 if (vma->vm_start > addr)
897                         return NULL;
898                 if (vma->vm_end == end) {
899                         vmacache_update(addr, vma);
900                         return vma;
901                 }
902         }
903
904         return NULL;
905 }
906
907 /*
908  * determine whether a mapping should be permitted and, if so, what sort of
909  * mapping we're capable of supporting
910  */
911 static int validate_mmap_request(struct file *file,
912                                  unsigned long addr,
913                                  unsigned long len,
914                                  unsigned long prot,
915                                  unsigned long flags,
916                                  unsigned long pgoff,
917                                  unsigned long *_capabilities)
918 {
919         unsigned long capabilities, rlen;
920         int ret;
921
922         /* do the simple checks first */
923         if (flags & MAP_FIXED)
924                 return -EINVAL;
925
926         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
927             (flags & MAP_TYPE) != MAP_SHARED)
928                 return -EINVAL;
929
930         if (!len)
931                 return -EINVAL;
932
933         /* Careful about overflows.. */
934         rlen = PAGE_ALIGN(len);
935         if (!rlen || rlen > TASK_SIZE)
936                 return -ENOMEM;
937
938         /* offset overflow? */
939         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
940                 return -EOVERFLOW;
941
942         if (file) {
943                 /* files must support mmap */
944                 if (!file->f_op->mmap)
945                         return -ENODEV;
946
947                 /* work out if what we've got could possibly be shared
948                  * - we support chardevs that provide their own "memory"
949                  * - we support files/blockdevs that are memory backed
950                  */
951                 if (file->f_op->mmap_capabilities) {
952                         capabilities = file->f_op->mmap_capabilities(file);
953                 } else {
954                         /* no explicit capabilities set, so assume some
955                          * defaults */
956                         switch (file_inode(file)->i_mode & S_IFMT) {
957                         case S_IFREG:
958                         case S_IFBLK:
959                                 capabilities = NOMMU_MAP_COPY;
960                                 break;
961
962                         case S_IFCHR:
963                                 capabilities =
964                                         NOMMU_MAP_DIRECT |
965                                         NOMMU_MAP_READ |
966                                         NOMMU_MAP_WRITE;
967                                 break;
968
969                         default:
970                                 return -EINVAL;
971                         }
972                 }
973
974                 /* eliminate any capabilities that we can't support on this
975                  * device */
976                 if (!file->f_op->get_unmapped_area)
977                         capabilities &= ~NOMMU_MAP_DIRECT;
978                 if (!(file->f_mode & FMODE_CAN_READ))
979                         capabilities &= ~NOMMU_MAP_COPY;
980
981                 /* The file shall have been opened with read permission. */
982                 if (!(file->f_mode & FMODE_READ))
983                         return -EACCES;
984
985                 if (flags & MAP_SHARED) {
986                         /* do checks for writing, appending and locking */
987                         if ((prot & PROT_WRITE) &&
988                             !(file->f_mode & FMODE_WRITE))
989                                 return -EACCES;
990
991                         if (IS_APPEND(file_inode(file)) &&
992                             (file->f_mode & FMODE_WRITE))
993                                 return -EACCES;
994
995                         if (locks_verify_locked(file))
996                                 return -EAGAIN;
997
998                         if (!(capabilities & NOMMU_MAP_DIRECT))
999                                 return -ENODEV;
1000
1001                         /* we mustn't privatise shared mappings */
1002                         capabilities &= ~NOMMU_MAP_COPY;
1003                 } else {
1004                         /* we're going to read the file into private memory we
1005                          * allocate */
1006                         if (!(capabilities & NOMMU_MAP_COPY))
1007                                 return -ENODEV;
1008
1009                         /* we don't permit a private writable mapping to be
1010                          * shared with the backing device */
1011                         if (prot & PROT_WRITE)
1012                                 capabilities &= ~NOMMU_MAP_DIRECT;
1013                 }
1014
1015                 if (capabilities & NOMMU_MAP_DIRECT) {
1016                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1017                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1018                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1019                             ) {
1020                                 capabilities &= ~NOMMU_MAP_DIRECT;
1021                                 if (flags & MAP_SHARED) {
1022                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1023                                         return -EINVAL;
1024                                 }
1025                         }
1026                 }
1027
1028                 /* handle executable mappings and implied executable
1029                  * mappings */
1030                 if (path_noexec(&file->f_path)) {
1031                         if (prot & PROT_EXEC)
1032                                 return -EPERM;
1033                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1034                         /* handle implication of PROT_EXEC by PROT_READ */
1035                         if (current->personality & READ_IMPLIES_EXEC) {
1036                                 if (capabilities & NOMMU_MAP_EXEC)
1037                                         prot |= PROT_EXEC;
