OSDN Git Service

perf evsel: Free evsel->counts in perf_evsel__exit()
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33         bool sample_id_all;
34         bool exclude_guest;
35         bool mmap2;
36         bool cloexec;
37         bool clockid;
38         bool clockid_wrong;
39 } perf_missing_features;
40
41 static clockid_t clockid;
42
43 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
44 {
45         return 0;
46 }
47
48 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
49 {
50 }
51
52 static struct {
53         size_t  size;
54         int     (*init)(struct perf_evsel *evsel);
55         void    (*fini)(struct perf_evsel *evsel);
56 } perf_evsel__object = {
57         .size = sizeof(struct perf_evsel),
58         .init = perf_evsel__no_extra_init,
59         .fini = perf_evsel__no_extra_fini,
60 };
61
62 int perf_evsel__object_config(size_t object_size,
63                               int (*init)(struct perf_evsel *evsel),
64                               void (*fini)(struct perf_evsel *evsel))
65 {
66
67         if (object_size == 0)
68                 goto set_methods;
69
70         if (perf_evsel__object.size > object_size)
71                 return -EINVAL;
72
73         perf_evsel__object.size = object_size;
74
75 set_methods:
76         if (init != NULL)
77                 perf_evsel__object.init = init;
78
79         if (fini != NULL)
80                 perf_evsel__object.fini = fini;
81
82         return 0;
83 }
84
85 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
86
87 int __perf_evsel__sample_size(u64 sample_type)
88 {
89         u64 mask = sample_type & PERF_SAMPLE_MASK;
90         int size = 0;
91         int i;
92
93         for (i = 0; i < 64; i++) {
94                 if (mask & (1ULL << i))
95                         size++;
96         }
97
98         size *= sizeof(u64);
99
100         return size;
101 }
102
103 /**
104  * __perf_evsel__calc_id_pos - calculate id_pos.
105  * @sample_type: sample type
106  *
107  * This function returns the position of the event id (PERF_SAMPLE_ID or
108  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
109  * sample_event.
110  */
111 static int __perf_evsel__calc_id_pos(u64 sample_type)
112 {
113         int idx = 0;
114
115         if (sample_type & PERF_SAMPLE_IDENTIFIER)
116                 return 0;
117
118         if (!(sample_type & PERF_SAMPLE_ID))
119                 return -1;
120
121         if (sample_type & PERF_SAMPLE_IP)
122                 idx += 1;
123
124         if (sample_type & PERF_SAMPLE_TID)
125                 idx += 1;
126
127         if (sample_type & PERF_SAMPLE_TIME)
128                 idx += 1;
129
130         if (sample_type & PERF_SAMPLE_ADDR)
131                 idx += 1;
132
133         return idx;
134 }
135
136 /**
137  * __perf_evsel__calc_is_pos - calculate is_pos.
138  * @sample_type: sample type
139  *
140  * This function returns the position (counting backwards) of the event id
141  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
142  * sample_id_all is used there is an id sample appended to non-sample events.
143  */
144 static int __perf_evsel__calc_is_pos(u64 sample_type)
145 {
146         int idx = 1;
147
148         if (sample_type & PERF_SAMPLE_IDENTIFIER)
149                 return 1;
150
151         if (!(sample_type & PERF_SAMPLE_ID))
152                 return -1;
153
154         if (sample_type & PERF_SAMPLE_CPU)
155                 idx += 1;
156
157         if (sample_type & PERF_SAMPLE_STREAM_ID)
158                 idx += 1;
159
160         return idx;
161 }
162
163 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
164 {
165         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
166         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
167 }
168
169 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
170                                   enum perf_event_sample_format bit)
171 {
172         if (!(evsel->attr.sample_type & bit)) {
173                 evsel->attr.sample_type |= bit;
174                 evsel->sample_size += sizeof(u64);
175                 perf_evsel__calc_id_pos(evsel);
176         }
177 }
178
179 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
180                                     enum perf_event_sample_format bit)
181 {
182         if (evsel->attr.sample_type & bit) {
183                 evsel->attr.sample_type &= ~bit;
184                 evsel->sample_size -= sizeof(u64);
185                 perf_evsel__calc_id_pos(evsel);
186         }
187 }
188
189 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
190                                bool can_sample_identifier)
191 {
192         if (can_sample_identifier) {
193                 perf_evsel__reset_sample_bit(evsel, ID);
194                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
195         } else {
196                 perf_evsel__set_sample_bit(evsel, ID);
197         }
198         evsel->attr.read_format |= PERF_FORMAT_ID;
199 }
200
201 void perf_evsel__init(struct perf_evsel *evsel,
202                       struct perf_event_attr *attr, int idx)
203 {
204         evsel->idx         = idx;
205         evsel->tracking    = !idx;
206         evsel->attr        = *attr;
207         evsel->leader      = evsel;
208         evsel->unit        = "";
209         evsel->scale       = 1.0;
210         evsel->evlist      = NULL;
211         evsel->bpf_fd      = -1;
212         INIT_LIST_HEAD(&evsel->node);
213         INIT_LIST_HEAD(&evsel->config_terms);
214         perf_evsel__object.init(evsel);
215         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
216         perf_evsel__calc_id_pos(evsel);
217         evsel->cmdline_group_boundary = false;
218 }
219
220 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
221 {
222         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223
224         if (evsel != NULL)
225                 perf_evsel__init(evsel, attr, idx);
226
227         return evsel;
228 }
229
230 /*
231  * Returns pointer with encoded error via <linux/err.h> interface.
232  */
233 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
234 {
235         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
236         int err = -ENOMEM;
237
238         if (evsel == NULL) {
239                 goto out_err;
240         } else {
241                 struct perf_event_attr attr = {
242                         .type          = PERF_TYPE_TRACEPOINT,
243                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
244                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
245                 };
246
247                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
248                         goto out_free;
249
250                 evsel->tp_format = trace_event__tp_format(sys, name);
251                 if (IS_ERR(evsel->tp_format)) {
252                         err = PTR_ERR(evsel->tp_format);
253                         goto out_free;
254                 }
255
256                 event_attr_init(&attr);
257                 attr.config = evsel->tp_format->id;
258                 attr.sample_period = 1;
259                 perf_evsel__init(evsel, &attr, idx);
260         }
261
262         return evsel;
263
264 out_free:
265         zfree(&evsel->name);
266         free(evsel);
267 out_err:
268         return ERR_PTR(err);
269 }
270
271 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
272         "cycles",
273         "instructions",
274         "cache-references",
275         "cache-misses",
276         "branches",
277         "branch-misses",
278         "bus-cycles",
279         "stalled-cycles-frontend",
280         "stalled-cycles-backend",
281         "ref-cycles",
282 };
283
284 static const char *__perf_evsel__hw_name(u64 config)
285 {
286         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
287                 return perf_evsel__hw_names[config];
288
289         return "unknown-hardware";
290 }
291
292 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
293 {
294         int colon = 0, r = 0;
295         struct perf_event_attr *attr = &evsel->attr;
296         bool exclude_guest_default = false;
297
298 #define MOD_PRINT(context, mod) do {                                    \
299                 if (!attr->exclude_##context) {                         \
300                         if (!colon) colon = ++r;                        \
301                         r += scnprintf(bf + r, size - r, "%c", mod);    \
302                 } } while(0)
303
304         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
305                 MOD_PRINT(kernel, 'k');
306                 MOD_PRINT(user, 'u');
307                 MOD_PRINT(hv, 'h');
308                 exclude_guest_default = true;
309         }
310
311         if (attr->precise_ip) {
312                 if (!colon)
313                         colon = ++r;
314                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
315                 exclude_guest_default = true;
316         }
317
318         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
319                 MOD_PRINT(host, 'H');
320                 MOD_PRINT(guest, 'G');
321         }
322 #undef MOD_PRINT
323         if (colon)
324                 bf[colon - 1] = ':';
325         return r;
326 }
327
328 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
329 {
330         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
331         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
332 }
333
334 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
335         "cpu-clock",
336         "task-clock",
337         "page-faults",
338         "context-switches",
339         "cpu-migrations",
340         "minor-faults",
341         "major-faults",
342         "alignment-faults",
343         "emulation-faults",
344         "dummy",
345 };
346
347 static const char *__perf_evsel__sw_name(u64 config)
348 {
349         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
350                 return perf_evsel__sw_names[config];
351         return "unknown-software";
352 }
353
354 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
355 {
356         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
357         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
358 }
359
360 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
361 {
362         int r;
363
364         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
365
366         if (type & HW_BREAKPOINT_R)
367                 r += scnprintf(bf + r, size - r, "r");
368
369         if (type & HW_BREAKPOINT_W)
370                 r += scnprintf(bf + r, size - r, "w");
371
372         if (type & HW_BREAKPOINT_X)
373                 r += scnprintf(bf + r, size - r, "x");
374
375         return r;
376 }
377
378 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
379 {
380         struct perf_event_attr *attr = &evsel->attr;
381         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
382         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
383 }
384
385 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_EVSEL__MAX_ALIASES] = {
387  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
