OSDN Git Service

btrfs: fix space_info bytes_may_use underflow during space cache writeout
[tomoyo/tomoyo-test1.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                        unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (tree->ops)
172                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173                                                  mirror_num, bio_flags);
174         else
175                 btrfsic_submit_bio(bio);
176
177         return blk_status_to_errno(ret);
178 }
179
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183         if (epd->bio) {
184                 epd->bio->bi_status = errno_to_blk_status(ret);
185                 bio_endio(epd->bio);
186                 epd->bio = NULL;
187         }
188 }
189
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198         int ret = 0;
199
200         if (epd->bio) {
201                 ret = submit_one_bio(epd->bio, 0, 0);
202                 /*
203                  * Clean up of epd->bio is handled by its endio function.
204                  * And endio is either triggered by successful bio execution
205                  * or the error handler of submit bio hook.
206                  * So at this point, no matter what happened, we don't need
207                  * to clean up epd->bio.
208                  */
209                 epd->bio = NULL;
210         }
211         return ret;
212 }
213
214 int __init extent_state_cache_init(void)
215 {
216         extent_state_cache = kmem_cache_create("btrfs_extent_state",
217                         sizeof(struct extent_state), 0,
218                         SLAB_MEM_SPREAD, NULL);
219         if (!extent_state_cache)
220                 return -ENOMEM;
221         return 0;
222 }
223
224 int __init extent_io_init(void)
225 {
226         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227                         sizeof(struct extent_buffer), 0,
228                         SLAB_MEM_SPREAD, NULL);
229         if (!extent_buffer_cache)
230                 return -ENOMEM;
231
232         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233                         offsetof(struct btrfs_io_bio, bio),
234                         BIOSET_NEED_BVECS))
235                 goto free_buffer_cache;
236
237         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238                 goto free_bioset;
239
240         return 0;
241
242 free_bioset:
243         bioset_exit(&btrfs_bioset);
244
245 free_buffer_cache:
246         kmem_cache_destroy(extent_buffer_cache);
247         extent_buffer_cache = NULL;
248         return -ENOMEM;
249 }
250
251 void __cold extent_state_cache_exit(void)
252 {
253         btrfs_extent_state_leak_debug_check();
254         kmem_cache_destroy(extent_state_cache);
255 }
256
257 void __cold extent_io_exit(void)
258 {
259         /*
260          * Make sure all delayed rcu free are flushed before we
261          * destroy caches.
262          */
263         rcu_barrier();
264         kmem_cache_destroy(extent_buffer_cache);
265         bioset_exit(&btrfs_bioset);
266 }
267
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278                          struct extent_io_tree *tree, unsigned int owner,
279                          void *private_data)
280 {
281         tree->fs_info = fs_info;
282         tree->state = RB_ROOT;
283         tree->ops = NULL;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         struct inode *inode = tree->private_data;
680
681         btrfs_panic(btrfs_sb(inode->i_sb), err,
682         "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698                               unsigned bits, int wake, int delete,
699                               struct extent_state **cached_state,
700                               gfp_t mask, struct extent_changeset *changeset)
701 {
702         struct extent_state *state;
703         struct extent_state *cached;
704         struct extent_state *prealloc = NULL;
705         struct rb_node *node;
706         u64 last_end;
707         int err;
708         int clear = 0;
709
710         btrfs_debug_check_extent_io_range(tree, start, end);
711         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713         if (bits & EXTENT_DELALLOC)
714                 bits |= EXTENT_NORESERVE;
715
716         if (delete)
717                 bits |= ~EXTENT_CTLBITS;
718
719         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720                 clear = 1;
721 again:
722         if (!prealloc && gfpflags_allow_blocking(mask)) {
723                 /*
724                  * Don't care for allocation failure here because we might end
725                  * up not needing the pre-allocated extent state at all, which
726                  * is the case if we only have in the tree extent states that
727                  * cover our input range and don't cover too any other range.
728                  * If we end up needing a new extent state we allocate it later.
729                  */
730                 prealloc = alloc_extent_state(mask);
731         }
732
733         spin_lock(&tree->lock);
734         if (cached_state) {
735                 cached = *cached_state;
736
737                 if (clear) {
738                         *cached_state = NULL;
739                         cached_state = NULL;
740                 }
741
742                 if (cached && extent_state_in_tree(cached) &&
743                     cached->start <= start && cached->end > start) {
744                         if (clear)
745                                 refcount_dec(&cached->refs);
746                         state = cached;
747                         goto hit_next;
748                 }
749                 if (clear)
750                         free_extent_state(cached);
751         }
752         /*
753          * this search will find the extents that end after
754          * our range starts
755          */
756         node = tree_search(tree, start);
757         if (!node)
758                 goto out;
759         state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761         if (state->start > end)
762                 goto out;
763         WARN_ON(state->end < start);
764         last_end = state->end;
765
766         /* the state doesn't have the wanted bits, go ahead */
767         if (!(state->state & bits)) {
768                 state = next_state(state);
769                 goto next;
770         }
771
772         /*
773          *     | ---- desired range ---- |
774          *  | state | or
775          *  | ------------- state -------------- |
776          *
777          * We need to split the extent we found, and may flip
778          * bits on second half.
779          *
780          * If the extent we found extends past our range, we
781          * just split and search again.  It'll get split again
782          * the next time though.
783          *
784          * If the extent we found is inside our range, we clear
785          * the desired bit on it.
786          */
787
788         if (state->start < start) {
789                 prealloc = alloc_extent_state_atomic(prealloc);
790                 BUG_ON(!prealloc);
791                 err = split_state(tree, state, prealloc, start);
792                 if (err)
793                         extent_io_tree_panic(tree, err);
794
795                 prealloc = NULL;
796                 if (err)
797                         goto out;
798                 if (state->end <= end) {
799                         state = clear_state_bit(tree, state, &bits, wake,
800                                                 changeset);
801                         goto next;
802                 }
803                 goto search_again;
804         }
805         /*
806          * | ---- desired range ---- |
807          *                        | state |
808          * We need to split the extent, and clear the bit
809          * on the first half
810          */
811         if (state->start <= end && state->end > end) {
812                 prealloc = alloc_extent_state_atomic(prealloc);
813                 BUG_ON(!prealloc);
814                 err = split_state(tree, state, prealloc, end + 1);
815                 if (err)
816                         extent_io_tree_panic(tree, err);
817
818                 if (wake)
819                         wake_up(&state->wq);
820
821                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823                 prealloc = NULL;
824                 goto out;
825         }
826
827         state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829         if (last_end == (u64)-1)
830                 goto out;
831         start = last_end + 1;
832         if (start <= end && state && !need_resched())
833                 goto hit_next;
834
835 search_again:
836         if (start > end)
837                 goto out;
838         spin_unlock(&tree->lock);
839         if (gfpflags_allow_blocking(mask))
840                 cond_resched();
841         goto again;
842
843 out:
844         spin_unlock(&tree->lock);
845         if (prealloc)
846                 free_extent_state(prealloc);
847
848         return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853                           struct extent_state *state)
854                 __releases(tree->lock)
855                 __acquires(tree->lock)
856 {
857         DEFINE_WAIT(wait);
858         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859         spin_unlock(&tree->lock);
860         schedule();
861         spin_lock(&tree->lock);
862         finish_wait(&state->wq, &wait);
863 }
864
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871                             unsigned long bits)
872 {
873         struct extent_state *state;
874         struct rb_node *node;
875
876         btrfs_debug_check_extent_io_range(tree, start, end);
877
878         spin_lock(&tree->lock);
879 again:
880         while (1) {
881                 /*
882                  * this search will find all the extents that end after
883                  * our range starts
884                  */
885                 node = tree_search(tree, start);
886 process_node:
887                 if (!node)
888                         break;
889
890                 state = rb_entry(node, struct extent_state, rb_node);
891
892                 if (state->start > end)
893                         goto out;
894
895                 if (state->state & bits) {
896                         start = state->start;
897                         refcount_inc(&state->refs);
898                         wait_on_state(tree, state);
899                         free_extent_state(state);
900                         goto again;
901                 }
902                 start = state->end + 1;
903
904                 if (start > end)
905                         break;
906
907                 if (!cond_resched_lock(&tree->lock)) {
908                         node = rb_next(node);
909                         goto process_node;
910                 }
911         }
912 out:
913         spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917                            struct extent_state *state,
918                            unsigned *bits, struct extent_changeset *changeset)
919 {
920         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921         int ret;
922
923         if (tree->private_data && is_data_inode(tree->private_data))
924                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927                 u64 range = state->end - state->start + 1;
928                 tree->dirty_bytes += range;
929         }
930         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931         BUG_ON(ret < 0);
932         state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936                                  struct extent_state **cached_ptr,
937                                  unsigned flags)
938 {
939         if (cached_ptr && !(*cached_ptr)) {
940                 if (!flags || (state->state & flags)) {
941                         *cached_ptr = state;
942                         refcount_inc(&state->refs);
943                 }
944         }
945 }
946
947 static void cache_state(struct extent_state *state,
948                         struct extent_state **cached_ptr)
949 {
950         return cache_state_if_flags(state, cached_ptr,
951                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967                  unsigned bits, unsigned exclusive_bits,
968                  u64 *failed_start, struct extent_state **cached_state,
969                  gfp_t mask, struct extent_changeset *changeset)
970 {
971         struct extent_state *state;
972         struct extent_state *prealloc = NULL;
973         struct rb_node *node;
974         struct rb_node **p;
975         struct rb_node *parent;
976         int err = 0;
977         u64 last_start;
978         u64 last_end;
979
980         btrfs_debug_check_extent_io_range(tree, start, end);
981         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983 again:
984         if (!prealloc && gfpflags_allow_blocking(mask)) {
985                 /*
986                  * Don't care for allocation failure here because we might end
987                  * up not needing the pre-allocated extent state at all, which
988                  * is the case if we only have in the tree extent states that
989                  * cover our input range and don't cover too any other range.
990                  * If we end up needing a new extent state we allocate it later.
991                  */
992                 prealloc = alloc_extent_state(mask);
993         }
994
995         spin_lock(&tree->lock);
996         if (cached_state && *cached_state) {
997                 state = *cached_state;
998                 if (state->start <= start && state->end > start &&
999                     extent_state_in_tree(state)) {
1000                         node = &state->rb_node;
1001                         goto hit_next;
1002                 }
1003         }
1004         /*
1005          * this search will find all the extents that end after
1006          * our range starts.
1007          */
1008         node = tree_search_for_insert(tree, start, &p, &parent);
1009         if (!node) {
1010                 prealloc = alloc_extent_state_atomic(prealloc);
1011                 BUG_ON(!prealloc);
1012                 err = insert_state(tree, prealloc, start, end,
1013                                    &p, &parent, &bits, changeset);
1014                 if (err)
1015                         extent_io_tree_panic(tree, err);
1016
1017                 cache_state(prealloc, cached_state);
1018                 prealloc = NULL;
1019                 goto out;
1020         }
1021         state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023         last_start = state->start;
1024         last_end = state->end;
1025
1026         /*
1027          * | ---- desired range ---- |
1028          * | state |
1029          *
1030          * Just lock what we found and keep going
1031          */
1032         if (state->start == start && state->end <= end) {
1033                 if (state->state & exclusive_bits) {
1034                         *failed_start = state->start;
1035                         err = -EEXIST;
1036                         goto out;
1037                 }
1038
1039                 set_state_bits(tree, state, &bits, changeset);
1040                 cache_state(state, cached_state);
1041                 merge_state(tree, state);
1042                 if (last_end == (u64)-1)
1043                         goto out;
1044                 start = last_end + 1;
1045                 state = next_state(state);
1046                 if (start < end && state && state->start == start &&
1047                     !need_resched())
1048                         goto hit_next;
1049                 goto search_again;
1050         }
1051
1052         /*
1053          *     | ---- desired range ---- |
1054          * | state |
1055          *   or
1056          * | ------------- state -------------- |
1057          *
1058          * We need to split the extent we found, and may flip bits on
1059          * second half.
1060          *
1061          * If the extent we found extends past our
1062          * range, we just split and search again.  It'll get split
1063          * again the next time though.
1064          *
1065          * If the extent we found is inside our range, we set the
1066          * desired bit on it.
1067          */
1068         if (state->start < start) {
1069                 if (state->state & exclusive_bits) {
1070                         *failed_start = start;
1071                         err = -EEXIST;
1072                         goto out;
1073                 }
1074
1075                 /*
1076                  * If this extent already has all the bits we want set, then
1077                  * skip it, not necessary to split it or do anything with it.
1078                  */
1079                 if ((state->state & bits) == bits) {
1080                         start = state->end + 1;
1081                         cache_state(state, cached_state);
1082                         goto search_again;
1083                 }
1084
1085                 prealloc = alloc_extent_state_atomic(prealloc);
1086                 BUG_ON(!prealloc);
1087                 err = split_state(tree, state, prealloc, start);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090
1091                 prealloc = NULL;
1092                 if (err)
1093                         goto out;
1094                 if (state->end <= end) {
1095                         set_state_bits(tree, state, &bits, changeset);
1096                         cache_state(state, cached_state);
1097                         merge_state(tree, state);
1098                         if (last_end == (u64)-1)
1099                                 goto out;
1100                         start = last_end + 1;
1101                         state = next_state(state);
1102                         if (start < end && state && state->start == start &&
1103                             !need_resched())
1104                                 goto hit_next;
1105                 }
1106                 goto search_again;
1107         }
1108         /*
1109          * | ---- desired range ---- |
1110          *     | state | or               | state |
1111          *
1112          * There's a hole, we need to insert something in it and
1113          * ignore the extent we found.
1114          */
1115         if (state->start > start) {
1116                 u64 this_end;
1117                 if (end < last_start)
1118                         this_end = end;
1119                 else
1120                         this_end = last_start - 1;
1121
1122                 prealloc = alloc_extent_state_atomic(prealloc);
1123                 BUG_ON(!prealloc);
1124
1125                 /*
1126                  * Avoid to free 'prealloc' if it can be merged with
1127                  * the later extent.
1128                  */
1129                 err = insert_state(tree, prealloc, start, this_end,
1130                                    NULL, NULL, &bits, changeset);
1131                 if (err)
1132                         extent_io_tree_panic(tree, err);
1133
1134                 cache_state(prealloc, cached_state);
1135                 prealloc = NULL;
1136                 start = this_end + 1;
1137                 goto search_again;
1138         }
1139         /*
1140          * | ---- desired range ---- |
1141          *                        | state |
1142          * We need to split the extent, and set the bit
1143          * on the first half
1144          */
1145         if (state->start <= end && state->end > end) {
1146                 if (state->state & exclusive_bits) {
1147                         *failed_start = start;
1148                         err = -EEXIST;
1149                         goto out;
1150                 }
1151
1152                 prealloc = alloc_extent_state_atomic(prealloc);
1153                 BUG_ON(!prealloc);
1154                 err = split_state(tree, state, prealloc, end + 1);
1155                 if (err)
1156                         extent_io_tree_panic(tree, err);
1157
1158                 set_state_bits(tree, prealloc, &bits, changeset);
1159                 cache_state(prealloc, cached_state);
1160                 merge_state(tree, prealloc);
1161                 prealloc = NULL;
1162                 goto out;
1163         }
1164
1165 search_again:
1166         if (start > end)
1167                 goto out;
1168         spin_unlock(&tree->lock);
1169         if (gfpflags_allow_blocking(mask))
1170                 cond_resched();
1171         goto again;
1172
1173 out:
1174         spin_unlock(&tree->lock);
1175         if (prealloc)
1176                 free_extent_state(prealloc);
1177
1178         return err;
1179
1180 }
1181
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183                    unsigned bits, u64 * failed_start,
1184                    struct extent_state **cached_state, gfp_t mask)
1185 {
1186         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187                                 cached_state, mask, NULL);
1188 }
1189
1190
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  *                      another
1194  * @tree:       the io tree to search
1195  * @start:      the start offset in bytes
1196  * @end:        the end offset in bytes (inclusive)
1197  * @bits:       the bits to set in this range
1198  * @clear_bits: the bits to clear in this range
1199  * @cached_state:       state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210                        unsigned bits, unsigned clear_bits,
1211                        struct extent_state **cached_state)
1212 {
1213         struct extent_state *state;
1214         struct extent_state *prealloc = NULL;
1215         struct rb_node *node;
1216         struct rb_node **p;
1217         struct rb_node *parent;
1218         int err = 0;
1219         u64 last_start;
1220         u64 last_end;
1221         bool first_iteration = true;
1222
1223         btrfs_debug_check_extent_io_range(tree, start, end);
1224         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225                                        clear_bits);
1226
1227 again:
1228         if (!prealloc) {
1229                 /*
1230                  * Best effort, don't worry if extent state allocation fails
1231                  * here for the first iteration. We might have a cached state
1232                  * that matches exactly the target range, in which case no
1233                  * extent state allocations are needed. We'll only know this
1234                  * after locking the tree.
1235                  */
1236                 prealloc = alloc_extent_state(GFP_NOFS);
1237                 if (!prealloc && !first_iteration)
1238                         return -ENOMEM;
1239         }
1240
1241         spin_lock(&tree->lock);
1242         if (cached_state && *cached_state) {
1243                 state = *cached_state;
1244                 if (state->start <= start && state->end > start &&
1245                     extent_state_in_tree(state)) {
1246                         node = &state->rb_node;
1247                         goto hit_next;
1248                 }
1249         }
1250
1251         /*
1252          * this search will find all the extents that end after
1253          * our range starts.
1254          */
1255         node = tree_search_for_insert(tree, start, &p, &parent);
1256         if (!node) {
1257                 prealloc = alloc_extent_state_atomic(prealloc);
1258                 if (!prealloc) {
1259                         err = -ENOMEM;
1260                         goto out;
1261                 }
1262                 err = insert_state(tree, prealloc, start, end,
1263                                    &p, &parent, &bits, NULL);
1264                 if (err)
1265                         extent_io_tree_panic(tree, err);
1266                 cache_state(prealloc, cached_state);
1267                 prealloc = NULL;
1268                 goto out;
1269         }
1270         state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272         last_start = state->start;
1273         last_end = state->end;
1274
1275         /*
1276          * | ---- desired range ---- |
1277          * | state |
1278          *
1279          * Just lock what we found and keep going
1280          */
1281         if (state->start == start && state->end <= end) {
1282                 set_state_bits(tree, state, &bits, NULL);
1283                 cache_state(state, cached_state);
1284                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285                 if (last_end == (u64)-1)
1286                         goto out;
1287                 start = last_end + 1;
1288                 if (start < end && state && state->start == start &&
1289                     !need_resched())
1290                         goto hit_next;
1291                 goto search_again;
1292         }
1293
1294         /*
1295          *     | ---- desired range ---- |
1296          * | state |
1297          *   or
1298          * | ------------- state -------------- |
1299          *
1300          * We need to split the extent we found, and may flip bits on
1301          * second half.
1302          *
1303          * If the extent we found extends past our
1304          * range, we just split and search again.  It'll get split
1305          * again the next time though.
1306          *
1307          * If the extent we found is inside our range, we set the
1308          * desired bit on it.
1309          */
1310         if (state->start < start) {
1311                 prealloc = alloc_extent_state_atomic(prealloc);
1312                 if (!prealloc) {
1313                         err = -ENOMEM;
1314                         goto out;
1315                 }
1316                 err = split_state(tree, state, prealloc, start);
1317                 if (err)
1318                         extent_io_tree_panic(tree, err);
1319                 prealloc = NULL;
1320                 if (err)
1321                         goto out;
1322                 if (state->end <= end) {
1323                         set_state_bits(tree, state, &bits, NULL);
1324                         cache_state(state, cached_state);
1325                         state = clear_state_bit(tree, state, &clear_bits, 0,
1326                                                 NULL);
1327                         if (last_end == (u64)-1)
1328                                 goto out;
1329                         start = last_end + 1;
1330                         if (start < end && state && state->start == start &&
1331                             !need_resched())
1332                                 goto hit_next;
1333                 }
1334                 goto search_again;
1335         }
1336         /*
1337          * | ---- desired range ---- |
1338          *     | state | or               | state |
1339          *
1340          * There's a hole, we need to insert something in it and
1341          * ignore the extent we found.
