OSDN Git Service

NFS: Fix bool initialization/comparison
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         min = div64_ul(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         max = div64_ul(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278         unsigned long nr_pages;
279
280         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
283         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285
286         return nr_pages;
287 }
288
289 static unsigned long highmem_dirtyable_memory(unsigned long total)
290 {
291 #ifdef CONFIG_HIGHMEM
292         int node;
293         unsigned long x = 0;
294
295         for_each_node_state(node, N_HIGH_MEMORY) {
296                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297
298                 x += zone_dirtyable_memory(z);
299         }
300         /*
301          * Unreclaimable memory (kernel memory or anonymous memory
302          * without swap) can bring down the dirtyable pages below
303          * the zone's dirty balance reserve and the above calculation
304          * will underflow.  However we still want to add in nodes
305          * which are below threshold (negative values) to get a more
306          * accurate calculation but make sure that the total never
307          * underflows.
308          */
309         if ((long)x < 0)
310                 x = 0;
311
312         /*
313          * Make sure that the number of highmem pages is never larger
314          * than the number of the total dirtyable memory. This can only
315          * occur in very strange VM situations but we want to make sure
316          * that this does not occur.
317          */
318         return min(x, total);
319 #else
320         return 0;
321 #endif
322 }
323
324 /**
325  * global_dirtyable_memory - number of globally dirtyable pages
326  *
327  * Returns the global number of pages potentially available for dirty
328  * page cache.  This is the base value for the global dirty limits.
329  */
330 static unsigned long global_dirtyable_memory(void)
331 {
332         unsigned long x;
333
334         x = global_page_state(NR_FREE_PAGES);
335         x -= min(x, dirty_balance_reserve);
336
337         x += global_page_state(NR_INACTIVE_FILE);
338         x += global_page_state(NR_ACTIVE_FILE);
339
340         if (!vm_highmem_is_dirtyable)
341                 x -= highmem_dirtyable_memory(x);
342
343         return x + 1;   /* Ensure that we never return 0 */
344 }
345
346 /**
347  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348  * @dtc: dirty_throttle_control of interest
349  *
350  * Calculate @dtc->thresh and ->bg_thresh considering
351  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352  * must ensure that @dtc->avail is set before calling this function.  The
353  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354  * real-time tasks.
355  */
356 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357 {
358         const unsigned long available_memory = dtc->avail;
359         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360         unsigned long bytes = vm_dirty_bytes;
361         unsigned long bg_bytes = dirty_background_bytes;
362         /* convert ratios to per-PAGE_SIZE for higher precision */
363         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
364         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
365         unsigned long thresh;
366         unsigned long bg_thresh;
367         struct task_struct *tsk;
368
369         /* gdtc is !NULL iff @dtc is for memcg domain */
370         if (gdtc) {
371                 unsigned long global_avail = gdtc->avail;
372
373                 /*
374                  * The byte settings can't be applied directly to memcg
375                  * domains.  Convert them to ratios by scaling against
376                  * globally available memory.  As the ratios are in
377                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
378                  * number of pages.
379                  */
380                 if (bytes)
381                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
382                                     PAGE_SIZE);
383                 if (bg_bytes)
384                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
385                                        PAGE_SIZE);
386                 bytes = bg_bytes = 0;
387         }
388
389         if (bytes)
390                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
391         else
392                 thresh = (ratio * available_memory) / PAGE_SIZE;
393
394         if (bg_bytes)
395                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
396         else
397                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
398
399         if (bg_thresh >= thresh)
400                 bg_thresh = thresh / 2;
401         tsk = current;
402         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
403                 bg_thresh += bg_thresh / 4;
404                 thresh += thresh / 4;
405         }
406         dtc->thresh = thresh;
407         dtc->bg_thresh = bg_thresh;
408
409         /* we should eventually report the domain in the TP */
410         if (!gdtc)
411                 trace_global_dirty_state(bg_thresh, thresh);
412 }
413
414 /**
415  * global_dirty_limits - background-writeback and dirty-throttling thresholds
416  * @pbackground: out parameter for bg_thresh
417  * @pdirty: out parameter for thresh
418  *
419  * Calculate bg_thresh and thresh for global_wb_domain.  See
420  * domain_dirty_limits() for details.
421  */
422 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
423 {
424         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
425
426         gdtc.avail = global_dirtyable_memory();
427         domain_dirty_limits(&gdtc);
428
429         *pbackground = gdtc.bg_thresh;
430         *pdirty = gdtc.thresh;
431 }
432
433 /**
434  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
435  * @zone: the zone
436  *
437  * Returns the maximum number of dirty pages allowed in a zone, based
438  * on the zone's dirtyable memory.
439  */
440 static unsigned long zone_dirty_limit(struct zone *zone)
441 {
442         unsigned long zone_memory = zone_dirtyable_memory(zone);
443         struct task_struct *tsk = current;
444         unsigned long dirty;
445
446         if (vm_dirty_bytes)
447                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
448                         zone_memory / global_dirtyable_memory();
449         else
450                 dirty = vm_dirty_ratio * zone_memory / 100;
451
452         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
453                 dirty += dirty / 4;
454
455         return dirty;
456 }
457
458 /**
459  * zone_dirty_ok - tells whether a zone is within its dirty limits
460  * @zone: the zone to check
461  *
462  * Returns %true when the dirty pages in @zone are within the zone's
463  * dirty limit, %false if the limit is exceeded.
464  */
465 bool zone_dirty_ok(struct zone *zone)
466 {
467         unsigned long limit = zone_dirty_limit(zone);
468
469         return zone_page_state(zone, NR_FILE_DIRTY) +
470                zone_page_state(zone, NR_UNSTABLE_NFS) +
471                zone_page_state(zone, NR_WRITEBACK) <= limit;
472 }
473
474 int dirty_background_ratio_handler(struct ctl_table *table, int write,
475                 void __user *buffer, size_t *lenp,
476                 loff_t *ppos)
477 {
478         int ret;
479
480         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481         if (ret == 0 && write)
482                 dirty_background_bytes = 0;
483         return ret;
484 }
485
486 int dirty_background_bytes_handler(struct ctl_table *table, int write,
487                 void __user *buffer, size_t *lenp,
488                 loff_t *ppos)
489 {
490         int ret;
491
492         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
493         if (ret == 0 && write)
494                 dirty_background_ratio = 0;
495         return ret;
496 }
497
498 int dirty_ratio_handler(struct ctl_table *table, int write,
499                 void __user *buffer, size_t *lenp,
500                 loff_t *ppos)
501 {
502         int old_ratio = vm_dirty_ratio;
503         int ret;
504
505         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
506         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
507                 writeback_set_ratelimit();
508                 vm_dirty_bytes = 0;
509         }
510         return ret;
511 }
512
513 int dirty_bytes_handler(struct ctl_table *table, int write,
514                 void __user *buffer, size_t *lenp,
515                 loff_t *ppos)
516 {
517         unsigned long old_bytes = vm_dirty_bytes;
518         int ret;
519
520         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
521         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
522                 writeback_set_ratelimit();
523                 vm_dirty_ratio = 0;
524         }
525         return ret;
526 }
527
528 static unsigned long wp_next_time(unsigned long cur_time)
529 {
530         cur_time += VM_COMPLETIONS_PERIOD_LEN;
531         /* 0 has a special meaning... */
532         if (!cur_time)
533                 return 1;
534         return cur_time;
535 }
536
537 static void wb_domain_writeout_inc(struct wb_domain *dom,
538                                    struct fprop_local_percpu *completions,
539                                    unsigned int max_prop_frac)
540 {
541         __fprop_inc_percpu_max(&dom->completions, completions,
542                                max_prop_frac);
543         /* First event after period switching was turned off? */
544         if (!unlikely(dom->period_time)) {
545                 /*
546                  * We can race with other __bdi_writeout_inc calls here but
547                  * it does not cause any harm since the resulting time when
548                  * timer will fire and what is in writeout_period_time will be
549                  * roughly the same.
550                  */
551                 dom->period_time = wp_next_time(jiffies);
552                 mod_timer(&dom->period_timer, dom->period_time);
553         }
554 }
555
556 /*
557  * Increment @wb's writeout completion count and the global writeout
558  * completion count. Called from test_clear_page_writeback().
559  */
560 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
561 {
562         struct wb_domain *cgdom;
563
564         __inc_wb_stat(wb, WB_WRITTEN);
565         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
566                                wb->bdi->max_prop_frac);
567
568         cgdom = mem_cgroup_wb_domain(wb);
569         if (cgdom)
570                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
571                                        wb->bdi->max_prop_frac);
572 }
573
574 void wb_writeout_inc(struct bdi_writeback *wb)
575 {
576         unsigned long flags;
577
578         local_irq_save(flags);
579         __wb_writeout_inc(wb);
580         local_irq_restore(flags);
581 }
582 EXPORT_SYMBOL_GPL(wb_writeout_inc);
583
584 /*
585  * On idle system, we can be called long after we scheduled because we use
586  * deferred timers so count with missed periods.
587  */
588 static void writeout_period(unsigned long t)
589 {
590         struct wb_domain *dom = (void *)t;
591         int miss_periods = (jiffies - dom->period_time) /
592                                                  VM_COMPLETIONS_PERIOD_LEN;
593
594         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
595                 dom->period_time = wp_next_time(dom->period_time +
596                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
597                 mod_timer(&dom->period_timer, dom->period_time);
598         } else {
599                 /*
600                  * Aging has zeroed all fractions. Stop wasting CPU on period
601                  * updates.
602                  */
603                 dom->period_time = 0;
604         }
605 }
606
607 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
608 {
609         memset(dom, 0, sizeof(*dom));
610
611         spin_lock_init(&dom->lock);
612
613         init_timer_deferrable(&dom->period_timer);
614         dom->period_timer.function = writeout_period;
615         dom->period_timer.data = (unsigned long)dom;
616
617         dom->dirty_limit_tstamp = jiffies;
618
619         return fprop_global_init(&dom->completions, gfp);
620 }
621
622 #ifdef CONFIG_CGROUP_WRITEBACK
623 void wb_domain_exit(struct wb_domain *dom)
624 {
625         del_timer_sync(&dom->period_timer);
626         fprop_global_destroy(&dom->completions);
627 }
628 #endif
629
630 /*
631  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
632  * registered backing devices, which, for obvious reasons, can not
633  * exceed 100%.