1038                         }
1039                 } else if ((prot & PROT_READ) &&
1040                          (prot & PROT_EXEC) &&
1041                          !(capabilities & NOMMU_MAP_EXEC)
1042                          ) {
1043                         /* backing file is not executable, try to copy */
1044                         capabilities &= ~NOMMU_MAP_DIRECT;
1045                 }
1046         } else {
1047                 /* anonymous mappings are always memory backed and can be
1048                  * privately mapped
1049                  */
1050                 capabilities = NOMMU_MAP_COPY;
1051
1052                 /* handle PROT_EXEC implication by PROT_READ */
1053                 if ((prot & PROT_READ) &&
1054                     (current->personality & READ_IMPLIES_EXEC))
1055                         prot |= PROT_EXEC;
1056         }
1057
1058         /* allow the security API to have its say */
1059         ret = security_mmap_addr(addr);
1060         if (ret < 0)
1061                 return ret;
1062
1063         /* looks okay */
1064         *_capabilities = capabilities;
1065         return 0;
1066 }
1067
1068 /*
1069  * we've determined that we can make the mapping, now translate what we
1070  * now know into VMA flags
1071  */
1072 static unsigned long determine_vm_flags(struct file *file,
1073                                         unsigned long prot,
1074                                         unsigned long flags,
1075                                         unsigned long capabilities)
1076 {
1077         unsigned long vm_flags;
1078
1079         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1080         /* vm_flags |= mm->def_flags; */
1081
1082         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1083                 /* attempt to share read-only copies of mapped file chunks */
1084                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1085                 if (file && !(prot & PROT_WRITE))
1086                         vm_flags |= VM_MAYSHARE;
1087         } else {
1088                 /* overlay a shareable mapping on the backing device or inode
1089                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1090                  * romfs/cramfs */
1091                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1092                 if (flags & MAP_SHARED)
1093                         vm_flags |= VM_SHARED;
1094         }
1095
1096         /* refuse to let anyone share private mappings with this process if
1097          * it's being traced - otherwise breakpoints set in it may interfere
1098          * with another untraced process
1099          */
1100         if ((flags & MAP_PRIVATE) && current->ptrace)
1101                 vm_flags &= ~VM_MAYSHARE;
1102
1103         return vm_flags;
1104 }
1105
1106 /*
1107  * set up a shared mapping on a file (the driver or filesystem provides and
1108  * pins the storage)
1109  */
1110 static int do_mmap_shared_file(struct vm_area_struct *vma)
1111 {
1112         int ret;
1113
1114         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1115         if (ret == 0) {
1116                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1117                 return 0;
1118         }
1119         if (ret != -ENOSYS)
1120                 return ret;
1121
1122         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1123          * opposed to tried but failed) so we can only give a suitable error as
1124          * it's not possible to make a private copy if MAP_SHARED was given */
1125         return -ENODEV;
1126 }
1127
1128 /*
1129  * set up a private mapping or an anonymous shared mapping
1130  */
1131 static int do_mmap_private(struct vm_area_struct *vma,
1132                            struct vm_region *region,
1133                            unsigned long len,
1134                            unsigned long capabilities)
1135 {
1136         unsigned long total, point;
1137         void *base;
1138         int ret, order;
1139
1140         /* invoke the file's mapping function so that it can keep track of
1141          * shared mappings on devices or memory
1142          * - VM_MAYSHARE will be set if it may attempt to share
1143          */
1144         if (capabilities & NOMMU_MAP_DIRECT) {
1145                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1146                 if (ret == 0) {
1147                         /* shouldn't return success if we're not sharing */
1148                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1149                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1150                         return 0;
1151                 }
1152                 if (ret != -ENOSYS)
1153                         return ret;
1154
1155                 /* getting an ENOSYS error indicates that direct mmap isn't
1156                  * possible (as opposed to tried but failed) so we'll try to
1157                  * make a private copy of the data and map that instead */
1158         }
1159
1160
1161         /* allocate some memory to hold the mapping
1162          * - note that this may not return a page-aligned address if the object
1163          *   we're allocating is smaller than a page
1164          */
1165         order = get_order(len);
1166         total = 1 << order;
1167         point = len >> PAGE_SHIFT;
1168
1169         /* we don't want to allocate a power-of-2 sized page set */
1170         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1171                 total = point;
1172
1173         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1174         if (!base)
1175                 goto enomem;
1176
1177         atomic_long_add(total, &mmap_pages_allocated);
1178
1179         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1180         region->vm_start = (unsigned long) base;
1181         region->vm_end   = region->vm_start + len;
1182         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1183
1184         vma->vm_start = region->vm_start;
1185         vma->vm_end   = region->vm_start + len;
1186
1187         if (vma->vm_file) {
1188                 /* read the contents of a file into the copy */
1189                 mm_segment_t old_fs;