1342          */
1343         if (state->start > start) {
1344                 u64 this_end;
1345                 if (end < last_start)
1346                         this_end = end;
1347                 else
1348                         this_end = last_start - 1;
1349
1350                 prealloc = alloc_extent_state_atomic(prealloc);
1351                 if (!prealloc) {
1352                         err = -ENOMEM;
1353                         goto out;
1354                 }
1355
1356                 /*
1357                  * Avoid to free 'prealloc' if it can be merged with
1358                  * the later extent.
1359                  */
1360                 err = insert_state(tree, prealloc, start, this_end,
1361                                    NULL, NULL, &bits, NULL);
1362                 if (err)
1363                         extent_io_tree_panic(tree, err);
1364                 cache_state(prealloc, cached_state);
1365                 prealloc = NULL;
1366                 start = this_end + 1;
1367                 goto search_again;
1368         }
1369         /*
1370          * | ---- desired range ---- |
1371          *                        | state |
1372          * We need to split the extent, and set the bit
1373          * on the first half
1374          */
1375         if (state->start <= end && state->end > end) {
1376                 prealloc = alloc_extent_state_atomic(prealloc);
1377                 if (!prealloc) {
1378                         err = -ENOMEM;
1379                         goto out;
1380                 }
1381
1382                 err = split_state(tree, state, prealloc, end + 1);
1383                 if (err)
1384                         extent_io_tree_panic(tree, err);
1385
1386                 set_state_bits(tree, prealloc, &bits, NULL);
1387                 cache_state(prealloc, cached_state);
1388                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389                 prealloc = NULL;
1390                 goto out;
1391         }
1392
1393 search_again:
1394         if (start > end)
1395                 goto out;
1396         spin_unlock(&tree->lock);
1397         cond_resched();
1398         first_iteration = false;
1399         goto again;
1400
1401 out:
1402         spin_unlock(&tree->lock);
1403         if (prealloc)
1404                 free_extent_state(prealloc);
1405
1406         return err;
1407 }
1408
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411                            unsigned bits, struct extent_changeset *changeset)
1412 {
1413         /*
1414          * We don't support EXTENT_LOCKED yet, as current changeset will
1415          * record any bits changed, so for EXTENT_LOCKED case, it will
1416          * either fail with -EEXIST or changeset will record the whole
1417          * range.
1418          */
1419         BUG_ON(bits & EXTENT_LOCKED);
1420
1421         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422                                 changeset);
1423 }
1424
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426                            unsigned bits)
1427 {
1428         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429                                 GFP_NOWAIT, NULL);
1430 }
1431
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433                      unsigned bits, int wake, int delete,
1434                      struct extent_state **cached)
1435 {
1436         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437                                   cached, GFP_NOFS, NULL);
1438 }
1439
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441                 unsigned bits, struct extent_changeset *changeset)
1442 {
1443         /*
1444          * Don't support EXTENT_LOCKED case, same reason as
1445          * set_record_extent_bits().
1446          */
1447         BUG_ON(bits & EXTENT_LOCKED);
1448
1449         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450                                   changeset);
1451 }
1452
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458                      struct extent_state **cached_state)
1459 {
1460         int err;
1461         u64 failed_start;
1462
1463         while (1) {
1464                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465                                        EXTENT_LOCKED, &failed_start,
1466                                        cached_state, GFP_NOFS, NULL);
1467                 if (err == -EEXIST) {
1468                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469                         start = failed_start;
1470                 } else
1471                         break;
1472                 WARN_ON(start > end);
1473         }
1474         return err;
1475 }
1476
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479         int err;
1480         u64 failed_start;
1481
1482         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483                                &failed_start, NULL, GFP_NOFS, NULL);
1484         if (err == -EEXIST) {
1485                 if (failed_start > start)
1486                         clear_extent_bit(tree, start, failed_start - 1,
1487                                          EXTENT_LOCKED, 1, 0, NULL);
1488                 return 0;
1489         }
1490         return 1;
1491 }
1492
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495         unsigned long index = start >> PAGE_SHIFT;
1496         unsigned long end_index = end >> PAGE_SHIFT;
1497         struct page *page;
1498
1499         while (index <= end_index) {
1500                 page = find_get_page(inode->i_mapping, index);
1501                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502                 clear_page_dirty_for_io(page);
1503                 put_page(page);
1504                 index++;
1505         }
1506 }
1507
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510         unsigned long index = start >> PAGE_SHIFT;
1511         unsigned long end_index = end >> PAGE_SHIFT;
1512         struct page *page;
1513
1514         while (index <= end_index) {
1515                 page = find_get_page(inode->i_mapping, index);
1516                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517                 __set_page_dirty_nobuffers(page);
1518                 account_page_redirty(page);
1519                 put_page(page);
1520                 index++;
1521         }
1522 }
1523
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530                             u64 start, unsigned bits)
1531 {
1532         struct rb_node *node;
1533         struct extent_state *state;
1534
1535         /*
1536          * this search will find all the extents that end after
1537          * our range starts.
1538          */
1539         node = tree_search(tree, start);
1540         if (!node)
1541                 goto out;
1542
1543         while (1) {
1544                 state = rb_entry(node, struct extent_state, rb_node);
1545                 if (state->end >= start && (state->state & bits))
1546                         return state;
1547
1548                 node = rb_next(node);
1549                 if (!node)
1550                         break;
1551         }
1552 out:
1553         return NULL;
1554 }
1555
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564                           u64 *start_ret, u64 *end_ret, unsigned bits,
1565                           struct extent_state **cached_state)
1566 {
1567         struct extent_state *state;
1568         int ret = 1;
1569
1570         spin_lock(&tree->lock);
1571         if (cached_state && *cached_state) {
1572                 state = *cached_state;
1573                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574                         while ((state = next_state(state)) != NULL) {
1575                                 if (state->state & bits)
1576                                         goto got_it;
1577                         }
1578                         free_extent_state(*cached_state);
1579                         *cached_state = NULL;
1580                         goto out;
1581                 }
1582                 free_extent_state(*cached_state);
1583                 *cached_state = NULL;
1584         }
1585
1586         state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588         if (state) {
1589                 cache_state_if_flags(state, cached_state, 0);
1590                 *start_ret = state->start;
1591                 *end_ret = state->end;
1592                 ret = 0;
1593         }
1594 out:
1595         spin_unlock(&tree->lock);
1596         return ret;
1597 }
1598
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615                                u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617         struct extent_state *state;
1618         int ret = 1;
1619
1620         spin_lock(&tree->lock);
1621         state = find_first_extent_bit_state(tree, start, bits);
1622         if (state) {
1623                 *start_ret = state->start;
1624                 *end_ret = state->end;
1625                 while ((state = next_state(state)) != NULL) {
1626                         if (state->start > (*end_ret + 1))
1627                                 break;
1628                         *end_ret = state->end;
1629                 }
1630                 ret = 0;
1631         }
1632         spin_unlock(&tree->lock);
1633         return ret;
1634 }
1635
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654         struct extent_state *state;
1655         struct rb_node *node, *prev = NULL, *next;
1656
1657         spin_lock(&tree->lock);
1658
1659         /* Find first extent with bits cleared */
1660         while (1) {
1661                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662                 if (!node && !next && !prev) {
1663                         /*
1664                          * Tree is completely empty, send full range and let
1665                          * caller deal with it
1666                          */
1667                         *start_ret = 0;
1668                         *end_ret = -1;
1669                         goto out;
1670                 } else if (!node && !next) {
1671                         /*
1672                          * We are past the last allocated chunk, set start at
1673                          * the end of the last extent.
1674                          */
1675                         state = rb_entry(prev, struct extent_state, rb_node);
1676                         *start_ret = state->end + 1;
1677                         *end_ret = -1;
1678                         goto out;
1679                 } else if (!node) {
1680                         node = next;
1681                 }
1682                 /*
1683                  * At this point 'node' either contains 'start' or start is
1684                  * before 'node'
1685                  */
1686                 state = rb_entry(node, struct extent_state, rb_node);
1687
1688                 if (in_range(start, state->start, state->end - state->start + 1)) {
1689                         if (state->state & bits) {
1690                                 /*
1691                                  * |--range with bits sets--|
1692                                  *    |
1693                                  *    start
1694                                  */
1695                                 start = state->end + 1;
1696                         } else {
1697                                 /*
1698                                  * 'start' falls within a range that doesn't
1699                                  * have the bits set, so take its start as
1700                                  * the beginning of the desired range
1701                                  *
1702                                  * |--range with bits cleared----|
1703                                  *      |
1704                                  *      start
1705                                  */
1706                                 *start_ret = state->start;
1707                                 break;
1708                         }
1709                 } else {
1710                         /*
1711                          * |---prev range---|---hole/unset---|---node range---|
1712                          *                          |
1713                          *                        start
1714                          *
1715                          *                        or
1716                          *
1717                          * |---hole/unset--||--first node--|
1718                          * 0   |
1719                          *    start
1720                          */
1721                         if (prev) {
1722                                 state = rb_entry(prev, struct extent_state,
1723                                                  rb_node);
1724                                 *start_ret = state->end + 1;
1725                         } else {
1726                                 *start_ret = 0;
1727                         }
1728                         break;
1729                 }
1730         }
1731
1732         /*
1733          * Find the longest stretch from start until an entry which has the
1734          * bits set
1735          */
1736         while (1) {
1737                 state = rb_entry(node, struct extent_state, rb_node);
1738                 if (state->end >= start && !(state->state & bits)) {
1739                         *end_ret = state->end;
1740                 } else {
1741                         *end_ret = state->start - 1;
1742                         break;
1743                 }
1744
1745                 node = rb_next(node);
1746                 if (!node)
1747                         break;
1748         }
1749 out:
1750         spin_unlock(&tree->lock);
1751 }
1752
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760                                u64 *end, u64 max_bytes,
1761                                struct extent_state **cached_state)
1762 {
1763         struct rb_node *node;
1764         struct extent_state *state;
1765         u64 cur_start = *start;
1766         bool found = false;
1767         u64 total_bytes = 0;
1768
1769         spin_lock(&tree->lock);
1770
1771         /*
1772          * this search will find all the extents that end after
1773          * our range starts.
1774          */
1775         node = tree_search(tree, cur_start);
1776         if (!node) {
1777                 *end = (u64)-1;
1778                 goto out;
1779         }
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (found && (state->start != cur_start ||
1784                               (state->state & EXTENT_BOUNDARY))) {
1785                         goto out;
1786                 }
1787                 if (!(state->state & EXTENT_DELALLOC)) {
1788                         if (!found)
1789                                 *end = state->end;
1790                         goto out;
1791                 }
1792                 if (!found) {
1793                         *start = state->start;
1794                         *cached_state = state;
1795                         refcount_inc(&state->refs);
1796                 }
1797                 found = true;
1798                 *end = state->end;
1799                 cur_start = state->end + 1;
1800                 node = rb_next(node);
1801                 total_bytes += state->end - state->start + 1;
1802                 if (total_bytes >= max_bytes)
1803                         break;
1804                 if (!node)
1805                         break;
1806         }
1807 out:
1808         spin_unlock(&tree->lock);
1809         return found;
1810 }
1811
1812 static int __process_pages_contig(struct address_space *mapping,
1813                                   struct page *locked_page,
1814                                   pgoff_t start_index, pgoff_t end_index,
1815                                   unsigned long page_ops, pgoff_t *index_ret);
1816
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818                                            struct page *locked_page,
1819                                            u64 start, u64 end)
1820 {
1821         unsigned long index = start >> PAGE_SHIFT;
1822         unsigned long end_index = end >> PAGE_SHIFT;
1823
1824         ASSERT(locked_page);
1825         if (index == locked_page->index && end_index == index)
1826                 return;
1827
1828         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829                                PAGE_UNLOCK, NULL);
1830 }
1831
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833                                         struct page *locked_page,
1834                                         u64 delalloc_start,
1835                                         u64 delalloc_end)
1836 {
1837         unsigned long index = delalloc_start >> PAGE_SHIFT;
1838         unsigned long index_ret = index;
1839         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840         int ret;
1841
1842         ASSERT(locked_page);
1843         if (index == locked_page->index && index == end_index)
1844                 return 0;
1845
1846         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847                                      end_index, PAGE_LOCK, &index_ret);
1848         if (ret == -EAGAIN)
1849                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850                                       (u64)index_ret << PAGE_SHIFT);
1851         return ret;
1852 }
1853
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863                                     struct page *locked_page, u64 *start,
1864                                     u64 *end)
1865 {
1866         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868         u64 delalloc_start;
1869         u64 delalloc_end;
1870         bool found;
1871         struct extent_state *cached_state = NULL;
1872         int ret;
1873         int loops = 0;
1874
1875 again:
1876         /* step one, find a bunch of delalloc bytes starting at start */
1877         delalloc_start = *start;
1878         delalloc_end = 0;
1879         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880                                           max_bytes, &cached_state);
1881         if (!found || delalloc_end <= *start) {
1882                 *start = delalloc_start;
1883                 *end = delalloc_end;
1884                 free_extent_state(cached_state);
1885                 return false;
1886         }
1887
1888         /*
1889          * start comes from the offset of locked_page.  We have to lock
1890          * pages in order, so we can't process delalloc bytes before
1891          * locked_page
1892          */
1893         if (delalloc_start < *start)
1894                 delalloc_start = *start;
1895
1896         /*
1897          * make sure to limit the number of pages we try to lock down
1898          */
1899         if (delalloc_end + 1 - delalloc_start > max_bytes)
1900                 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902         /* step two, lock all the pages after the page that has start */
1903         ret = lock_delalloc_pages(inode, locked_page,
1904                                   delalloc_start, delalloc_end);
1905         ASSERT(!ret || ret == -EAGAIN);
1906         if (ret == -EAGAIN) {
1907                 /* some of the pages are gone, lets avoid looping by
1908                  * shortening the size of the delalloc range we're searching
1909                  */
1910                 free_extent_state(cached_state);
1911                 cached_state = NULL;
1912                 if (!loops) {
1913                         max_bytes = PAGE_SIZE;
1914                         loops = 1;
1915                         goto again;
1916                 } else {
1917                         found = false;
1918                         goto out_failed;
1919                 }
1920         }
1921
1922         /* step three, lock the state bits for the whole range */
1923         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925         /* then test to make sure it is all still delalloc */
1926         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927                              EXTENT_DELALLOC, 1, cached_state);
1928         if (!ret) {
1929                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930                                      &cached_state);
1931                 __unlock_for_delalloc(inode, locked_page,
1932                               delalloc_start, delalloc_end);
1933                 cond_resched();
1934                 goto again;
1935         }
1936         free_extent_state(cached_state);
1937         *start = delalloc_start;
1938         *end = delalloc_end;
1939 out_failed:
1940         return found;
1941 }
1942
1943 static int __process_pages_contig(struct address_space *mapping,
1944                                   struct page *locked_page,
1945                                   pgoff_t start_index, pgoff_t end_index,
1946                                   unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948         unsigned long nr_pages = end_index - start_index + 1;
1949         unsigned long pages_locked = 0;
1950         pgoff_t index = start_index;
1951         struct page *pages[16];
1952         unsigned ret;
1953         int err = 0;
1954         int i;
1955
1956         if (page_ops & PAGE_LOCK) {
1957                 ASSERT(page_ops == PAGE_LOCK);
1958                 ASSERT(index_ret && *index_ret == start_index);
1959         }
1960
1961         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962                 mapping_set_error(mapping, -EIO);
1963
1964         while (nr_pages > 0) {
1965                 ret = find_get_pages_contig(mapping, index,
1966                                      min_t(unsigned long,
1967                                      nr_pages, ARRAY_SIZE(pages)), pages);
1968                 if (ret == 0) {
1969                         /*
1970                          * Only if we're going to lock these pages,
1971                          * can we find nothing at @index.
1972                          */
1973                         ASSERT(page_ops & PAGE_LOCK);
1974                         err = -EAGAIN;
1975                         goto out;
1976                 }
1977
1978                 for (i = 0; i < ret; i++) {
1979                         if (page_ops & PAGE_SET_PRIVATE2)
1980                                 SetPagePrivate2(pages[i]);
1981
1982                         if (locked_page && pages[i] == locked_page) {
1983                                 put_page(pages[i]);
1984                                 pages_locked++;
1985                                 continue;
1986                         }
1987                         if (page_ops & PAGE_CLEAR_DIRTY)
1988                                 clear_page_dirty_for_io(pages[i]);
1989                         if (page_ops & PAGE_SET_WRITEBACK)
1990                                 set_page_writeback(pages[i]);
1991                         if (page_ops & PAGE_SET_ERROR)
1992                                 SetPageError(pages[i]);
1993                         if (page_ops & PAGE_END_WRITEBACK)
1994                                 end_page_writeback(pages[i]);
1995                         if (page_ops & PAGE_UNLOCK)
1996                                 unlock_page(pages[i]);
1997                         if (page_ops & PAGE_LOCK) {
1998                                 lock_page(pages[i]);
1999                                 if (!PageDirty(pages[i]) ||
2000                                     pages[i]->mapping != mapping) {
2001                                         unlock_page(pages[i]);
2002                                         put_page(pages[i]);
2003                                         err = -EAGAIN;
2004                                         goto out;
2005                                 }
2006                         }
2007                         put_page(pages[i]);
2008                         pages_locked++;
2009                 }
2010                 nr_pages -= ret;
2011                 index += ret;
2012                 cond_resched();
2013         }
2014 out:
2015         if (err && index_ret)
2016                 *index_ret = start_index + pages_locked - 1;
2017         return err;
2018 }
2019
2020 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2021                                   struct page *locked_page,
2022                                   unsigned clear_bits,
2023                                   unsigned long page_ops)
2024 {
2025         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2026                          NULL);
2027
2028         __process_pages_contig(inode->i_mapping, locked_page,
2029                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030                                page_ops, NULL);
2031 }
2032
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039                      u64 *start, u64 search_end, u64 max_bytes,
2040                      unsigned bits, int contig)
2041 {
2042         struct rb_node *node;
2043         struct extent_state *state;
2044         u64 cur_start = *start;
2045         u64 total_bytes = 0;
2046         u64 last = 0;
2047         int found = 0;
2048
2049         if (WARN_ON(search_end <= cur_start))
2050                 return 0;
2051
2052         spin_lock(&tree->lock);
2053         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054                 total_bytes = tree->dirty_bytes;
2055                 goto out;
2056         }
2057         /*
2058          * this search will find all the extents that end after
2059          * our range starts.
2060          */
2061         node = tree_search(tree, cur_start);
2062         if (!node)
2063                 goto out;
2064
2065         while (1) {
2066                 state = rb_entry(node, struct extent_state, rb_node);
2067                 if (state->start > search_end)
2068                         break;
2069                 if (contig && found && state->start > last + 1)
2070                         break;
2071                 if (state->end >= cur_start && (state->state & bits) == bits) {
2072                         total_bytes += min(search_end, state->end) + 1 -
2073                                        max(cur_start, state->start);
2074                         if (total_bytes >= max_bytes)
2075                                 break;
2076                         if (!found) {
2077                                 *start = max(cur_start, state->start);
2078                                 found = 1;
2079                         }
2080                         last = state->end;
2081                 } else if (contig && found) {
2082                         break;
2083                 }
2084                 node = rb_next(node);
2085                 if (!node)
2086                         break;
2087         }
2088 out:
2089         spin_unlock(&tree->lock);
2090         return total_bytes;
2091 }
2092
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098                       struct io_failure_record *failrec)
2099 {
2100         struct rb_node *node;
2101         struct extent_state *state;
2102         int ret = 0;
2103
2104         spin_lock(&tree->lock);
2105         /*
2106          * this search will find all the extents that end after
2107          * our range starts.
2108          */
2109         node = tree_search(tree, start);
2110         if (!node) {
2111                 ret = -ENOENT;
2112                 goto out;
2113         }
2114         state = rb_entry(node, struct extent_state, rb_node);
2115         if (state->start != start) {
2116                 ret = -ENOENT;
2117                 goto out;
2118         }
2119         state->failrec = failrec;
2120 out:
2121         spin_unlock(&tree->lock);
2122         return ret;
2123 }
2124
2125 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126                       struct io_failure_record **failrec)
2127 {
2128         struct rb_node *node;
2129         struct extent_state *state;
2130         int ret = 0;
2131
2132         spin_lock(&tree->lock);
2133         /*
2134          * this search will find all the extents that end after
2135          * our range starts.