634  */
635 static unsigned int bdi_min_ratio;
636
637 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
638 {
639         int ret = 0;
640
641         spin_lock_bh(&bdi_lock);
642         if (min_ratio > bdi->max_ratio) {
643                 ret = -EINVAL;
644         } else {
645                 min_ratio -= bdi->min_ratio;
646                 if (bdi_min_ratio + min_ratio < 100) {
647                         bdi_min_ratio += min_ratio;
648                         bdi->min_ratio += min_ratio;
649                 } else {
650                         ret = -EINVAL;
651                 }
652         }
653         spin_unlock_bh(&bdi_lock);
654
655         return ret;
656 }
657
658 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
659 {
660         int ret = 0;
661
662         if (max_ratio > 100)
663                 return -EINVAL;
664
665         spin_lock_bh(&bdi_lock);
666         if (bdi->min_ratio > max_ratio) {
667                 ret = -EINVAL;
668         } else {
669                 bdi->max_ratio = max_ratio;
670                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
671         }
672         spin_unlock_bh(&bdi_lock);
673
674         return ret;
675 }
676 EXPORT_SYMBOL(bdi_set_max_ratio);
677
678 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
679                                            unsigned long bg_thresh)
680 {
681         return (thresh + bg_thresh) / 2;
682 }
683
684 static unsigned long hard_dirty_limit(struct wb_domain *dom,
685                                       unsigned long thresh)
686 {
687         return max(thresh, dom->dirty_limit);
688 }
689
690 /*
691  * Memory which can be further allocated to a memcg domain is capped by
692  * system-wide clean memory excluding the amount being used in the domain.
693  */
694 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
695                             unsigned long filepages, unsigned long headroom)
696 {
697         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
698         unsigned long clean = filepages - min(filepages, mdtc->dirty);
699         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
700         unsigned long other_clean = global_clean - min(global_clean, clean);
701
702         mdtc->avail = filepages + min(headroom, other_clean);
703 }
704
705 /**
706  * __wb_calc_thresh - @wb's share of dirty throttling threshold
707  * @dtc: dirty_throttle_context of interest
708  *
709  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
710  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
711  *
712  * Note that balance_dirty_pages() will only seriously take it as a hard limit
713  * when sleeping max_pause per page is not enough to keep the dirty pages under
714  * control. For example, when the device is completely stalled due to some error
715  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
716  * In the other normal situations, it acts more gently by throttling the tasks
717  * more (rather than completely block them) when the wb dirty pages go high.
718  *
719  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
720  * - starving fast devices
721  * - piling up dirty pages (that will take long time to sync) on slow devices
722  *
723  * The wb's share of dirty limit will be adapting to its throughput and
724  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
725  */
726 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
727 {
728         struct wb_domain *dom = dtc_dom(dtc);
729         unsigned long thresh = dtc->thresh;
730         u64 wb_thresh;
731         long numerator, denominator;
732         unsigned long wb_min_ratio, wb_max_ratio;
733
734         /*
735          * Calculate this BDI's share of the thresh ratio.
736          */
737         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
738                               &numerator, &denominator);
739
740         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
741         wb_thresh *= numerator;
742         do_div(wb_thresh, denominator);
743
744         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
745
746         wb_thresh += (thresh * wb_min_ratio) / 100;
747         if (wb_thresh > (thresh * wb_max_ratio) / 100)
748                 wb_thresh = thresh * wb_max_ratio / 100;
749
750         return wb_thresh;
751 }
752
753 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
754 {
755         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
756                                                .thresh = thresh };
757         return __wb_calc_thresh(&gdtc);
758 }
759
760 /*
761  *                           setpoint - dirty 3
762  *        f(dirty) := 1.0 + (----------------)
763  *                           limit - setpoint
764  *
765  * it's a 3rd order polynomial that subjects to
766  *
767  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
768  * (2) f(setpoint) = 1.0 => the balance point
769  * (3) f(limit)    = 0   => the hard limit
770  * (4) df/dx      <= 0   => negative feedback control
771  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
772  *     => fast response on large errors; small oscillation near setpoint
773  */
774 static long long pos_ratio_polynom(unsigned long setpoint,
775                                           unsigned long dirty,
776                                           unsigned long limit)
777 {
778         long long pos_ratio;
779         long x;
780
781         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
782                       (limit - setpoint) | 1);
783         pos_ratio = x;
784         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
785         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
786         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
787
788         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
789 }
790
791 /*
792  * Dirty position control.
793  *
794  * (o) global/bdi setpoints
795  *
796  * We want the dirty pages be balanced around the global/wb setpoints.
797  * When the number of dirty pages is higher/lower than the setpoint, the
798  * dirty position control ratio (and hence task dirty ratelimit) will be
799  * decreased/increased to bring the dirty pages back to the setpoint.
800  *
801  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
802  *
803  *     if (dirty < setpoint) scale up   pos_ratio
804  *     if (dirty > setpoint) scale down pos_ratio
805  *
806  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
807  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
808  *
809  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
810  *
811  * (o) global control line
812  *
813  *     ^ pos_ratio
814  *     |
815  *     |            |<===== global dirty control scope ======>|
816  * 2.0 .............*
817  *     |            .*
818  *     |            . *
819  *     |            .   *
820  *     |            .     *
821  *     |            .        *
822  *     |            .            *
823  * 1.0 ................................*
824  *     |            .                  .     *
825  *     |            .                  .          *
826  *     |            .                  .              *
827  *     |            .                  .                 *
828  *     |            .                  .                    *
829  *   0 +------------.------------------.----------------------*------------->
830  *           freerun^          setpoint^                 limit^   dirty pages
831  *
832  * (o) wb control line
833  *
834  *     ^ pos_ratio
835  *     |
836  *     |            *
837  *     |              *
838  *     |                *
839  *     |                  *
840  *     |                    * |<=========== span ============>|
841  * 1.0 .......................*
842  *     |                      . *
843  *     |                      .   *
844  *     |                      .     *
845  *     |                      .       *
846  *     |                      .         *
847  *     |                      .           *
848  *     |                      .             *
849  *     |                      .               *
850  *     |                      .                 *
851  *     |                      .                   *
852  *     |                      .                     *
853  * 1/4 ...............................................* * * * * * * * * * * *
854  *     |                      .                         .
855  *     |                      .                           .
856  *     |                      .                             .
857  *   0 +----------------------.-------------------------------.------------->
858  *                wb_setpoint^                    x_intercept^
859  *
860  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
861  * be smoothly throttled down to normal if it starts high in situations like
862  * - start writing to a slow SD card and a fast disk at the same time. The SD
863  *   card's wb_dirty may rush to many times higher than wb_setpoint.
864  * - the wb dirty thresh drops quickly due to change of JBOD workload
865  */
866 static void wb_position_ratio(struct dirty_throttle_control *dtc)
867 {
868         struct bdi_writeback *wb = dtc->wb;
869         unsigned long write_bw = wb->avg_write_bandwidth;
870         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
871         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
872         unsigned long wb_thresh = dtc->wb_thresh;
873         unsigned long x_intercept;
874         unsigned long setpoint;         /* dirty pages' target balance point */
875         unsigned long wb_setpoint;
876         unsigned long span;
877         long long pos_ratio;            /* for scaling up/down the rate limit */
878         long x;
879
880         dtc->pos_ratio = 0;
881
882         if (unlikely(dtc->dirty >= limit))
883                 return;
884
885         /*
886          * global setpoint
887          *
888          * See comment for pos_ratio_polynom().
889          */
890         setpoint = (freerun + limit) / 2;
891         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
892
893         /*
894          * The strictlimit feature is a tool preventing mistrusted filesystems
895          * from growing a large number of dirty pages before throttling. For
896          * such filesystems balance_dirty_pages always checks wb counters
897          * against wb limits. Even if global "nr_dirty" is under "freerun".
898          * This is especially important for fuse which sets bdi->max_ratio to
899          * 1% by default. Without strictlimit feature, fuse writeback may
900          * consume arbitrary amount of RAM because it is accounted in
901          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
902          *
903          * Here, in wb_position_ratio(), we calculate pos_ratio based on
904          * two values: wb_dirty and wb_thresh. Let's consider an example:
905          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
906          * limits are set by default to 10% and 20% (background and throttle).
907          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
908          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
909          * about ~6K pages (as the average of background and throttle wb
910          * limits). The 3rd order polynomial will provide positive feedback if
911          * wb_dirty is under wb_setpoint and vice versa.
912          *
913          * Note, that we cannot use global counters in these calculations
914          * because we want to throttle process writing to a strictlimit wb
915          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
916          * in the example above).
917          */
918         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
919                 long long wb_pos_ratio;
920
921                 if (dtc->wb_dirty < 8) {
922                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
923                                            2 << RATELIMIT_CALC_SHIFT);
924                         return;
925                 }
926
927                 if (dtc->wb_dirty >= wb_thresh)
928                         return;
929
930                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
931                                                     dtc->wb_bg_thresh);
932
933                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
934                         return;
935
936                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
937                                                  wb_thresh);
938
939                 /*
940                  * Typically, for strictlimit case, wb_setpoint << setpoint
941                  * and pos_ratio >> wb_pos_ratio. In the other words global
942                  * state ("dirty") is not limiting factor and we have to
943                  * make decision based on wb counters. But there is an
944                  * important case when global pos_ratio should get precedence:
945                  * global limits are exceeded (e.g. due to activities on other
946                  * wb's) while given strictlimit wb is below limit.
947                  *
948                  * "pos_ratio * wb_pos_ratio" would work for the case above,
949                  * but it would look too non-natural for the case of all
950                  * activity in the system coming from a single strictlimit wb
951                  * with bdi->max_ratio == 100%.
952                  *
953                  * Note that min() below somewhat changes the dynamics of the
954                  * control system. Normally, pos_ratio value can be well over 3
955                  * (when globally we are at freerun and wb is well below wb
956                  * setpoint). Now the maximum pos_ratio in the same situation
957                  * is 2. We might want to tweak this if we observe the control
958                  * system is too slow to adapt.