1190                 loff_t fpos;
1191
1192                 fpos = vma->vm_pgoff;
1193                 fpos <<= PAGE_SHIFT;
1194
1195                 old_fs = get_fs();
1196                 set_fs(KERNEL_DS);
1197                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1198                 set_fs(old_fs);
1199
1200                 if (ret < 0)
1201                         goto error_free;
1202
1203                 /* clear the last little bit */
1204                 if (ret < len)
1205                         memset(base + ret, 0, len - ret);
1206
1207         }
1208
1209         return 0;
1210
1211 error_free:
1212         free_page_series(region->vm_start, region->vm_top);
1213         region->vm_start = vma->vm_start = 0;
1214         region->vm_end   = vma->vm_end = 0;
1215         region->vm_top   = 0;
1216         return ret;
1217
1218 enomem:
1219         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1220                len, current->pid, current->comm);
1221         show_free_areas(0);
1222         return -ENOMEM;
1223 }
1224
1225 /*
1226  * handle mapping creation for uClinux
1227  */
1228 unsigned long do_mmap(struct file *file,
1229                         unsigned long addr,
1230                         unsigned long len,
1231                         unsigned long prot,
1232                         unsigned long flags,
1233                         vm_flags_t vm_flags,
1234                         unsigned long pgoff,
1235                         unsigned long *populate)
1236 {
1237         struct vm_area_struct *vma;
1238         struct vm_region *region;
1239         struct rb_node *rb;
1240         unsigned long capabilities, result;
1241         int ret;
1242
1243         *populate = 0;
1244
1245         /* decide whether we should attempt the mapping, and if so what sort of
1246          * mapping */
1247         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1248                                     &capabilities);
1249         if (ret < 0)
1250                 return ret;
1251
1252         /* we ignore the address hint */
1253         addr = 0;
1254         len = PAGE_ALIGN(len);
1255
1256         /* we've determined that we can make the mapping, now translate what we
1257          * now know into VMA flags */
1258         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1259
1260         /* we're going to need to record the mapping */
1261         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1262         if (!region)
1263                 goto error_getting_region;
1264
1265         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1266         if (!vma)
1267                 goto error_getting_vma;
1268
1269         region->vm_usage = 1;
1270         region->vm_flags = vm_flags;
1271         region->vm_pgoff = pgoff;
1272
1273         INIT_LIST_HEAD(&vma->anon_vma_chain);
1274         vma->vm_flags = vm_flags;
1275         vma->vm_pgoff = pgoff;
1276
1277         if (file) {
1278                 region->vm_file = get_file(file);
1279                 vma->vm_file = get_file(file);
1280         }
1281
1282         down_write(&nommu_region_sem);
1283
1284         /* if we want to share, we need to check for regions created by other
1285          * mmap() calls that overlap with our proposed mapping
1286          * - we can only share with a superset match on most regular files
1287          * - shared mappings on character devices and memory backed files are
1288          *   permitted to overlap inexactly as far as we are concerned for in
1289          *   these cases, sharing is handled in the driver or filesystem rather
1290          *   than here
1291          */
1292         if (vm_flags & VM_MAYSHARE) {
1293                 struct vm_region *pregion;
1294                 unsigned long pglen, rpglen, pgend, rpgend, start;
1295
1296                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1297                 pgend = pgoff + pglen;
1298
1299                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1300                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1301
1302                         if (!(pregion->vm_flags & VM_MAYSHARE))
1303                                 continue;
1304
1305                         /* search for overlapping mappings on the same file */
1306                         if (file_inode(pregion->vm_file) !=
1307                             file_inode(file))
1308                                 continue;
1309
1310                         if (pregion->vm_pgoff >= pgend)
1311                                 continue;
1312
1313                         rpglen = pregion->vm_end - pregion->vm_start;
1314                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1315                         rpgend = pregion->vm_pgoff + rpglen;
1316                         if (pgoff >= rpgend)
1317                                 continue;
1318
1319                         /* handle inexactly overlapping matches between
1320                          * mappings */
1321                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1322                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1323                                 /* new mapping is not a subset of the region */
1324                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1325                                         goto sharing_violation;
1326                                 continue;
1327                         }
1328
1329                         /* we've found a region we can share */
1330                         pregion->vm_usage++;
1331                         vma->vm_region = pregion;
1332                         start = pregion->vm_start;
1333                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1334                         vma->vm_start = start;
1335                         vma->vm_end = start + len;
1336
1337                         if (pregion->vm_flags & VM_MAPPED_COPY)
1338                                 vma->vm_flags |= VM_MAPPED_COPY;
1339                         else {
1340                                 ret = do_mmap_shared_file(vma);
1341                                 if (ret < 0) {