2136          */
2137         node = tree_search(tree, start);
2138         if (!node) {
2139                 ret = -ENOENT;
2140                 goto out;
2141         }
2142         state = rb_entry(node, struct extent_state, rb_node);
2143         if (state->start != start) {
2144                 ret = -ENOENT;
2145                 goto out;
2146         }
2147         *failrec = state->failrec;
2148 out:
2149         spin_unlock(&tree->lock);
2150         return ret;
2151 }
2152
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160                    unsigned bits, int filled, struct extent_state *cached)
2161 {
2162         struct extent_state *state = NULL;
2163         struct rb_node *node;
2164         int bitset = 0;
2165
2166         spin_lock(&tree->lock);
2167         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168             cached->end > start)
2169                 node = &cached->rb_node;
2170         else
2171                 node = tree_search(tree, start);
2172         while (node && start <= end) {
2173                 state = rb_entry(node, struct extent_state, rb_node);
2174
2175                 if (filled && state->start > start) {
2176                         bitset = 0;
2177                         break;
2178                 }
2179
2180                 if (state->start > end)
2181                         break;
2182
2183                 if (state->state & bits) {
2184                         bitset = 1;
2185                         if (!filled)
2186                                 break;
2187                 } else if (filled) {
2188                         bitset = 0;
2189                         break;
2190                 }
2191
2192                 if (state->end == (u64)-1)
2193                         break;
2194
2195                 start = state->end + 1;
2196                 if (start > end)
2197                         break;
2198                 node = rb_next(node);
2199                 if (!node) {
2200                         if (filled)
2201                                 bitset = 0;
2202                         break;
2203                 }
2204         }
2205         spin_unlock(&tree->lock);
2206         return bitset;
2207 }
2208
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215         u64 start = page_offset(page);
2216         u64 end = start + PAGE_SIZE - 1;
2217         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218                 SetPageUptodate(page);
2219 }
2220
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222                     struct extent_io_tree *io_tree,
2223                     struct io_failure_record *rec)
2224 {
2225         int ret;
2226         int err = 0;
2227
2228         set_state_failrec(failure_tree, rec->start, NULL);
2229         ret = clear_extent_bits(failure_tree, rec->start,
2230                                 rec->start + rec->len - 1,
2231                                 EXTENT_LOCKED | EXTENT_DIRTY);
2232         if (ret)
2233                 err = ret;
2234
2235         ret = clear_extent_bits(io_tree, rec->start,
2236                                 rec->start + rec->len - 1,
2237                                 EXTENT_DAMAGED);
2238         if (ret && !err)
2239                 err = ret;
2240
2241         kfree(rec);
2242         return err;
2243 }
2244
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256                       u64 length, u64 logical, struct page *page,
2257                       unsigned int pg_offset, int mirror_num)
2258 {
2259         struct bio *bio;
2260         struct btrfs_device *dev;
2261         u64 map_length = 0;
2262         u64 sector;
2263         struct btrfs_bio *bbio = NULL;
2264         int ret;
2265
2266         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267         BUG_ON(!mirror_num);
2268
2269         bio = btrfs_io_bio_alloc(1);
2270         bio->bi_iter.bi_size = 0;
2271         map_length = length;
2272
2273         /*
2274          * Avoid races with device replace and make sure our bbio has devices
2275          * associated to its stripes that don't go away while we are doing the
2276          * read repair operation.
2277          */
2278         btrfs_bio_counter_inc_blocked(fs_info);
2279         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280                 /*
2281                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282                  * to update all raid stripes, but here we just want to correct
2283                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284                  * stripe's dev and sector.
2285                  */
2286                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287                                       &map_length, &bbio, 0);
2288                 if (ret) {
2289                         btrfs_bio_counter_dec(fs_info);
2290                         bio_put(bio);
2291                         return -EIO;
2292                 }
2293                 ASSERT(bbio->mirror_num == 1);
2294         } else {
2295                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296                                       &map_length, &bbio, mirror_num);
2297                 if (ret) {
2298                         btrfs_bio_counter_dec(fs_info);
2299                         bio_put(bio);
2300                         return -EIO;
2301                 }
2302                 BUG_ON(mirror_num != bbio->mirror_num);
2303         }
2304
2305         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306         bio->bi_iter.bi_sector = sector;
2307         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308         btrfs_put_bbio(bbio);
2309         if (!dev || !dev->bdev ||
2310             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311                 btrfs_bio_counter_dec(fs_info);
2312                 bio_put(bio);
2313                 return -EIO;
2314         }
2315         bio_set_dev(bio, dev->bdev);
2316         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317         bio_add_page(bio, page, length, pg_offset);
2318
2319         if (btrfsic_submit_bio_wait(bio)) {
2320                 /* try to remap that extent elsewhere? */
2321                 btrfs_bio_counter_dec(fs_info);
2322                 bio_put(bio);
2323                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324                 return -EIO;
2325         }
2326
2327         btrfs_info_rl_in_rcu(fs_info,
2328                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329                                   ino, start,
2330                                   rcu_str_deref(dev->name), sector);
2331         btrfs_bio_counter_dec(fs_info);
2332         bio_put(bio);
2333         return 0;
2334 }
2335
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337 {
2338         struct btrfs_fs_info *fs_info = eb->fs_info;
2339         u64 start = eb->start;
2340         int i, num_pages = num_extent_pages(eb);
2341         int ret = 0;
2342
2343         if (sb_rdonly(fs_info->sb))
2344                 return -EROFS;
2345
2346         for (i = 0; i < num_pages; i++) {
2347                 struct page *p = eb->pages[i];
2348
2349                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350                                         start - page_offset(p), mirror_num);
2351                 if (ret)
2352                         break;
2353                 start += PAGE_SIZE;
2354         }
2355
2356         return ret;
2357 }
2358
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364                      struct extent_io_tree *failure_tree,
2365                      struct extent_io_tree *io_tree, u64 start,
2366                      struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368         u64 private;
2369         struct io_failure_record *failrec;
2370         struct extent_state *state;
2371         int num_copies;
2372         int ret;
2373
2374         private = 0;
2375         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376                                EXTENT_DIRTY, 0);
2377         if (!ret)
2378                 return 0;
2379
2380         ret = get_state_failrec(failure_tree, start, &failrec);
2381         if (ret)
2382                 return 0;
2383
2384         BUG_ON(!failrec->this_mirror);
2385
2386         if (failrec->in_validation) {
2387                 /* there was no real error, just free the record */
2388                 btrfs_debug(fs_info,
2389                         "clean_io_failure: freeing dummy error at %llu",
2390                         failrec->start);
2391                 goto out;
2392         }
2393         if (sb_rdonly(fs_info->sb))
2394                 goto out;
2395
2396         spin_lock(&io_tree->lock);
2397         state = find_first_extent_bit_state(io_tree,
2398                                             failrec->start,
2399                                             EXTENT_LOCKED);
2400         spin_unlock(&io_tree->lock);
2401
2402         if (state && state->start <= failrec->start &&
2403             state->end >= failrec->start + failrec->len - 1) {
2404                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405                                               failrec->len);
2406                 if (num_copies > 1)  {
2407                         repair_io_failure(fs_info, ino, start, failrec->len,
2408                                           failrec->logical, page, pg_offset,
2409                                           failrec->failed_mirror);
2410                 }
2411         }
2412
2413 out:
2414         free_io_failure(failure_tree, io_tree, failrec);
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428         struct io_failure_record *failrec;
2429         struct extent_state *state, *next;
2430
2431         if (RB_EMPTY_ROOT(&failure_tree->state))
2432                 return;
2433
2434         spin_lock(&failure_tree->lock);
2435         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436         while (state) {
2437                 if (state->start > end)
2438                         break;
2439
2440                 ASSERT(state->end <= end);
2441
2442                 next = next_state(state);
2443
2444                 failrec = state->failrec;
2445                 free_extent_state(state);
2446                 kfree(failrec);
2447
2448                 state = next;
2449         }
2450         spin_unlock(&failure_tree->lock);
2451 }
2452
2453 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2454                 struct io_failure_record **failrec_ret)
2455 {
2456         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457         struct io_failure_record *failrec;
2458         struct extent_map *em;
2459         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462         int ret;
2463         u64 logical;
2464
2465         ret = get_state_failrec(failure_tree, start, &failrec);
2466         if (ret) {
2467                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468                 if (!failrec)
2469                         return -ENOMEM;
2470
2471                 failrec->start = start;
2472                 failrec->len = end - start + 1;
2473                 failrec->this_mirror = 0;
2474                 failrec->bio_flags = 0;
2475                 failrec->in_validation = 0;
2476
2477                 read_lock(&em_tree->lock);
2478                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2479                 if (!em) {
2480                         read_unlock(&em_tree->lock);
2481                         kfree(failrec);
2482                         return -EIO;
2483                 }
2484
2485                 if (em->start > start || em->start + em->len <= start) {
2486                         free_extent_map(em);
2487                         em = NULL;
2488                 }
2489                 read_unlock(&em_tree->lock);
2490                 if (!em) {
2491                         kfree(failrec);
2492                         return -EIO;
2493                 }
2494
2495                 logical = start - em->start;
2496                 logical = em->block_start + logical;
2497                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498                         logical = em->block_start;
2499                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500                         extent_set_compress_type(&failrec->bio_flags,
2501                                                  em->compress_type);
2502                 }
2503
2504                 btrfs_debug(fs_info,
2505                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506                         logical, start, failrec->len);
2507
2508                 failrec->logical = logical;
2509                 free_extent_map(em);
2510
2511                 /* set the bits in the private failure tree */
2512                 ret = set_extent_bits(failure_tree, start, end,
2513                                         EXTENT_LOCKED | EXTENT_DIRTY);
2514                 if (ret >= 0)
2515                         ret = set_state_failrec(failure_tree, start, failrec);
2516                 /* set the bits in the inode's tree */
2517                 if (ret >= 0)
2518                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2519                 if (ret < 0) {
2520                         kfree(failrec);
2521                         return ret;
2522                 }
2523         } else {
2524                 btrfs_debug(fs_info,
2525                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526                         failrec->logical, failrec->start, failrec->len,
2527                         failrec->in_validation);
2528                 /*
2529                  * when data can be on disk more than twice, add to failrec here
2530                  * (e.g. with a list for failed_mirror) to make
2531                  * clean_io_failure() clean all those errors at once.
2532                  */
2533         }
2534
2535         *failrec_ret = failrec;
2536
2537         return 0;
2538 }
2539
2540 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2541                                    struct io_failure_record *failrec,
2542                                    int failed_mirror)
2543 {
2544         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2545         int num_copies;
2546
2547         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2548         if (num_copies == 1) {
2549                 /*
2550                  * we only have a single copy of the data, so don't bother with
2551                  * all the retry and error correction code that follows. no
2552                  * matter what the error is, it is very likely to persist.
2553                  */
2554                 btrfs_debug(fs_info,
2555                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2556                         num_copies, failrec->this_mirror, failed_mirror);
2557                 return false;
2558         }
2559
2560         /*
2561          * there are two premises:
2562          *      a) deliver good data to the caller
2563          *      b) correct the bad sectors on disk
2564          */
2565         if (needs_validation) {
2566                 /*
2567                  * to fulfill b), we need to know the exact failing sectors, as
2568                  * we don't want to rewrite any more than the failed ones. thus,
2569                  * we need separate read requests for the failed bio
2570                  *
2571                  * if the following BUG_ON triggers, our validation request got
2572                  * merged. we need separate requests for our algorithm to work.
2573                  */
2574                 BUG_ON(failrec->in_validation);
2575                 failrec->in_validation = 1;
2576                 failrec->this_mirror = failed_mirror;
2577         } else {
2578                 /*
2579                  * we're ready to fulfill a) and b) alongside. get a good copy
2580                  * of the failed sector and if we succeed, we have setup
2581                  * everything for repair_io_failure to do the rest for us.
2582                  */
2583                 if (failrec->in_validation) {
2584                         BUG_ON(failrec->this_mirror != failed_mirror);
2585                         failrec->in_validation = 0;
2586                         failrec->this_mirror = 0;
2587                 }
2588                 failrec->failed_mirror = failed_mirror;
2589                 failrec->this_mirror++;
2590                 if (failrec->this_mirror == failed_mirror)
2591                         failrec->this_mirror++;
2592         }
2593
2594         if (failrec->this_mirror > num_copies) {
2595                 btrfs_debug(fs_info,
2596                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2597                         num_copies, failrec->this_mirror, failed_mirror);
2598                 return false;
2599         }
2600
2601         return true;
2602 }
2603
2604 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2605 {
2606         u64 len = 0;
2607         const u32 blocksize = inode->i_sb->s_blocksize;
2608
2609         /*
2610          * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2611          * I/O error. In this case, we already know exactly which sector was
2612          * bad, so we don't need to validate.
2613          */
2614         if (bio->bi_status == BLK_STS_OK)
2615                 return false;
2616
2617         /*
2618          * We need to validate each sector individually if the failed I/O was
2619          * for multiple sectors.
2620          *
2621          * There are a few possible bios that can end up here:
2622          * 1. A buffered read bio, which is not cloned.
2623          * 2. A direct I/O read bio, which is cloned.
2624          * 3. A (buffered or direct) repair bio, which is not cloned.
2625          *
2626          * For cloned bios (case 2), we can get the size from
2627          * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2628          * it from the bvecs.
2629          */
2630         if (bio_flagged(bio, BIO_CLONED)) {
2631                 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2632                         return true;
2633         } else {
2634                 struct bio_vec *bvec;
2635                 int i;
2636
2637                 bio_for_each_bvec_all(bvec, bio, i) {
2638                         len += bvec->bv_len;
2639                         if (len > blocksize)
2640                                 return true;
2641                 }
2642         }
2643         return false;
2644 }
2645
2646 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2647                                       struct bio *failed_bio, u64 phy_offset,
2648                                       struct page *page, unsigned int pgoff,
2649                                       u64 start, u64 end, int failed_mirror,
2650                                       submit_bio_hook_t *submit_bio_hook)
2651 {
2652         struct io_failure_record *failrec;
2653         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2654         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2655         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2656         struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2657         const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2658         bool need_validation;
2659         struct bio *repair_bio;
2660         struct btrfs_io_bio *repair_io_bio;
2661         blk_status_t status;
2662         int ret;
2663
2664         btrfs_debug(fs_info,
2665                    "repair read error: read error at %llu", start);
2666
2667         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2668
2669         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2670         if (ret)
2671                 return errno_to_blk_status(ret);
2672
2673         need_validation = btrfs_io_needs_validation(inode, failed_bio);
2674
2675         if (!btrfs_check_repairable(inode, need_validation, failrec,
2676                                     failed_mirror)) {
2677                 free_io_failure(failure_tree, tree, failrec);
2678                 return BLK_STS_IOERR;
2679         }
2680
2681         repair_bio = btrfs_io_bio_alloc(1);
2682         repair_io_bio = btrfs_io_bio(repair_bio);
2683         repair_bio->bi_opf = REQ_OP_READ;
2684         if (need_validation)
2685                 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2686         repair_bio->bi_end_io = failed_bio->bi_end_io;
2687         repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2688         repair_bio->bi_private = failed_bio->bi_private;
2689
2690         if (failed_io_bio->csum) {
2691                 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2692
2693                 repair_io_bio->csum = repair_io_bio->csum_inline;
2694                 memcpy(repair_io_bio->csum,
2695                        failed_io_bio->csum + csum_size * icsum, csum_size);
2696         }
2697
2698         bio_add_page(repair_bio, page, failrec->len, pgoff);
2699         repair_io_bio->logical = failrec->start;
2700         repair_io_bio->iter = repair_bio->bi_iter;
2701
2702         btrfs_debug(btrfs_sb(inode->i_sb),
2703 "repair read error: submitting new read to mirror %d, in_validation=%d",
2704                     failrec->this_mirror, failrec->in_validation);
2705
2706         status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2707                                  failrec->bio_flags);
2708         if (status) {
2709                 free_io_failure(failure_tree, tree, failrec);
2710                 bio_put(repair_bio);
2711         }
2712         return status;
2713 }
2714
2715 /* lots and lots of room for performance fixes in the end_bio funcs */
2716
2717 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2718 {
2719         int uptodate = (err == 0);
2720         int ret = 0;
2721
2722         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2723
2724         if (!uptodate) {
2725                 ClearPageUptodate(page);
2726                 SetPageError(page);
2727                 ret = err < 0 ? err : -EIO;
2728                 mapping_set_error(page->mapping, ret);
2729         }
2730 }
2731
2732 /*
2733  * after a writepage IO is done, we need to:
2734  * clear the uptodate bits on error
2735  * clear the writeback bits in the extent tree for this IO
2736  * end_page_writeback if the page has no more pending IO
2737  *
2738  * Scheduling is not allowed, so the extent state tree is expected
2739  * to have one and only one object corresponding to this IO.
2740  */
2741 static void end_bio_extent_writepage(struct bio *bio)
2742 {
2743         int error = blk_status_to_errno(bio->bi_status);
2744         struct bio_vec *bvec;
2745         u64 start;
2746         u64 end;
2747         struct bvec_iter_all iter_all;
2748
2749         ASSERT(!bio_flagged(bio, BIO_CLONED));
2750         bio_for_each_segment_all(bvec, bio, iter_all) {
2751                 struct page *page = bvec->bv_page;
2752                 struct inode *inode = page->mapping->host;
2753                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2754
2755                 /* We always issue full-page reads, but if some block
2756                  * in a page fails to read, blk_update_request() will
2757                  * advance bv_offset and adjust bv_len to compensate.
2758                  * Print a warning for nonzero offsets, and an error
2759                  * if they don't add up to a full page.  */
2760                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2761                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2762                                 btrfs_err(fs_info,
2763                                    "partial page write in btrfs with offset %u and length %u",
2764                                         bvec->bv_offset, bvec->bv_len);
2765                         else
2766                                 btrfs_info(fs_info,
2767                                    "incomplete page write in btrfs with offset %u and length %u",
2768                                         bvec->bv_offset, bvec->bv_len);
2769                 }
2770
2771                 start = page_offset(page);
2772                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2773
2774                 end_extent_writepage(page, error, start, end);
2775                 end_page_writeback(page);
2776         }
2777
2778         bio_put(bio);
2779 }
2780
2781 static void
2782 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2783                               int uptodate)
2784 {
2785         struct extent_state *cached = NULL;
2786         u64 end = start + len - 1;
2787
2788         if (uptodate && tree->track_uptodate)
2789                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2790         unlock_extent_cached_atomic(tree, start, end, &cached);
2791 }
2792
2793 /*
2794  * after a readpage IO is done, we need to:
2795  * clear the uptodate bits on error
2796  * set the uptodate bits if things worked
2797  * set the page up to date if all extents in the tree are uptodate
2798  * clear the lock bit in the extent tree
2799  * unlock the page if there are no other extents locked for it
2800  *
2801  * Scheduling is not allowed, so the extent state tree is expected
2802  * to have one and only one object corresponding to this IO.
2803  */
2804 static void end_bio_extent_readpage(struct bio *bio)
2805 {
2806         struct bio_vec *bvec;
2807         int uptodate = !bio->bi_status;
2808         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2809         struct extent_io_tree *tree, *failure_tree;
2810         u64 offset = 0;
2811         u64 start;
2812         u64 end;
2813         u64 len;
2814         u64 extent_start = 0;
2815         u64 extent_len = 0;
2816         int mirror;
2817         int ret;
2818         struct bvec_iter_all iter_all;
2819
2820         ASSERT(!bio_flagged(bio, BIO_CLONED));
2821         bio_for_each_segment_all(bvec, bio, iter_all) {
2822                 struct page *page = bvec->bv_page;
2823                 struct inode *inode = page->mapping->host;
2824                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2826                         != BTRFS_BTREE_INODE_OBJECTID;
2827
2828                 btrfs_debug(fs_info,
2829                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2830                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2831                         io_bio->mirror_num);
2832                 tree = &BTRFS_I(inode)->io_tree;
2833                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2834
2835                 /* We always issue full-page reads, but if some block
2836                  * in a page fails to read, blk_update_request() will
2837                  * advance bv_offset and adjust bv_len to compensate.