959                  */
960                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
961                 return;
962         }
963
964         /*
965          * We have computed basic pos_ratio above based on global situation. If
966          * the wb is over/under its share of dirty pages, we want to scale
967          * pos_ratio further down/up. That is done by the following mechanism.
968          */
969
970         /*
971          * wb setpoint
972          *
973          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
974          *
975          *                        x_intercept - wb_dirty
976          *                     := --------------------------
977          *                        x_intercept - wb_setpoint
978          *
979          * The main wb control line is a linear function that subjects to
980          *
981          * (1) f(wb_setpoint) = 1.0
982          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
983          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
984          *
985          * For single wb case, the dirty pages are observed to fluctuate
986          * regularly within range
987          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
988          * for various filesystems, where (2) can yield in a reasonable 12.5%
989          * fluctuation range for pos_ratio.
990          *
991          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
992          * own size, so move the slope over accordingly and choose a slope that
993          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
994          */
995         if (unlikely(wb_thresh > dtc->thresh))
996                 wb_thresh = dtc->thresh;
997         /*
998          * It's very possible that wb_thresh is close to 0 not because the
999          * device is slow, but that it has remained inactive for long time.
1000          * Honour such devices a reasonable good (hopefully IO efficient)
1001          * threshold, so that the occasional writes won't be blocked and active
1002          * writes can rampup the threshold quickly.
1003          */
1004         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1005         /*
1006          * scale global setpoint to wb's:
1007          *      wb_setpoint = setpoint * wb_thresh / thresh
1008          */
1009         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1010         wb_setpoint = setpoint * (u64)x >> 16;
1011         /*
1012          * Use span=(8*write_bw) in single wb case as indicated by
1013          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1014          *
1015          *        wb_thresh                    thresh - wb_thresh
1016          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1017          *         thresh                           thresh
1018          */
1019         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1020         x_intercept = wb_setpoint + span;
1021
1022         if (dtc->wb_dirty < x_intercept - span / 4) {
1023                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1024                                       (x_intercept - wb_setpoint) | 1);
1025         } else
1026                 pos_ratio /= 4;
1027
1028         /*
1029          * wb reserve area, safeguard against dirty pool underrun and disk idle
1030          * It may push the desired control point of global dirty pages higher
1031          * than setpoint.
1032          */
1033         x_intercept = wb_thresh / 2;
1034         if (dtc->wb_dirty < x_intercept) {
1035                 if (dtc->wb_dirty > x_intercept / 8)
1036                         pos_ratio = div_u64(pos_ratio * x_intercept,
1037                                             dtc->wb_dirty);
1038                 else
1039                         pos_ratio *= 8;
1040         }
1041
1042         dtc->pos_ratio = pos_ratio;
1043 }
1044
1045 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1046                                       unsigned long elapsed,
1047                                       unsigned long written)
1048 {
1049         const unsigned long period = roundup_pow_of_two(3 * HZ);
1050         unsigned long avg = wb->avg_write_bandwidth;
1051         unsigned long old = wb->write_bandwidth;
1052         u64 bw;
1053
1054         /*
1055          * bw = written * HZ / elapsed
1056          *
1057          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1058          * write_bandwidth = ---------------------------------------------------
1059          *                                          period
1060          *
1061          * @written may have decreased due to account_page_redirty().
1062          * Avoid underflowing @bw calculation.
1063          */
1064         bw = written - min(written, wb->written_stamp);
1065         bw *= HZ;
1066         if (unlikely(elapsed > period)) {
1067                 do_div(bw, elapsed);
1068                 avg = bw;
1069                 goto out;
1070         }
1071         bw += (u64)wb->write_bandwidth * (period - elapsed);
1072         bw >>= ilog2(period);
1073
1074         /*
1075          * one more level of smoothing, for filtering out sudden spikes
1076          */
1077         if (avg > old && old >= (unsigned long)bw)
1078                 avg -= (avg - old) >> 3;
1079
1080         if (avg < old && old <= (unsigned long)bw)
1081                 avg += (old - avg) >> 3;
1082
1083 out:
1084         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1085         avg = max(avg, 1LU);
1086         if (wb_has_dirty_io(wb)) {
1087                 long delta = avg - wb->avg_write_bandwidth;
1088                 WARN_ON_ONCE(atomic_long_add_return(delta,
1089                                         &wb->bdi->tot_write_bandwidth) <= 0);
1090         }
1091         wb->write_bandwidth = bw;
1092         wb->avg_write_bandwidth = avg;
1093 }
1094
1095 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1096 {
1097         struct wb_domain *dom = dtc_dom(dtc);
1098         unsigned long thresh = dtc->thresh;
1099         unsigned long limit = dom->dirty_limit;
1100
1101         /*
1102          * Follow up in one step.
1103          */
1104         if (limit < thresh) {
1105                 limit = thresh;
1106                 goto update;
1107         }
1108
1109         /*
1110          * Follow down slowly. Use the higher one as the target, because thresh
1111          * may drop below dirty. This is exactly the reason to introduce
1112          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1113          */
1114         thresh = max(thresh, dtc->dirty);
1115         if (limit > thresh) {
1116                 limit -= (limit - thresh) >> 5;
1117                 goto update;
1118         }
1119         return;
1120 update:
1121         dom->dirty_limit = limit;
1122 }
1123
1124 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1125                                     unsigned long now)
1126 {
1127         struct wb_domain *dom = dtc_dom(dtc);
1128
1129         /*
1130          * check locklessly first to optimize away locking for the most time
1131          */
1132         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1133                 return;
1134
1135         spin_lock(&dom->lock);
1136         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1137                 update_dirty_limit(dtc);
1138                 dom->dirty_limit_tstamp = now;
1139         }
1140         spin_unlock(&dom->lock);
1141 }
1142
1143 /*
1144  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1145  *
1146  * Normal wb tasks will be curbed at or below it in long term.
1147  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1148  */
1149 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1150                                       unsigned long dirtied,
1151                                       unsigned long elapsed)
1152 {
1153         struct bdi_writeback *wb = dtc->wb;
1154         unsigned long dirty = dtc->dirty;
1155         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1156         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1157         unsigned long setpoint = (freerun + limit) / 2;
1158         unsigned long write_bw = wb->avg_write_bandwidth;
1159         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1160         unsigned long dirty_rate;
1161         unsigned long task_ratelimit;
1162         unsigned long balanced_dirty_ratelimit;
1163         unsigned long step;
1164         unsigned long x;
1165         unsigned long shift;
1166
1167         /*
1168          * The dirty rate will match the writeout rate in long term, except
1169          * when dirty pages are truncated by userspace or re-dirtied by FS.
1170          */
1171         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1172
1173         /*
1174          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1175          */
1176         task_ratelimit = (u64)dirty_ratelimit *
1177                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1178         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1179
1180         /*
1181          * A linear estimation of the "balanced" throttle rate. The theory is,
1182          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1183          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1184          * formula will yield the balanced rate limit (write_bw / N).
1185          *
1186          * Note that the expanded form is not a pure rate feedback:
1187          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1188          * but also takes pos_ratio into account:
1189          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1190          *
1191          * (1) is not realistic because pos_ratio also takes part in balancing
1192          * the dirty rate.  Consider the state
1193          *      pos_ratio = 0.5                                              (3)
1194          *      rate = 2 * (write_bw / N)                                    (4)
1195          * If (1) is used, it will stuck in that state! Because each dd will
1196          * be throttled at
1197          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1198          * yielding
1199          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1200          * put (6) into (1) we get
1201          *      rate_(i+1) = rate_(i)                                        (7)
1202          *
1203          * So we end up using (2) to always keep
1204          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1205          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1206          * pos_ratio is able to drive itself to 1.0, which is not only where
1207          * the dirty count meet the setpoint, but also where the slope of
1208          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1209          */
1210         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1211                                            dirty_rate | 1);
1212         /*
1213          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1214          */
1215         if (unlikely(balanced_dirty_ratelimit > write_bw))
1216                 balanced_dirty_ratelimit = write_bw;
1217
1218         /*
1219          * We could safely do this and return immediately:
1220          *
1221          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1222          *
1223          * However to get a more stable dirty_ratelimit, the below elaborated
1224          * code makes use of task_ratelimit to filter out singular points and
1225          * limit the step size.
1226          *
1227          * The below code essentially only uses the relative value of
1228          *
1229          *      task_ratelimit - dirty_ratelimit
1230          *      = (pos_ratio - 1) * dirty_ratelimit
1231          *
1232          * which reflects the direction and size of dirty position error.
1233          */
1234
1235         /*
1236          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1237          * task_ratelimit is on the same side of dirty_ratelimit, too.
1238          * For example, when
1239          * - dirty_ratelimit > balanced_dirty_ratelimit
1240          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1241          * lowering dirty_ratelimit will help meet both the position and rate
1242          * control targets. Otherwise, don't update dirty_ratelimit if it will
1243          * only help meet the rate target. After all, what the users ultimately
1244          * feel and care are stable dirty rate and small position error.
1245          *
1246          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1247          * and filter out the singular points of balanced_dirty_ratelimit. Which
1248          * keeps jumping around randomly and can even leap far away at times
1249          * due to the small 200ms estimation period of dirty_rate (we want to
1250          * keep that period small to reduce time lags).
1251          */
1252         step = 0;
1253
1254         /*
1255          * For strictlimit case, calculations above were based on wb counters
1256          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1257          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1258          * Hence, to calculate "step" properly, we have to use wb_dirty as
1259          * "dirty" and wb_setpoint as "setpoint".
1260          *
1261          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1262          * it's possible that wb_thresh is close to zero due to inactivity
1263          * of backing device.
1264          */
1265         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1266                 dirty = dtc->wb_dirty;
1267                 if (dtc->wb_dirty < 8)
1268                         setpoint = dtc->wb_dirty + 1;
1269                 else
1270                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1271         }
1272
1273         if (dirty < setpoint) {
1274                 x = min3(wb->balanced_dirty_ratelimit,
1275                          balanced_dirty_ratelimit, task_ratelimit);
1276                 if (dirty_ratelimit < x)
1277                         step = x - dirty_ratelimit;
1278         } else {
1279                 x = max3(wb->balanced_dirty_ratelimit,
1280                          balanced_dirty_ratelimit, task_ratelimit);
1281                 if (dirty_ratelimit > x)
1282                         step = dirty_ratelimit - x;
1283         }
1284
1285         /*
1286          * Don't pursue 100% rate matching. It's impossible since the balanced
1287          * rate itself is constantly fluctuating. So decrease the track speed
1288          * when it gets close to the target. Helps eliminate pointless tremors.