1342                                         vma->vm_region = NULL;
1343                                         vma->vm_start = 0;
1344                                         vma->vm_end = 0;
1345                                         pregion->vm_usage--;
1346                                         pregion = NULL;
1347                                         goto error_just_free;
1348                                 }
1349                         }
1350                         fput(region->vm_file);
1351                         kmem_cache_free(vm_region_jar, region);
1352                         region = pregion;
1353                         result = start;
1354                         goto share;
1355                 }
1356
1357                 /* obtain the address at which to make a shared mapping
1358                  * - this is the hook for quasi-memory character devices to
1359                  *   tell us the location of a shared mapping
1360                  */
1361                 if (capabilities & NOMMU_MAP_DIRECT) {
1362                         addr = file->f_op->get_unmapped_area(file, addr, len,
1363                                                              pgoff, flags);
1364                         if (IS_ERR_VALUE(addr)) {
1365                                 ret = addr;
1366                                 if (ret != -ENOSYS)
1367                                         goto error_just_free;
1368
1369                                 /* the driver refused to tell us where to site
1370                                  * the mapping so we'll have to attempt to copy
1371                                  * it */
1372                                 ret = -ENODEV;
1373                                 if (!(capabilities & NOMMU_MAP_COPY))
1374                                         goto error_just_free;
1375
1376                                 capabilities &= ~NOMMU_MAP_DIRECT;
1377                         } else {
1378                                 vma->vm_start = region->vm_start = addr;
1379                                 vma->vm_end = region->vm_end = addr + len;
1380                         }
1381                 }
1382         }
1383
1384         vma->vm_region = region;
1385
1386         /* set up the mapping
1387          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1388          */
1389         if (file && vma->vm_flags & VM_SHARED)
1390                 ret = do_mmap_shared_file(vma);
1391         else
1392                 ret = do_mmap_private(vma, region, len, capabilities);
1393         if (ret < 0)
1394                 goto error_just_free;
1395         add_nommu_region(region);
1396
1397         /* clear anonymous mappings that don't ask for uninitialized data */
1398         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1399                 memset((void *)region->vm_start, 0,
1400                        region->vm_end - region->vm_start);
1401
1402         /* okay... we have a mapping; now we have to register it */
1403         result = vma->vm_start;
1404
1405         current->mm->total_vm += len >> PAGE_SHIFT;
1406
1407 share:
1408         add_vma_to_mm(current->mm, vma);
1409
1410         /* we flush the region from the icache only when the first executable
1411          * mapping of it is made  */
1412         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1413                 flush_icache_range(region->vm_start, region->vm_end);
1414                 region->vm_icache_flushed = true;
1415         }
1416
1417         up_write(&nommu_region_sem);
1418
1419         return result;
1420
1421 error_just_free:
1422         up_write(&nommu_region_sem);
1423 error:
1424         if (region->vm_file)
1425                 fput(region->vm_file);
1426         kmem_cache_free(vm_region_jar, region);
1427         if (vma->vm_file)
1428                 fput(vma->vm_file);
1429         kmem_cache_free(vm_area_cachep, vma);
1430         return ret;
1431
1432 sharing_violation:
1433         up_write(&nommu_region_sem);
1434         pr_warn("Attempt to share mismatched mappings\n");
1435         ret = -EINVAL;
1436         goto error;
1437
1438 error_getting_vma:
1439         kmem_cache_free(vm_region_jar, region);
1440         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1441                         len, current->pid);
1442         show_free_areas(0);
1443         return -ENOMEM;
1444
1445 error_getting_region:
1446         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1447                         len, current->pid);
1448         show_free_areas(0);
1449         return -ENOMEM;
1450 }
1451
1452 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1453                 unsigned long, prot, unsigned long, flags,
1454                 unsigned long, fd, unsigned long, pgoff)
1455 {
1456         struct file *file = NULL;
1457         unsigned long retval = -EBADF;
1458
1459         audit_mmap_fd(fd, flags);
1460         if (!(flags & MAP_ANONYMOUS)) {
1461                 file = fget(fd);
1462                 if (!file)
1463                         goto out;
1464         }
1465
1466         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1467
1468         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1469
1470         if (file)
1471                 fput(file);
1472 out:
1473         return retval;
1474 }
1475
1476 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1477 struct mmap_arg_struct {
1478         unsigned long addr;
1479         unsigned long len;
1480         unsigned long prot;
1481         unsigned long flags;
1482         unsigned long fd;
1483         unsigned long offset;
1484 };
1485
1486 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1487 {
1488         struct mmap_arg_struct a;
1489
1490         if (copy_from_user(&a, arg, sizeof(a)))
1491                 return -EFAULT;
1492         if (offset_in_page(a.offset))
1493                 return -EINVAL;
1494
1495         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1496                               a.offset >> PAGE_SHIFT);
1497 }
1498 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1499
1500 /*
1501  * split a vma into two pieces at address 'addr', a new vma is allocated either
1502  * for the first part or the tail.