388  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
389  { "LLC",       "L2",                                                   },
390  { "dTLB",      "d-tlb",        "Data-TLB",                             },
391  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
392  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
393  { "node",                                                              },
394 };
395
396 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
397                                    [PERF_EVSEL__MAX_ALIASES] = {
398  { "load",      "loads",        "read",                                 },
399  { "store",     "stores",       "write",                                },
400  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
401 };
402
403 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
404                                        [PERF_EVSEL__MAX_ALIASES] = {
405  { "refs",      "Reference",    "ops",          "access",               },
406  { "misses",    "miss",                                                 },
407 };
408
409 #define C(x)            PERF_COUNT_HW_CACHE_##x
410 #define CACHE_READ      (1 << C(OP_READ))
411 #define CACHE_WRITE     (1 << C(OP_WRITE))
412 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
413 #define COP(x)          (1 << x)
414
415 /*
416  * cache operartion stat
417  * L1I : Read and prefetch only
418  * ITLB and BPU : Read-only
419  */
420 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
421  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
422  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
423  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
424  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
425  [C(ITLB)]      = (CACHE_READ),
426  [C(BPU)]       = (CACHE_READ),
427  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
428 };
429
430 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
431 {
432         if (perf_evsel__hw_cache_stat[type] & COP(op))
433                 return true;    /* valid */
434         else
435                 return false;   /* invalid */
436 }
437
438 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
439                                             char *bf, size_t size)
440 {
441         if (result) {
442                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
443                                  perf_evsel__hw_cache_op[op][0],
444                                  perf_evsel__hw_cache_result[result][0]);
445         }
446
447         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
448                          perf_evsel__hw_cache_op[op][1]);
449 }
450
451 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
452 {
453         u8 op, result, type = (config >>  0) & 0xff;
454         const char *err = "unknown-ext-hardware-cache-type";
455
456         if (type > PERF_COUNT_HW_CACHE_MAX)
457                 goto out_err;
458
459         op = (config >>  8) & 0xff;
460         err = "unknown-ext-hardware-cache-op";
461         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
462                 goto out_err;
463
464         result = (config >> 16) & 0xff;
465         err = "unknown-ext-hardware-cache-result";
466         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
467                 goto out_err;
468
469         err = "invalid-cache";
470         if (!perf_evsel__is_cache_op_valid(type, op))
471                 goto out_err;
472
473         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
474 out_err:
475         return scnprintf(bf, size, "%s", err);
476 }
477
478 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
479 {
480         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
481         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
482 }
483
484 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
485 {
486         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
487         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
488 }
489
490 const char *perf_evsel__name(struct perf_evsel *evsel)
491 {
492         char bf[128];
493
494         if (evsel->name)
495                 return evsel->name;
496
497         switch (evsel->attr.type) {
498         case PERF_TYPE_RAW:
499                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
500                 break;
501
502         case PERF_TYPE_HARDWARE:
503                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
504                 break;
505
506         case PERF_TYPE_HW_CACHE:
507                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
508                 break;
509
510         case PERF_TYPE_SOFTWARE:
511                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
512                 break;
513
514         case PERF_TYPE_TRACEPOINT:
515                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
516                 break;
517
518         case PERF_TYPE_BREAKPOINT:
519                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
520                 break;
521
522         default:
523                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
524                           evsel->attr.type);
525                 break;
526         }
527
528         evsel->name = strdup(bf);
529
530         return evsel->name ?: "unknown";
531 }
532
533 const char *perf_evsel__group_name(struct perf_evsel *evsel)
534 {
535         return evsel->group_name ?: "anon group";
536 }
537
538 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
539 {
540         int ret;
541         struct perf_evsel *pos;
542         const char *group_name = perf_evsel__group_name(evsel);
543
544         ret = scnprintf(buf, size, "%s", group_name);
545
546         ret += scnprintf(buf + ret, size - ret, " { %s",
547                          perf_evsel__name(evsel));
548
549         for_each_group_member(pos, evsel)
550                 ret += scnprintf(buf + ret, size - ret, ", %s",
551                                  perf_evsel__name(pos));
552
553         ret += scnprintf(buf + ret, size - ret, " }");
554
555         return ret;
556 }
557
558 static void
559 perf_evsel__config_callgraph(struct perf_evsel *evsel,
560                              struct record_opts *opts,
561                              struct callchain_param *param)
562 {
563         bool function = perf_evsel__is_function_event(evsel);
564         struct perf_event_attr *attr = &evsel->attr;
565
566         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
567
568         if (param->record_mode == CALLCHAIN_LBR) {
569                 if (!opts->branch_stack) {
570                         if (attr->exclude_user) {
571                                 pr_warning("LBR callstack option is only available "
572                                            "to get user callchain information. "
573                                            "Falling back to framepointers.\n");
574                         } else {
575                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
576                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
577                                                         PERF_SAMPLE_BRANCH_CALL_STACK;
578                         }
579                 } else
580                          pr_warning("Cannot use LBR callstack with branch stack. "
581                                     "Falling back to framepointers.\n");
582         }
583
584         if (param->record_mode == CALLCHAIN_DWARF) {
585                 if (!function) {
586                         perf_evsel__set_sample_bit(evsel, REGS_USER);
587                         perf_evsel__set_sample_bit(evsel, STACK_USER);
588                         attr->sample_regs_user = PERF_REGS_MASK;
589                         attr->sample_stack_user = param->dump_size;
590                         attr->exclude_callchain_user = 1;
591                 } else {
592                         pr_info("Cannot use DWARF unwind for function trace event,"
593                                 " falling back to framepointers.\n");
594                 }
595         }
596
597         if (function) {
598                 pr_info("Disabling user space callchains for function trace event.\n");
599                 attr->exclude_callchain_user = 1;
600         }
601 }
602
603 static void
604 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
605                             struct callchain_param *param)
606 {
607         struct perf_event_attr *attr = &evsel->attr;
608
609         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
610         if (param->record_mode == CALLCHAIN_LBR) {
611                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
612                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
613                                               PERF_SAMPLE_BRANCH_CALL_STACK);
614         }
615         if (param->record_mode == CALLCHAIN_DWARF) {
616                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
617                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
618         }
619 }
620
621 static void apply_config_terms(struct perf_evsel *evsel,
622                                struct record_opts *opts)
623 {
624         struct perf_evsel_config_term *term;
625         struct list_head *config_terms = &evsel->config_terms;
626         struct perf_event_attr *attr = &evsel->attr;
627         /* callgraph default */
628         struct callchain_param param = {
629                 .record_mode = callchain_param.record_mode,
630         };
631         u32 dump_size = 0;
632         char *callgraph_buf = NULL;
633
634         list_for_each_entry(term, config_terms, list) {
635                 switch (term->type) {
636                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
637                         attr->sample_period = term->val.period;
638                         attr->freq = 0;
639                         break;
640                 case PERF_EVSEL__CONFIG_TERM_FREQ:
641                         attr->sample_freq = term->val.freq;
642                         attr->freq = 1;
643                         break;
644                 case PERF_EVSEL__CONFIG_TERM_TIME:
645                         if (term->val.time)
646                                 perf_evsel__set_sample_bit(evsel, TIME);
647                         else
648                                 perf_evsel__reset_sample_bit(evsel, TIME);
649                         break;
650                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
651                         callgraph_buf = term->val.callgraph;
652                         break;
653                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
654                         dump_size = term->val.stack_user;
655                         break;
656                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
657                         /*
658                          * attr->inherit should has already been set by
659                          * perf_evsel__config. If user explicitly set
660                          * inherit using config terms, override global
661                          * opt->no_inherit setting.