1289          */
1290         shift = dirty_ratelimit / (2 * step + 1);
1291         if (shift < BITS_PER_LONG)
1292                 step = DIV_ROUND_UP(step >> shift, 8);
1293         else
1294                 step = 0;
1295
1296         if (dirty_ratelimit < balanced_dirty_ratelimit)
1297                 dirty_ratelimit += step;
1298         else
1299                 dirty_ratelimit -= step;
1300
1301         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1302         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1303
1304         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1305 }
1306
1307 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1308                                   struct dirty_throttle_control *mdtc,
1309                                   unsigned long start_time,
1310                                   bool update_ratelimit)
1311 {
1312         struct bdi_writeback *wb = gdtc->wb;
1313         unsigned long now = jiffies;
1314         unsigned long elapsed = now - wb->bw_time_stamp;
1315         unsigned long dirtied;
1316         unsigned long written;
1317
1318         lockdep_assert_held(&wb->list_lock);
1319
1320         /*
1321          * rate-limit, only update once every 200ms.
1322          */
1323         if (elapsed < BANDWIDTH_INTERVAL)
1324                 return;
1325
1326         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1327         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1328
1329         /*
1330          * Skip quiet periods when disk bandwidth is under-utilized.
1331          * (at least 1s idle time between two flusher runs)
1332          */
1333         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1334                 goto snapshot;
1335
1336         if (update_ratelimit) {
1337                 domain_update_bandwidth(gdtc, now);
1338                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1339
1340                 /*
1341                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1342                  * compiler has no way to figure that out.  Help it.
1343                  */
1344                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1345                         domain_update_bandwidth(mdtc, now);
1346                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1347                 }
1348         }
1349         wb_update_write_bandwidth(wb, elapsed, written);
1350
1351 snapshot:
1352         wb->dirtied_stamp = dirtied;
1353         wb->written_stamp = written;
1354         wb->bw_time_stamp = now;
1355 }
1356
1357 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1358 {
1359         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1360
1361         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1362 }
1363
1364 /*
1365  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1366  * will look to see if it needs to start dirty throttling.
1367  *
1368  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1369  * global_page_state() too often. So scale it near-sqrt to the safety margin
1370  * (the number of pages we may dirty without exceeding the dirty limits).
1371  */
1372 static unsigned long dirty_poll_interval(unsigned long dirty,
1373                                          unsigned long thresh)
1374 {
1375         if (thresh > dirty)
1376                 return 1UL << (ilog2(thresh - dirty) >> 1);
1377
1378         return 1;
1379 }
1380
1381 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1382                                   unsigned long wb_dirty)
1383 {
1384         unsigned long bw = wb->avg_write_bandwidth;
1385         unsigned long t;
1386
1387         /*
1388          * Limit pause time for small memory systems. If sleeping for too long
1389          * time, a small pool of dirty/writeback pages may go empty and disk go
1390          * idle.
1391          *
1392          * 8 serves as the safety ratio.
1393          */
1394         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1395         t++;
1396
1397         return min_t(unsigned long, t, MAX_PAUSE);
1398 }
1399
1400 static long wb_min_pause(struct bdi_writeback *wb,
1401                          long max_pause,
1402                          unsigned long task_ratelimit,
1403                          unsigned long dirty_ratelimit,
1404                          int *nr_dirtied_pause)
1405 {
1406         long hi = ilog2(wb->avg_write_bandwidth);
1407         long lo = ilog2(wb->dirty_ratelimit);
1408         long t;         /* target pause */
1409         long pause;     /* estimated next pause */
1410         int pages;      /* target nr_dirtied_pause */
1411
1412         /* target for 10ms pause on 1-dd case */
1413         t = max(1, HZ / 100);
1414
1415         /*
1416          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1417          * overheads.
1418          *
1419          * (N * 10ms) on 2^N concurrent tasks.
1420          */
1421         if (hi > lo)
1422                 t += (hi - lo) * (10 * HZ) / 1024;
1423
1424         /*
1425          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1426          * on the much more stable dirty_ratelimit. However the next pause time
1427          * will be computed based on task_ratelimit and the two rate limits may
1428          * depart considerably at some time. Especially if task_ratelimit goes
1429          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1430          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1431          * result task_ratelimit won't be executed faithfully, which could
1432          * eventually bring down dirty_ratelimit.
1433          *
1434          * We apply two rules to fix it up:
1435          * 1) try to estimate the next pause time and if necessary, use a lower
1436          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1437          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1438          * 2) limit the target pause time to max_pause/2, so that the normal
1439          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1440          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1441          */
1442         t = min(t, 1 + max_pause / 2);
1443         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1444
1445         /*
1446          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1447          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1448          * When the 16 consecutive reads are often interrupted by some dirty
1449          * throttling pause during the async writes, cfq will go into idles
1450          * (deadline is fine). So push nr_dirtied_pause as high as possible
1451          * until reaches DIRTY_POLL_THRESH=32 pages.
1452          */
1453         if (pages < DIRTY_POLL_THRESH) {
1454                 t = max_pause;
1455                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1456                 if (pages > DIRTY_POLL_THRESH) {
1457                         pages = DIRTY_POLL_THRESH;
1458                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1459                 }
1460         }
1461
1462         pause = HZ * pages / (task_ratelimit + 1);
1463         if (pause > max_pause) {
1464                 t = max_pause;
1465                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1466         }
1467
1468         *nr_dirtied_pause = pages;
1469         /*
1470          * The minimal pause time will normally be half the target pause time.
1471          */
1472         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1473 }
1474
1475 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1476 {
1477         struct bdi_writeback *wb = dtc->wb;
1478         unsigned long wb_reclaimable;
1479
1480         /*
1481          * wb_thresh is not treated as some limiting factor as
1482          * dirty_thresh, due to reasons
1483          * - in JBOD setup, wb_thresh can fluctuate a lot
1484          * - in a system with HDD and USB key, the USB key may somehow
1485          *   go into state (wb_dirty >> wb_thresh) either because
1486          *   wb_dirty starts high, or because wb_thresh drops low.
1487          *   In this case we don't want to hard throttle the USB key
1488          *   dirtiers for 100 seconds until wb_dirty drops under
1489          *   wb_thresh. Instead the auxiliary wb control line in
1490          *   wb_position_ratio() will let the dirtier task progress
1491          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1492          */
1493         dtc->wb_thresh = __wb_calc_thresh(dtc);
1494         dtc->wb_bg_thresh = dtc->thresh ?
1495                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1496
1497         /*
1498          * In order to avoid the stacked BDI deadlock we need
1499          * to ensure we accurately count the 'dirty' pages when
1500          * the threshold is low.
1501          *
1502          * Otherwise it would be possible to get thresh+n pages
1503          * reported dirty, even though there are thresh-m pages
1504          * actually dirty; with m+n sitting in the percpu
1505          * deltas.
1506          */
1507         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1508                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1509                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1510         } else {
1511                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1512                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1513         }
1514 }
1515
1516 /*
1517  * balance_dirty_pages() must be called by processes which are generating dirty
1518  * data.  It looks at the number of dirty pages in the machine and will force
1519  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1520  * If we're over `background_thresh' then the writeback threads are woken to
1521  * perform some writeout.
1522  */
1523 static void balance_dirty_pages(struct address_space *mapping,
1524                                 struct bdi_writeback *wb,
1525                                 unsigned long pages_dirtied)
1526 {
1527         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1528         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1529         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1530         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1531                                                      &mdtc_stor : NULL;
1532         struct dirty_throttle_control *sdtc;
1533         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1534         long period;
1535         long pause;
1536         long max_pause;
1537         long min_pause;
1538         int nr_dirtied_pause;
1539         bool dirty_exceeded = false;
1540         unsigned long task_ratelimit;
1541         unsigned long dirty_ratelimit;
1542         struct backing_dev_info *bdi = wb->bdi;
1543         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1544         unsigned long start_time = jiffies;
1545
1546         for (;;) {
1547                 unsigned long now = jiffies;
1548                 unsigned long dirty, thresh, bg_thresh;
1549                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1550                 unsigned long m_thresh = 0;
1551                 unsigned long m_bg_thresh = 0;
1552
1553                 /*
1554                  * Unstable writes are a feature of certain networked
1555                  * filesystems (i.e. NFS) in which data may have been
1556                  * written to the server's write cache, but has not yet
1557                  * been flushed to permanent storage.
1558                  */
1559                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1560                                         global_page_state(NR_UNSTABLE_NFS);
1561                 gdtc->avail = global_dirtyable_memory();
1562                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1563
1564                 domain_dirty_limits(gdtc);
1565
1566                 if (unlikely(strictlimit)) {
1567                         wb_dirty_limits(gdtc);
1568
1569                         dirty = gdtc->wb_dirty;
1570                         thresh = gdtc->wb_thresh;
1571                         bg_thresh = gdtc->wb_bg_thresh;
1572                 } else {
1573                         dirty = gdtc->dirty;
1574                         thresh = gdtc->thresh;
1575                         bg_thresh = gdtc->bg_thresh;
1576                 }
1577
1578                 if (mdtc) {
1579                         unsigned long filepages, headroom, writeback;
1580
1581                         /*
1582                          * If @wb belongs to !root memcg, repeat the same
1583                          * basic calculations for the memcg domain.
1584                          */
1585                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1586                                             &mdtc->dirty, &writeback);
1587                         mdtc->dirty += writeback;
1588                         mdtc_calc_avail(mdtc, filepages, headroom);
1589
1590                         domain_dirty_limits(mdtc);
1591
1592                         if (unlikely(strictlimit)) {
1593                                 wb_dirty_limits(mdtc);
1594                                 m_dirty = mdtc->wb_dirty;
1595                                 m_thresh = mdtc->wb_thresh;
1596                                 m_bg_thresh = mdtc->wb_bg_thresh;
1597                         } else {
1598                                 m_dirty = mdtc->dirty;
1599                                 m_thresh = mdtc->thresh;
1600                                 m_bg_thresh = mdtc->bg_thresh;
1601                         }
1602                 }
1603
1604                 /*
1605                  * Throttle it only when the background writeback cannot
1606                  * catch-up. This avoids (excessively) small writeouts
1607                  * when the wb limits are ramping up in case of !strictlimit.