1503  */
1504 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1505               unsigned long addr, int new_below)
1506 {
1507         struct vm_area_struct *new;
1508         struct vm_region *region;
1509         unsigned long npages;
1510
1511         /* we're only permitted to split anonymous regions (these should have
1512          * only a single usage on the region) */
1513         if (vma->vm_file)
1514                 return -ENOMEM;
1515
1516         if (mm->map_count >= sysctl_max_map_count)
1517                 return -ENOMEM;
1518
1519         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1520         if (!region)
1521                 return -ENOMEM;
1522
1523         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1524         if (!new) {
1525                 kmem_cache_free(vm_region_jar, region);
1526                 return -ENOMEM;
1527         }
1528
1529         /* most fields are the same, copy all, and then fixup */
1530         *new = *vma;
1531         *region = *vma->vm_region;
1532         new->vm_region = region;
1533
1534         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1535
1536         if (new_below) {
1537                 region->vm_top = region->vm_end = new->vm_end = addr;
1538         } else {
1539                 region->vm_start = new->vm_start = addr;
1540                 region->vm_pgoff = new->vm_pgoff += npages;
1541         }
1542
1543         if (new->vm_ops && new->vm_ops->open)
1544                 new->vm_ops->open(new);
1545
1546         delete_vma_from_mm(vma);
1547         down_write(&nommu_region_sem);
1548         delete_nommu_region(vma->vm_region);
1549         if (new_below) {
1550                 vma->vm_region->vm_start = vma->vm_start = addr;
1551                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1552         } else {
1553                 vma->vm_region->vm_end = vma->vm_end = addr;
1554                 vma->vm_region->vm_top = addr;
1555         }
1556         add_nommu_region(vma->vm_region);
1557         add_nommu_region(new->vm_region);
1558         up_write(&nommu_region_sem);
1559         add_vma_to_mm(mm, vma);
1560         add_vma_to_mm(mm, new);
1561         return 0;
1562 }
1563
1564 /*
1565  * shrink a VMA by removing the specified chunk from either the beginning or
1566  * the end
1567  */
1568 static int shrink_vma(struct mm_struct *mm,
1569                       struct vm_area_struct *vma,
1570                       unsigned long from, unsigned long to)
1571 {
1572         struct vm_region *region;
1573
1574         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1575          * and list */
1576         delete_vma_from_mm(vma);
1577         if (from > vma->vm_start)
1578                 vma->vm_end = from;
1579         else
1580                 vma->vm_start = to;
1581         add_vma_to_mm(mm, vma);
1582
1583         /* cut the backing region down to size */
1584         region = vma->vm_region;
1585         BUG_ON(region->vm_usage != 1);
1586
1587         down_write(&nommu_region_sem);
1588         delete_nommu_region(region);
1589         if (from > region->vm_start) {
1590                 to = region->vm_top;
1591                 region->vm_top = region->vm_end = from;
1592         } else {
1593                 region->vm_start = to;
1594         }
1595         add_nommu_region(region);
1596         up_write(&nommu_region_sem);
1597
1598         free_page_series(from, to);
1599         return 0;
1600 }
1601
1602 /*
1603  * release a mapping
1604  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1605  *   VMA, though it need not cover the whole VMA
1606  */
1607 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1608 {
1609         struct vm_area_struct *vma;
1610         unsigned long end;
1611         int ret;
1612
1613         len = PAGE_ALIGN(len);
1614         if (len == 0)
1615                 return -EINVAL;
1616
1617         end = start + len;
1618
1619         /* find the first potentially overlapping VMA */
1620         vma = find_vma(mm, start);
1621         if (!vma) {
1622                 static int limit;
1623                 if (limit < 5) {
1624                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1625                                         current->pid, current->comm,
1626                                         start, start + len - 1);
1627                         limit++;
1628                 }
1629                 return -EINVAL;
1630         }
1631
1632         /* we're allowed to split an anonymous VMA but not a file-backed one */
1633         if (vma->vm_file) {
1634                 do {
1635                         if (start > vma->vm_start)
1636                                 return -EINVAL;
1637                         if (end == vma->vm_end)
1638                                 goto erase_whole_vma;
1639                         vma = vma->vm_next;
1640                 } while (vma);
1641                 return -EINVAL;
1642         } else {
1643                 /* the chunk must be a subset of the VMA found */
1644                 if (start == vma->vm_start && end == vma->vm_end)
1645                         goto erase_whole_vma;
1646                 if (start < vma->vm_start || end > vma->vm_end)
1647                         return -EINVAL;
1648                 if (offset_in_page(start))
1649                         return -EINVAL;
1650                 if (end != vma->vm_end && offset_in_page(end))
1651                         return -EINVAL;