662                          */
663                         attr->inherit = term->val.inherit ? 1 : 0;
664                         break;
665                 default:
666                         break;
667                 }
668         }
669
670         /* User explicitly set per-event callgraph, clear the old setting and reset. */
671         if ((callgraph_buf != NULL) || (dump_size > 0)) {
672
673                 /* parse callgraph parameters */
674                 if (callgraph_buf != NULL) {
675                         if (!strcmp(callgraph_buf, "no")) {
676                                 param.enabled = false;
677                                 param.record_mode = CALLCHAIN_NONE;
678                         } else {
679                                 param.enabled = true;
680                                 if (parse_callchain_record(callgraph_buf, &param)) {
681                                         pr_err("per-event callgraph setting for %s failed. "
682                                                "Apply callgraph global setting for it\n",
683                                                evsel->name);
684                                         return;
685                                 }
686                         }
687                 }
688                 if (dump_size > 0) {
689                         dump_size = round_up(dump_size, sizeof(u64));
690                         param.dump_size = dump_size;
691                 }
692
693                 /* If global callgraph set, clear it */
694                 if (callchain_param.enabled)
695                         perf_evsel__reset_callgraph(evsel, &callchain_param);
696
697                 /* set perf-event callgraph */
698                 if (param.enabled)
699                         perf_evsel__config_callgraph(evsel, opts, &param);
700         }
701 }
702
703 /*
704  * The enable_on_exec/disabled value strategy:
705  *
706  *  1) For any type of traced program:
707  *    - all independent events and group leaders are disabled
708  *    - all group members are enabled
709  *
710  *     Group members are ruled by group leaders. They need to
711  *     be enabled, because the group scheduling relies on that.
712  *
713  *  2) For traced programs executed by perf:
714  *     - all independent events and group leaders have
715  *       enable_on_exec set
716  *     - we don't specifically enable or disable any event during
717  *       the record command
718  *
719  *     Independent events and group leaders are initially disabled
720  *     and get enabled by exec. Group members are ruled by group
721  *     leaders as stated in 1).
722  *
723  *  3) For traced programs attached by perf (pid/tid):
724  *     - we specifically enable or disable all events during
725  *       the record command
726  *
727  *     When attaching events to already running traced we
728  *     enable/disable events specifically, as there's no
729  *     initial traced exec call.
730  */
731 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
732 {
733         struct perf_evsel *leader = evsel->leader;
734         struct perf_event_attr *attr = &evsel->attr;
735         int track = evsel->tracking;
736         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
737
738         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
739         attr->inherit       = !opts->no_inherit;
740
741         perf_evsel__set_sample_bit(evsel, IP);
742         perf_evsel__set_sample_bit(evsel, TID);
743
744         if (evsel->sample_read) {
745                 perf_evsel__set_sample_bit(evsel, READ);
746
747                 /*
748                  * We need ID even in case of single event, because
749                  * PERF_SAMPLE_READ process ID specific data.
750                  */
751                 perf_evsel__set_sample_id(evsel, false);
752
753                 /*
754                  * Apply group format only if we belong to group
755                  * with more than one members.
756                  */
757                 if (leader->nr_members > 1) {
758                         attr->read_format |= PERF_FORMAT_GROUP;
759                         attr->inherit = 0;
760                 }
761         }
762
763         /*
764          * We default some events to have a default interval. But keep
765          * it a weak assumption overridable by the user.
766          */
767         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
768                                      opts->user_interval != ULLONG_MAX)) {
769                 if (opts->freq) {
770                         perf_evsel__set_sample_bit(evsel, PERIOD);
771                         attr->freq              = 1;
772                         attr->sample_freq       = opts->freq;
773                 } else {
774                         attr->sample_period = opts->default_interval;
775                 }
776         }
777
778         /*
779          * Disable sampling for all group members other
780          * than leader in case leader 'leads' the sampling.
781          */
782         if ((leader != evsel) && leader->sample_read) {
783                 attr->sample_freq   = 0;
784                 attr->sample_period = 0;
785         }
786
787         if (opts->no_samples)
788                 attr->sample_freq = 0;
789
790         if (opts->inherit_stat)
791                 attr->inherit_stat = 1;
792
793         if (opts->sample_address) {
794                 perf_evsel__set_sample_bit(evsel, ADDR);
795                 attr->mmap_data = track;
796         }
797
798         /*
799          * We don't allow user space callchains for  function trace
800          * event, due to issues with page faults while tracing page
801          * fault handler and its overall trickiness nature.
802          */
803         if (perf_evsel__is_function_event(evsel))
804                 evsel->attr.exclude_callchain_user = 1;
805
806         if (callchain_param.enabled && !evsel->no_aux_samples)
807                 perf_evsel__config_callgraph(evsel, opts, &callchain_param);
808
809         if (opts->sample_intr_regs) {
810                 attr->sample_regs_intr = opts->sample_intr_regs;
811                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
812         }
813
814         if (target__has_cpu(&opts->target))
815                 perf_evsel__set_sample_bit(evsel, CPU);
816
817         if (opts->period)
818                 perf_evsel__set_sample_bit(evsel, PERIOD);
819
820         /*
821          * When the user explicitely disabled time don't force it here.
822          */
823         if (opts->sample_time &&
824             (!perf_missing_features.sample_id_all &&
825             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
826              opts->sample_time_set)))
827                 perf_evsel__set_sample_bit(evsel, TIME);
828
829         if (opts->raw_samples && !evsel->no_aux_samples) {
830                 perf_evsel__set_sample_bit(evsel, TIME);
831                 perf_evsel__set_sample_bit(evsel, RAW);
832                 perf_evsel__set_sample_bit(evsel, CPU);
833         }
834
835         if (opts->sample_address)
836                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
837
838         if (opts->no_buffering) {
839                 attr->watermark = 0;
840                 attr->wakeup_events = 1;
841         }
842         if (opts->branch_stack && !evsel->no_aux_samples) {
843                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
844                 attr->branch_sample_type = opts->branch_stack;
845         }
846
847         if (opts->sample_weight)
848                 perf_evsel__set_sample_bit(evsel, WEIGHT);
849
850         attr->task  = track;
851         attr->mmap  = track;
852         attr->mmap2 = track && !perf_missing_features.mmap2;
853         attr->comm  = track;
854
855         if (opts->record_switch_events)
856                 attr->context_switch = track;
857
858         if (opts->sample_transaction)
859                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
860
861         if (opts->running_time) {
862                 evsel->attr.read_format |=
863                         PERF_FORMAT_TOTAL_TIME_ENABLED |
864                         PERF_FORMAT_TOTAL_TIME_RUNNING;
865         }
866
867         /*
868          * XXX see the function comment above
869          *
870          * Disabling only independent events or group leaders,
871          * keeping group members enabled.
872          */
873         if (perf_evsel__is_group_leader(evsel))
874                 attr->disabled = 1;
875
876         /*
877          * Setting enable_on_exec for independent events and
878          * group leaders for traced executed by perf.
879          */
880         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
881                 !opts->initial_delay)
882                 attr->enable_on_exec = 1;
883
884         if (evsel->immediate) {
885                 attr->disabled = 0;
886                 attr->enable_on_exec = 0;
887         }
888
889         clockid = opts->clockid;
890         if (opts->use_clockid) {
891                 attr->use_clockid = 1;
892                 attr->clockid = opts->clockid;
893         }
894
895         if (evsel->precise_max)
896                 perf_event_attr__set_max_precise_ip(attr);
897
898         /*
899          * Apply event specific term settings,
900          * it overloads any global configuration.