1608                  *
1609                  * In strictlimit case make decision based on the wb counters
1610                  * and limits. Small writeouts when the wb limits are ramping
1611                  * up are the price we consciously pay for strictlimit-ing.
1612                  *
1613                  * If memcg domain is in effect, @dirty should be under
1614                  * both global and memcg freerun ceilings.
1615                  */
1616                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1617                     (!mdtc ||
1618                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1619                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1620                         unsigned long m_intv = ULONG_MAX;
1621
1622                         current->dirty_paused_when = now;
1623                         current->nr_dirtied = 0;
1624                         if (mdtc)
1625                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1626                         current->nr_dirtied_pause = min(intv, m_intv);
1627                         break;
1628                 }
1629
1630                 if (unlikely(!writeback_in_progress(wb)))
1631                         wb_start_background_writeback(wb);
1632
1633                 /*
1634                  * Calculate global domain's pos_ratio and select the
1635                  * global dtc by default.
1636                  */
1637                 if (!strictlimit)
1638                         wb_dirty_limits(gdtc);
1639
1640                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1641                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1642
1643                 wb_position_ratio(gdtc);
1644                 sdtc = gdtc;
1645
1646                 if (mdtc) {
1647                         /*
1648                          * If memcg domain is in effect, calculate its
1649                          * pos_ratio.  @wb should satisfy constraints from
1650                          * both global and memcg domains.  Choose the one
1651                          * w/ lower pos_ratio.
1652                          */
1653                         if (!strictlimit)
1654                                 wb_dirty_limits(mdtc);
1655
1656                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1657                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1658
1659                         wb_position_ratio(mdtc);
1660                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1661                                 sdtc = mdtc;
1662                 }
1663
1664                 if (dirty_exceeded && !wb->dirty_exceeded)
1665                         wb->dirty_exceeded = 1;
1666
1667                 if (time_is_before_jiffies(wb->bw_time_stamp +
1668                                            BANDWIDTH_INTERVAL)) {
1669                         spin_lock(&wb->list_lock);
1670                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1671                         spin_unlock(&wb->list_lock);
1672                 }
1673
1674                 /* throttle according to the chosen dtc */
1675                 dirty_ratelimit = wb->dirty_ratelimit;
1676                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1677                                                         RATELIMIT_CALC_SHIFT;
1678                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1679                 min_pause = wb_min_pause(wb, max_pause,
1680                                          task_ratelimit, dirty_ratelimit,
1681                                          &nr_dirtied_pause);
1682
1683                 if (unlikely(task_ratelimit == 0)) {
1684                         period = max_pause;
1685                         pause = max_pause;
1686                         goto pause;
1687                 }
1688                 period = HZ * pages_dirtied / task_ratelimit;
1689                 pause = period;
1690                 if (current->dirty_paused_when)
1691                         pause -= now - current->dirty_paused_when;
1692                 /*
1693                  * For less than 1s think time (ext3/4 may block the dirtier
1694                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1695                  * however at much less frequency), try to compensate it in
1696                  * future periods by updating the virtual time; otherwise just
1697                  * do a reset, as it may be a light dirtier.
1698                  */
1699                 if (pause < min_pause) {
1700                         trace_balance_dirty_pages(wb,
1701                                                   sdtc->thresh,
1702                                                   sdtc->bg_thresh,
1703                                                   sdtc->dirty,
1704                                                   sdtc->wb_thresh,
1705                                                   sdtc->wb_dirty,
1706                                                   dirty_ratelimit,
1707                                                   task_ratelimit,
1708                                                   pages_dirtied,
1709                                                   period,
1710                                                   min(pause, 0L),
1711                                                   start_time);
1712                         if (pause < -HZ) {
1713                                 current->dirty_paused_when = now;
1714                                 current->nr_dirtied = 0;
1715                         } else if (period) {
1716                                 current->dirty_paused_when += period;
1717                                 current->nr_dirtied = 0;
1718                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1719                                 current->nr_dirtied_pause += pages_dirtied;
1720                         break;
1721                 }
1722                 if (unlikely(pause > max_pause)) {
1723                         /* for occasional dropped task_ratelimit */
1724                         now += min(pause - max_pause, max_pause);
1725                         pause = max_pause;
1726                 }
1727
1728 pause:
1729                 trace_balance_dirty_pages(wb,
1730                                           sdtc->thresh,
1731                                           sdtc->bg_thresh,
1732                                           sdtc->dirty,
1733                                           sdtc->wb_thresh,
1734                                           sdtc->wb_dirty,
1735                                           dirty_ratelimit,
1736                                           task_ratelimit,
1737                                           pages_dirtied,
1738                                           period,
1739                                           pause,
1740                                           start_time);
1741                 __set_current_state(TASK_KILLABLE);
1742                 io_schedule_timeout(pause);
1743
1744                 current->dirty_paused_when = now + pause;
1745                 current->nr_dirtied = 0;
1746                 current->nr_dirtied_pause = nr_dirtied_pause;
1747
1748                 /*
1749                  * This is typically equal to (dirty < thresh) and can also
1750                  * keep "1000+ dd on a slow USB stick" under control.
1751                  */
1752                 if (task_ratelimit)
1753                         break;
1754
1755                 /*
1756                  * In the case of an unresponding NFS server and the NFS dirty
1757                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1758                  * to go through, so that tasks on them still remain responsive.
1759                  *
1760                  * In theory 1 page is enough to keep the comsumer-producer
1761                  * pipe going: the flusher cleans 1 page => the task dirties 1
1762                  * more page. However wb_dirty has accounting errors.  So use
1763                  * the larger and more IO friendly wb_stat_error.
1764                  */
1765                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1766                         break;
1767
1768                 if (fatal_signal_pending(current))
1769                         break;
1770         }
1771
1772         if (!dirty_exceeded && wb->dirty_exceeded)
1773                 wb->dirty_exceeded = 0;
1774
1775         if (writeback_in_progress(wb))
1776                 return;
1777
1778         /*
1779          * In laptop mode, we wait until hitting the higher threshold before
1780          * starting background writeout, and then write out all the way down
1781          * to the lower threshold.  So slow writers cause minimal disk activity.
1782          *
1783          * In normal mode, we start background writeout at the lower
1784          * background_thresh, to keep the amount of dirty memory low.
1785          */
1786         if (laptop_mode)
1787                 return;
1788
1789         if (nr_reclaimable > gdtc->bg_thresh)
1790                 wb_start_background_writeback(wb);
1791 }
1792
1793 static DEFINE_PER_CPU(int, bdp_ratelimits);
1794
1795 /*
1796  * Normal tasks are throttled by
1797  *      loop {
1798  *              dirty tsk->nr_dirtied_pause pages;
1799  *              take a snap in balance_dirty_pages();
1800  *      }
1801  * However there is a worst case. If every task exit immediately when dirtied
1802  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1803  * called to throttle the page dirties. The solution is to save the not yet
1804  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1805  * randomly into the running tasks. This works well for the above worst case,
1806  * as the new task will pick up and accumulate the old task's leaked dirty
1807  * count and eventually get throttled.
1808  */
1809 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1810
1811 /**
1812  * balance_dirty_pages_ratelimited - balance dirty memory state
1813  * @mapping: address_space which was dirtied
1814  *
1815  * Processes which are dirtying memory should call in here once for each page
1816  * which was newly dirtied.  The function will periodically check the system's
1817  * dirty state and will initiate writeback if needed.
1818  *
1819  * On really big machines, get_writeback_state is expensive, so try to avoid
1820  * calling it too often (ratelimiting).  But once we're over the dirty memory
1821  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1822  * from overshooting the limit by (ratelimit_pages) each.
1823  */
1824 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1825 {
1826         struct inode *inode = mapping->host;
1827         struct backing_dev_info *bdi = inode_to_bdi(inode);
1828         struct bdi_writeback *wb = NULL;
1829         int ratelimit;
1830         int *p;
1831
1832         if (!bdi_cap_account_dirty(bdi))
1833                 return;
1834
1835         if (inode_cgwb_enabled(inode))
1836                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1837         if (!wb)
1838                 wb = &bdi->wb;
1839
1840         ratelimit = current->nr_dirtied_pause;
1841         if (wb->dirty_exceeded)
1842                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1843
1844         preempt_disable();
1845         /*
1846          * This prevents one CPU to accumulate too many dirtied pages without
1847          * calling into balance_dirty_pages(), which can happen when there are
1848          * 1000+ tasks, all of them start dirtying pages at exactly the same
1849          * time, hence all honoured too large initial task->nr_dirtied_pause.
1850          */
1851         p =  this_cpu_ptr(&bdp_ratelimits);
1852         if (unlikely(current->nr_dirtied >= ratelimit))
1853                 *p = 0;
1854         else if (unlikely(*p >= ratelimit_pages)) {
1855                 *p = 0;
1856                 ratelimit = 0;
1857         }
1858         /*
1859          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1860          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1861          * the dirty throttling and livelock other long-run dirtiers.
1862          */
1863         p = this_cpu_ptr(&dirty_throttle_leaks);
1864         if (*p > 0 && current->nr_dirtied < ratelimit) {
1865                 unsigned long nr_pages_dirtied;
1866                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1867                 *p -= nr_pages_dirtied;
1868                 current->nr_dirtied += nr_pages_dirtied;
1869         }
1870         preempt_enable();
1871
1872         if (unlikely(current->nr_dirtied >= ratelimit))
1873                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1874
1875         wb_put(wb);
1876 }
1877 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1878
1879 /**
1880  * wb_over_bg_thresh - does @wb need to be written back?
1881  * @wb: bdi_writeback of interest
1882  *
1883  * Determines whether background writeback should keep writing @wb or it's
1884  * clean enough.  Returns %true if writeback should continue.
1885  */
1886 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1887 {
1888         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1889         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1890         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1891         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1892                                                      &mdtc_stor : NULL;
1893
1894         /*
1895          * Similar to balance_dirty_pages() but ignores pages being written
1896          * as we're trying to decide whether to put more under writeback.