2838                  * Print a warning for nonzero offsets, and an error
2839                  * if they don't add up to a full page.  */
2840                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2841                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2842                                 btrfs_err(fs_info,
2843                                         "partial page read in btrfs with offset %u and length %u",
2844                                         bvec->bv_offset, bvec->bv_len);
2845                         else
2846                                 btrfs_info(fs_info,
2847                                         "incomplete page read in btrfs with offset %u and length %u",
2848                                         bvec->bv_offset, bvec->bv_len);
2849                 }
2850
2851                 start = page_offset(page);
2852                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2853                 len = bvec->bv_len;
2854
2855                 mirror = io_bio->mirror_num;
2856                 if (likely(uptodate)) {
2857                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2858                                                               page, start, end,
2859                                                               mirror);
2860                         if (ret)
2861                                 uptodate = 0;
2862                         else
2863                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2864                                                  failure_tree, tree, start,
2865                                                  page,
2866                                                  btrfs_ino(BTRFS_I(inode)), 0);
2867                 }
2868
2869                 if (likely(uptodate))
2870                         goto readpage_ok;
2871
2872                 if (data_inode) {
2873
2874                         /*
2875                          * The generic bio_readpage_error handles errors the
2876                          * following way: If possible, new read requests are
2877                          * created and submitted and will end up in
2878                          * end_bio_extent_readpage as well (if we're lucky,
2879                          * not in the !uptodate case). In that case it returns
2880                          * 0 and we just go on with the next page in our bio.
2881                          * If it can't handle the error it will return -EIO and
2882                          * we remain responsible for that page.
2883                          */
2884                         if (!btrfs_submit_read_repair(inode, bio, offset, page,
2885                                                 start - page_offset(page),
2886                                                 start, end, mirror,
2887                                                 tree->ops->submit_bio_hook)) {
2888                                 uptodate = !bio->bi_status;
2889                                 offset += len;
2890                                 continue;
2891                         }
2892                 } else {
2893                         struct extent_buffer *eb;
2894
2895                         eb = (struct extent_buffer *)page->private;
2896                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2897                         eb->read_mirror = mirror;
2898                         atomic_dec(&eb->io_pages);
2899                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2900                                                &eb->bflags))
2901                                 btree_readahead_hook(eb, -EIO);
2902                 }
2903 readpage_ok:
2904                 if (likely(uptodate)) {
2905                         loff_t i_size = i_size_read(inode);
2906                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2907                         unsigned off;
2908
2909                         /* Zero out the end if this page straddles i_size */
2910                         off = offset_in_page(i_size);
2911                         if (page->index == end_index && off)
2912                                 zero_user_segment(page, off, PAGE_SIZE);
2913                         SetPageUptodate(page);
2914                 } else {
2915                         ClearPageUptodate(page);
2916                         SetPageError(page);
2917                 }
2918                 unlock_page(page);
2919                 offset += len;
2920
2921                 if (unlikely(!uptodate)) {
2922                         if (extent_len) {
2923                                 endio_readpage_release_extent(tree,
2924                                                               extent_start,
2925                                                               extent_len, 1);
2926                                 extent_start = 0;
2927                                 extent_len = 0;
2928                         }
2929                         endio_readpage_release_extent(tree, start,
2930                                                       end - start + 1, 0);
2931                 } else if (!extent_len) {
2932                         extent_start = start;
2933                         extent_len = end + 1 - start;
2934                 } else if (extent_start + extent_len == start) {
2935                         extent_len += end + 1 - start;
2936                 } else {
2937                         endio_readpage_release_extent(tree, extent_start,
2938                                                       extent_len, uptodate);
2939                         extent_start = start;
2940                         extent_len = end + 1 - start;
2941                 }
2942         }
2943
2944         if (extent_len)
2945                 endio_readpage_release_extent(tree, extent_start, extent_len,
2946                                               uptodate);
2947         btrfs_io_bio_free_csum(io_bio);
2948         bio_put(bio);
2949 }
2950
2951 /*
2952  * Initialize the members up to but not including 'bio'. Use after allocating a
2953  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2954  * 'bio' because use of __GFP_ZERO is not supported.
2955  */
2956 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2957 {
2958         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2959 }
2960
2961 /*
2962  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2963  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2964  * for the appropriate container_of magic
2965  */
2966 struct bio *btrfs_bio_alloc(u64 first_byte)
2967 {
2968         struct bio *bio;
2969
2970         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2971         bio->bi_iter.bi_sector = first_byte >> 9;
2972         btrfs_io_bio_init(btrfs_io_bio(bio));
2973         return bio;
2974 }
2975
2976 struct bio *btrfs_bio_clone(struct bio *bio)
2977 {
2978         struct btrfs_io_bio *btrfs_bio;
2979         struct bio *new;
2980
2981         /* Bio allocation backed by a bioset does not fail */
2982         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2983         btrfs_bio = btrfs_io_bio(new);
2984         btrfs_io_bio_init(btrfs_bio);
2985         btrfs_bio->iter = bio->bi_iter;
2986         return new;
2987 }
2988
2989 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2990 {
2991         struct bio *bio;
2992
2993         /* Bio allocation backed by a bioset does not fail */
2994         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2995         btrfs_io_bio_init(btrfs_io_bio(bio));
2996         return bio;
2997 }
2998
2999 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3000 {
3001         struct bio *bio;
3002         struct btrfs_io_bio *btrfs_bio;
3003
3004         /* this will never fail when it's backed by a bioset */
3005         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3006         ASSERT(bio);
3007
3008         btrfs_bio = btrfs_io_bio(bio);
3009         btrfs_io_bio_init(btrfs_bio);
3010
3011         bio_trim(bio, offset >> 9, size >> 9);
3012         btrfs_bio->iter = bio->bi_iter;
3013         return bio;
3014 }
3015
3016 /*
3017  * @opf:        bio REQ_OP_* and REQ_* flags as one value
3018  * @wbc:        optional writeback control for io accounting
3019  * @page:       page to add to the bio
3020  * @pg_offset:  offset of the new bio or to check whether we are adding
3021  *              a contiguous page to the previous one
3022  * @size:       portion of page that we want to write
3023  * @offset:     starting offset in the page
3024  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3025  * @end_io_func:     end_io callback for new bio
3026  * @mirror_num:      desired mirror to read/write
3027  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3028  * @bio_flags:  flags of the current bio to see if we can merge them
3029  */
3030 static int submit_extent_page(unsigned int opf,
3031                               struct writeback_control *wbc,
3032                               struct page *page, u64 offset,
3033                               size_t size, unsigned long pg_offset,
3034                               struct bio **bio_ret,
3035                               bio_end_io_t end_io_func,
3036                               int mirror_num,
3037                               unsigned long prev_bio_flags,
3038                               unsigned long bio_flags,
3039                               bool force_bio_submit)
3040 {
3041         int ret = 0;
3042         struct bio *bio;
3043         size_t page_size = min_t(size_t, size, PAGE_SIZE);
3044         sector_t sector = offset >> 9;
3045         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3046
3047         ASSERT(bio_ret);
3048
3049         if (*bio_ret) {
3050                 bool contig;
3051                 bool can_merge = true;
3052
3053                 bio = *bio_ret;
3054                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3055                         contig = bio->bi_iter.bi_sector == sector;
3056                 else
3057                         contig = bio_end_sector(bio) == sector;
3058
3059                 ASSERT(tree->ops);
3060                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3061                         can_merge = false;
3062
3063                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3064                     force_bio_submit ||
3065                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3066                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3067                         if (ret < 0) {
3068                                 *bio_ret = NULL;
3069                                 return ret;
3070                         }
3071                         bio = NULL;
3072                 } else {
3073                         if (wbc)
3074                                 wbc_account_cgroup_owner(wbc, page, page_size);
3075                         return 0;
3076                 }
3077         }
3078
3079         bio = btrfs_bio_alloc(offset);
3080         bio_add_page(bio, page, page_size, pg_offset);
3081         bio->bi_end_io = end_io_func;
3082         bio->bi_private = tree;
3083         bio->bi_write_hint = page->mapping->host->i_write_hint;
3084         bio->bi_opf = opf;
3085         if (wbc) {
3086                 struct block_device *bdev;
3087
3088                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3089                 bio_set_dev(bio, bdev);
3090                 wbc_init_bio(wbc, bio);
3091                 wbc_account_cgroup_owner(wbc, page, page_size);
3092         }
3093
3094         *bio_ret = bio;
3095
3096         return ret;
3097 }
3098
3099 static void attach_extent_buffer_page(struct extent_buffer *eb,
3100                                       struct page *page)
3101 {
3102         if (!PagePrivate(page)) {
3103                 SetPagePrivate(page);
3104                 get_page(page);
3105                 set_page_private(page, (unsigned long)eb);
3106         } else {
3107                 WARN_ON(page->private != (unsigned long)eb);
3108         }
3109 }
3110
3111 void set_page_extent_mapped(struct page *page)
3112 {
3113         if (!PagePrivate(page)) {
3114                 SetPagePrivate(page);
3115                 get_page(page);
3116                 set_page_private(page, EXTENT_PAGE_PRIVATE);
3117         }
3118 }
3119
3120 static struct extent_map *
3121 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3122                  u64 start, u64 len, get_extent_t *get_extent,
3123                  struct extent_map **em_cached)
3124 {
3125         struct extent_map *em;
3126
3127         if (em_cached && *em_cached) {
3128                 em = *em_cached;
3129                 if (extent_map_in_tree(em) && start >= em->start &&
3130                     start < extent_map_end(em)) {
3131                         refcount_inc(&em->refs);
3132                         return em;
3133                 }
3134
3135                 free_extent_map(em);
3136                 *em_cached = NULL;
3137         }
3138
3139         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3140         if (em_cached && !IS_ERR_OR_NULL(em)) {
3141                 BUG_ON(*em_cached);
3142                 refcount_inc(&em->refs);
3143                 *em_cached = em;
3144         }
3145         return em;
3146 }
3147 /*
3148  * basic readpage implementation.  Locked extent state structs are inserted
3149  * into the tree that are removed when the IO is done (by the end_io
3150  * handlers)
3151  * XXX JDM: This needs looking at to ensure proper page locking
3152  * return 0 on success, otherwise return error
3153  */
3154 static int __do_readpage(struct page *page,
3155                          get_extent_t *get_extent,
3156                          struct extent_map **em_cached,
3157                          struct bio **bio, int mirror_num,
3158                          unsigned long *bio_flags, unsigned int read_flags,
3159                          u64 *prev_em_start)
3160 {
3161         struct inode *inode = page->mapping->host;
3162         u64 start = page_offset(page);
3163         const u64 end = start + PAGE_SIZE - 1;
3164         u64 cur = start;
3165         u64 extent_offset;
3166         u64 last_byte = i_size_read(inode);
3167         u64 block_start;
3168         u64 cur_end;
3169         struct extent_map *em;
3170         int ret = 0;
3171         int nr = 0;
3172         size_t pg_offset = 0;
3173         size_t iosize;
3174         size_t disk_io_size;
3175         size_t blocksize = inode->i_sb->s_blocksize;
3176         unsigned long this_bio_flag = 0;
3177         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3178
3179         set_page_extent_mapped(page);
3180
3181         if (!PageUptodate(page)) {
3182                 if (cleancache_get_page(page) == 0) {
3183                         BUG_ON(blocksize != PAGE_SIZE);
3184                         unlock_extent(tree, start, end);
3185                         goto out;
3186                 }
3187         }
3188
3189         if (page->index == last_byte >> PAGE_SHIFT) {
3190                 char *userpage;
3191                 size_t zero_offset = offset_in_page(last_byte);
3192
3193                 if (zero_offset) {
3194                         iosize = PAGE_SIZE - zero_offset;
3195                         userpage = kmap_atomic(page);
3196                         memset(userpage + zero_offset, 0, iosize);
3197                         flush_dcache_page(page);
3198                         kunmap_atomic(userpage);
3199                 }
3200         }
3201         while (cur <= end) {
3202                 bool force_bio_submit = false;
3203                 u64 offset;
3204
3205                 if (cur >= last_byte) {
3206                         char *userpage;
3207                         struct extent_state *cached = NULL;
3208
3209                         iosize = PAGE_SIZE - pg_offset;
3210                         userpage = kmap_atomic(page);
3211                         memset(userpage + pg_offset, 0, iosize);
3212                         flush_dcache_page(page);
3213                         kunmap_atomic(userpage);
3214                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3215                                             &cached, GFP_NOFS);
3216                         unlock_extent_cached(tree, cur,
3217                                              cur + iosize - 1, &cached);
3218                         break;
3219                 }
3220                 em = __get_extent_map(inode, page, pg_offset, cur,
3221                                       end - cur + 1, get_extent, em_cached);
3222                 if (IS_ERR_OR_NULL(em)) {
3223                         SetPageError(page);
3224                         unlock_extent(tree, cur, end);
3225                         break;
3226                 }
3227                 extent_offset = cur - em->start;
3228                 BUG_ON(extent_map_end(em) <= cur);
3229                 BUG_ON(end < cur);
3230
3231                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3232                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3233                         extent_set_compress_type(&this_bio_flag,
3234                                                  em->compress_type);
3235                 }
3236
3237                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3238                 cur_end = min(extent_map_end(em) - 1, end);
3239                 iosize = ALIGN(iosize, blocksize);
3240                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3241                         disk_io_size = em->block_len;
3242                         offset = em->block_start;
3243                 } else {
3244                         offset = em->block_start + extent_offset;
3245                         disk_io_size = iosize;
3246                 }
3247                 block_start = em->block_start;
3248                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3249                         block_start = EXTENT_MAP_HOLE;
3250
3251                 /*
3252                  * If we have a file range that points to a compressed extent
3253                  * and it's followed by a consecutive file range that points to
3254                  * to the same compressed extent (possibly with a different
3255                  * offset and/or length, so it either points to the whole extent
3256                  * or only part of it), we must make sure we do not submit a
3257                  * single bio to populate the pages for the 2 ranges because
3258                  * this makes the compressed extent read zero out the pages
3259                  * belonging to the 2nd range. Imagine the following scenario:
3260                  *
3261                  *  File layout
3262                  *  [0 - 8K]                     [8K - 24K]
3263                  *    |                               |
3264                  *    |                               |
3265                  * points to extent X,         points to extent X,
3266                  * offset 4K, length of 8K     offset 0, length 16K
3267                  *
3268                  * [extent X, compressed length = 4K uncompressed length = 16K]
3269                  *
3270                  * If the bio to read the compressed extent covers both ranges,
3271                  * it will decompress extent X into the pages belonging to the
3272                  * first range and then it will stop, zeroing out the remaining
3273                  * pages that belong to the other range that points to extent X.
3274                  * So here we make sure we submit 2 bios, one for the first
3275                  * range and another one for the third range. Both will target
3276                  * the same physical extent from disk, but we can't currently
3277                  * make the compressed bio endio callback populate the pages
3278                  * for both ranges because each compressed bio is tightly
3279                  * coupled with a single extent map, and each range can have
3280                  * an extent map with a different offset value relative to the
3281                  * uncompressed data of our extent and different lengths. This
3282                  * is a corner case so we prioritize correctness over
3283                  * non-optimal behavior (submitting 2 bios for the same extent).
3284                  */
3285                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3286                     prev_em_start && *prev_em_start != (u64)-1 &&
3287                     *prev_em_start != em->start)
3288                         force_bio_submit = true;
3289
3290                 if (prev_em_start)
3291                         *prev_em_start = em->start;
3292
3293                 free_extent_map(em);
3294                 em = NULL;
3295
3296                 /* we've found a hole, just zero and go on */
3297                 if (block_start == EXTENT_MAP_HOLE) {
3298                         char *userpage;
3299                         struct extent_state *cached = NULL;
3300
3301                         userpage = kmap_atomic(page);
3302                         memset(userpage + pg_offset, 0, iosize);
3303                         flush_dcache_page(page);
3304                         kunmap_atomic(userpage);
3305
3306                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3307                                             &cached, GFP_NOFS);
3308                         unlock_extent_cached(tree, cur,
3309                                              cur + iosize - 1, &cached);
3310                         cur = cur + iosize;
3311                         pg_offset += iosize;
3312                         continue;
3313                 }
3314                 /* the get_extent function already copied into the page */
3315                 if (test_range_bit(tree, cur, cur_end,
3316                                    EXTENT_UPTODATE, 1, NULL)) {
3317                         check_page_uptodate(tree, page);
3318                         unlock_extent(tree, cur, cur + iosize - 1);
3319                         cur = cur + iosize;
3320                         pg_offset += iosize;
3321                         continue;
3322                 }
3323                 /* we have an inline extent but it didn't get marked up
3324                  * to date.  Error out
3325                  */
3326                 if (block_start == EXTENT_MAP_INLINE) {
3327                         SetPageError(page);
3328                         unlock_extent(tree, cur, cur + iosize - 1);
3329                         cur = cur + iosize;
3330                         pg_offset += iosize;
3331                         continue;
3332                 }
3333
3334                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3335                                          page, offset, disk_io_size,
3336                                          pg_offset, bio,
3337                                          end_bio_extent_readpage, mirror_num,
3338                                          *bio_flags,
3339                                          this_bio_flag,
3340                                          force_bio_submit);
3341                 if (!ret) {
3342                         nr++;
3343                         *bio_flags = this_bio_flag;
3344                 } else {
3345                         SetPageError(page);
3346                         unlock_extent(tree, cur, cur + iosize - 1);
3347                         goto out;
3348                 }
3349                 cur = cur + iosize;
3350                 pg_offset += iosize;
3351         }
3352 out:
3353         if (!nr) {
3354                 if (!PageError(page))
3355                         SetPageUptodate(page);
3356                 unlock_page(page);
3357         }
3358         return ret;
3359 }
3360
3361 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3362                                              u64 start, u64 end,
3363                                              struct extent_map **em_cached,
3364                                              struct bio **bio,
3365                                              unsigned long *bio_flags,
3366                                              u64 *prev_em_start)
3367 {
3368         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3369         int index;
3370
3371         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3372
3373         for (index = 0; index < nr_pages; index++) {
3374                 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3375                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3376                 put_page(pages[index]);
3377         }
3378 }
3379
3380 static int __extent_read_full_page(struct page *page,
3381                                    get_extent_t *get_extent,
3382                                    struct bio **bio, int mirror_num,
3383                                    unsigned long *bio_flags,
3384                                    unsigned int read_flags)
3385 {
3386         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3387         u64 start = page_offset(page);
3388         u64 end = start + PAGE_SIZE - 1;
3389         int ret;
3390
3391         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3392
3393         ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3394                             bio_flags, read_flags, NULL);
3395         return ret;
3396 }
3397
3398 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3399                           int mirror_num)
3400 {
3401         struct bio *bio = NULL;
3402         unsigned long bio_flags = 0;
3403         int ret;
3404
3405         ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3406                                       &bio_flags, 0);
3407         if (bio)
3408                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3409         return ret;
3410 }
3411
3412 static void update_nr_written(struct writeback_control *wbc,
3413                               unsigned long nr_written)
3414 {
3415         wbc->nr_to_write -= nr_written;
3416 }
3417
3418 /*
3419  * helper for __extent_writepage, doing all of the delayed allocation setup.
3420  *
3421  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3422  * to write the page (copy into inline extent).  In this case the IO has
3423  * been started and the page is already unlocked.
3424  *
3425  * This returns 0 if all went well (page still locked)
3426  * This returns < 0 if there were errors (page still locked)
3427  */
3428 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3429                 struct page *page, struct writeback_control *wbc,
3430                 u64 delalloc_start, unsigned long *nr_written)
3431 {
3432         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3433         bool found;
3434         u64 delalloc_to_write = 0;
3435         u64 delalloc_end = 0;
3436         int ret;
3437         int page_started = 0;
3438
3439
3440         while (delalloc_end < page_end) {
3441                 found = find_lock_delalloc_range(inode, page,
3442                                                &delalloc_start,
3443                                                &delalloc_end);
3444                 if (!found) {
3445                         delalloc_start = delalloc_end + 1;
3446                         continue;
3447                 }
3448                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3449                                 delalloc_end, &page_started, nr_written, wbc);
3450                 if (ret) {
3451                         SetPageError(page);
3452                         /*
3453                          * btrfs_run_delalloc_range should return < 0 for error
3454                          * but just in case, we use > 0 here meaning the IO is
3455                          * started, so we don't want to return > 0 unless
3456                          * things are going well.