901          */
902         apply_config_terms(evsel, opts);
903 }
904
905 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
906 {
907         int cpu, thread;
908
909         if (evsel->system_wide)
910                 nthreads = 1;
911
912         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
913
914         if (evsel->fd) {
915                 for (cpu = 0; cpu < ncpus; cpu++) {
916                         for (thread = 0; thread < nthreads; thread++) {
917                                 FD(evsel, cpu, thread) = -1;
918                         }
919                 }
920         }
921
922         return evsel->fd != NULL ? 0 : -ENOMEM;
923 }
924
925 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
926                           int ioc,  void *arg)
927 {
928         int cpu, thread;
929
930         if (evsel->system_wide)
931                 nthreads = 1;
932
933         for (cpu = 0; cpu < ncpus; cpu++) {
934                 for (thread = 0; thread < nthreads; thread++) {
935                         int fd = FD(evsel, cpu, thread),
936                             err = ioctl(fd, ioc, arg);
937
938                         if (err)
939                                 return err;
940                 }
941         }
942
943         return 0;
944 }
945
946 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
947                              const char *filter)
948 {
949         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
950                                      PERF_EVENT_IOC_SET_FILTER,
951                                      (void *)filter);
952 }
953
954 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
955 {
956         char *new_filter = strdup(filter);
957
958         if (new_filter != NULL) {
959                 free(evsel->filter);
960                 evsel->filter = new_filter;
961                 return 0;
962         }
963
964         return -1;
965 }
966
967 int perf_evsel__append_filter(struct perf_evsel *evsel,
968                               const char *op, const char *filter)
969 {
970         char *new_filter;
971
972         if (evsel->filter == NULL)
973                 return perf_evsel__set_filter(evsel, filter);
974
975         if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
976                 free(evsel->filter);
977                 evsel->filter = new_filter;
978                 return 0;
979         }
980
981         return -1;
982 }
983
984 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
985 {
986         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
987                                      PERF_EVENT_IOC_ENABLE,
988                                      0);
989 }
990
991 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
992 {
993         if (ncpus == 0 || nthreads == 0)
994                 return 0;
995
996         if (evsel->system_wide)
997                 nthreads = 1;
998
999         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1000         if (evsel->sample_id == NULL)
1001                 return -ENOMEM;
1002
1003         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1004         if (evsel->id == NULL) {
1005                 xyarray__delete(evsel->sample_id);
1006                 evsel->sample_id = NULL;
1007                 return -ENOMEM;
1008         }
1009
1010         return 0;
1011 }
1012
1013 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1014 {
1015         xyarray__delete(evsel->fd);
1016         evsel->fd = NULL;
1017 }
1018
1019 static void perf_evsel__free_id(struct perf_evsel *evsel)
1020 {
1021         xyarray__delete(evsel->sample_id);
1022         evsel->sample_id = NULL;
1023         zfree(&evsel->id);
1024 }
1025
1026 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1027 {
1028         struct perf_evsel_config_term *term, *h;
1029
1030         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1031                 list_del(&term->list);
1032                 free(term);
1033         }
1034 }
1035
1036 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1037 {
1038         int cpu, thread;
1039
1040         if (evsel->system_wide)
1041                 nthreads = 1;
1042
1043         for (cpu = 0; cpu < ncpus; cpu++)
1044                 for (thread = 0; thread < nthreads; ++thread) {
1045                         close(FD(evsel, cpu, thread));
1046                         FD(evsel, cpu, thread) = -1;
1047                 }
1048 }
1049
1050 void perf_evsel__exit(struct perf_evsel *evsel)
1051 {
1052         assert(list_empty(&evsel->node));
1053         assert(evsel->evlist == NULL);
1054         perf_evsel__free_counts(evsel);
1055         perf_evsel__free_fd(evsel);
1056         perf_evsel__free_id(evsel);
1057         perf_evsel__free_config_terms(evsel);
1058         close_cgroup(evsel->cgrp);
1059         cpu_map__put(evsel->cpus);
1060         cpu_map__put(evsel->own_cpus);
1061         thread_map__put(evsel->threads);
1062         zfree(&evsel->group_name);
1063         zfree(&evsel->name);
1064         perf_evsel__object.fini(evsel);
1065 }
1066
1067 void perf_evsel__delete(struct perf_evsel *evsel)
1068 {
1069         perf_evsel__exit(evsel);
1070         free(evsel);
1071 }
1072
1073 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1074                                 struct perf_counts_values *count)
1075 {
1076         struct perf_counts_values tmp;
1077
1078         if (!evsel->prev_raw_counts)
1079                 return;
1080
1081         if (cpu == -1) {
1082                 tmp = evsel->prev_raw_counts->aggr;
1083                 evsel->prev_raw_counts->aggr = *count;
1084         } else {
1085                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1086                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1087         }
1088
1089         count->val = count->val - tmp.val;
1090         count->ena = count->ena - tmp.ena;
1091         count->run = count->run - tmp.run;
1092 }
1093
1094 void perf_counts_values__scale(struct perf_counts_values *count,
1095                                bool scale, s8 *pscaled)
1096 {
1097         s8 scaled = 0;
1098
1099         if (scale) {
1100                 if (count->run == 0) {
1101                         scaled = -1;
1102                         count->val = 0;
1103                 } else if (count->run < count->ena) {
1104                         scaled = 1;
1105                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1106                 }
1107         } else
1108                 count->ena = count->run = 0;
1109
1110         if (pscaled)
1111                 *pscaled = scaled;
1112 }
1113
1114 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1115                      struct perf_counts_values *count)
1116 {
1117         memset(count, 0, sizeof(*count));
1118
1119         if (FD(evsel, cpu, thread) < 0)
1120                 return -EINVAL;
1121
1122         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1123                 return -errno;
1124
1125         return 0;
1126 }
1127
1128 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1129                               int cpu, int thread, bool scale)
1130 {
1131         struct perf_counts_values count;
1132         size_t nv = scale ? 3 : 1;
1133
1134         if (FD(evsel, cpu, thread) < 0)
1135                 return -EINVAL;
1136
1137         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1138                 return -ENOMEM;
1139
1140         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1141                 return -errno;
1142
1143         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1144         perf_counts_values__scale(&count, scale, NULL);
1145         *perf_counts(evsel->counts, cpu, thread) = count;
1146         return 0;
1147 }
1148
1149 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1150 {
1151         struct perf_evsel *leader = evsel->leader;
1152         int fd;
1153
1154         if (perf_evsel__is_group_leader(evsel))
1155                 return -1;
1156
1157         /*
1158          * Leader must be already processed/open,
1159          * if not it's a bug.
1160          */
1161         BUG_ON(!leader->fd);
1162
1163         fd = FD(leader, cpu, thread);
1164         BUG_ON(fd == -1);
1165
1166         return fd;
1167 }
1168
1169 struct bit_names {
1170         int bit;
1171         const char *name;
1172 };
1173
1174 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1175 {
1176         bool first_bit = true;
1177         int i = 0;
1178
1179         do {
1180                 if (value & bits[i].bit) {
1181                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1182                         first_bit = false;
1183                 }
1184         } while (bits[++i].name != NULL);
1185 }
1186
1187 static void __p_sample_type(char *buf, size_t size, u64 value)
1188 {
1189 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1190         struct bit_names bits[] = {
1191                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1192                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1193                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1194                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1195                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1196                 { .name = NULL, }
1197         };
1198 #undef bit_name
1199         __p_bits(buf, size, value, bits);
1200 }
1201
1202 static void __p_read_format(char *buf, size_t size, u64 value)
1203 {
1204 #define bit_name(n) { PERF_FORMAT_##n, #n }
1205         struct bit_names bits[] = {
1206                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1207                 bit_name(ID), bit_name(GROUP),
1208                 { .name = NULL, }
1209         };
1210 #undef bit_name
1211         __p_bits(buf, size, value, bits);
1212 }
1213
1214 #define BUF_SIZE                1024
1215
1216 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1217 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1218 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1219 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1220 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1221
1222 #define PRINT_ATTRn(_n, _f, _p)                         \
1223 do {                                                    \
1224         if (attr->_f) {                                 \
1225                 _p(attr->_f);                           \
1226                 ret += attr__fprintf(fp, _n, buf, priv);\
1227         }                                               \
1228 } while (0)
1229
1230 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1231
1232 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1233                              attr__fprintf_f attr__fprintf, void *priv)
1234 {
1235         char buf[BUF_SIZE];
1236         int ret = 0;
1237
1238         PRINT_ATTRf(type, p_unsigned);
1239         PRINT_ATTRf(size, p_unsigned);
1240         PRINT_ATTRf(config, p_hex);
1241         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1242         PRINT_ATTRf(sample_type, p_sample_type);
1243         PRINT_ATTRf(read_format, p_read_format);
1244
1245         PRINT_ATTRf(disabled, p_unsigned);
1246         PRINT_ATTRf(inherit, p_unsigned);
1247         PRINT_ATTRf(pinned, p_unsigned);
1248         PRINT_ATTRf(exclusive, p_unsigned);
1249         PRINT_ATTRf(exclude_user, p_unsigned);
1250         PRINT_ATTRf(exclude_kernel, p_unsigned);
1251         PRINT_ATTRf(exclude_hv, p_unsigned);
1252         PRINT_ATTRf(exclude_idle, p_unsigned);
1253         PRINT_ATTRf(mmap, p_unsigned);
1254         PRINT_ATTRf(comm, p_unsigned);
1255         PRINT_ATTRf(freq, p_unsigned);
1256         PRINT_ATTRf(inherit_stat, p_unsigned);
1257         PRINT_ATTRf(enable_on_exec, p_unsigned);
1258         PRINT_ATTRf(task, p_unsigned);
1259         PRINT_ATTRf(watermark, p_unsigned);
1260         PRINT_ATTRf(precise_ip, p_unsigned);
1261         PRINT_ATTRf(mmap_data, p_unsigned);
1262         PRINT_ATTRf(sample_id_all, p_unsigned);
1263         PRINT_ATTRf(exclude_host, p_unsigned);
1264         PRINT_ATTRf(exclude_guest, p_unsigned);
1265         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1266         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1267         PRINT_ATTRf(mmap2, p_unsigned);
1268         PRINT_ATTRf(comm_exec, p_unsigned);
1269         PRINT_ATTRf(use_clockid, p_unsigned);
1270         PRINT_ATTRf(context_switch, p_unsigned);
1271
1272         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1273         PRINT_ATTRf(bp_type, p_unsigned);
1274         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1275         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1276         PRINT_ATTRf(branch_sample_type, p_unsigned);