1897          */
1898         gdtc->avail = global_dirtyable_memory();
1899         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1900                       global_page_state(NR_UNSTABLE_NFS);
1901         domain_dirty_limits(gdtc);
1902
1903         if (gdtc->dirty > gdtc->bg_thresh)
1904                 return true;
1905
1906         if (wb_stat(wb, WB_RECLAIMABLE) >
1907             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1908                 return true;
1909
1910         if (mdtc) {
1911                 unsigned long filepages, headroom, writeback;
1912
1913                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1914                                     &writeback);
1915                 mdtc_calc_avail(mdtc, filepages, headroom);
1916                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1917
1918                 if (mdtc->dirty > mdtc->bg_thresh)
1919                         return true;
1920
1921                 if (wb_stat(wb, WB_RECLAIMABLE) >
1922                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1923                         return true;
1924         }
1925
1926         return false;
1927 }
1928
1929 void throttle_vm_writeout(gfp_t gfp_mask)
1930 {
1931         unsigned long background_thresh;
1932         unsigned long dirty_thresh;
1933
1934         for ( ; ; ) {
1935                 global_dirty_limits(&background_thresh, &dirty_thresh);
1936                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1937
1938                 /*
1939                  * Boost the allowable dirty threshold a bit for page
1940                  * allocators so they don't get DoS'ed by heavy writers
1941                  */
1942                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1943
1944                 if (global_page_state(NR_UNSTABLE_NFS) +
1945                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1946                                 break;
1947                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1948
1949                 /*
1950                  * The caller might hold locks which can prevent IO completion
1951                  * or progress in the filesystem.  So we cannot just sit here
1952                  * waiting for IO to complete.
1953                  */
1954                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1955                         break;
1956         }
1957 }
1958
1959 /*
1960  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1961  */
1962 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1963         void __user *buffer, size_t *length, loff_t *ppos)
1964 {
1965         proc_dointvec(table, write, buffer, length, ppos);
1966         return 0;
1967 }
1968
1969 #ifdef CONFIG_BLOCK
1970 void laptop_mode_timer_fn(unsigned long data)
1971 {
1972         struct request_queue *q = (struct request_queue *)data;
1973         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1974                 global_page_state(NR_UNSTABLE_NFS);
1975         struct bdi_writeback *wb;
1976
1977         /*
1978          * We want to write everything out, not just down to the dirty
1979          * threshold
1980          */
1981         if (!bdi_has_dirty_io(&q->backing_dev_info))
1982                 return;
1983
1984         rcu_read_lock();
1985         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1986                 if (wb_has_dirty_io(wb))
1987                         wb_start_writeback(wb, nr_pages, true,
1988                                            WB_REASON_LAPTOP_TIMER);
1989         rcu_read_unlock();
1990 }
1991
1992 /*
1993  * We've spun up the disk and we're in laptop mode: schedule writeback
1994  * of all dirty data a few seconds from now.  If the flush is already scheduled
1995  * then push it back - the user is still using the disk.
1996  */
1997 void laptop_io_completion(struct backing_dev_info *info)
1998 {
1999         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2000 }
2001
2002 /*
2003  * We're in laptop mode and we've just synced. The sync's writes will have
2004  * caused another writeback to be scheduled by laptop_io_completion.
2005  * Nothing needs to be written back anymore, so we unschedule the writeback.
2006  */
2007 void laptop_sync_completion(void)
2008 {
2009         struct backing_dev_info *bdi;
2010
2011         rcu_read_lock();
2012
2013         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2014                 del_timer(&bdi->laptop_mode_wb_timer);
2015
2016         rcu_read_unlock();
2017 }
2018 #endif
2019
2020 /*
2021  * If ratelimit_pages is too high then we can get into dirty-data overload
2022  * if a large number of processes all perform writes at the same time.
2023  * If it is too low then SMP machines will call the (expensive)
2024  * get_writeback_state too often.
2025  *
2026  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2027  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2028  * thresholds.
2029  */
2030
2031 void writeback_set_ratelimit(void)
2032 {
2033         struct wb_domain *dom = &global_wb_domain;
2034         unsigned long background_thresh;
2035         unsigned long dirty_thresh;
2036
2037         global_dirty_limits(&background_thresh, &dirty_thresh);
2038         dom->dirty_limit = dirty_thresh;
2039         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2040         if (ratelimit_pages < 16)
2041                 ratelimit_pages = 16;
2042 }
2043
2044 static int
2045 ratelimit_handler(struct notifier_block *self, unsigned long action,
2046                   void *hcpu)
2047 {
2048
2049         switch (action & ~CPU_TASKS_FROZEN) {
2050         case CPU_ONLINE:
2051         case CPU_DEAD:
2052                 writeback_set_ratelimit();
2053                 return NOTIFY_OK;
2054         default:
2055                 return NOTIFY_DONE;
2056         }
2057 }
2058
2059 static struct notifier_block ratelimit_nb = {
2060         .notifier_call  = ratelimit_handler,
2061         .next           = NULL,
2062 };
2063
2064 /*
2065  * Called early on to tune the page writeback dirty limits.
2066  *
2067  * We used to scale dirty pages according to how total memory
2068  * related to pages that could be allocated for buffers (by
2069  * comparing nr_free_buffer_pages() to vm_total_pages.
2070  *
2071  * However, that was when we used "dirty_ratio" to scale with
2072  * all memory, and we don't do that any more. "dirty_ratio"
2073  * is now applied to total non-HIGHPAGE memory (by subtracting
2074  * totalhigh_pages from vm_total_pages), and as such we can't
2075  * get into the old insane situation any more where we had
2076  * large amounts of dirty pages compared to a small amount of
2077  * non-HIGHMEM memory.
2078  *
2079  * But we might still want to scale the dirty_ratio by how
2080  * much memory the box has..
2081  */
2082 void __init page_writeback_init(void)
2083 {
2084         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2085
2086         writeback_set_ratelimit();
2087         register_cpu_notifier(&ratelimit_nb);
2088 }
2089
2090 /**
2091  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2092  * @mapping: address space structure to write
2093  * @start: starting page index
2094  * @end: ending page index (inclusive)
2095  *
2096  * This function scans the page range from @start to @end (inclusive) and tags
2097  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2098  * that write_cache_pages (or whoever calls this function) will then use
2099  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2100  * used to avoid livelocking of writeback by a process steadily creating new
2101  * dirty pages in the file (thus it is important for this function to be quick
2102  * so that it can tag pages faster than a dirtying process can create them).
2103  */
2104 /*
2105  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106  */
2107 void tag_pages_for_writeback(struct address_space *mapping,
2108                              pgoff_t start, pgoff_t end)
2109 {
2110 #define WRITEBACK_TAG_BATCH 4096
2111         unsigned long tagged;
2112
2113         do {
2114                 spin_lock_irq(&mapping->tree_lock);
2115                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2116                                 &start, end, WRITEBACK_TAG_BATCH,
2117                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2118                 spin_unlock_irq(&mapping->tree_lock);
2119                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2120                 cond_resched();
2121                 /* We check 'start' to handle wrapping when end == ~0UL */
2122         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2123 }
2124 EXPORT_SYMBOL(tag_pages_for_writeback);
2125
2126 /**
2127  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2128  * @mapping: address space structure to write
2129  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2130  * @writepage: function called for each page
2131  * @data: data passed to writepage function
2132  *
2133  * If a page is already under I/O, write_cache_pages() skips it, even
2134  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2135  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2136  * and msync() need to guarantee that all the data which was dirty at the time
2137  * the call was made get new I/O started against them.  If wbc->sync_mode is
2138  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2139  * existing IO to complete.
2140  *
2141  * To avoid livelocks (when other process dirties new pages), we first tag
2142  * pages which should be written back with TOWRITE tag and only then start
2143  * writing them. For data-integrity sync we have to be careful so that we do
2144  * not miss some pages (e.g., because some other process has cleared TOWRITE
2145  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2146  * by the process clearing the DIRTY tag (and submitting the page for IO).
2147  *
2148  * To avoid deadlocks between range_cyclic writeback and callers that hold
2149  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2150  * we do not loop back to the start of the file. Doing so causes a page
2151  * lock/page writeback access order inversion - we should only ever lock
2152  * multiple pages in ascending page->index order, and looping back to the start
2153  * of the file violates that rule and causes deadlocks.
2154  */
2155 int write_cache_pages(struct address_space *mapping,
2156                       struct writeback_control *wbc, writepage_t writepage,
2157                       void *data)
2158 {
2159         int ret = 0;
2160         int done = 0;
2161         int error;
2162         struct pagevec pvec;
2163         int nr_pages;
2164         pgoff_t uninitialized_var(writeback_index);
2165         pgoff_t index;
2166         pgoff_t end;            /* Inclusive */
2167         pgoff_t done_index;
2168         int range_whole = 0;
2169         int tag;
2170
2171         pagevec_init(&pvec, 0);
2172         if (wbc->range_cyclic) {
2173                 writeback_index = mapping->writeback_index; /* prev offset */
2174                 index = writeback_index;
2175                 end = -1;
2176         } else {
2177                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2178                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2179                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2180                         range_whole = 1;
2181         }
2182         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2183                 tag = PAGECACHE_TAG_TOWRITE;
2184         else
2185                 tag = PAGECACHE_TAG_DIRTY;
2186         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187                 tag_pages_for_writeback(mapping, index, end);
2188         done_index = index;
2189         while (!done && (index <= end)) {
2190                 int i;
2191
2192                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2193                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2194                 if (nr_pages == 0)
2195                         break;
2196
2197                 for (i = 0; i < nr_pages; i++) {
2198                         struct page *page = pvec.pages[i];
2199
2200                         /*
2201                          * At this point, the page may be truncated or
2202                          * invalidated (changing page->mapping to NULL), or
2203                          * even swizzled back from swapper_space to tmpfs file
2204                          * mapping. However, page->index will not change
2205                          * because we have a reference on the page.
2206                          */
2207                         if (page->index > end) {
2208                                 /*
2209                                  * can't be range_cyclic (1st pass) because
2210                                  * end == -1 in that case.