3457                          */
3458                         ret = ret < 0 ? ret : -EIO;
3459                         goto done;
3460                 }
3461                 /*
3462                  * delalloc_end is already one less than the total length, so
3463                  * we don't subtract one from PAGE_SIZE
3464                  */
3465                 delalloc_to_write += (delalloc_end - delalloc_start +
3466                                       PAGE_SIZE) >> PAGE_SHIFT;
3467                 delalloc_start = delalloc_end + 1;
3468         }
3469         if (wbc->nr_to_write < delalloc_to_write) {
3470                 int thresh = 8192;
3471
3472                 if (delalloc_to_write < thresh * 2)
3473                         thresh = delalloc_to_write;
3474                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3475                                          thresh);
3476         }
3477
3478         /* did the fill delalloc function already unlock and start
3479          * the IO?
3480          */
3481         if (page_started) {
3482                 /*
3483                  * we've unlocked the page, so we can't update
3484                  * the mapping's writeback index, just update
3485                  * nr_to_write.
3486                  */
3487                 wbc->nr_to_write -= *nr_written;
3488                 return 1;
3489         }
3490
3491         ret = 0;
3492
3493 done:
3494         return ret;
3495 }
3496
3497 /*
3498  * helper for __extent_writepage.  This calls the writepage start hooks,
3499  * and does the loop to map the page into extents and bios.
3500  *
3501  * We return 1 if the IO is started and the page is unlocked,
3502  * 0 if all went well (page still locked)
3503  * < 0 if there were errors (page still locked)
3504  */
3505 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3506                                  struct page *page,
3507                                  struct writeback_control *wbc,
3508                                  struct extent_page_data *epd,
3509                                  loff_t i_size,
3510                                  unsigned long nr_written,
3511                                  int *nr_ret)
3512 {
3513         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3514         u64 start = page_offset(page);
3515         u64 page_end = start + PAGE_SIZE - 1;
3516         u64 end;
3517         u64 cur = start;
3518         u64 extent_offset;
3519         u64 block_start;
3520         u64 iosize;
3521         struct extent_map *em;
3522         size_t pg_offset = 0;
3523         size_t blocksize;
3524         int ret = 0;
3525         int nr = 0;
3526         const unsigned int write_flags = wbc_to_write_flags(wbc);
3527         bool compressed;
3528
3529         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3530         if (ret) {
3531                 /* Fixup worker will requeue */
3532                 redirty_page_for_writepage(wbc, page);
3533                 update_nr_written(wbc, nr_written);
3534                 unlock_page(page);
3535                 return 1;
3536         }
3537
3538         /*
3539          * we don't want to touch the inode after unlocking the page,
3540          * so we update the mapping writeback index now
3541          */
3542         update_nr_written(wbc, nr_written + 1);
3543
3544         end = page_end;
3545         blocksize = inode->i_sb->s_blocksize;
3546
3547         while (cur <= end) {
3548                 u64 em_end;
3549                 u64 offset;
3550
3551                 if (cur >= i_size) {
3552                         btrfs_writepage_endio_finish_ordered(page, cur,
3553                                                              page_end, 1);
3554                         break;
3555                 }
3556                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3557                                       end - cur + 1);
3558                 if (IS_ERR_OR_NULL(em)) {
3559                         SetPageError(page);
3560                         ret = PTR_ERR_OR_ZERO(em);
3561                         break;
3562                 }
3563
3564                 extent_offset = cur - em->start;
3565                 em_end = extent_map_end(em);
3566                 BUG_ON(em_end <= cur);
3567                 BUG_ON(end < cur);
3568                 iosize = min(em_end - cur, end - cur + 1);
3569                 iosize = ALIGN(iosize, blocksize);
3570                 offset = em->block_start + extent_offset;
3571                 block_start = em->block_start;
3572                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3573                 free_extent_map(em);
3574                 em = NULL;
3575
3576                 /*
3577                  * compressed and inline extents are written through other
3578                  * paths in the FS
3579                  */
3580                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3581                     block_start == EXTENT_MAP_INLINE) {
3582                         if (compressed)
3583                                 nr++;
3584                         else
3585                                 btrfs_writepage_endio_finish_ordered(page, cur,
3586                                                         cur + iosize - 1, 1);
3587                         cur += iosize;
3588                         pg_offset += iosize;
3589                         continue;
3590                 }
3591
3592                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3593                 if (!PageWriteback(page)) {
3594                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3595                                    "page %lu not writeback, cur %llu end %llu",
3596                                page->index, cur, end);
3597                 }
3598
3599                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3600                                          page, offset, iosize, pg_offset,
3601                                          &epd->bio,
3602                                          end_bio_extent_writepage,
3603                                          0, 0, 0, false);
3604                 if (ret) {
3605                         SetPageError(page);
3606                         if (PageWriteback(page))
3607                                 end_page_writeback(page);
3608                 }
3609
3610                 cur = cur + iosize;
3611                 pg_offset += iosize;
3612                 nr++;
3613         }
3614         *nr_ret = nr;
3615         return ret;
3616 }
3617
3618 /*
3619  * the writepage semantics are similar to regular writepage.  extent
3620  * records are inserted to lock ranges in the tree, and as dirty areas
3621  * are found, they are marked writeback.  Then the lock bits are removed
3622  * and the end_io handler clears the writeback ranges
3623  *
3624  * Return 0 if everything goes well.
3625  * Return <0 for error.
3626  */
3627 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3628                               struct extent_page_data *epd)
3629 {
3630         struct inode *inode = page->mapping->host;
3631         u64 start = page_offset(page);
3632         u64 page_end = start + PAGE_SIZE - 1;
3633         int ret;
3634         int nr = 0;
3635         size_t pg_offset;
3636         loff_t i_size = i_size_read(inode);
3637         unsigned long end_index = i_size >> PAGE_SHIFT;
3638         unsigned long nr_written = 0;
3639
3640         trace___extent_writepage(page, inode, wbc);
3641
3642         WARN_ON(!PageLocked(page));
3643
3644         ClearPageError(page);
3645
3646         pg_offset = offset_in_page(i_size);
3647         if (page->index > end_index ||
3648            (page->index == end_index && !pg_offset)) {
3649                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3650                 unlock_page(page);
3651                 return 0;
3652         }
3653
3654         if (page->index == end_index) {
3655                 char *userpage;
3656
3657                 userpage = kmap_atomic(page);
3658                 memset(userpage + pg_offset, 0,
3659                        PAGE_SIZE - pg_offset);
3660                 kunmap_atomic(userpage);
3661                 flush_dcache_page(page);
3662         }
3663
3664         set_page_extent_mapped(page);
3665
3666         if (!epd->extent_locked) {
3667                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3668                 if (ret == 1)
3669                         return 0;
3670                 if (ret)
3671                         goto done;
3672         }
3673
3674         ret = __extent_writepage_io(inode, page, wbc, epd,
3675                                     i_size, nr_written, &nr);
3676         if (ret == 1)
3677                 return 0;
3678
3679 done:
3680         if (nr == 0) {
3681                 /* make sure the mapping tag for page dirty gets cleared */
3682                 set_page_writeback(page);
3683                 end_page_writeback(page);
3684         }
3685         if (PageError(page)) {
3686                 ret = ret < 0 ? ret : -EIO;
3687                 end_extent_writepage(page, ret, start, page_end);
3688         }
3689         unlock_page(page);
3690         ASSERT(ret <= 0);
3691         return ret;
3692 }
3693
3694 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3695 {
3696         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3697                        TASK_UNINTERRUPTIBLE);
3698 }
3699
3700 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3701 {
3702         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3703         smp_mb__after_atomic();
3704         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3705 }
3706
3707 /*
3708  * Lock eb pages and flush the bio if we can't the locks
3709  *
3710  * Return  0 if nothing went wrong
3711  * Return >0 is same as 0, except bio is not submitted
3712  * Return <0 if something went wrong, no page is locked
3713  */
3714 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3715                           struct extent_page_data *epd)
3716 {
3717         struct btrfs_fs_info *fs_info = eb->fs_info;
3718         int i, num_pages, failed_page_nr;
3719         int flush = 0;
3720         int ret = 0;
3721
3722         if (!btrfs_try_tree_write_lock(eb)) {
3723                 ret = flush_write_bio(epd);
3724                 if (ret < 0)
3725                         return ret;
3726                 flush = 1;
3727                 btrfs_tree_lock(eb);
3728         }
3729
3730         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3731                 btrfs_tree_unlock(eb);
3732                 if (!epd->sync_io)
3733                         return 0;
3734                 if (!flush) {
3735                         ret = flush_write_bio(epd);
3736                         if (ret < 0)
3737                                 return ret;
3738                         flush = 1;
3739                 }
3740                 while (1) {
3741                         wait_on_extent_buffer_writeback(eb);
3742                         btrfs_tree_lock(eb);
3743                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3744                                 break;
3745                         btrfs_tree_unlock(eb);
3746                 }
3747         }
3748
3749         /*
3750          * We need to do this to prevent races in people who check if the eb is
3751          * under IO since we can end up having no IO bits set for a short period
3752          * of time.
3753          */
3754         spin_lock(&eb->refs_lock);
3755         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3756                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3757                 spin_unlock(&eb->refs_lock);
3758                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3759                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760                                          -eb->len,
3761                                          fs_info->dirty_metadata_batch);
3762                 ret = 1;
3763         } else {
3764                 spin_unlock(&eb->refs_lock);
3765         }
3766
3767         btrfs_tree_unlock(eb);
3768
3769         if (!ret)
3770                 return ret;
3771
3772         num_pages = num_extent_pages(eb);
3773         for (i = 0; i < num_pages; i++) {
3774                 struct page *p = eb->pages[i];
3775
3776                 if (!trylock_page(p)) {
3777                         if (!flush) {
3778                                 int err;
3779
3780                                 err = flush_write_bio(epd);
3781                                 if (err < 0) {
3782                                         ret = err;
3783                                         failed_page_nr = i;
3784                                         goto err_unlock;
3785                                 }
3786                                 flush = 1;
3787                         }
3788                         lock_page(p);
3789                 }
3790         }
3791
3792         return ret;
3793 err_unlock:
3794         /* Unlock already locked pages */
3795         for (i = 0; i < failed_page_nr; i++)
3796                 unlock_page(eb->pages[i]);
3797         /*
3798          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3799          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3800          * be made and undo everything done before.
3801          */
3802         btrfs_tree_lock(eb);
3803         spin_lock(&eb->refs_lock);
3804         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3805         end_extent_buffer_writeback(eb);
3806         spin_unlock(&eb->refs_lock);
3807         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3808                                  fs_info->dirty_metadata_batch);
3809         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3810         btrfs_tree_unlock(eb);
3811         return ret;
3812 }
3813
3814 static void set_btree_ioerr(struct page *page)
3815 {
3816         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3817         struct btrfs_fs_info *fs_info;
3818
3819         SetPageError(page);
3820         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3821                 return;
3822
3823         /*
3824          * If we error out, we should add back the dirty_metadata_bytes
3825          * to make it consistent.
3826          */
3827         fs_info = eb->fs_info;
3828         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3829                                  eb->len, fs_info->dirty_metadata_batch);
3830
3831         /*
3832          * If writeback for a btree extent that doesn't belong to a log tree
3833          * failed, increment the counter transaction->eb_write_errors.
3834          * We do this because while the transaction is running and before it's
3835          * committing (when we call filemap_fdata[write|wait]_range against
3836          * the btree inode), we might have
3837          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3838          * returns an error or an error happens during writeback, when we're
3839          * committing the transaction we wouldn't know about it, since the pages
3840          * can be no longer dirty nor marked anymore for writeback (if a
3841          * subsequent modification to the extent buffer didn't happen before the
3842          * transaction commit), which makes filemap_fdata[write|wait]_range not
3843          * able to find the pages tagged with SetPageError at transaction
3844          * commit time. So if this happens we must abort the transaction,
3845          * otherwise we commit a super block with btree roots that point to
3846          * btree nodes/leafs whose content on disk is invalid - either garbage
3847          * or the content of some node/leaf from a past generation that got
3848          * cowed or deleted and is no longer valid.
3849          *
3850          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3851          * not be enough - we need to distinguish between log tree extents vs
3852          * non-log tree extents, and the next filemap_fdatawait_range() call
3853          * will catch and clear such errors in the mapping - and that call might
3854          * be from a log sync and not from a transaction commit. Also, checking
3855          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3856          * not done and would not be reliable - the eb might have been released
3857          * from memory and reading it back again means that flag would not be
3858          * set (since it's a runtime flag, not persisted on disk).
3859          *
3860          * Using the flags below in the btree inode also makes us achieve the
3861          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3862          * writeback for all dirty pages and before filemap_fdatawait_range()
3863          * is called, the writeback for all dirty pages had already finished
3864          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3865          * filemap_fdatawait_range() would return success, as it could not know
3866          * that writeback errors happened (the pages were no longer tagged for
3867          * writeback).
3868          */
3869         switch (eb->log_index) {
3870         case -1:
3871                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3872                 break;
3873         case 0:
3874                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3875                 break;
3876         case 1:
3877                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3878                 break;
3879         default:
3880                 BUG(); /* unexpected, logic error */
3881         }
3882 }
3883
3884 static void end_bio_extent_buffer_writepage(struct bio *bio)
3885 {
3886         struct bio_vec *bvec;
3887         struct extent_buffer *eb;
3888         int done;
3889         struct bvec_iter_all iter_all;
3890
3891         ASSERT(!bio_flagged(bio, BIO_CLONED));
3892         bio_for_each_segment_all(bvec, bio, iter_all) {
3893                 struct page *page = bvec->bv_page;
3894
3895                 eb = (struct extent_buffer *)page->private;
3896                 BUG_ON(!eb);
3897                 done = atomic_dec_and_test(&eb->io_pages);
3898
3899                 if (bio->bi_status ||
3900                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3901                         ClearPageUptodate(page);
3902                         set_btree_ioerr(page);
3903                 }
3904
3905                 end_page_writeback(page);
3906
3907                 if (!done)
3908                         continue;
3909
3910                 end_extent_buffer_writeback(eb);
3911         }
3912
3913         bio_put(bio);
3914 }
3915
3916 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3917                         struct writeback_control *wbc,
3918                         struct extent_page_data *epd)
3919 {
3920         u64 offset = eb->start;
3921         u32 nritems;
3922         int i, num_pages;
3923         unsigned long start, end;
3924         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3925         int ret = 0;
3926
3927         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3928         num_pages = num_extent_pages(eb);
3929         atomic_set(&eb->io_pages, num_pages);
3930
3931         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3932         nritems = btrfs_header_nritems(eb);
3933         if (btrfs_header_level(eb) > 0) {
3934                 end = btrfs_node_key_ptr_offset(nritems);
3935
3936                 memzero_extent_buffer(eb, end, eb->len - end);
3937         } else {
3938                 /*
3939                  * leaf:
3940                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3941                  */
3942                 start = btrfs_item_nr_offset(nritems);
3943                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3944                 memzero_extent_buffer(eb, start, end - start);
3945         }
3946
3947         for (i = 0; i < num_pages; i++) {
3948                 struct page *p = eb->pages[i];
3949
3950                 clear_page_dirty_for_io(p);
3951                 set_page_writeback(p);
3952                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3953                                          p, offset, PAGE_SIZE, 0,
3954                                          &epd->bio,
3955                                          end_bio_extent_buffer_writepage,
3956                                          0, 0, 0, false);
3957                 if (ret) {
3958                         set_btree_ioerr(p);
3959                         if (PageWriteback(p))
3960                                 end_page_writeback(p);
3961                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3962                                 end_extent_buffer_writeback(eb);
3963                         ret = -EIO;
3964                         break;
3965                 }
3966                 offset += PAGE_SIZE;
3967                 update_nr_written(wbc, 1);
3968                 unlock_page(p);
3969         }
3970
3971         if (unlikely(ret)) {
3972                 for (; i < num_pages; i++) {
3973                         struct page *p = eb->pages[i];
3974                         clear_page_dirty_for_io(p);
3975                         unlock_page(p);
3976                 }
3977         }
3978
3979         return ret;
3980 }
3981
3982 int btree_write_cache_pages(struct address_space *mapping,
3983                                    struct writeback_control *wbc)
3984 {
3985         struct extent_buffer *eb, *prev_eb = NULL;
3986         struct extent_page_data epd = {
3987                 .bio = NULL,
3988                 .extent_locked = 0,
3989                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3990         };
3991         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3992         int ret = 0;
3993         int done = 0;
3994         int nr_to_write_done = 0;
3995         struct pagevec pvec;
3996         int nr_pages;
3997         pgoff_t index;
3998         pgoff_t end;            /* Inclusive */
3999         int scanned = 0;
4000         xa_mark_t tag;
4001
4002         pagevec_init(&pvec);
4003         if (wbc->range_cyclic) {
4004                 index = mapping->writeback_index; /* Start from prev offset */
4005                 end = -1;
4006                 /*
4007                  * Start from the beginning does not need to cycle over the
4008                  * range, mark it as scanned.
4009                  */
4010                 scanned = (index == 0);
4011         } else {
4012                 index = wbc->range_start >> PAGE_SHIFT;
4013                 end = wbc->range_end >> PAGE_SHIFT;
4014                 scanned = 1;
4015         }
4016         if (wbc->sync_mode == WB_SYNC_ALL)
4017                 tag = PAGECACHE_TAG_TOWRITE;
4018         else
4019                 tag = PAGECACHE_TAG_DIRTY;
4020 retry:
4021         if (wbc->sync_mode == WB_SYNC_ALL)
4022                 tag_pages_for_writeback(mapping, index, end);
4023         while (!done && !nr_to_write_done && (index <= end) &&
4024                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4025                         tag))) {
4026                 unsigned i;
4027
4028                 for (i = 0; i < nr_pages; i++) {
4029                         struct page *page = pvec.pages[i];
4030
4031                         if (!PagePrivate(page))
4032                                 continue;
4033
4034                         spin_lock(&mapping->private_lock);
4035                         if (!PagePrivate(page)) {
4036                                 spin_unlock(&mapping->private_lock);
4037                                 continue;
4038                         }
4039
4040                         eb = (struct extent_buffer *)page->private;
4041
4042                         /*
4043                          * Shouldn't happen and normally this would be a BUG_ON
4044                          * but no sense in crashing the users box for something
4045                          * we can survive anyway.
4046                          */
4047                         if (WARN_ON(!eb)) {
4048                                 spin_unlock(&mapping->private_lock);
4049                                 continue;
4050                         }
4051
4052                         if (eb == prev_eb) {
4053                                 spin_unlock(&mapping->private_lock);
4054                                 continue;
4055                         }
4056
4057                         ret = atomic_inc_not_zero(&eb->refs);
4058                         spin_unlock(&mapping->private_lock);
4059                         if (!ret)
4060                                 continue;
4061
4062                         prev_eb = eb;
4063                         ret = lock_extent_buffer_for_io(eb, &epd);
4064                         if (!ret) {
4065                                 free_extent_buffer(eb);
4066                                 continue;
4067                         } else if (ret < 0) {
4068                                 done = 1;
4069                                 free_extent_buffer(eb);
4070                                 break;
4071                         }
4072
4073                         ret = write_one_eb(eb, wbc, &epd);
4074                         if (ret) {
4075                                 done = 1;
4076                                 free_extent_buffer(eb);
4077                                 break;
4078                         }
4079                         free_extent_buffer(eb);
4080
4081                         /*
4082                          * the filesystem may choose to bump up nr_to_write.
4083                          * We have to make sure to honor the new nr_to_write
4084                          * at any time
4085                          */
4086                         nr_to_write_done = wbc->nr_to_write <= 0;
4087                 }
4088                 pagevec_release(&pvec);
4089                 cond_resched();
4090         }
4091         if (!scanned && !done) {
4092                 /*
4093                  * We hit the last page and there is more work to be done: wrap
4094                  * back to the start of the file
4095                  */
4096                 scanned = 1;
4097                 index = 0;
4098                 goto retry;
4099         }
4100         ASSERT(ret <= 0);
4101         if (ret < 0) {
4102                 end_write_bio(&epd, ret);
4103                 return ret;
4104         }
4105         /*
4106          * If something went wrong, don't allow any metadata write bio to be
4107          * submitted.
4108          *
4109          * This would prevent use-after-free if we had dirty pages not
4110          * cleaned up, which can still happen by fuzzed images.
4111          *
4112          * - Bad extent tree
4113          *   Allowing existing tree block to be allocated for other trees.
4114          *
4115          * - Log tree operations
4116          *   Exiting tree blocks get allocated to log tree, bumps its
4117          *   generation, then get cleaned in tree re-balance.
4118          *   Such tree block will not be written back, since it's clean,
4119          *   thus no WRITTEN flag set.