1277         PRINT_ATTRf(sample_regs_user, p_hex);
1278         PRINT_ATTRf(sample_stack_user, p_unsigned);
1279         PRINT_ATTRf(clockid, p_signed);
1280         PRINT_ATTRf(sample_regs_intr, p_hex);
1281         PRINT_ATTRf(aux_watermark, p_unsigned);
1282
1283         return ret;
1284 }
1285
1286 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1287                                 void *priv __attribute__((unused)))
1288 {
1289         return fprintf(fp, "  %-32s %s\n", name, val);
1290 }
1291
1292 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1293                               struct thread_map *threads)
1294 {
1295         int cpu, thread, nthreads;
1296         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1297         int pid = -1, err;
1298         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1299
1300         if (evsel->system_wide)
1301                 nthreads = 1;
1302         else
1303                 nthreads = threads->nr;
1304
1305         if (evsel->fd == NULL &&
1306             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1307                 return -ENOMEM;
1308
1309         if (evsel->cgrp) {
1310                 flags |= PERF_FLAG_PID_CGROUP;
1311                 pid = evsel->cgrp->fd;
1312         }
1313
1314 fallback_missing_features:
1315         if (perf_missing_features.clockid_wrong)
1316                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1317         if (perf_missing_features.clockid) {
1318                 evsel->attr.use_clockid = 0;
1319                 evsel->attr.clockid = 0;
1320         }
1321         if (perf_missing_features.cloexec)
1322                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1323         if (perf_missing_features.mmap2)
1324                 evsel->attr.mmap2 = 0;
1325         if (perf_missing_features.exclude_guest)
1326                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1327 retry_sample_id:
1328         if (perf_missing_features.sample_id_all)
1329                 evsel->attr.sample_id_all = 0;
1330
1331         if (verbose >= 2) {
1332                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1333                 fprintf(stderr, "perf_event_attr:\n");
1334                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1335                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1336         }
1337
1338         for (cpu = 0; cpu < cpus->nr; cpu++) {
1339
1340                 for (thread = 0; thread < nthreads; thread++) {
1341                         int group_fd;
1342
1343                         if (!evsel->cgrp && !evsel->system_wide)
1344                                 pid = thread_map__pid(threads, thread);
1345
1346                         group_fd = get_group_fd(evsel, cpu, thread);
1347 retry_open:
1348                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1349                                   pid, cpus->map[cpu], group_fd, flags);
1350
1351                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1352                                                                      pid,
1353                                                                      cpus->map[cpu],
1354                                                                      group_fd, flags);
1355                         if (FD(evsel, cpu, thread) < 0) {
1356                                 err = -errno;
1357                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1358                                           err);
1359                                 goto try_fallback;
1360                         }
1361
1362                         if (evsel->bpf_fd >= 0) {
1363                                 int evt_fd = FD(evsel, cpu, thread);
1364                                 int bpf_fd = evsel->bpf_fd;
1365
1366                                 err = ioctl(evt_fd,
1367                                             PERF_EVENT_IOC_SET_BPF,
1368                                             bpf_fd);
1369                                 if (err && errno != EEXIST) {
1370                                         pr_err("failed to attach bpf fd %d: %s\n",
1371                                                bpf_fd, strerror(errno));
1372                                         err = -EINVAL;
1373                                         goto out_close;
1374                                 }
1375                         }
1376
1377                         set_rlimit = NO_CHANGE;
1378
1379                         /*
1380                          * If we succeeded but had to kill clockid, fail and
1381                          * have perf_evsel__open_strerror() print us a nice
1382                          * error.
1383                          */
1384                         if (perf_missing_features.clockid ||
1385                             perf_missing_features.clockid_wrong) {
1386                                 err = -EINVAL;
1387                                 goto out_close;
1388                         }
1389                 }
1390         }
1391
1392         return 0;
1393
1394 try_fallback:
1395         /*
1396          * perf stat needs between 5 and 22 fds per CPU. When we run out
1397          * of them try to increase the limits.
1398          */
1399         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1400                 struct rlimit l;
1401                 int old_errno = errno;
1402
1403                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1404                         if (set_rlimit == NO_CHANGE)
1405                                 l.rlim_cur = l.rlim_max;
1406                         else {
1407                                 l.rlim_cur = l.rlim_max + 1000;
1408                                 l.rlim_max = l.rlim_cur;
1409                         }
1410                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1411                                 set_rlimit++;
1412                                 errno = old_errno;
1413                                 goto retry_open;
1414                         }
1415                 }
1416                 errno = old_errno;
1417         }
1418
1419         if (err != -EINVAL || cpu > 0 || thread > 0)
1420                 goto out_close;
1421
1422         /*
1423          * Must probe features in the order they were added to the
1424          * perf_event_attr interface.
1425          */
1426         if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1427                 perf_missing_features.clockid_wrong = true;
1428                 goto fallback_missing_features;
1429         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1430                 perf_missing_features.clockid = true;
1431                 goto fallback_missing_features;
1432         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1433                 perf_missing_features.cloexec = true;
1434                 goto fallback_missing_features;
1435         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1436                 perf_missing_features.mmap2 = true;
1437                 goto fallback_missing_features;
1438         } else if (!perf_missing_features.exclude_guest &&
1439                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1440                 perf_missing_features.exclude_guest = true;
1441                 goto fallback_missing_features;
1442         } else if (!perf_missing_features.sample_id_all) {
1443                 perf_missing_features.sample_id_all = true;
1444                 goto retry_sample_id;
1445         }
1446
1447 out_close:
1448         do {
1449                 while (--thread >= 0) {
1450                         close(FD(evsel, cpu, thread));
1451                         FD(evsel, cpu, thread) = -1;
1452                 }
1453                 thread = nthreads;
1454         } while (--cpu >= 0);
1455         return err;
1456 }
1457
1458 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1459 {
1460         if (evsel->fd == NULL)
1461                 return;
1462
1463         perf_evsel__close_fd(evsel, ncpus, nthreads);
1464         perf_evsel__free_fd(evsel);
1465 }
1466
1467 static struct {
1468         struct cpu_map map;
1469         int cpus[1];
1470 } empty_cpu_map = {
1471         .map.nr = 1,
1472         .cpus   = { -1, },
1473 };
1474
1475 static struct {
1476         struct thread_map map;
1477         int threads[1];
1478 } empty_thread_map = {
1479         .map.nr  = 1,
1480         .threads = { -1, },
1481 };
1482
1483 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1484                      struct thread_map *threads)
1485 {
1486         if (cpus == NULL) {
1487                 /* Work around old compiler warnings about strict aliasing */
1488                 cpus = &empty_cpu_map.map;
1489         }
1490
1491         if (threads == NULL)
1492                 threads = &empty_thread_map.map;
1493
1494         return __perf_evsel__open(evsel, cpus, threads);
1495 }
1496
1497 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1498                              struct cpu_map *cpus)
1499 {
1500         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1501 }
1502
1503 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1504                                 struct thread_map *threads)
1505 {
1506         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1507 }
1508
1509 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1510                                        const union perf_event *event,
1511                                        struct perf_sample *sample)
1512 {
1513         u64 type = evsel->attr.sample_type;
1514         const u64 *array = event->sample.array;
1515         bool swapped = evsel->needs_swap;
1516         union u64_swap u;
1517
1518         array += ((event->header.size -
1519                    sizeof(event->header)) / sizeof(u64)) - 1;
1520
1521         if (type & PERF_SAMPLE_IDENTIFIER) {
1522                 sample->id = *array;
1523                 array--;
1524         }
1525
1526         if (type & PERF_SAMPLE_CPU) {
1527                 u.val64 = *array;
1528                 if (swapped) {
1529                         /* undo swap of u64, then swap on individual u32s */
1530                         u.val64 = bswap_64(u.val64);
1531                         u.val32[0] = bswap_32(u.val32[0]);
1532                 }
1533
1534                 sample->cpu = u.val32[0];
1535                 array--;
1536         }
1537
1538         if (type & PERF_SAMPLE_STREAM_ID) {
1539                 sample->stream_id = *array;
1540                 array--;
1541         }
1542
1543         if (type & PERF_SAMPLE_ID) {
1544                 sample->id = *array;
1545                 array--;
1546         }
1547
1548         if (type & PERF_SAMPLE_TIME) {
1549                 sample->time = *array;
1550                 array--;
1551         }
1552
1553         if (type & PERF_SAMPLE_TID) {
1554                 u.val64 = *array;
1555                 if (swapped) {
1556                         /* undo swap of u64, then swap on individual u32s */
1557                         u.val64 = bswap_64(u.val64);
1558                         u.val32[0] = bswap_32(u.val32[0]);
1559                         u.val32[1] = bswap_32(u.val32[1]);
1560                 }
1561
1562                 sample->pid = u.val32[0];
1563                 sample->tid = u.val32[1];
1564                 array--;
1565         }
1566
1567         return 0;
1568 }
1569
1570 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1571                             u64 size)
1572 {
1573         return size > max_size || offset + size > endp;
1574 }
1575
1576 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1577         do {                                                            \
1578                 if (overflow(endp, (max_size), (offset), (size)))       \
1579                         return -EFAULT;                                 \
1580         } while (0)
1581
1582 #define OVERFLOW_CHECK_u64(offset) \
1583         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1584
1585 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1586                              struct perf_sample *data)
1587 {
1588         u64 type = evsel->attr.sample_type;
1589         bool swapped = evsel->needs_swap;
1590         const u64 *array;
1591         u16 max_size = event->header.size;
1592         const void *endp = (void *)event + max_size;
1593         u64 sz;
1594
1595         /*
1596          * used for cross-endian analysis. See git commit 65014ab3
1597          * for why this goofiness is needed.