2211                                  */
2212                                 done = 1;
2213                                 break;
2214                         }
2215
2216                         done_index = page->index;
2217
2218                         lock_page(page);
2219
2220                         /*
2221                          * Page truncated or invalidated. We can freely skip it
2222                          * then, even for data integrity operations: the page
2223                          * has disappeared concurrently, so there could be no
2224                          * real expectation of this data interity operation
2225                          * even if there is now a new, dirty page at the same
2226                          * pagecache address.
2227                          */
2228                         if (unlikely(page->mapping != mapping)) {
2229 continue_unlock:
2230                                 unlock_page(page);
2231                                 continue;
2232                         }
2233
2234                         if (!PageDirty(page)) {
2235                                 /* someone wrote it for us */
2236                                 goto continue_unlock;
2237                         }
2238
2239                         if (PageWriteback(page)) {
2240                                 if (wbc->sync_mode != WB_SYNC_NONE)
2241                                         wait_on_page_writeback(page);
2242                                 else
2243                                         goto continue_unlock;
2244                         }
2245
2246                         BUG_ON(PageWriteback(page));
2247                         if (!clear_page_dirty_for_io(page))
2248                                 goto continue_unlock;
2249
2250                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2251                         error = (*writepage)(page, wbc, data);
2252                         if (unlikely(error)) {
2253                                 /*
2254                                  * Handle errors according to the type of
2255                                  * writeback. There's no need to continue for
2256                                  * background writeback. Just push done_index
2257                                  * past this page so media errors won't choke
2258                                  * writeout for the entire file. For integrity
2259                                  * writeback, we must process the entire dirty
2260                                  * set regardless of errors because the fs may
2261                                  * still have state to clear for each page. In
2262                                  * that case we continue processing and return
2263                                  * the first error.
2264                                  */
2265                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2266                                         unlock_page(page);
2267                                         error = 0;
2268                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2269                                         ret = error;
2270                                         done_index = page->index + 1;
2271                                         done = 1;
2272                                         break;
2273                                 }
2274                                 if (!ret)
2275                                         ret = error;
2276                         }
2277
2278                         /*
2279                          * We stop writing back only if we are not doing
2280                          * integrity sync. In case of integrity sync we have to
2281                          * keep going until we have written all the pages
2282                          * we tagged for writeback prior to entering this loop.
2283                          */
2284                         if (--wbc->nr_to_write <= 0 &&
2285                             wbc->sync_mode == WB_SYNC_NONE) {
2286                                 done = 1;
2287                                 break;
2288                         }
2289                 }
2290                 pagevec_release(&pvec);
2291                 cond_resched();
2292         }
2293
2294         /*
2295          * If we hit the last page and there is more work to be done: wrap
2296          * back the index back to the start of the file for the next
2297          * time we are called.
2298          */
2299         if (wbc->range_cyclic && !done)
2300                 done_index = 0;
2301         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2302                 mapping->writeback_index = done_index;
2303
2304         return ret;
2305 }
2306 EXPORT_SYMBOL(write_cache_pages);
2307
2308 /*
2309  * Function used by generic_writepages to call the real writepage
2310  * function and set the mapping flags on error
2311  */
2312 static int __writepage(struct page *page, struct writeback_control *wbc,
2313                        void *data)
2314 {
2315         struct address_space *mapping = data;
2316         int ret = mapping->a_ops->writepage(page, wbc);
2317         mapping_set_error(mapping, ret);
2318         return ret;
2319 }
2320
2321 /**
2322  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2323  * @mapping: address space structure to write
2324  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2325  *
2326  * This is a library function, which implements the writepages()
2327  * address_space_operation.
2328  */
2329 int generic_writepages(struct address_space *mapping,
2330                        struct writeback_control *wbc)
2331 {
2332         struct blk_plug plug;
2333         int ret;
2334
2335         /* deal with chardevs and other special file */
2336         if (!mapping->a_ops->writepage)
2337                 return 0;
2338
2339         blk_start_plug(&plug);
2340         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2341         blk_finish_plug(&plug);
2342         return ret;
2343 }
2344
2345 EXPORT_SYMBOL(generic_writepages);
2346
2347 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2348 {
2349         int ret;
2350
2351         if (wbc->nr_to_write <= 0)
2352                 return 0;
2353         if (mapping->a_ops->writepages)
2354                 ret = mapping->a_ops->writepages(mapping, wbc);
2355         else
2356                 ret = generic_writepages(mapping, wbc);
2357         return ret;
2358 }
2359
2360 /**
2361  * write_one_page - write out a single page and optionally wait on I/O
2362  * @page: the page to write
2363  * @wait: if true, wait on writeout
2364  *
2365  * The page must be locked by the caller and will be unlocked upon return.
2366  *
2367  * write_one_page() returns a negative error code if I/O failed.
2368  */
2369 int write_one_page(struct page *page, int wait)
2370 {
2371         struct address_space *mapping = page->mapping;
2372         int ret = 0;
2373         struct writeback_control wbc = {
2374                 .sync_mode = WB_SYNC_ALL,
2375                 .nr_to_write = 1,
2376         };
2377
2378         BUG_ON(!PageLocked(page));
2379
2380         if (wait)
2381                 wait_on_page_writeback(page);
2382
2383         if (clear_page_dirty_for_io(page)) {
2384                 page_cache_get(page);
2385                 ret = mapping->a_ops->writepage(page, &wbc);
2386                 if (ret == 0 && wait) {
2387                         wait_on_page_writeback(page);
2388                         if (PageError(page))
2389                                 ret = -EIO;
2390                 }
2391                 page_cache_release(page);
2392         } else {
2393                 unlock_page(page);
2394         }
2395         return ret;
2396 }
2397 EXPORT_SYMBOL(write_one_page);
2398
2399 /*
2400  * For address_spaces which do not use buffers nor write back.
2401  */
2402 int __set_page_dirty_no_writeback(struct page *page)
2403 {
2404         if (!PageDirty(page))
2405                 return !TestSetPageDirty(page);
2406         return 0;
2407 }
2408
2409 /*
2410  * Helper function for set_page_dirty family.
2411  *
2412  * Caller must hold mem_cgroup_begin_page_stat().
2413  *
2414  * NOTE: This relies on being atomic wrt interrupts.
2415  */
2416 void account_page_dirtied(struct page *page, struct address_space *mapping,
2417                           struct mem_cgroup *memcg)
2418 {
2419         struct inode *inode = mapping->host;
2420
2421         trace_writeback_dirty_page(page, mapping);
2422
2423         if (mapping_cap_account_dirty(mapping)) {
2424                 struct bdi_writeback *wb;
2425
2426                 inode_attach_wb(inode, page);
2427                 wb = inode_to_wb(inode);
2428
2429                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2430                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2431                 __inc_zone_page_state(page, NR_DIRTIED);
2432                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2433                 __inc_wb_stat(wb, WB_DIRTIED);
2434                 task_io_account_write(PAGE_CACHE_SIZE);
2435                 current->nr_dirtied++;
2436                 this_cpu_inc(bdp_ratelimits);
2437         }
2438 }
2439 EXPORT_SYMBOL(account_page_dirtied);
2440
2441 /*
2442  * Helper function for deaccounting dirty page without writeback.
2443  *
2444  * Caller must hold mem_cgroup_begin_page_stat().
2445  */
2446 void account_page_cleaned(struct page *page, struct address_space *mapping,
2447                           struct mem_cgroup *memcg, struct bdi_writeback *wb)
2448 {
2449         if (mapping_cap_account_dirty(mapping)) {
2450                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2451                 dec_zone_page_state(page, NR_FILE_DIRTY);
2452                 dec_wb_stat(wb, WB_RECLAIMABLE);
2453                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2454         }
2455 }
2456
2457 /*
2458  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2459  * its radix tree.
2460  *
2461  * This is also used when a single buffer is being dirtied: we want to set the
2462  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2463  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2464  *
2465  * The caller must ensure this doesn't race with truncation.  Most will simply
2466  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2467  * the pte lock held, which also locks out truncation.
2468  */
2469 int __set_page_dirty_nobuffers(struct page *page)
2470 {
2471         struct mem_cgroup *memcg;
2472
2473         memcg = mem_cgroup_begin_page_stat(page);
2474         if (!TestSetPageDirty(page)) {
2475                 struct address_space *mapping = page_mapping(page);
2476                 unsigned long flags;
2477
2478                 if (!mapping) {
2479                         mem_cgroup_end_page_stat(memcg);
2480                         return 1;
2481                 }
2482
2483                 spin_lock_irqsave(&mapping->tree_lock, flags);
2484                 BUG_ON(page_mapping(page) != mapping);
2485                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486                 account_page_dirtied(page, mapping, memcg);
2487                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488                                    PAGECACHE_TAG_DIRTY);
2489                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490                 mem_cgroup_end_page_stat(memcg);
2491
2492                 if (mapping->host) {
2493                         /* !PageAnon && !swapper_space */
2494                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2495                 }
2496                 return 1;
2497         }
2498         mem_cgroup_end_page_stat(memcg);
2499         return 0;
2500 }
2501 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2502
2503 /*
2504  * Call this whenever redirtying a page, to de-account the dirty counters
2505  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508  * control.
2509  */
2510 void account_page_redirty(struct page *page)
2511 {
2512         struct address_space *mapping = page->mapping;
2513
2514         if (mapping && mapping_cap_account_dirty(mapping)) {
2515                 struct inode *inode = mapping->host;
2516                 struct bdi_writeback *wb;
2517                 struct wb_lock_cookie cookie = {};
2518
2519                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2520                 current->nr_dirtied--;
2521                 dec_zone_page_state(page, NR_DIRTIED);
2522                 dec_wb_stat(wb, WB_DIRTIED);
2523                 unlocked_inode_to_wb_end(inode, &cookie);
2524         }
2525 }
2526 EXPORT_SYMBOL(account_page_redirty);
2527
2528 /*
2529  * When a writepage implementation decides that it doesn't want to write this
2530  * page for some reason, it should redirty the locked page via
2531  * redirty_page_for_writepage() and it should then unlock the page and return 0
2532  */
2533 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2534 {
2535         int ret;
2536
2537         wbc->pages_skipped++;
2538         ret = __set_page_dirty_nobuffers(page);
2539         account_page_redirty(page);
2540         return ret;
2541 }
2542 EXPORT_SYMBOL(redirty_page_for_writepage);
2543
2544 /*
2545  * Dirty a page.