1652                 if (start != vma->vm_start && end != vma->vm_end) {
1653                         ret = split_vma(mm, vma, start, 1);
1654                         if (ret < 0)
1655                                 return ret;
1656                 }
1657                 return shrink_vma(mm, vma, start, end);
1658         }
1659
1660 erase_whole_vma:
1661         delete_vma_from_mm(vma);
1662         delete_vma(mm, vma);
1663         return 0;
1664 }
1665 EXPORT_SYMBOL(do_munmap);
1666
1667 int vm_munmap(unsigned long addr, size_t len)
1668 {
1669         struct mm_struct *mm = current->mm;
1670         int ret;
1671
1672         down_write(&mm->mmap_sem);
1673         ret = do_munmap(mm, addr, len);
1674         up_write(&mm->mmap_sem);
1675         return ret;
1676 }
1677 EXPORT_SYMBOL(vm_munmap);
1678
1679 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1680 {
1681         return vm_munmap(addr, len);
1682 }
1683
1684 /*
1685  * release all the mappings made in a process's VM space
1686  */
1687 void exit_mmap(struct mm_struct *mm)
1688 {
1689         struct vm_area_struct *vma;
1690
1691         if (!mm)
1692                 return;
1693
1694         mm->total_vm = 0;
1695
1696         while ((vma = mm->mmap)) {
1697                 mm->mmap = vma->vm_next;
1698                 delete_vma_from_mm(vma);
1699                 delete_vma(mm, vma);
1700                 cond_resched();
1701         }
1702 }
1703
1704 unsigned long vm_brk(unsigned long addr, unsigned long len)
1705 {
1706         return -ENOMEM;
1707 }
1708
1709 /*
1710  * expand (or shrink) an existing mapping, potentially moving it at the same
1711  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1712  *
1713  * under NOMMU conditions, we only permit changing a mapping's size, and only
1714  * as long as it stays within the region allocated by do_mmap_private() and the
1715  * block is not shareable
1716  *
1717  * MREMAP_FIXED is not supported under NOMMU conditions
1718  */
1719 static unsigned long do_mremap(unsigned long addr,
1720                         unsigned long old_len, unsigned long new_len,
1721                         unsigned long flags, unsigned long new_addr)
1722 {
1723         struct vm_area_struct *vma;
1724
1725         /* insanity checks first */
1726         old_len = PAGE_ALIGN(old_len);
1727         new_len = PAGE_ALIGN(new_len);
1728         if (old_len == 0 || new_len == 0)
1729                 return (unsigned long) -EINVAL;
1730
1731         if (offset_in_page(addr))
1732                 return -EINVAL;
1733
1734         if (flags & MREMAP_FIXED && new_addr != addr)
1735                 return (unsigned long) -EINVAL;
1736
1737         vma = find_vma_exact(current->mm, addr, old_len);
1738         if (!vma)
1739                 return (unsigned long) -EINVAL;
1740
1741         if (vma->vm_end != vma->vm_start + old_len)
1742                 return (unsigned long) -EFAULT;
1743
1744         if (vma->vm_flags & VM_MAYSHARE)
1745                 return (unsigned long) -EPERM;
1746
1747         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1748                 return (unsigned long) -ENOMEM;
1749
1750         /* all checks complete - do it */
1751         vma->vm_end = vma->vm_start + new_len;
1752         return vma->vm_start;
1753 }
1754
1755 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1756                 unsigned long, new_len, unsigned long, flags,
1757                 unsigned long, new_addr)
1758 {
1759         unsigned long ret;
1760
1761         down_write(&current->mm->mmap_sem);
1762         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1763         up_write(&current->mm->mmap_sem);
1764         return ret;
1765 }
1766
1767 struct page *follow_page_mask(struct vm_area_struct *vma,
1768                               unsigned long address, unsigned int flags,
1769                               unsigned int *page_mask)
1770 {
1771         *page_mask = 0;
1772         return NULL;
1773 }
1774
1775 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1776                 unsigned long pfn, unsigned long size, pgprot_t prot)
1777 {
1778         if (addr != (pfn << PAGE_SHIFT))
1779                 return -EINVAL;
1780
1781         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1782         return 0;
1783 }
1784 EXPORT_SYMBOL(remap_pfn_range);
1785
1786 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1787 {
1788         unsigned long pfn = start >> PAGE_SHIFT;
1789         unsigned long vm_len = vma->vm_end - vma->vm_start;
1790
1791         pfn += vma->vm_pgoff;
1792         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1793 }
1794 EXPORT_SYMBOL(vm_iomap_memory);
1795
1796 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1797                         unsigned long pgoff)
1798 {
1799         unsigned int size = vma->vm_end - vma->vm_start;
1800
1801         if (!(vma->vm_flags & VM_USERMAP))
1802                 return -EINVAL;
1803
1804         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1805         vma->vm_end = vma->vm_start + size;
1806
1807         return 0;
1808 }
1809 EXPORT_SYMBOL(remap_vmalloc_range);
1810
1811 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1812         unsigned long len, unsigned long pgoff, unsigned long flags)
1813 {
1814         return -ENOMEM;
1815 }
1816
1817 void unmap_mapping_range(struct address_space *mapping,
1818                          loff_t const holebegin, loff_t const holelen,