1598          */
1599         union u64_swap u;
1600
1601         memset(data, 0, sizeof(*data));
1602         data->cpu = data->pid = data->tid = -1;
1603         data->stream_id = data->id = data->time = -1ULL;
1604         data->period = evsel->attr.sample_period;
1605         data->weight = 0;
1606
1607         if (event->header.type != PERF_RECORD_SAMPLE) {
1608                 if (!evsel->attr.sample_id_all)
1609                         return 0;
1610                 return perf_evsel__parse_id_sample(evsel, event, data);
1611         }
1612
1613         array = event->sample.array;
1614
1615         /*
1616          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1617          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1618          * check the format does not go past the end of the event.
1619          */
1620         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1621                 return -EFAULT;
1622
1623         data->id = -1ULL;
1624         if (type & PERF_SAMPLE_IDENTIFIER) {
1625                 data->id = *array;
1626                 array++;
1627         }
1628
1629         if (type & PERF_SAMPLE_IP) {
1630                 data->ip = *array;
1631                 array++;
1632         }
1633
1634         if (type & PERF_SAMPLE_TID) {
1635                 u.val64 = *array;
1636                 if (swapped) {
1637                         /* undo swap of u64, then swap on individual u32s */
1638                         u.val64 = bswap_64(u.val64);
1639                         u.val32[0] = bswap_32(u.val32[0]);
1640                         u.val32[1] = bswap_32(u.val32[1]);
1641                 }
1642
1643                 data->pid = u.val32[0];
1644                 data->tid = u.val32[1];
1645                 array++;
1646         }
1647
1648         if (type & PERF_SAMPLE_TIME) {
1649                 data->time = *array;
1650                 array++;
1651         }
1652
1653         data->addr = 0;
1654         if (type & PERF_SAMPLE_ADDR) {
1655                 data->addr = *array;
1656                 array++;
1657         }
1658
1659         if (type & PERF_SAMPLE_ID) {
1660                 data->id = *array;
1661                 array++;
1662         }
1663
1664         if (type & PERF_SAMPLE_STREAM_ID) {
1665                 data->stream_id = *array;
1666                 array++;
1667         }
1668
1669         if (type & PERF_SAMPLE_CPU) {
1670
1671                 u.val64 = *array;
1672                 if (swapped) {
1673                         /* undo swap of u64, then swap on individual u32s */
1674                         u.val64 = bswap_64(u.val64);
1675                         u.val32[0] = bswap_32(u.val32[0]);
1676                 }
1677
1678                 data->cpu = u.val32[0];
1679                 array++;
1680         }
1681
1682         if (type & PERF_SAMPLE_PERIOD) {
1683                 data->period = *array;
1684                 array++;
1685         }
1686
1687         if (type & PERF_SAMPLE_READ) {
1688                 u64 read_format = evsel->attr.read_format;
1689
1690                 OVERFLOW_CHECK_u64(array);
1691                 if (read_format & PERF_FORMAT_GROUP)
1692                         data->read.group.nr = *array;
1693                 else
1694                         data->read.one.value = *array;
1695
1696                 array++;
1697
1698                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1699                         OVERFLOW_CHECK_u64(array);
1700                         data->read.time_enabled = *array;
1701                         array++;
1702                 }
1703
1704                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1705                         OVERFLOW_CHECK_u64(array);
1706                         data->read.time_running = *array;
1707                         array++;
1708                 }
1709
1710                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1711                 if (read_format & PERF_FORMAT_GROUP) {
1712                         const u64 max_group_nr = UINT64_MAX /
1713                                         sizeof(struct sample_read_value);
1714
1715                         if (data->read.group.nr > max_group_nr)
1716                                 return -EFAULT;
1717                         sz = data->read.group.nr *
1718                              sizeof(struct sample_read_value);
1719                         OVERFLOW_CHECK(array, sz, max_size);
1720                         data->read.group.values =
1721                                         (struct sample_read_value *)array;
1722                         array = (void *)array + sz;
1723                 } else {
1724                         OVERFLOW_CHECK_u64(array);
1725                         data->read.one.id = *array;
1726                         array++;
1727                 }
1728         }
1729
1730         if (type & PERF_SAMPLE_CALLCHAIN) {
1731                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1732
1733                 OVERFLOW_CHECK_u64(array);
1734                 data->callchain = (struct ip_callchain *)array++;
1735                 if (data->callchain->nr > max_callchain_nr)
1736                         return -EFAULT;
1737                 sz = data->callchain->nr * sizeof(u64);
1738                 OVERFLOW_CHECK(array, sz, max_size);
1739                 array = (void *)array + sz;
1740         }
1741
1742         if (type & PERF_SAMPLE_RAW) {
1743                 OVERFLOW_CHECK_u64(array);
1744                 u.val64 = *array;
1745                 if (WARN_ONCE(swapped,
1746                               "Endianness of raw data not corrected!\n")) {
1747                         /* undo swap of u64, then swap on individual u32s */
1748                         u.val64 = bswap_64(u.val64);
1749                         u.val32[0] = bswap_32(u.val32[0]);
1750                         u.val32[1] = bswap_32(u.val32[1]);
1751                 }
1752                 data->raw_size = u.val32[0];
1753                 array = (void *)array + sizeof(u32);
1754
1755                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1756                 data->raw_data = (void *)array;
1757                 array = (void *)array + data->raw_size;
1758         }
1759
1760         if (type & PERF_SAMPLE_BRANCH_STACK) {
1761                 const u64 max_branch_nr = UINT64_MAX /
1762                                           sizeof(struct branch_entry);
1763
1764                 OVERFLOW_CHECK_u64(array);
1765                 data->branch_stack = (struct branch_stack *)array++;
1766
1767                 if (data->branch_stack->nr > max_branch_nr)
1768                         return -EFAULT;
1769                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1770                 OVERFLOW_CHECK(array, sz, max_size);
1771                 array = (void *)array + sz;
1772         }
1773
1774         if (type & PERF_SAMPLE_REGS_USER) {
1775                 OVERFLOW_CHECK_u64(array);
1776                 data->user_regs.abi = *array;
1777                 array++;
1778
1779                 if (data->user_regs.abi) {
1780                         u64 mask = evsel->attr.sample_regs_user;
1781
1782                         sz = hweight_long(mask) * sizeof(u64);
1783                         OVERFLOW_CHECK(array, sz, max_size);
1784                         data->user_regs.mask = mask;
1785                         data->user_regs.regs = (u64 *)array;
1786                         array = (void *)array + sz;
1787                 }
1788         }
1789
1790         if (type & PERF_SAMPLE_STACK_USER) {
1791                 OVERFLOW_CHECK_u64(array);
1792                 sz = *array++;
1793
1794                 data->user_stack.offset = ((char *)(array - 1)
1795                                           - (char *) event);
1796
1797                 if (!sz) {
1798                         data->user_stack.size = 0;
1799                 } else {
1800                         OVERFLOW_CHECK(array, sz, max_size);
1801                         data->user_stack.data = (char *)array;
1802                         array = (void *)array + sz;
1803                         OVERFLOW_CHECK_u64(array);
1804                         data->user_stack.size = *array++;
1805                         if (WARN_ONCE(data->user_stack.size > sz,
1806                                       "user stack dump failure\n"))
1807                                 return -EFAULT;
1808                 }
1809         }
1810
1811         data->weight = 0;
1812         if (type & PERF_SAMPLE_WEIGHT) {
1813                 OVERFLOW_CHECK_u64(array);
1814                 data->weight = *array;
1815                 array++;
1816         }
1817
1818         data->data_src = PERF_MEM_DATA_SRC_NONE;
1819         if (type & PERF_SAMPLE_DATA_SRC) {
1820                 OVERFLOW_CHECK_u64(array);
1821                 data->data_src = *array;
1822                 array++;
1823         }
1824
1825         data->transaction = 0;
1826         if (type & PERF_SAMPLE_TRANSACTION) {
1827                 OVERFLOW_CHECK_u64(array);
1828                 data->transaction = *array;
1829                 array++;
1830         }
1831
1832         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1833         if (type & PERF_SAMPLE_REGS_INTR) {
1834                 OVERFLOW_CHECK_u64(array);
1835                 data->intr_regs.abi = *array;
1836                 array++;
1837
1838                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1839                         u64 mask = evsel->attr.sample_regs_intr;
1840
1841                         sz = hweight_long(mask) * sizeof(u64);
1842                         OVERFLOW_CHECK(array, sz, max_size);
1843                         data->intr_regs.mask = mask;