2546  *
2547  * For pages with a mapping this should be done under the page lock
2548  * for the benefit of asynchronous memory errors who prefer a consistent
2549  * dirty state. This rule can be broken in some special cases,
2550  * but should be better not to.
2551  *
2552  * If the mapping doesn't provide a set_page_dirty a_op, then
2553  * just fall through and assume that it wants buffer_heads.
2554  */
2555 int set_page_dirty(struct page *page)
2556 {
2557         struct address_space *mapping = page_mapping(page);
2558
2559         if (likely(mapping)) {
2560                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2561                 /*
2562                  * readahead/lru_deactivate_page could remain
2563                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2564                  * About readahead, if the page is written, the flags would be
2565                  * reset. So no problem.
2566                  * About lru_deactivate_page, if the page is redirty, the flag
2567                  * will be reset. So no problem. but if the page is used by readahead
2568                  * it will confuse readahead and make it restart the size rampup
2569                  * process. But it's a trivial problem.
2570                  */
2571                 if (PageReclaim(page))
2572                         ClearPageReclaim(page);
2573 #ifdef CONFIG_BLOCK
2574                 if (!spd)
2575                         spd = __set_page_dirty_buffers;
2576 #endif
2577                 return (*spd)(page);
2578         }
2579         if (!PageDirty(page)) {
2580                 if (!TestSetPageDirty(page))
2581                         return 1;
2582         }
2583         return 0;
2584 }
2585 EXPORT_SYMBOL(set_page_dirty);
2586
2587 /*
2588  * set_page_dirty() is racy if the caller has no reference against
2589  * page->mapping->host, and if the page is unlocked.  This is because another
2590  * CPU could truncate the page off the mapping and then free the mapping.
2591  *
2592  * Usually, the page _is_ locked, or the caller is a user-space process which
2593  * holds a reference on the inode by having an open file.
2594  *
2595  * In other cases, the page should be locked before running set_page_dirty().
2596  */
2597 int set_page_dirty_lock(struct page *page)
2598 {
2599         int ret;
2600
2601         lock_page(page);
2602         ret = set_page_dirty(page);
2603         unlock_page(page);
2604         return ret;
2605 }
2606 EXPORT_SYMBOL(set_page_dirty_lock);
2607
2608 /*
2609  * This cancels just the dirty bit on the kernel page itself, it does NOT
2610  * actually remove dirty bits on any mmap's that may be around. It also
2611  * leaves the page tagged dirty, so any sync activity will still find it on
2612  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613  * look at the dirty bits in the VM.
2614  *
2615  * Doing this should *normally* only ever be done when a page is truncated,
2616  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617  * this when it notices that somebody has cleaned out all the buffers on a
2618  * page without actually doing it through the VM. Can you say "ext3 is
2619  * horribly ugly"? Thought you could.
2620  */
2621 void cancel_dirty_page(struct page *page)
2622 {
2623         struct address_space *mapping = page_mapping(page);
2624
2625         if (mapping_cap_account_dirty(mapping)) {
2626                 struct inode *inode = mapping->host;
2627                 struct bdi_writeback *wb;
2628                 struct mem_cgroup *memcg;
2629                 struct wb_lock_cookie cookie = {};
2630
2631                 memcg = mem_cgroup_begin_page_stat(page);
2632                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2633
2634                 if (TestClearPageDirty(page))
2635                         account_page_cleaned(page, mapping, memcg, wb);
2636
2637                 unlocked_inode_to_wb_end(inode, &cookie);
2638                 mem_cgroup_end_page_stat(memcg);
2639         } else {
2640                 ClearPageDirty(page);
2641         }
2642 }
2643 EXPORT_SYMBOL(cancel_dirty_page);
2644
2645 /*
2646  * Clear a page's dirty flag, while caring for dirty memory accounting.
2647  * Returns true if the page was previously dirty.
2648  *
2649  * This is for preparing to put the page under writeout.  We leave the page
2650  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2651  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2652  * implementation will run either set_page_writeback() or set_page_dirty(),
2653  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2654  * back into sync.
2655  *
2656  * This incoherency between the page's dirty flag and radix-tree tag is
2657  * unfortunate, but it only exists while the page is locked.
2658  */
2659 int clear_page_dirty_for_io(struct page *page)
2660 {
2661         struct address_space *mapping = page_mapping(page);
2662         int ret = 0;
2663
2664         BUG_ON(!PageLocked(page));
2665
2666         if (mapping && mapping_cap_account_dirty(mapping)) {
2667                 struct inode *inode = mapping->host;
2668                 struct bdi_writeback *wb;
2669                 struct mem_cgroup *memcg;
2670                 struct wb_lock_cookie cookie = {};
2671
2672                 /*
2673                  * Yes, Virginia, this is indeed insane.
2674                  *
2675                  * We use this sequence to make sure that
2676                  *  (a) we account for dirty stats properly
2677                  *  (b) we tell the low-level filesystem to
2678                  *      mark the whole page dirty if it was
2679                  *      dirty in a pagetable. Only to then
2680                  *  (c) clean the page again and return 1 to
2681                  *      cause the writeback.
2682                  *
2683                  * This way we avoid all nasty races with the
2684                  * dirty bit in multiple places and clearing
2685                  * them concurrently from different threads.
2686                  *
2687                  * Note! Normally the "set_page_dirty(page)"
2688                  * has no effect on the actual dirty bit - since
2689                  * that will already usually be set. But we
2690                  * need the side effects, and it can help us
2691                  * avoid races.
2692                  *
2693                  * We basically use the page "master dirty bit"
2694                  * as a serialization point for all the different
2695                  * threads doing their things.
2696                  */
2697                 if (page_mkclean(page))
2698                         set_page_dirty(page);
2699                 /*
2700                  * We carefully synchronise fault handlers against
2701                  * installing a dirty pte and marking the page dirty
2702                  * at this point.  We do this by having them hold the
2703                  * page lock while dirtying the page, and pages are
2704                  * always locked coming in here, so we get the desired
2705                  * exclusion.
2706                  */
2707                 memcg = mem_cgroup_begin_page_stat(page);
2708                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2709                 if (TestClearPageDirty(page)) {
2710                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2711                         dec_zone_page_state(page, NR_FILE_DIRTY);
2712                         dec_wb_stat(wb, WB_RECLAIMABLE);
2713                         ret = 1;
2714                 }
2715                 unlocked_inode_to_wb_end(inode, &cookie);
2716                 mem_cgroup_end_page_stat(memcg);
2717                 return ret;
2718         }
2719         return TestClearPageDirty(page);
2720 }
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2722
2723 int test_clear_page_writeback(struct page *page)
2724 {
2725         struct address_space *mapping = page_mapping(page);
2726         struct mem_cgroup *memcg;
2727         int ret;
2728
2729         memcg = mem_cgroup_begin_page_stat(page);
2730         if (mapping) {
2731                 struct inode *inode = mapping->host;
2732                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2733                 unsigned long flags;
2734
2735                 spin_lock_irqsave(&mapping->tree_lock, flags);
2736                 ret = TestClearPageWriteback(page);
2737                 if (ret) {
2738                         radix_tree_tag_clear(&mapping->page_tree,
2739                                                 page_index(page),
2740                                                 PAGECACHE_TAG_WRITEBACK);
2741                         if (bdi_cap_account_writeback(bdi)) {
2742                                 struct bdi_writeback *wb = inode_to_wb(inode);
2743
2744                                 __dec_wb_stat(wb, WB_WRITEBACK);
2745                                 __wb_writeout_inc(wb);
2746                         }
2747                 }
2748                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2749         } else {
2750                 ret = TestClearPageWriteback(page);
2751         }
2752         if (ret) {
2753                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2754                 dec_zone_page_state(page, NR_WRITEBACK);
2755                 inc_zone_page_state(page, NR_WRITTEN);
2756         }
2757         mem_cgroup_end_page_stat(memcg);
2758         return ret;
2759 }
2760
2761 int __test_set_page_writeback(struct page *page, bool keep_write)
2762 {
2763         struct address_space *mapping = page_mapping(page);
2764         struct mem_cgroup *memcg;
2765         int ret;
2766
2767         memcg = mem_cgroup_begin_page_stat(page);
2768         if (mapping) {
2769                 struct inode *inode = mapping->host;
2770                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2771                 unsigned long flags;
2772
2773                 spin_lock_irqsave(&mapping->tree_lock, flags);
2774                 ret = TestSetPageWriteback(page);
2775                 if (!ret) {
2776                         radix_tree_tag_set(&mapping->page_tree,
2777                                                 page_index(page),
2778                                                 PAGECACHE_TAG_WRITEBACK);
2779                         if (bdi_cap_account_writeback(bdi))
2780                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2781                 }
2782                 if (!PageDirty(page))
2783                         radix_tree_tag_clear(&mapping->page_tree,
2784                                                 page_index(page),
2785                                                 PAGECACHE_TAG_DIRTY);
2786                 if (!keep_write)
2787                         radix_tree_tag_clear(&mapping->page_tree,
2788                                                 page_index(page),
2789                                                 PAGECACHE_TAG_TOWRITE);
2790                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2791         } else {
2792                 ret = TestSetPageWriteback(page);
2793         }
2794         if (!ret) {
2795                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2796                 inc_zone_page_state(page, NR_WRITEBACK);
2797         }
2798         mem_cgroup_end_page_stat(memcg);
2799         return ret;
2800
2801 }
2802 EXPORT_SYMBOL(__test_set_page_writeback);
2803
2804 /*
2805  * Return true if any of the pages in the mapping are marked with the
2806  * passed tag.
2807  */
2808 int mapping_tagged(struct address_space *mapping, int tag)
2809 {
2810         return radix_tree_tagged(&mapping->page_tree, tag);
2811 }
2812 EXPORT_SYMBOL(mapping_tagged);
2813
2814 /**
2815  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2816  * @page:       The page to wait on.
2817  *
2818  * This function determines if the given page is related to a backing device
2819  * that requires page contents to be held stable during writeback.  If so, then
2820  * it will wait for any pending writeback to complete.
2821  */
2822 void wait_for_stable_page(struct page *page)
2823 {
2824         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2825                 wait_on_page_writeback(page);
2826 }
2827 EXPORT_SYMBOL_GPL(wait_for_stable_page);