4120          *   And after log writes back, this tree block is not traced by
4121          *   any dirty extent_io_tree.
4122          *
4123          * - Offending tree block gets re-dirtied from its original owner
4124          *   Since it has bumped generation, no WRITTEN flag, it can be
4125          *   reused without COWing. This tree block will not be traced
4126          *   by btrfs_transaction::dirty_pages.
4127          *
4128          *   Now such dirty tree block will not be cleaned by any dirty
4129          *   extent io tree. Thus we don't want to submit such wild eb
4130          *   if the fs already has error.
4131          */
4132         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4133                 ret = flush_write_bio(&epd);
4134         } else {
4135                 ret = -EUCLEAN;
4136                 end_write_bio(&epd, ret);
4137         }
4138         return ret;
4139 }
4140
4141 /**
4142  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4143  * @mapping: address space structure to write
4144  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4145  * @data: data passed to __extent_writepage function
4146  *
4147  * If a page is already under I/O, write_cache_pages() skips it, even
4148  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4149  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4150  * and msync() need to guarantee that all the data which was dirty at the time
4151  * the call was made get new I/O started against them.  If wbc->sync_mode is
4152  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4153  * existing IO to complete.
4154  */
4155 static int extent_write_cache_pages(struct address_space *mapping,
4156                              struct writeback_control *wbc,
4157                              struct extent_page_data *epd)
4158 {
4159         struct inode *inode = mapping->host;
4160         int ret = 0;
4161         int done = 0;
4162         int nr_to_write_done = 0;
4163         struct pagevec pvec;
4164         int nr_pages;
4165         pgoff_t index;
4166         pgoff_t end;            /* Inclusive */
4167         pgoff_t done_index;
4168         int range_whole = 0;
4169         int scanned = 0;
4170         xa_mark_t tag;
4171
4172         /*
4173          * We have to hold onto the inode so that ordered extents can do their
4174          * work when the IO finishes.  The alternative to this is failing to add
4175          * an ordered extent if the igrab() fails there and that is a huge pain
4176          * to deal with, so instead just hold onto the inode throughout the
4177          * writepages operation.  If it fails here we are freeing up the inode
4178          * anyway and we'd rather not waste our time writing out stuff that is
4179          * going to be truncated anyway.
4180          */
4181         if (!igrab(inode))
4182                 return 0;
4183
4184         pagevec_init(&pvec);
4185         if (wbc->range_cyclic) {
4186                 index = mapping->writeback_index; /* Start from prev offset */
4187                 end = -1;
4188                 /*
4189                  * Start from the beginning does not need to cycle over the
4190                  * range, mark it as scanned.
4191                  */
4192                 scanned = (index == 0);
4193         } else {
4194                 index = wbc->range_start >> PAGE_SHIFT;
4195                 end = wbc->range_end >> PAGE_SHIFT;
4196                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4197                         range_whole = 1;
4198                 scanned = 1;
4199         }
4200
4201         /*
4202          * We do the tagged writepage as long as the snapshot flush bit is set
4203          * and we are the first one who do the filemap_flush() on this inode.
4204          *
4205          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4206          * not race in and drop the bit.
4207          */
4208         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4209             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4210                                &BTRFS_I(inode)->runtime_flags))
4211                 wbc->tagged_writepages = 1;
4212
4213         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4214                 tag = PAGECACHE_TAG_TOWRITE;
4215         else
4216                 tag = PAGECACHE_TAG_DIRTY;
4217 retry:
4218         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4219                 tag_pages_for_writeback(mapping, index, end);
4220         done_index = index;
4221         while (!done && !nr_to_write_done && (index <= end) &&
4222                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4223                                                 &index, end, tag))) {
4224                 unsigned i;
4225
4226                 for (i = 0; i < nr_pages; i++) {
4227                         struct page *page = pvec.pages[i];
4228
4229                         done_index = page->index + 1;
4230                         /*
4231                          * At this point we hold neither the i_pages lock nor
4232                          * the page lock: the page may be truncated or
4233                          * invalidated (changing page->mapping to NULL),
4234                          * or even swizzled back from swapper_space to
4235                          * tmpfs file mapping
4236                          */
4237                         if (!trylock_page(page)) {
4238                                 ret = flush_write_bio(epd);
4239                                 BUG_ON(ret < 0);
4240                                 lock_page(page);
4241                         }
4242
4243                         if (unlikely(page->mapping != mapping)) {
4244                                 unlock_page(page);
4245                                 continue;
4246                         }
4247
4248                         if (wbc->sync_mode != WB_SYNC_NONE) {
4249                                 if (PageWriteback(page)) {
4250                                         ret = flush_write_bio(epd);
4251                                         BUG_ON(ret < 0);
4252                                 }
4253                                 wait_on_page_writeback(page);
4254                         }
4255
4256                         if (PageWriteback(page) ||
4257                             !clear_page_dirty_for_io(page)) {
4258                                 unlock_page(page);
4259                                 continue;
4260                         }
4261
4262                         ret = __extent_writepage(page, wbc, epd);
4263                         if (ret < 0) {
4264                                 done = 1;
4265                                 break;
4266                         }
4267
4268                         /*
4269                          * the filesystem may choose to bump up nr_to_write.
4270                          * We have to make sure to honor the new nr_to_write
4271                          * at any time
4272                          */
4273                         nr_to_write_done = wbc->nr_to_write <= 0;
4274                 }
4275                 pagevec_release(&pvec);
4276                 cond_resched();
4277         }
4278         if (!scanned && !done) {
4279                 /*
4280                  * We hit the last page and there is more work to be done: wrap
4281                  * back to the start of the file
4282                  */
4283                 scanned = 1;
4284                 index = 0;
4285
4286                 /*
4287                  * If we're looping we could run into a page that is locked by a
4288                  * writer and that writer could be waiting on writeback for a
4289                  * page in our current bio, and thus deadlock, so flush the
4290                  * write bio here.
4291                  */
4292                 ret = flush_write_bio(epd);
4293                 if (!ret)
4294                         goto retry;
4295         }
4296
4297         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4298                 mapping->writeback_index = done_index;
4299
4300         btrfs_add_delayed_iput(inode);
4301         return ret;
4302 }
4303
4304 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4305 {
4306         int ret;
4307         struct extent_page_data epd = {
4308                 .bio = NULL,
4309                 .extent_locked = 0,
4310                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4311         };
4312
4313         ret = __extent_writepage(page, wbc, &epd);
4314         ASSERT(ret <= 0);
4315         if (ret < 0) {
4316                 end_write_bio(&epd, ret);
4317                 return ret;
4318         }
4319
4320         ret = flush_write_bio(&epd);
4321         ASSERT(ret <= 0);
4322         return ret;
4323 }
4324
4325 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4326                               int mode)
4327 {
4328         int ret = 0;
4329         struct address_space *mapping = inode->i_mapping;
4330         struct page *page;
4331         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4332                 PAGE_SHIFT;
4333
4334         struct extent_page_data epd = {
4335                 .bio = NULL,
4336                 .extent_locked = 1,
4337                 .sync_io = mode == WB_SYNC_ALL,
4338         };
4339         struct writeback_control wbc_writepages = {
4340                 .sync_mode      = mode,
4341                 .nr_to_write    = nr_pages * 2,
4342                 .range_start    = start,
4343                 .range_end      = end + 1,
4344                 /* We're called from an async helper function */
4345                 .punt_to_cgroup = 1,
4346                 .no_cgroup_owner = 1,
4347         };
4348
4349         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4350         while (start <= end) {
4351                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4352                 if (clear_page_dirty_for_io(page))
4353                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4354                 else {
4355                         btrfs_writepage_endio_finish_ordered(page, start,
4356                                                     start + PAGE_SIZE - 1, 1);
4357                         unlock_page(page);
4358                 }
4359                 put_page(page);
4360                 start += PAGE_SIZE;
4361         }
4362
4363         ASSERT(ret <= 0);
4364         if (ret == 0)
4365                 ret = flush_write_bio(&epd);
4366         else
4367                 end_write_bio(&epd, ret);
4368
4369         wbc_detach_inode(&wbc_writepages);
4370         return ret;
4371 }
4372
4373 int extent_writepages(struct address_space *mapping,
4374                       struct writeback_control *wbc)
4375 {
4376         int ret = 0;
4377         struct extent_page_data epd = {
4378                 .bio = NULL,
4379                 .extent_locked = 0,
4380                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4381         };
4382
4383         ret = extent_write_cache_pages(mapping, wbc, &epd);
4384         ASSERT(ret <= 0);
4385         if (ret < 0) {
4386                 end_write_bio(&epd, ret);
4387                 return ret;
4388         }
4389         ret = flush_write_bio(&epd);
4390         return ret;
4391 }
4392
4393 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4394                      unsigned nr_pages)
4395 {
4396         struct bio *bio = NULL;
4397         unsigned long bio_flags = 0;
4398         struct page *pagepool[16];
4399         struct extent_map *em_cached = NULL;
4400         int nr = 0;
4401         u64 prev_em_start = (u64)-1;
4402
4403         while (!list_empty(pages)) {
4404                 u64 contig_end = 0;
4405
4406                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4407                         struct page *page = lru_to_page(pages);
4408
4409                         prefetchw(&page->flags);
4410                         list_del(&page->lru);
4411                         if (add_to_page_cache_lru(page, mapping, page->index,
4412                                                 readahead_gfp_mask(mapping))) {
4413                                 put_page(page);
4414                                 break;
4415                         }
4416
4417                         pagepool[nr++] = page;
4418                         contig_end = page_offset(page) + PAGE_SIZE - 1;
4419                 }
4420
4421                 if (nr) {
4422                         u64 contig_start = page_offset(pagepool[0]);
4423
4424                         ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4425
4426                         contiguous_readpages(pagepool, nr, contig_start,
4427                                      contig_end, &em_cached, &bio, &bio_flags,
4428                                      &prev_em_start);
4429                 }
4430         }
4431
4432         if (em_cached)
4433                 free_extent_map(em_cached);
4434
4435         if (bio)
4436                 return submit_one_bio(bio, 0, bio_flags);
4437         return 0;
4438 }
4439
4440 /*
4441  * basic invalidatepage code, this waits on any locked or writeback
4442  * ranges corresponding to the page, and then deletes any extent state
4443  * records from the tree
4444  */
4445 int extent_invalidatepage(struct extent_io_tree *tree,
4446                           struct page *page, unsigned long offset)
4447 {
4448         struct extent_state *cached_state = NULL;
4449         u64 start = page_offset(page);
4450         u64 end = start + PAGE_SIZE - 1;
4451         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4452
4453         start += ALIGN(offset, blocksize);
4454         if (start > end)
4455                 return 0;
4456
4457         lock_extent_bits(tree, start, end, &cached_state);
4458         wait_on_page_writeback(page);
4459         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4460                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4461         return 0;
4462 }
4463
4464 /*
4465  * a helper for releasepage, this tests for areas of the page that
4466  * are locked or under IO and drops the related state bits if it is safe
4467  * to drop the page.
4468  */
4469 static int try_release_extent_state(struct extent_io_tree *tree,
4470                                     struct page *page, gfp_t mask)
4471 {
4472         u64 start = page_offset(page);
4473         u64 end = start + PAGE_SIZE - 1;
4474         int ret = 1;
4475
4476         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4477                 ret = 0;
4478         } else {
4479                 /*
4480                  * at this point we can safely clear everything except the
4481                  * locked bit and the nodatasum bit
4482                  */
4483                 ret = __clear_extent_bit(tree, start, end,
4484                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4485                                  0, 0, NULL, mask, NULL);
4486
4487                 /* if clear_extent_bit failed for enomem reasons,
4488                  * we can't allow the release to continue.
4489                  */
4490                 if (ret < 0)
4491                         ret = 0;
4492                 else
4493                         ret = 1;
4494         }
4495         return ret;
4496 }
4497
4498 /*
4499  * a helper for releasepage.  As long as there are no locked extents
4500  * in the range corresponding to the page, both state records and extent
4501  * map records are removed
4502  */
4503 int try_release_extent_mapping(struct page *page, gfp_t mask)
4504 {
4505         struct extent_map *em;
4506         u64 start = page_offset(page);
4507         u64 end = start + PAGE_SIZE - 1;
4508         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4509         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4510         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4511
4512         if (gfpflags_allow_blocking(mask) &&
4513             page->mapping->host->i_size > SZ_16M) {
4514                 u64 len;
4515                 while (start <= end) {
4516                         len = end - start + 1;
4517                         write_lock(&map->lock);
4518                         em = lookup_extent_mapping(map, start, len);
4519                         if (!em) {
4520                                 write_unlock(&map->lock);
4521                                 break;
4522                         }
4523                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4524                             em->start != start) {
4525                                 write_unlock(&map->lock);
4526                                 free_extent_map(em);
4527                                 break;
4528                         }
4529                         if (!test_range_bit(tree, em->start,
4530                                             extent_map_end(em) - 1,
4531                                             EXTENT_LOCKED, 0, NULL)) {
4532                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4533                                         &btrfs_inode->runtime_flags);
4534                                 remove_extent_mapping(map, em);
4535                                 /* once for the rb tree */
4536                                 free_extent_map(em);
4537                         }
4538                         start = extent_map_end(em);
4539                         write_unlock(&map->lock);
4540
4541                         /* once for us */
4542                         free_extent_map(em);
4543                 }
4544         }
4545         return try_release_extent_state(tree, page, mask);
4546 }
4547
4548 /*
4549  * helper function for fiemap, which doesn't want to see any holes.
4550  * This maps until we find something past 'last'
4551  */
4552 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4553                                                 u64 offset, u64 last)
4554 {
4555         u64 sectorsize = btrfs_inode_sectorsize(inode);
4556         struct extent_map *em;
4557         u64 len;
4558
4559         if (offset >= last)
4560                 return NULL;
4561
4562         while (1) {
4563                 len = last - offset;
4564                 if (len == 0)
4565                         break;
4566                 len = ALIGN(len, sectorsize);
4567                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4568                 if (IS_ERR_OR_NULL(em))
4569                         return em;
4570
4571                 /* if this isn't a hole return it */
4572                 if (em->block_start != EXTENT_MAP_HOLE)
4573                         return em;
4574
4575                 /* this is a hole, advance to the next extent */
4576                 offset = extent_map_end(em);
4577                 free_extent_map(em);
4578                 if (offset >= last)
4579                         break;
4580         }
4581         return NULL;
4582 }
4583
4584 /*
4585  * To cache previous fiemap extent
4586  *
4587  * Will be used for merging fiemap extent
4588  */
4589 struct fiemap_cache {
4590         u64 offset;
4591         u64 phys;
4592         u64 len;
4593         u32 flags;
4594         bool cached;
4595 };
4596
4597 /*
4598  * Helper to submit fiemap extent.
4599  *
4600  * Will try to merge current fiemap extent specified by @offset, @phys,
4601  * @len and @flags with cached one.
4602  * And only when we fails to merge, cached one will be submitted as
4603  * fiemap extent.
4604  *
4605  * Return value is the same as fiemap_fill_next_extent().
4606  */
4607 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4608                                 struct fiemap_cache *cache,
4609                                 u64 offset, u64 phys, u64 len, u32 flags)
4610 {
4611         int ret = 0;
4612
4613         if (!cache->cached)
4614                 goto assign;
4615
4616         /*
4617          * Sanity check, extent_fiemap() should have ensured that new
4618          * fiemap extent won't overlap with cached one.
4619          * Not recoverable.
4620          *
4621          * NOTE: Physical address can overlap, due to compression
4622          */
4623         if (cache->offset + cache->len > offset) {
4624                 WARN_ON(1);
4625                 return -EINVAL;
4626         }
4627
4628         /*
4629          * Only merges fiemap extents if
4630          * 1) Their logical addresses are continuous
4631          *
4632          * 2) Their physical addresses are continuous
4633          *    So truly compressed (physical size smaller than logical size)
4634          *    extents won't get merged with each other
4635          *
4636          * 3) Share same flags except FIEMAP_EXTENT_LAST
4637          *    So regular extent won't get merged with prealloc extent
4638          */
4639         if (cache->offset + cache->len  == offset &&
4640             cache->phys + cache->len == phys  &&
4641             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4642                         (flags & ~FIEMAP_EXTENT_LAST)) {
4643                 cache->len += len;
4644                 cache->flags |= flags;
4645                 goto try_submit_last;
4646         }
4647
4648         /* Not mergeable, need to submit cached one */
4649         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4650                                       cache->len, cache->flags);
4651         cache->cached = false;
4652         if (ret)
4653                 return ret;
4654 assign:
4655         cache->cached = true;
4656         cache->offset = offset;
4657         cache->phys = phys;
4658         cache->len = len;
4659         cache->flags = flags;
4660 try_submit_last:
4661         if (cache->flags & FIEMAP_EXTENT_LAST) {
4662                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4663                                 cache->phys, cache->len, cache->flags);
4664                 cache->cached = false;
4665         }
4666         return ret;
4667 }
4668
4669 /*
4670  * Emit last fiemap cache
4671  *
4672  * The last fiemap cache may still be cached in the following case:
4673  * 0                  4k                    8k
4674  * |<- Fiemap range ->|
4675  * |<------------  First extent ----------->|
4676  *
4677  * In this case, the first extent range will be cached but not emitted.
4678  * So we must emit it before ending extent_fiemap().
4679  */
4680 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4681                                   struct fiemap_cache *cache)
4682 {
4683         int ret;
4684
4685         if (!cache->cached)
4686                 return 0;
4687
4688         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4689                                       cache->len, cache->flags);
4690         cache->cached = false;
4691         if (ret > 0)
4692                 ret = 0;
4693         return ret;
4694 }
4695
4696 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4697                 __u64 start, __u64 len)
4698 {
4699         int ret = 0;
4700         u64 off = start;
4701         u64 max = start + len;
4702         u32 flags = 0;
4703         u32 found_type;
4704         u64 last;
4705         u64 last_for_get_extent = 0;
4706         u64 disko = 0;
4707         u64 isize = i_size_read(inode);
4708         struct btrfs_key found_key;
4709         struct extent_map *em = NULL;
4710         struct extent_state *cached_state = NULL;
4711         struct btrfs_path *path;
4712         struct btrfs_root *root = BTRFS_I(inode)->root;
4713         struct fiemap_cache cache = { 0 };
4714         struct ulist *roots;
4715         struct ulist *tmp_ulist;
4716         int end = 0;
4717         u64 em_start = 0;
4718         u64 em_len = 0;
4719         u64 em_end = 0;
4720
4721         if (len == 0)
4722                 return -EINVAL;
4723
4724         path = btrfs_alloc_path();
4725         if (!path)
4726                 return -ENOMEM;
4727         path->leave_spinning = 1;
4728
4729         roots = ulist_alloc(GFP_KERNEL);
4730         tmp_ulist = ulist_alloc(GFP_KERNEL);
4731         if (!roots || !tmp_ulist) {
4732                 ret = -ENOMEM;
4733                 goto out_free_ulist;
4734         }
4735
4736         start = round_down(start, btrfs_inode_sectorsize(inode));
4737         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4738
4739         /*
4740          * lookup the last file extent.  We're not using i_size here
4741          * because there might be preallocation past i_size
4742          */
4743         ret = btrfs_lookup_file_extent(NULL, root, path,
4744                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4745         if (ret < 0) {
4746                 goto out_free_ulist;
4747         } else {
4748                 WARN_ON(!ret);
4749                 if (ret == 1)
4750                         ret = 0;
4751         }
4752
4753         path->slots[0]--;
4754         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4755         found_type = found_key.type;
4756
4757         /* No extents, but there might be delalloc bits */
4758         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4759             found_type != BTRFS_EXTENT_DATA_KEY) {
4760                 /* have to trust i_size as the end */
4761                 last = (u64)-1;
4762                 last_for_get_extent = isize;
4763         } else {
4764                 /*
4765                  * remember the start of the last extent.  There are a
4766                  * bunch of different factors that go into the length of the
4767                  * extent, so its much less complex to remember where it started
4768                  */
4769                 last = found_key.offset;
4770                 last_for_get_extent = last + 1;
4771         }
4772         btrfs_release_path(path);
4773
4774         /*
4775          * we might have some extents allocated but more delalloc past those
4776          * extents.  so, we trust isize unless the start of the last extent is
4777          * beyond isize
4778          */
4779         if (last < isize) {
4780                 last = (u64)-1;
4781                 last_for_get_extent = isize;
4782         }
4783
4784         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4785                          &cached_state);
4786
4787         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4788         if (!em)
4789                 goto out;
4790         if (IS_ERR(em)) {
4791                 ret = PTR_ERR(em);
4792                 goto out;
4793         }
4794
4795         while (!end) {
4796                 u64 offset_in_extent = 0;
4797
4798                 /* break if the extent we found is outside the range */
4799                 if (em->start >= max || extent_map_end(em) < off)
4800                         break;
4801
4802                 /*
4803                  * get_extent may return an extent that starts before our
4804                  * requested range.  We have to make sure the ranges
4805                  * we return to fiemap always move forward and don't
4806                  * overlap, so adjust the offsets here
4807                  */
4808                 em_start = max(em->start, off);
4809
4810                 /*
4811                  * record the offset from the start of the extent
4812                  * for adjusting the disk offset below.  Only do this if the
4813                  * extent isn't compressed since our in ram offset may be past
4814                  * what we have actually allocated on disk.