1844                         data->intr_regs.regs = (u64 *)array;
1845                         array = (void *)array + sz;
1846                 }
1847         }
1848
1849         return 0;
1850 }
1851
1852 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1853                                      u64 read_format)
1854 {
1855         size_t sz, result = sizeof(struct sample_event);
1856
1857         if (type & PERF_SAMPLE_IDENTIFIER)
1858                 result += sizeof(u64);
1859
1860         if (type & PERF_SAMPLE_IP)
1861                 result += sizeof(u64);
1862
1863         if (type & PERF_SAMPLE_TID)
1864                 result += sizeof(u64);
1865
1866         if (type & PERF_SAMPLE_TIME)
1867                 result += sizeof(u64);
1868
1869         if (type & PERF_SAMPLE_ADDR)
1870                 result += sizeof(u64);
1871
1872         if (type & PERF_SAMPLE_ID)
1873                 result += sizeof(u64);
1874
1875         if (type & PERF_SAMPLE_STREAM_ID)
1876                 result += sizeof(u64);
1877
1878         if (type & PERF_SAMPLE_CPU)
1879                 result += sizeof(u64);
1880
1881         if (type & PERF_SAMPLE_PERIOD)
1882                 result += sizeof(u64);
1883
1884         if (type & PERF_SAMPLE_READ) {
1885                 result += sizeof(u64);
1886                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1887                         result += sizeof(u64);
1888                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1889                         result += sizeof(u64);
1890                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1891                 if (read_format & PERF_FORMAT_GROUP) {
1892                         sz = sample->read.group.nr *
1893                              sizeof(struct sample_read_value);
1894                         result += sz;
1895                 } else {
1896                         result += sizeof(u64);
1897                 }
1898         }
1899
1900         if (type & PERF_SAMPLE_CALLCHAIN) {
1901                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1902                 result += sz;
1903         }
1904
1905         if (type & PERF_SAMPLE_RAW) {
1906                 result += sizeof(u32);
1907                 result += sample->raw_size;
1908         }
1909
1910         if (type & PERF_SAMPLE_BRANCH_STACK) {
1911                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1912                 sz += sizeof(u64);
1913                 result += sz;
1914         }
1915
1916         if (type & PERF_SAMPLE_REGS_USER) {
1917                 if (sample->user_regs.abi) {
1918                         result += sizeof(u64);
1919                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1920                         result += sz;
1921                 } else {
1922                         result += sizeof(u64);
1923                 }
1924         }
1925
1926         if (type & PERF_SAMPLE_STACK_USER) {
1927                 sz = sample->user_stack.size;
1928                 result += sizeof(u64);
1929                 if (sz) {
1930                         result += sz;
1931                         result += sizeof(u64);
1932                 }
1933         }
1934
1935         if (type & PERF_SAMPLE_WEIGHT)
1936                 result += sizeof(u64);
1937
1938         if (type & PERF_SAMPLE_DATA_SRC)
1939                 result += sizeof(u64);
1940
1941         if (type & PERF_SAMPLE_TRANSACTION)
1942                 result += sizeof(u64);
1943
1944         if (type & PERF_SAMPLE_REGS_INTR) {
1945                 if (sample->intr_regs.abi) {
1946                         result += sizeof(u64);
1947                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1948                         result += sz;
1949                 } else {
1950                         result += sizeof(u64);
1951                 }
1952         }
1953
1954         return result;
1955 }
1956
1957 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1958                                   u64 read_format,
1959                                   const struct perf_sample *sample,
1960                                   bool swapped)
1961 {
1962         u64 *array;
1963         size_t sz;
1964         /*
1965          * used for cross-endian analysis. See git commit 65014ab3
1966          * for why this goofiness is needed.
1967          */
1968         union u64_swap u;
1969
1970         array = event->sample.array;
1971
1972         if (type & PERF_SAMPLE_IDENTIFIER) {
1973                 *array = sample->id;
1974                 array++;
1975         }
1976
1977         if (type & PERF_SAMPLE_IP) {
1978                 *array = sample->ip;
1979                 array++;
1980         }
1981
1982         if (type & PERF_SAMPLE_TID) {
1983                 u.val32[0] = sample->pid;
1984                 u.val32[1] = sample->tid;
1985                 if (swapped) {
1986                         /*
1987                          * Inverse of what is done in perf_evsel__parse_sample
1988                          */
1989                         u.val32[0] = bswap_32(u.val32[0]);
1990                         u.val32[1] = bswap_32(u.val32[1]);
1991                         u.val64 = bswap_64(u.val64);
1992                 }
1993
1994                 *array = u.val64;
1995                 array++;
1996         }
1997
1998         if (type & PERF_SAMPLE_TIME) {
1999                 *array = sample->time;
2000                 array++;
2001         }
2002
2003         if (type & PERF_SAMPLE_ADDR) {
2004                 *array = sample->addr;
2005                 array++;
2006         }
2007
2008         if (type & PERF_SAMPLE_ID) {
2009                 *array = sample->id;
2010                 array++;
2011         }
2012
2013         if (type & PERF_SAMPLE_STREAM_ID) {
2014                 *array = sample->stream_id;
2015                 array++;
2016         }
2017
2018         if (type & PERF_SAMPLE_CPU) {
2019                 u.val32[0] = sample->cpu;
2020                 if (swapped) {
2021                         /*
2022                          * Inverse of what is done in perf_evsel__parse_sample
2023                          */
2024                         u.val32[0] = bswap_32(u.val32[0]);
2025                         u.val64 = bswap_64(u.val64);
2026                 }
2027                 *array = u.val64;
2028                 array++;
2029         }
2030
2031         if (type & PERF_SAMPLE_PERIOD) {
2032                 *array = sample->period;
2033                 array++;
2034         }
2035
2036         if (type & PERF_SAMPLE_READ) {
2037                 if (read_format & PERF_FORMAT_GROUP)
2038                         *array = sample->read.group.nr;
2039                 else
2040                         *array = sample->read.one.value;
2041                 array++;
2042
2043                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2044                         *array = sample->read.time_enabled;
2045                         array++;
2046                 }
2047
2048                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2049                         *array = sample->read.time_running;
2050                         array++;
2051                 }
2052
2053                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2054                 if (read_format & PERF_FORMAT_GROUP) {
2055                         sz = sample->read.group.nr *
2056                              sizeof(struct sample_read_value);
2057                         memcpy(array, sample->read.group.values, sz);
2058                         array = (void *)array + sz;
2059                 } else {
2060                         *array = sample->read.one.id;
2061                         array++;
2062                 }
2063         }
2064
2065         if (type & PERF_SAMPLE_CALLCHAIN) {
2066                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2067                 memcpy(array, sample->callchain, sz);
2068                 array = (void *)array + sz;
2069         }
2070
2071         if (type & PERF_SAMPLE_RAW) {
2072                 u.val32[0] = sample->raw_size;
2073                 if (WARN_ONCE(swapped,
2074                               "Endianness of raw data not corrected!\n")) {
2075                         /*
2076                          * Inverse of what is done in perf_evsel__parse_sample
2077                          */
2078                         u.val32[0] = bswap_32(u.val32[0]);
2079                         u.val32[1] = bswap_32(u.val32[1]);
2080                         u.val64 = bswap_64(u.val64);
2081                 }
2082                 *array = u.val64;
2083                 array = (void *)array + sizeof(u32);
2084
2085                 memcpy(array, sample->raw_data, sample->raw_size);
2086                 array = (void *)array + sample->raw_size;
2087         }
2088
2089         if (type & PERF_SAMPLE_BRANCH_STACK) {
2090                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2091                 sz += sizeof(u64);
2092                 memcpy(array, sample->branch_stack, sz);
2093                 array = (void *)array + sz;
2094         }
2095
2096         if (type & PERF_SAMPLE_REGS_USER) {
2097                 if (sample->user_regs.abi) {
2098                         *array++ = sample->user_regs.abi;
2099                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2100                         memcpy(array, sample->user_regs.regs, sz);
2101                         array = (void *)array + sz;
2102                 } else {
2103                         *array++ = 0;
2104                 }
2105         }
2106
2107         if (type & PERF_SAMPLE_STACK_USER) {