1819                          int even_cows)
1820 {
1821 }
1822 EXPORT_SYMBOL(unmap_mapping_range);
1823
1824 /*
1825  * Check that a process has enough memory to allocate a new virtual
1826  * mapping. 0 means there is enough memory for the allocation to
1827  * succeed and -ENOMEM implies there is not.
1828  *
1829  * We currently support three overcommit policies, which are set via the
1830  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1831  *
1832  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1833  * Additional code 2002 Jul 20 by Robert Love.
1834  *
1835  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1836  *
1837  * Note this is a helper function intended to be used by LSMs which
1838  * wish to use this logic.
1839  */
1840 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1841 {
1842         long free, allowed, reserve;
1843
1844         vm_acct_memory(pages);
1845
1846         /*
1847          * Sometimes we want to use more memory than we have
1848          */
1849         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1850                 return 0;
1851
1852         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1853                 free = global_page_state(NR_FREE_PAGES);
1854                 free += global_page_state(NR_FILE_PAGES);
1855
1856                 /*
1857                  * shmem pages shouldn't be counted as free in this
1858                  * case, they can't be purged, only swapped out, and
1859                  * that won't affect the overall amount of available
1860                  * memory in the system.
1861                  */
1862                 free -= global_page_state(NR_SHMEM);
1863
1864                 free += get_nr_swap_pages();
1865
1866                 /*
1867                  * Any slabs which are created with the
1868                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1869                  * which are reclaimable, under pressure.  The dentry
1870                  * cache and most inode caches should fall into this
1871                  */
1872                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1873
1874                 /*
1875                  * Leave reserved pages. The pages are not for anonymous pages.
1876                  */
1877                 if (free <= totalreserve_pages)
1878                         goto error;
1879                 else
1880                         free -= totalreserve_pages;
1881
1882                 /*
1883                  * Reserve some for root
1884                  */
1885                 if (!cap_sys_admin)
1886                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1887
1888                 if (free > pages)
1889                         return 0;
1890
1891                 goto error;
1892         }
1893
1894         allowed = vm_commit_limit();
1895         /*
1896          * Reserve some 3% for root
1897          */
1898         if (!cap_sys_admin)
1899                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1900
1901         /*
1902          * Don't let a single process grow so big a user can't recover
1903          */
1904         if (mm) {
1905                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1906                 allowed -= min_t(long, mm->total_vm / 32, reserve);
1907         }
1908
1909         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1910                 return 0;
1911
1912 error:
1913         vm_unacct_memory(pages);
1914
1915         return -ENOMEM;
1916 }
1917
1918 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1919 {
1920         BUG();
1921         return 0;
1922 }
1923 EXPORT_SYMBOL(filemap_fault);
1924
1925 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1926 {
1927         BUG();
1928 }
1929 EXPORT_SYMBOL(filemap_map_pages);
1930
1931 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1932                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1933 {
1934         struct vm_area_struct *vma;
1935         int write = gup_flags & FOLL_WRITE;
1936
1937         down_read(&mm->mmap_sem);
1938
1939         /* the access must start within one of the target process's mappings */
1940         vma = find_vma(mm, addr);
1941         if (vma) {
1942                 /* don't overrun this mapping */
1943                 if (addr + len >= vma->vm_end)
1944                         len = vma->vm_end - addr;
1945
1946                 /* only read or write mappings where it is permitted */
1947                 if (write && vma->vm_flags & VM_MAYWRITE)
1948                         copy_to_user_page(vma, NULL, addr,
1949                                          (void *) addr, buf, len);
1950                 else if (!write && vma->vm_flags & VM_MAYREAD)
1951                         copy_from_user_page(vma, NULL, addr,
1952                                             buf, (void *) addr, len);
1953                 else
1954                         len = 0;
1955         } else {
1956                 len = 0;
1957         }
1958
1959         up_read(&mm->mmap_sem);
1960
1961         return len;
1962 }
1963
1964 /**
1965  * @access_remote_vm - access another process' address space
1966  * @mm:         the mm_struct of the target address space
1967  * @addr:       start address to access
1968  * @buf:        source or destination buffer
1969  * @len:        number of bytes to transfer
1970  * @gup_flags:  flags modifying lookup behaviour
1971  *
1972  * The caller must hold a reference on @mm.