4815                  */
4816                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4817                         offset_in_extent = em_start - em->start;
4818                 em_end = extent_map_end(em);
4819                 em_len = em_end - em_start;
4820                 flags = 0;
4821                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4822                         disko = em->block_start + offset_in_extent;
4823                 else
4824                         disko = 0;
4825
4826                 /*
4827                  * bump off for our next call to get_extent
4828                  */
4829                 off = extent_map_end(em);
4830                 if (off >= max)
4831                         end = 1;
4832
4833                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4834                         end = 1;
4835                         flags |= FIEMAP_EXTENT_LAST;
4836                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4837                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4838                                   FIEMAP_EXTENT_NOT_ALIGNED);
4839                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4840                         flags |= (FIEMAP_EXTENT_DELALLOC |
4841                                   FIEMAP_EXTENT_UNKNOWN);
4842                 } else if (fieinfo->fi_extents_max) {
4843                         u64 bytenr = em->block_start -
4844                                 (em->start - em->orig_start);
4845
4846                         /*
4847                          * As btrfs supports shared space, this information
4848                          * can be exported to userspace tools via
4849                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4850                          * then we're just getting a count and we can skip the
4851                          * lookup stuff.
4852                          */
4853                         ret = btrfs_check_shared(root,
4854                                                  btrfs_ino(BTRFS_I(inode)),
4855                                                  bytenr, roots, tmp_ulist);
4856                         if (ret < 0)
4857                                 goto out_free;
4858                         if (ret)
4859                                 flags |= FIEMAP_EXTENT_SHARED;
4860                         ret = 0;
4861                 }
4862                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4863                         flags |= FIEMAP_EXTENT_ENCODED;
4864                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4865                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4866
4867                 free_extent_map(em);
4868                 em = NULL;
4869                 if ((em_start >= last) || em_len == (u64)-1 ||
4870                    (last == (u64)-1 && isize <= em_end)) {
4871                         flags |= FIEMAP_EXTENT_LAST;
4872                         end = 1;
4873                 }
4874
4875                 /* now scan forward to see if this is really the last extent. */
4876                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4877                 if (IS_ERR(em)) {
4878                         ret = PTR_ERR(em);
4879                         goto out;
4880                 }
4881                 if (!em) {
4882                         flags |= FIEMAP_EXTENT_LAST;
4883                         end = 1;
4884                 }
4885                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4886                                            em_len, flags);
4887                 if (ret) {
4888                         if (ret == 1)
4889                                 ret = 0;
4890                         goto out_free;
4891                 }
4892         }
4893 out_free:
4894         if (!ret)
4895                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4896         free_extent_map(em);
4897 out:
4898         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4899                              &cached_state);
4900
4901 out_free_ulist:
4902         btrfs_free_path(path);
4903         ulist_free(roots);
4904         ulist_free(tmp_ulist);
4905         return ret;
4906 }
4907
4908 static void __free_extent_buffer(struct extent_buffer *eb)
4909 {
4910         kmem_cache_free(extent_buffer_cache, eb);
4911 }
4912
4913 int extent_buffer_under_io(const struct extent_buffer *eb)
4914 {
4915         return (atomic_read(&eb->io_pages) ||
4916                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4917                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4918 }
4919
4920 /*
4921  * Release all pages attached to the extent buffer.
4922  */
4923 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4924 {
4925         int i;
4926         int num_pages;
4927         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4928
4929         BUG_ON(extent_buffer_under_io(eb));
4930
4931         num_pages = num_extent_pages(eb);
4932         for (i = 0; i < num_pages; i++) {
4933                 struct page *page = eb->pages[i];
4934
4935                 if (!page)
4936                         continue;
4937                 if (mapped)
4938                         spin_lock(&page->mapping->private_lock);
4939                 /*
4940                  * We do this since we'll remove the pages after we've
4941                  * removed the eb from the radix tree, so we could race
4942                  * and have this page now attached to the new eb.  So
4943                  * only clear page_private if it's still connected to
4944                  * this eb.
4945                  */
4946                 if (PagePrivate(page) &&
4947                     page->private == (unsigned long)eb) {
4948                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4949                         BUG_ON(PageDirty(page));
4950                         BUG_ON(PageWriteback(page));
4951                         /*
4952                          * We need to make sure we haven't be attached
4953                          * to a new eb.
4954                          */
4955                         ClearPagePrivate(page);
4956                         set_page_private(page, 0);
4957                         /* One for the page private */
4958                         put_page(page);
4959                 }
4960
4961                 if (mapped)
4962                         spin_unlock(&page->mapping->private_lock);
4963
4964                 /* One for when we allocated the page */
4965                 put_page(page);
4966         }
4967 }
4968
4969 /*
4970  * Helper for releasing the extent buffer.
4971  */
4972 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4973 {
4974         btrfs_release_extent_buffer_pages(eb);
4975         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4976         __free_extent_buffer(eb);
4977 }
4978
4979 static struct extent_buffer *
4980 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4981                       unsigned long len)
4982 {
4983         struct extent_buffer *eb = NULL;
4984
4985         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4986         eb->start = start;
4987         eb->len = len;
4988         eb->fs_info = fs_info;
4989         eb->bflags = 0;
4990         rwlock_init(&eb->lock);
4991         atomic_set(&eb->blocking_readers, 0);
4992         eb->blocking_writers = 0;
4993         eb->lock_nested = false;
4994         init_waitqueue_head(&eb->write_lock_wq);
4995         init_waitqueue_head(&eb->read_lock_wq);
4996
4997         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4998                              &fs_info->allocated_ebs);
4999
5000         spin_lock_init(&eb->refs_lock);
5001         atomic_set(&eb->refs, 1);
5002         atomic_set(&eb->io_pages, 0);
5003
5004         /*
5005          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5006          */
5007         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5008                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5009         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5010
5011 #ifdef CONFIG_BTRFS_DEBUG
5012         eb->spinning_writers = 0;
5013         atomic_set(&eb->spinning_readers, 0);
5014         atomic_set(&eb->read_locks, 0);
5015         eb->write_locks = 0;
5016 #endif
5017
5018         return eb;
5019 }
5020
5021 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5022 {
5023         int i;
5024         struct page *p;
5025         struct extent_buffer *new;
5026         int num_pages = num_extent_pages(src);
5027
5028         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5029         if (new == NULL)
5030                 return NULL;
5031
5032         for (i = 0; i < num_pages; i++) {
5033                 p = alloc_page(GFP_NOFS);
5034                 if (!p) {
5035                         btrfs_release_extent_buffer(new);
5036                         return NULL;
5037                 }
5038                 attach_extent_buffer_page(new, p);
5039                 WARN_ON(PageDirty(p));
5040                 SetPageUptodate(p);
5041                 new->pages[i] = p;
5042                 copy_page(page_address(p), page_address(src->pages[i]));
5043         }
5044
5045         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5046         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5047
5048         return new;
5049 }
5050
5051 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5052                                                   u64 start, unsigned long len)
5053 {
5054         struct extent_buffer *eb;
5055         int num_pages;
5056         int i;
5057
5058         eb = __alloc_extent_buffer(fs_info, start, len);
5059         if (!eb)
5060                 return NULL;
5061
5062         num_pages = num_extent_pages(eb);
5063         for (i = 0; i < num_pages; i++) {
5064                 eb->pages[i] = alloc_page(GFP_NOFS);
5065                 if (!eb->pages[i])
5066                         goto err;
5067         }
5068         set_extent_buffer_uptodate(eb);
5069         btrfs_set_header_nritems(eb, 0);
5070         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5071
5072         return eb;
5073 err:
5074         for (; i > 0; i--)
5075                 __free_page(eb->pages[i - 1]);
5076         __free_extent_buffer(eb);
5077         return NULL;
5078 }
5079
5080 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5081                                                 u64 start)
5082 {
5083         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5084 }
5085
5086 static void check_buffer_tree_ref(struct extent_buffer *eb)
5087 {
5088         int refs;
5089         /* the ref bit is tricky.  We have to make sure it is set
5090          * if we have the buffer dirty.   Otherwise the
5091          * code to free a buffer can end up dropping a dirty
5092          * page
5093          *
5094          * Once the ref bit is set, it won't go away while the
5095          * buffer is dirty or in writeback, and it also won't
5096          * go away while we have the reference count on the
5097          * eb bumped.
5098          *
5099          * We can't just set the ref bit without bumping the
5100          * ref on the eb because free_extent_buffer might
5101          * see the ref bit and try to clear it.  If this happens
5102          * free_extent_buffer might end up dropping our original
5103          * ref by mistake and freeing the page before we are able
5104          * to add one more ref.
5105          *
5106          * So bump the ref count first, then set the bit.  If someone
5107          * beat us to it, drop the ref we added.
5108          */
5109         refs = atomic_read(&eb->refs);
5110         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5111                 return;
5112
5113         spin_lock(&eb->refs_lock);
5114         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5115                 atomic_inc(&eb->refs);
5116         spin_unlock(&eb->refs_lock);
5117 }
5118
5119 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5120                 struct page *accessed)
5121 {
5122         int num_pages, i;
5123
5124         check_buffer_tree_ref(eb);
5125
5126         num_pages = num_extent_pages(eb);
5127         for (i = 0; i < num_pages; i++) {
5128                 struct page *p = eb->pages[i];
5129
5130                 if (p != accessed)
5131                         mark_page_accessed(p);
5132         }
5133 }
5134
5135 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5136                                          u64 start)
5137 {
5138         struct extent_buffer *eb;
5139
5140         rcu_read_lock();
5141         eb = radix_tree_lookup(&fs_info->buffer_radix,
5142                                start >> PAGE_SHIFT);
5143         if (eb && atomic_inc_not_zero(&eb->refs)) {
5144                 rcu_read_unlock();
5145                 /*
5146                  * Lock our eb's refs_lock to avoid races with
5147                  * free_extent_buffer. When we get our eb it might be flagged
5148                  * with EXTENT_BUFFER_STALE and another task running
5149                  * free_extent_buffer might have seen that flag set,
5150                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5151                  * writeback flags not set) and it's still in the tree (flag
5152                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5153                  * of decrementing the extent buffer's reference count twice.
5154                  * So here we could race and increment the eb's reference count,
5155                  * clear its stale flag, mark it as dirty and drop our reference
5156                  * before the other task finishes executing free_extent_buffer,
5157                  * which would later result in an attempt to free an extent
5158                  * buffer that is dirty.
5159                  */
5160                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5161                         spin_lock(&eb->refs_lock);
5162                         spin_unlock(&eb->refs_lock);
5163                 }
5164                 mark_extent_buffer_accessed(eb, NULL);
5165                 return eb;
5166         }
5167         rcu_read_unlock();
5168
5169         return NULL;
5170 }
5171
5172 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5173 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5174                                         u64 start)
5175 {
5176         struct extent_buffer *eb, *exists = NULL;
5177         int ret;
5178
5179         eb = find_extent_buffer(fs_info, start);
5180         if (eb)
5181                 return eb;
5182         eb = alloc_dummy_extent_buffer(fs_info, start);
5183         if (!eb)
5184                 return ERR_PTR(-ENOMEM);
5185         eb->fs_info = fs_info;
5186 again:
5187         ret = radix_tree_preload(GFP_NOFS);
5188         if (ret) {
5189                 exists = ERR_PTR(ret);
5190                 goto free_eb;
5191         }
5192         spin_lock(&fs_info->buffer_lock);
5193         ret = radix_tree_insert(&fs_info->buffer_radix,
5194                                 start >> PAGE_SHIFT, eb);
5195         spin_unlock(&fs_info->buffer_lock);
5196         radix_tree_preload_end();
5197         if (ret == -EEXIST) {
5198                 exists = find_extent_buffer(fs_info, start);
5199                 if (exists)
5200                         goto free_eb;
5201                 else
5202                         goto again;
5203         }
5204         check_buffer_tree_ref(eb);
5205         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5206
5207         return eb;
5208 free_eb:
5209         btrfs_release_extent_buffer(eb);
5210         return exists;
5211 }
5212 #endif
5213
5214 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5215                                           u64 start)
5216 {
5217         unsigned long len = fs_info->nodesize;
5218         int num_pages;
5219         int i;
5220         unsigned long index = start >> PAGE_SHIFT;
5221         struct extent_buffer *eb;
5222         struct extent_buffer *exists = NULL;
5223         struct page *p;
5224         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5225         int uptodate = 1;
5226         int ret;
5227
5228         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5229                 btrfs_err(fs_info, "bad tree block start %llu", start);
5230                 return ERR_PTR(-EINVAL);
5231         }
5232
5233         eb = find_extent_buffer(fs_info, start);
5234         if (eb)
5235                 return eb;
5236
5237         eb = __alloc_extent_buffer(fs_info, start, len);
5238         if (!eb)
5239                 return ERR_PTR(-ENOMEM);
5240
5241         num_pages = num_extent_pages(eb);
5242         for (i = 0; i < num_pages; i++, index++) {
5243                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5244                 if (!p) {
5245                         exists = ERR_PTR(-ENOMEM);
5246                         goto free_eb;
5247                 }
5248
5249                 spin_lock(&mapping->private_lock);
5250                 if (PagePrivate(p)) {
5251                         /*
5252                          * We could have already allocated an eb for this page
5253                          * and attached one so lets see if we can get a ref on
5254                          * the existing eb, and if we can we know it's good and
5255                          * we can just return that one, else we know we can just
5256                          * overwrite page->private.
5257                          */
5258                         exists = (struct extent_buffer *)p->private;
5259                         if (atomic_inc_not_zero(&exists->refs)) {
5260                                 spin_unlock(&mapping->private_lock);
5261                                 unlock_page(p);
5262                                 put_page(p);
5263                                 mark_extent_buffer_accessed(exists, p);
5264                                 goto free_eb;
5265                         }
5266                         exists = NULL;
5267
5268                         /*
5269                          * Do this so attach doesn't complain and we need to
5270                          * drop the ref the old guy had.
5271                          */
5272                         ClearPagePrivate(p);
5273                         WARN_ON(PageDirty(p));
5274                         put_page(p);
5275                 }
5276                 attach_extent_buffer_page(eb, p);
5277                 spin_unlock(&mapping->private_lock);
5278                 WARN_ON(PageDirty(p));
5279                 eb->pages[i] = p;
5280                 if (!PageUptodate(p))
5281                         uptodate = 0;
5282
5283                 /*
5284                  * We can't unlock the pages just yet since the extent buffer
5285                  * hasn't been properly inserted in the radix tree, this
5286                  * opens a race with btree_releasepage which can free a page
5287                  * while we are still filling in all pages for the buffer and
5288                  * we could crash.
5289                  */
5290         }
5291         if (uptodate)
5292                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5293 again:
5294         ret = radix_tree_preload(GFP_NOFS);
5295         if (ret) {
5296                 exists = ERR_PTR(ret);
5297                 goto free_eb;
5298         }
5299
5300         spin_lock(&fs_info->buffer_lock);
5301         ret = radix_tree_insert(&fs_info->buffer_radix,
5302                                 start >> PAGE_SHIFT, eb);
5303         spin_unlock(&fs_info->buffer_lock);
5304         radix_tree_preload_end();
5305         if (ret == -EEXIST) {
5306                 exists = find_extent_buffer(fs_info, start);
5307                 if (exists)
5308                         goto free_eb;
5309                 else
5310                         goto again;
5311         }
5312         /* add one reference for the tree */
5313         check_buffer_tree_ref(eb);
5314         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5315
5316         /*
5317          * Now it's safe to unlock the pages because any calls to
5318          * btree_releasepage will correctly detect that a page belongs to a
5319          * live buffer and won't free them prematurely.
5320          */
5321         for (i = 0; i < num_pages; i++)
5322                 unlock_page(eb->pages[i]);
5323         return eb;
5324
5325 free_eb:
5326         WARN_ON(!atomic_dec_and_test(&eb->refs));
5327         for (i = 0; i < num_pages; i++) {
5328                 if (eb->pages[i])
5329                         unlock_page(eb->pages[i]);
5330         }
5331
5332         btrfs_release_extent_buffer(eb);
5333         return exists;
5334 }
5335
5336 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5337 {
5338         struct extent_buffer *eb =
5339                         container_of(head, struct extent_buffer, rcu_head);
5340
5341         __free_extent_buffer(eb);
5342 }
5343
5344 static int release_extent_buffer(struct extent_buffer *eb)
5345         __releases(&eb->refs_lock)
5346 {
5347         lockdep_assert_held(&eb->refs_lock);
5348
5349         WARN_ON(atomic_read(&eb->refs) == 0);
5350         if (atomic_dec_and_test(&eb->refs)) {
5351                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5352                         struct btrfs_fs_info *fs_info = eb->fs_info;
5353
5354                         spin_unlock(&eb->refs_lock);
5355
5356                         spin_lock(&fs_info->buffer_lock);
5357                         radix_tree_delete(&fs_info->buffer_radix,
5358                                           eb->start >> PAGE_SHIFT);
5359                         spin_unlock(&fs_info->buffer_lock);
5360                 } else {
5361                         spin_unlock(&eb->refs_lock);
5362                 }
5363
5364                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5365                 /* Should be safe to release our pages at this point */
5366                 btrfs_release_extent_buffer_pages(eb);
5367 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5368                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5369                         __free_extent_buffer(eb);
5370                         return 1;
5371                 }
5372 #endif
5373                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5374                 return 1;
5375         }
5376         spin_unlock(&eb->refs_lock);
5377
5378         return 0;
5379 }
5380
5381 void free_extent_buffer(struct extent_buffer *eb)
5382 {
5383         int refs;
5384         int old;
5385         if (!eb)
5386                 return;
5387
5388         while (1) {
5389                 refs = atomic_read(&eb->refs);
5390                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5391                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5392                         refs == 1))
5393                         break;
5394                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5395                 if (old == refs)
5396                         return;
5397         }
5398
5399         spin_lock(&eb->refs_lock);
5400         if (atomic_read(&eb->refs) == 2 &&
5401             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5402             !extent_buffer_under_io(eb) &&
5403             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5404                 atomic_dec(&eb->refs);
5405
5406         /*
5407          * I know this is terrible, but it's temporary until we stop tracking
5408          * the uptodate bits and such for the extent buffers.