2108                 sz = sample->user_stack.size;
2109                 *array++ = sz;
2110                 if (sz) {
2111                         memcpy(array, sample->user_stack.data, sz);
2112                         array = (void *)array + sz;
2113                         *array++ = sz;
2114                 }
2115         }
2116
2117         if (type & PERF_SAMPLE_WEIGHT) {
2118                 *array = sample->weight;
2119                 array++;
2120         }
2121
2122         if (type & PERF_SAMPLE_DATA_SRC) {
2123                 *array = sample->data_src;
2124                 array++;
2125         }
2126
2127         if (type & PERF_SAMPLE_TRANSACTION) {
2128                 *array = sample->transaction;
2129                 array++;
2130         }
2131
2132         if (type & PERF_SAMPLE_REGS_INTR) {
2133                 if (sample->intr_regs.abi) {
2134                         *array++ = sample->intr_regs.abi;
2135                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2136                         memcpy(array, sample->intr_regs.regs, sz);
2137                         array = (void *)array + sz;
2138                 } else {
2139                         *array++ = 0;
2140                 }
2141         }
2142
2143         return 0;
2144 }
2145
2146 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2147 {
2148         return pevent_find_field(evsel->tp_format, name);
2149 }
2150
2151 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2152                          const char *name)
2153 {
2154         struct format_field *field = perf_evsel__field(evsel, name);
2155         int offset;
2156
2157         if (!field)
2158                 return NULL;
2159
2160         offset = field->offset;
2161
2162         if (field->flags & FIELD_IS_DYNAMIC) {
2163                 offset = *(int *)(sample->raw_data + field->offset);
2164                 offset &= 0xffff;
2165         }
2166
2167         return sample->raw_data + offset;
2168 }
2169
2170 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2171                        const char *name)
2172 {
2173         struct format_field *field = perf_evsel__field(evsel, name);
2174         void *ptr;
2175         u64 value;
2176
2177         if (!field)
2178                 return 0;
2179
2180         ptr = sample->raw_data + field->offset;
2181
2182         switch (field->size) {
2183         case 1:
2184                 return *(u8 *)ptr;
2185         case 2:
2186                 value = *(u16 *)ptr;
2187                 break;
2188         case 4:
2189                 value = *(u32 *)ptr;
2190                 break;
2191         case 8:
2192                 memcpy(&value, ptr, sizeof(u64));
2193                 break;
2194         default:
2195                 return 0;
2196         }
2197
2198         if (!evsel->needs_swap)
2199                 return value;
2200
2201         switch (field->size) {
2202         case 2:
2203                 return bswap_16(value);
2204         case 4:
2205                 return bswap_32(value);
2206         case 8:
2207                 return bswap_64(value);
2208         default:
2209                 return 0;
2210         }
2211
2212         return 0;
2213 }
2214
2215 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2216 {
2217         va_list args;
2218         int ret = 0;
2219
2220         if (!*first) {
2221                 ret += fprintf(fp, ",");
2222         } else {
2223                 ret += fprintf(fp, ":");
2224                 *first = false;
2225         }
2226
2227         va_start(args, fmt);
2228         ret += vfprintf(fp, fmt, args);
2229         va_end(args);
2230         return ret;
2231 }
2232
2233 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2234 {
2235         return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2236 }
2237
2238 int perf_evsel__fprintf(struct perf_evsel *evsel,
2239                         struct perf_attr_details *details, FILE *fp)
2240 {
2241         bool first = true;
2242         int printed = 0;
2243
2244         if (details->event_group) {
2245                 struct perf_evsel *pos;
2246
2247                 if (!perf_evsel__is_group_leader(evsel))
2248                         return 0;
2249
2250                 if (evsel->nr_members > 1)
2251                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2252
2253                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2254                 for_each_group_member(pos, evsel)
2255                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2256
2257                 if (evsel->nr_members > 1)
2258                         printed += fprintf(fp, "}");
2259                 goto out;
2260         }
2261
2262         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2263
2264         if (details->verbose) {
2265                 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2266                                                     __print_attr__fprintf, &first);
2267         } else if (details->freq) {
2268                 const char *term = "sample_freq";
2269
2270                 if (!evsel->attr.freq)
2271                         term = "sample_period";
2272
2273                 printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2274                                          term, (u64)evsel->attr.sample_freq);
2275         }
2276 out:
2277         fputc('\n', fp);
2278         return ++printed;
2279 }
2280
2281 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2282                           char *msg, size_t msgsize)
2283 {
2284         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2285             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2286             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2287                 /*
2288                  * If it's cycles then fall back to hrtimer based
2289                  * cpu-clock-tick sw counter, which is always available even if
2290                  * no PMU support.
2291                  *
2292                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2293                  * b0a873e).
2294                  */
2295                 scnprintf(msg, msgsize, "%s",
2296 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2297
2298                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2299                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2300
2301                 zfree(&evsel->name);
2302                 return true;
2303         }
2304
2305         return false;
2306 }
2307
2308 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2309                               int err, char *msg, size_t size)
2310 {
2311         char sbuf[STRERR_BUFSIZE];
2312
2313         switch (err) {
2314         case EPERM:
2315         case EACCES:
2316                 return scnprintf(msg, size,
2317                  "You may not have permission to collect %sstats.\n"
2318                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2319                  " -1 - Not paranoid at all\n"
2320                  "  0 - Disallow raw tracepoint access for unpriv\n"
2321                  "  1 - Disallow cpu events for unpriv\n"
2322                  "  2 - Disallow kernel profiling for unpriv",
2323                                  target->system_wide ? "system-wide " : "");
2324         case ENOENT:
2325                 return scnprintf(msg, size, "The %s event is not supported.",
2326                                  perf_evsel__name(evsel));
2327         case EMFILE:
2328                 return scnprintf(msg, size, "%s",
2329                          "Too many events are opened.\n"
2330                          "Probably the maximum number of open file descriptors has been reached.\n"
2331                          "Hint: Try again after reducing the number of events.\n"
2332                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2333         case ENODEV:
2334                 if (target->cpu_list)
2335                         return scnprintf(msg, size, "%s",
2336          "No such device - did you specify an out-of-range profile CPU?\n");
2337                 break;
2338         case EOPNOTSUPP:
2339                 if (evsel->attr.precise_ip)
2340                         return scnprintf(msg, size, "%s",
2341         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2342 #if defined(__i386__) || defined(__x86_64__)
2343                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2344                         return scnprintf(msg, size, "%s",
2345         "No hardware sampling interrupt available.\n"
2346         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2347 #endif
2348                 break;
2349         case EBUSY:
2350                 if (find_process("oprofiled"))
2351                         return scnprintf(msg, size,
2352         "The PMU counters are busy/taken by another profiler.\n"
2353         "We found oprofile daemon running, please stop it and try again.");
2354                 break;
2355         case EINVAL:
2356                 if (perf_missing_features.clockid)
2357                         return scnprintf(msg, size, "clockid feature not supported.");
2358                 if (perf_missing_features.clockid_wrong)
2359                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2360                 break;
2361         default:
2362                 break;
2363         }
2364
2365         return scnprintf(msg, size,
2366         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2367         "/bin/dmesg may provide additional information.\n"
2368         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2369                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2370                          perf_evsel__name(evsel));
2371 }