1973  */
1974 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1975                 void *buf, int len, unsigned int gup_flags)
1976 {
1977         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1978 }
1979
1980 /*
1981  * Access another process' address space.
1982  * - source/target buffer must be kernel space
1983  */
1984 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1985 {
1986         struct mm_struct *mm;
1987
1988         if (addr + len < addr)
1989                 return 0;
1990
1991         mm = get_task_mm(tsk);
1992         if (!mm)
1993                 return 0;
1994
1995         len = __access_remote_vm(tsk, mm, addr, buf, len,
1996                         write ? FOLL_WRITE : 0);
1997
1998         mmput(mm);
1999         return len;
2000 }
2001
2002 /**
2003  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2004  * @inode: The inode to check
2005  * @size: The current filesize of the inode
2006  * @newsize: The proposed filesize of the inode
2007  *
2008  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2009  * make sure that that any outstanding VMAs aren't broken and then shrink the
2010  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2011  * automatically grant mappings that are too large.
2012  */
2013 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2014                                 size_t newsize)
2015 {
2016         struct vm_area_struct *vma;
2017         struct vm_region *region;
2018         pgoff_t low, high;
2019         size_t r_size, r_top;
2020
2021         low = newsize >> PAGE_SHIFT;
2022         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2023
2024         down_write(&nommu_region_sem);
2025         i_mmap_lock_read(inode->i_mapping);
2026
2027         /* search for VMAs that fall within the dead zone */
2028         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2029                 /* found one - only interested if it's shared out of the page
2030                  * cache */
2031                 if (vma->vm_flags & VM_SHARED) {
2032                         i_mmap_unlock_read(inode->i_mapping);
2033                         up_write(&nommu_region_sem);
2034                         return -ETXTBSY; /* not quite true, but near enough */
2035                 }
2036         }
2037
2038         /* reduce any regions that overlap the dead zone - if in existence,
2039          * these will be pointed to by VMAs that don't overlap the dead zone
2040          *
2041          * we don't check for any regions that start beyond the EOF as there
2042          * shouldn't be any
2043          */
2044         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2045                 if (!(vma->vm_flags & VM_SHARED))
2046                         continue;
2047
2048                 region = vma->vm_region;
2049                 r_size = region->vm_top - region->vm_start;
2050                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2051
2052                 if (r_top > newsize) {
2053                         region->vm_top -= r_top - newsize;
2054                         if (region->vm_end > region->vm_top)
2055                                 region->vm_end = region->vm_top;
2056                 }
2057         }
2058
2059         i_mmap_unlock_read(inode->i_mapping);
2060         up_write(&nommu_region_sem);
2061         return 0;
2062 }
2063
2064 /*
2065  * Initialise sysctl_user_reserve_kbytes.
2066  *
2067  * This is intended to prevent a user from starting a single memory hogging
2068  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2069  * mode.
2070  *
2071  * The default value is min(3% of free memory, 128MB)
2072  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2073  */
2074 static int __meminit init_user_reserve(void)
2075 {
2076         unsigned long free_kbytes;
2077
2078         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2079
2080         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2081         return 0;
2082 }
2083 subsys_initcall(init_user_reserve);
2084
2085 /*
2086  * Initialise sysctl_admin_reserve_kbytes.
2087  *
2088  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2089  * to log in and kill a memory hogging process.
2090  *
2091  * Systems with more than 256MB will reserve 8MB, enough to recover
2092  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2093  * only reserve 3% of free pages by default.
2094  */
2095 static int __meminit init_admin_reserve(void)
2096 {
2097         unsigned long free_kbytes;
2098
2099         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2100
2101         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2102         return 0;
2103 }
2104 subsys_initcall(init_admin_reserve);