5409          */
5410         release_extent_buffer(eb);
5411 }
5412
5413 void free_extent_buffer_stale(struct extent_buffer *eb)
5414 {
5415         if (!eb)
5416                 return;
5417
5418         spin_lock(&eb->refs_lock);
5419         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5420
5421         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5422             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5423                 atomic_dec(&eb->refs);
5424         release_extent_buffer(eb);
5425 }
5426
5427 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5428 {
5429         int i;
5430         int num_pages;
5431         struct page *page;
5432
5433         num_pages = num_extent_pages(eb);
5434
5435         for (i = 0; i < num_pages; i++) {
5436                 page = eb->pages[i];
5437                 if (!PageDirty(page))
5438                         continue;
5439
5440                 lock_page(page);
5441                 WARN_ON(!PagePrivate(page));
5442
5443                 clear_page_dirty_for_io(page);
5444                 xa_lock_irq(&page->mapping->i_pages);
5445                 if (!PageDirty(page))
5446                         __xa_clear_mark(&page->mapping->i_pages,
5447                                         page_index(page), PAGECACHE_TAG_DIRTY);
5448                 xa_unlock_irq(&page->mapping->i_pages);
5449                 ClearPageError(page);
5450                 unlock_page(page);
5451         }
5452         WARN_ON(atomic_read(&eb->refs) == 0);
5453 }
5454
5455 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5456 {
5457         int i;
5458         int num_pages;
5459         bool was_dirty;
5460
5461         check_buffer_tree_ref(eb);
5462
5463         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5464
5465         num_pages = num_extent_pages(eb);
5466         WARN_ON(atomic_read(&eb->refs) == 0);
5467         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5468
5469         if (!was_dirty)
5470                 for (i = 0; i < num_pages; i++)
5471                         set_page_dirty(eb->pages[i]);
5472
5473 #ifdef CONFIG_BTRFS_DEBUG
5474         for (i = 0; i < num_pages; i++)
5475                 ASSERT(PageDirty(eb->pages[i]));
5476 #endif
5477
5478         return was_dirty;
5479 }
5480
5481 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5482 {
5483         int i;
5484         struct page *page;
5485         int num_pages;
5486
5487         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5488         num_pages = num_extent_pages(eb);
5489         for (i = 0; i < num_pages; i++) {
5490                 page = eb->pages[i];
5491                 if (page)
5492                         ClearPageUptodate(page);
5493         }
5494 }
5495
5496 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5497 {
5498         int i;
5499         struct page *page;
5500         int num_pages;
5501
5502         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5503         num_pages = num_extent_pages(eb);
5504         for (i = 0; i < num_pages; i++) {
5505                 page = eb->pages[i];
5506                 SetPageUptodate(page);
5507         }
5508 }
5509
5510 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5511 {
5512         int i;
5513         struct page *page;
5514         int err;
5515         int ret = 0;
5516         int locked_pages = 0;
5517         int all_uptodate = 1;
5518         int num_pages;
5519         unsigned long num_reads = 0;
5520         struct bio *bio = NULL;
5521         unsigned long bio_flags = 0;
5522
5523         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5524                 return 0;
5525
5526         num_pages = num_extent_pages(eb);
5527         for (i = 0; i < num_pages; i++) {
5528                 page = eb->pages[i];
5529                 if (wait == WAIT_NONE) {
5530                         if (!trylock_page(page))
5531                                 goto unlock_exit;
5532                 } else {
5533                         lock_page(page);
5534                 }
5535                 locked_pages++;
5536         }
5537         /*
5538          * We need to firstly lock all pages to make sure that
5539          * the uptodate bit of our pages won't be affected by
5540          * clear_extent_buffer_uptodate().
5541          */
5542         for (i = 0; i < num_pages; i++) {
5543                 page = eb->pages[i];
5544                 if (!PageUptodate(page)) {
5545                         num_reads++;
5546                         all_uptodate = 0;
5547                 }
5548         }
5549
5550         if (all_uptodate) {
5551                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5552                 goto unlock_exit;
5553         }
5554
5555         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5556         eb->read_mirror = 0;
5557         atomic_set(&eb->io_pages, num_reads);
5558         for (i = 0; i < num_pages; i++) {
5559                 page = eb->pages[i];
5560
5561                 if (!PageUptodate(page)) {
5562                         if (ret) {
5563                                 atomic_dec(&eb->io_pages);
5564                                 unlock_page(page);
5565                                 continue;
5566                         }
5567
5568                         ClearPageError(page);
5569                         err = __extent_read_full_page(page,
5570                                                       btree_get_extent, &bio,
5571                                                       mirror_num, &bio_flags,
5572                                                       REQ_META);
5573                         if (err) {
5574                                 ret = err;
5575                                 /*
5576                                  * We use &bio in above __extent_read_full_page,
5577                                  * so we ensure that if it returns error, the
5578                                  * current page fails to add itself to bio and
5579                                  * it's been unlocked.
5580                                  *
5581                                  * We must dec io_pages by ourselves.
5582                                  */
5583                                 atomic_dec(&eb->io_pages);
5584                         }
5585                 } else {
5586                         unlock_page(page);
5587                 }
5588         }
5589
5590         if (bio) {
5591                 err = submit_one_bio(bio, mirror_num, bio_flags);
5592                 if (err)
5593                         return err;
5594         }
5595
5596         if (ret || wait != WAIT_COMPLETE)
5597                 return ret;
5598
5599         for (i = 0; i < num_pages; i++) {
5600                 page = eb->pages[i];
5601                 wait_on_page_locked(page);
5602                 if (!PageUptodate(page))
5603                         ret = -EIO;
5604         }
5605
5606         return ret;
5607
5608 unlock_exit:
5609         while (locked_pages > 0) {
5610                 locked_pages--;
5611                 page = eb->pages[locked_pages];
5612                 unlock_page(page);
5613         }
5614         return ret;
5615 }
5616
5617 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5618                         unsigned long start, unsigned long len)
5619 {
5620         size_t cur;
5621         size_t offset;
5622         struct page *page;
5623         char *kaddr;
5624         char *dst = (char *)dstv;
5625         unsigned long i = start >> PAGE_SHIFT;
5626
5627         if (start + len > eb->len) {
5628                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5629                      eb->start, eb->len, start, len);
5630                 memset(dst, 0, len);
5631                 return;
5632         }
5633
5634         offset = offset_in_page(start);
5635
5636         while (len > 0) {
5637                 page = eb->pages[i];
5638
5639                 cur = min(len, (PAGE_SIZE - offset));
5640                 kaddr = page_address(page);
5641                 memcpy(dst, kaddr + offset, cur);
5642
5643                 dst += cur;
5644                 len -= cur;
5645                 offset = 0;
5646                 i++;
5647         }
5648 }
5649
5650 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5651                                void __user *dstv,
5652                                unsigned long start, unsigned long len)
5653 {
5654         size_t cur;
5655         size_t offset;
5656         struct page *page;
5657         char *kaddr;
5658         char __user *dst = (char __user *)dstv;
5659         unsigned long i = start >> PAGE_SHIFT;
5660         int ret = 0;
5661
5662         WARN_ON(start > eb->len);
5663         WARN_ON(start + len > eb->start + eb->len);
5664
5665         offset = offset_in_page(start);
5666
5667         while (len > 0) {
5668                 page = eb->pages[i];
5669
5670                 cur = min(len, (PAGE_SIZE - offset));
5671                 kaddr = page_address(page);
5672                 if (copy_to_user(dst, kaddr + offset, cur)) {
5673                         ret = -EFAULT;
5674                         break;
5675                 }
5676
5677                 dst += cur;
5678                 len -= cur;
5679                 offset = 0;
5680                 i++;
5681         }
5682
5683         return ret;
5684 }
5685
5686 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5687                          unsigned long start, unsigned long len)
5688 {
5689         size_t cur;
5690         size_t offset;
5691         struct page *page;
5692         char *kaddr;
5693         char *ptr = (char *)ptrv;
5694         unsigned long i = start >> PAGE_SHIFT;
5695         int ret = 0;
5696
5697         WARN_ON(start > eb->len);
5698         WARN_ON(start + len > eb->start + eb->len);
5699
5700         offset = offset_in_page(start);
5701
5702         while (len > 0) {
5703                 page = eb->pages[i];
5704
5705                 cur = min(len, (PAGE_SIZE - offset));
5706
5707                 kaddr = page_address(page);
5708                 ret = memcmp(ptr, kaddr + offset, cur);
5709                 if (ret)
5710                         break;
5711
5712                 ptr += cur;
5713                 len -= cur;
5714                 offset = 0;
5715                 i++;
5716         }
5717         return ret;
5718 }
5719
5720 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5721                 const void *srcv)
5722 {
5723         char *kaddr;
5724
5725         WARN_ON(!PageUptodate(eb->pages[0]));
5726         kaddr = page_address(eb->pages[0]);
5727         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5728                         BTRFS_FSID_SIZE);
5729 }
5730
5731 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5732 {
5733         char *kaddr;
5734
5735         WARN_ON(!PageUptodate(eb->pages[0]));
5736         kaddr = page_address(eb->pages[0]);
5737         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5738                         BTRFS_FSID_SIZE);
5739 }
5740
5741 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5742                          unsigned long start, unsigned long len)
5743 {
5744         size_t cur;
5745         size_t offset;
5746         struct page *page;
5747         char *kaddr;
5748         char *src = (char *)srcv;
5749         unsigned long i = start >> PAGE_SHIFT;
5750
5751         WARN_ON(start > eb->len);
5752         WARN_ON(start + len > eb->start + eb->len);
5753
5754         offset = offset_in_page(start);
5755
5756         while (len > 0) {
5757                 page = eb->pages[i];
5758                 WARN_ON(!PageUptodate(page));
5759
5760                 cur = min(len, PAGE_SIZE - offset);
5761                 kaddr = page_address(page);
5762                 memcpy(kaddr + offset, src, cur);
5763
5764                 src += cur;
5765                 len -= cur;
5766                 offset = 0;
5767                 i++;
5768         }
5769 }
5770
5771 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5772                 unsigned long len)
5773 {
5774         size_t cur;
5775         size_t offset;
5776         struct page *page;
5777         char *kaddr;
5778         unsigned long i = start >> PAGE_SHIFT;
5779
5780         WARN_ON(start > eb->len);
5781         WARN_ON(start + len > eb->start + eb->len);
5782
5783         offset = offset_in_page(start);
5784
5785         while (len > 0) {
5786                 page = eb->pages[i];
5787                 WARN_ON(!PageUptodate(page));
5788
5789                 cur = min(len, PAGE_SIZE - offset);
5790                 kaddr = page_address(page);
5791                 memset(kaddr + offset, 0, cur);
5792
5793                 len -= cur;
5794                 offset = 0;
5795                 i++;
5796         }
5797 }
5798
5799 void copy_extent_buffer_full(const struct extent_buffer *dst,
5800                              const struct extent_buffer *src)
5801 {
5802         int i;
5803         int num_pages;
5804
5805         ASSERT(dst->len == src->len);
5806
5807         num_pages = num_extent_pages(dst);
5808         for (i = 0; i < num_pages; i++)
5809                 copy_page(page_address(dst->pages[i]),
5810                                 page_address(src->pages[i]));
5811 }
5812
5813 void copy_extent_buffer(const struct extent_buffer *dst,
5814                         const struct extent_buffer *src,
5815                         unsigned long dst_offset, unsigned long src_offset,
5816                         unsigned long len)
5817 {
5818         u64 dst_len = dst->len;
5819         size_t cur;
5820         size_t offset;
5821         struct page *page;
5822         char *kaddr;
5823         unsigned long i = dst_offset >> PAGE_SHIFT;
5824
5825         WARN_ON(src->len != dst_len);
5826
5827         offset = offset_in_page(dst_offset);
5828
5829         while (len > 0) {
5830                 page = dst->pages[i];
5831                 WARN_ON(!PageUptodate(page));
5832
5833                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5834
5835                 kaddr = page_address(page);
5836                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5837
5838                 src_offset += cur;
5839                 len -= cur;
5840                 offset = 0;
5841                 i++;
5842         }
5843 }
5844
5845 /*
5846  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5847  * given bit number
5848  * @eb: the extent buffer
5849  * @start: offset of the bitmap item in the extent buffer
5850  * @nr: bit number
5851  * @page_index: return index of the page in the extent buffer that contains the
5852  * given bit number
5853  * @page_offset: return offset into the page given by page_index
5854  *
5855  * This helper hides the ugliness of finding the byte in an extent buffer which
5856  * contains a given bit.
5857  */
5858 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5859                                     unsigned long start, unsigned long nr,
5860                                     unsigned long *page_index,
5861                                     size_t *page_offset)
5862 {
5863         size_t byte_offset = BIT_BYTE(nr);
5864         size_t offset;
5865
5866         /*
5867          * The byte we want is the offset of the extent buffer + the offset of
5868          * the bitmap item in the extent buffer + the offset of the byte in the
5869          * bitmap item.
5870          */
5871         offset = start + byte_offset;
5872
5873         *page_index = offset >> PAGE_SHIFT;
5874         *page_offset = offset_in_page(offset);
5875 }
5876
5877 /**
5878  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5879  * @eb: the extent buffer
5880  * @start: offset of the bitmap item in the extent buffer
5881  * @nr: bit number to test
5882  */
5883 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5884                            unsigned long nr)
5885 {
5886         u8 *kaddr;
5887         struct page *page;
5888         unsigned long i;
5889         size_t offset;
5890
5891         eb_bitmap_offset(eb, start, nr, &i, &offset);
5892         page = eb->pages[i];
5893         WARN_ON(!PageUptodate(page));
5894         kaddr = page_address(page);
5895         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5896 }
5897
5898 /**
5899  * extent_buffer_bitmap_set - set an area of a bitmap
5900  * @eb: the extent buffer
5901  * @start: offset of the bitmap item in the extent buffer
5902  * @pos: bit number of the first bit
5903  * @len: number of bits to set
5904  */
5905 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5906                               unsigned long pos, unsigned long len)
5907 {
5908         u8 *kaddr;
5909         struct page *page;
5910         unsigned long i;
5911         size_t offset;
5912         const unsigned int size = pos + len;
5913         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5914         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5915
5916         eb_bitmap_offset(eb, start, pos, &i, &offset);
5917         page = eb->pages[i];
5918         WARN_ON(!PageUptodate(page));
5919         kaddr = page_address(page);
5920
5921         while (len >= bits_to_set) {
5922                 kaddr[offset] |= mask_to_set;
5923                 len -= bits_to_set;
5924                 bits_to_set = BITS_PER_BYTE;
5925                 mask_to_set = ~0;
5926                 if (++offset >= PAGE_SIZE && len > 0) {
5927                         offset = 0;
5928                         page = eb->pages[++i];
5929                         WARN_ON(!PageUptodate(page));
5930                         kaddr = page_address(page);
5931                 }
5932         }
5933         if (len) {
5934                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5935                 kaddr[offset] |= mask_to_set;
5936         }
5937 }
5938
5939
5940 /**
5941  * extent_buffer_bitmap_clear - clear an area of a bitmap
5942  * @eb: the extent buffer
5943  * @start: offset of the bitmap item in the extent buffer
5944  * @pos: bit number of the first bit
5945  * @len: number of bits to clear
5946  */
5947 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5948                                 unsigned long start, unsigned long pos,
5949                                 unsigned long len)
5950 {
5951         u8 *kaddr;
5952         struct page *page;
5953         unsigned long i;
5954         size_t offset;
5955         const unsigned int size = pos + len;
5956         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5957         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5958
5959         eb_bitmap_offset(eb, start, pos, &i, &offset);
5960         page = eb->pages[i];
5961         WARN_ON(!PageUptodate(page));
5962         kaddr = page_address(page);
5963
5964         while (len >= bits_to_clear) {
5965                 kaddr[offset] &= ~mask_to_clear;
5966                 len -= bits_to_clear;
5967                 bits_to_clear = BITS_PER_BYTE;
5968                 mask_to_clear = ~0;
5969                 if (++offset >= PAGE_SIZE && len > 0) {
5970                         offset = 0;
5971                         page = eb->pages[++i];
5972                         WARN_ON(!PageUptodate(page));
5973                         kaddr = page_address(page);
5974                 }
5975         }
5976         if (len) {
5977                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5978                 kaddr[offset] &= ~mask_to_clear;
5979         }
5980 }
5981
5982 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5983 {
5984         unsigned long distance = (src > dst) ? src - dst : dst - src;
5985         return distance < len;
5986 }
5987
5988 static void copy_pages(struct page *dst_page, struct page *src_page,
5989                        unsigned long dst_off, unsigned long src_off,
5990                        unsigned long len)
5991 {
5992         char *dst_kaddr = page_address(dst_page);
5993         char *src_kaddr;
5994         int must_memmove = 0;
5995
5996         if (dst_page != src_page) {
5997                 src_kaddr = page_address(src_page);
5998         } else {
5999                 src_kaddr = dst_kaddr;
6000                 if (areas_overlap(src_off, dst_off, len))
6001                         must_memmove = 1;
6002         }
6003
6004         if (must_memmove)
6005                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6006         else
6007                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6008 }
6009
6010 void memcpy_extent_buffer(const struct extent_buffer *dst,
6011                           unsigned long dst_offset, unsigned long src_offset,
6012                           unsigned long len)
6013 {
6014         struct btrfs_fs_info *fs_info = dst->fs_info;
6015         size_t cur;
6016         size_t dst_off_in_page;
6017         size_t src_off_in_page;
6018         unsigned long dst_i;
6019         unsigned long src_i;
6020
6021         if (src_offset + len > dst->len) {
6022                 btrfs_err(fs_info,
6023                         "memmove bogus src_offset %lu move len %lu dst len %lu",
6024                          src_offset, len, dst->len);
6025                 BUG();
6026         }
6027         if (dst_offset + len > dst->len) {
6028                 btrfs_err(fs_info,
6029                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
6030                          dst_offset, len, dst->len);
6031                 BUG();
6032         }
6033
6034         while (len > 0) {
6035                 dst_off_in_page = offset_in_page(dst_offset);
6036                 src_off_in_page = offset_in_page(src_offset);
6037
6038                 dst_i = dst_offset >> PAGE_SHIFT;
6039                 src_i = src_offset >> PAGE_SHIFT;
6040
6041                 cur = min(len, (unsigned long)(PAGE_SIZE -
6042                                                src_off_in_page));
6043                 cur = min_t(unsigned long, cur,
6044                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6045
6046                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6047                            dst_off_in_page, src_off_in_page, cur);
6048
6049                 src_offset += cur;
6050                 dst_offset += cur;
6051                 len -= cur;
6052         }
6053 }
6054
6055 void memmove_extent_buffer(const struct extent_buffer *dst,
6056                            unsigned long dst_offset, unsigned long src_offset,
6057                            unsigned long len)
6058 {
6059         struct btrfs_fs_info *fs_info = dst->fs_info;
6060         size_t cur;
6061         size_t dst_off_in_page;
6062         size_t src_off_in_page;
6063         unsigned long dst_end = dst_offset + len - 1;
6064         unsigned long src_end = src_offset + len - 1;
6065         unsigned long dst_i;
6066         unsigned long src_i;
6067
6068         if (src_offset + len > dst->len) {
6069                 btrfs_err(fs_info,
6070                           "memmove bogus src_offset %lu move len %lu len %lu",
6071                           src_offset, len, dst->len);
6072                 BUG();
6073         }
6074         if (dst_offset + len > dst->len) {
6075                 btrfs_err(fs_info,
6076                           "memmove bogus dst_offset %lu move len %lu len %lu",
6077                           dst_offset, len, dst->len);
6078                 BUG();
6079         }
6080         if (dst_offset < src_offset) {
6081                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6082                 return;
6083         }
6084         while (len > 0) {
6085                 dst_i = dst_end >> PAGE_SHIFT;
6086                 src_i = src_end >> PAGE_SHIFT;
6087
6088                 dst_off_in_page = offset_in_page(dst_end);
6089                 src_off_in_page = offset_in_page(src_end);
6090
6091                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6092                 cur = min(cur, dst_off_in_page + 1);
6093                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6094                            dst_off_in_page - cur + 1,
6095                            src_off_in_page - cur + 1, cur);
6096
6097                 dst_end -= cur;
6098                 src_end -= cur;
6099                 len -= cur;
6100         }
6101 }
6102
6103 int try_release_extent_buffer(struct page *page)
6104 {
6105         struct extent_buffer *eb;
6106
6107         /*
6108          * We need to make sure nobody is attaching this page to an eb right
6109          * now.
6110          */
6111         spin_lock(&page->mapping->private_lock);
6112         if (!PagePrivate(page)) {
6113                 spin_unlock(&page->mapping->private_lock);
6114                 return 1;
6115         }
6116
6117         eb = (struct extent_buffer *)page->private;
6118         BUG_ON(!eb);
6119
6120         /*
6121          * This is a little awful but should be ok, we need to make sure that
6122          * the eb doesn't disappear out from under us while we're looking at
6123          * this page.
6124          */
6125         spin_lock(&eb->refs_lock);
6126         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6127                 spin_unlock(&eb->refs_lock);
6128                 spin_unlock(&page->mapping->private_lock);
6129                 return 0;
6130         }
6131         spin_unlock(&page->mapping->private_lock);
6132
6133         /*
6134          * If tree ref isn't set then we know the ref on this eb is a real ref,
6135          * so just return, this page will likely be freed soon anyway.
6136          */
6137         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6138                 spin_unlock(&eb->refs_lock);
6139                 return 0;
6140         }
6141
6142         return release_extent_buffer(eb);
6143 }