OSDN Git Service

Merge tag 'tag-chrome-platform-fixes-for-v5.7-rc2' of git://git.kernel.org/pub/scm...
[tomoyo/tomoyo-test1.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                        unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (tree->ops)
172                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173                                                  mirror_num, bio_flags);
174         else
175                 btrfsic_submit_bio(bio);
176
177         return blk_status_to_errno(ret);
178 }
179
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183         if (epd->bio) {
184                 epd->bio->bi_status = errno_to_blk_status(ret);
185                 bio_endio(epd->bio);
186                 epd->bio = NULL;
187         }
188 }
189
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198         int ret = 0;
199
200         if (epd->bio) {
201                 ret = submit_one_bio(epd->bio, 0, 0);
202                 /*
203                  * Clean up of epd->bio is handled by its endio function.
204                  * And endio is either triggered by successful bio execution
205                  * or the error handler of submit bio hook.
206                  * So at this point, no matter what happened, we don't need
207                  * to clean up epd->bio.
208                  */
209                 epd->bio = NULL;
210         }
211         return ret;
212 }
213
214 int __init extent_state_cache_init(void)
215 {
216         extent_state_cache = kmem_cache_create("btrfs_extent_state",
217                         sizeof(struct extent_state), 0,
218                         SLAB_MEM_SPREAD, NULL);
219         if (!extent_state_cache)
220                 return -ENOMEM;
221         return 0;
222 }
223
224 int __init extent_io_init(void)
225 {
226         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227                         sizeof(struct extent_buffer), 0,
228                         SLAB_MEM_SPREAD, NULL);
229         if (!extent_buffer_cache)
230                 return -ENOMEM;
231
232         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233                         offsetof(struct btrfs_io_bio, bio),
234                         BIOSET_NEED_BVECS))
235                 goto free_buffer_cache;
236
237         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238                 goto free_bioset;
239
240         return 0;
241
242 free_bioset:
243         bioset_exit(&btrfs_bioset);
244
245 free_buffer_cache:
246         kmem_cache_destroy(extent_buffer_cache);
247         extent_buffer_cache = NULL;
248         return -ENOMEM;
249 }
250
251 void __cold extent_state_cache_exit(void)
252 {
253         btrfs_extent_state_leak_debug_check();
254         kmem_cache_destroy(extent_state_cache);
255 }
256
257 void __cold extent_io_exit(void)
258 {
259         /*
260          * Make sure all delayed rcu free are flushed before we
261          * destroy caches.
262          */
263         rcu_barrier();
264         kmem_cache_destroy(extent_buffer_cache);
265         bioset_exit(&btrfs_bioset);
266 }
267
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278                          struct extent_io_tree *tree, unsigned int owner,
279                          void *private_data)
280 {
281         tree->fs_info = fs_info;
282         tree->state = RB_ROOT;
283         tree->ops = NULL;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         struct inode *inode = tree->private_data;
680
681         btrfs_panic(btrfs_sb(inode->i_sb), err,
682         "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698                               unsigned bits, int wake, int delete,
699                               struct extent_state **cached_state,
700                               gfp_t mask, struct extent_changeset *changeset)
701 {
702         struct extent_state *state;
703         struct extent_state *cached;
704         struct extent_state *prealloc = NULL;
705         struct rb_node *node;
706         u64 last_end;
707         int err;
708         int clear = 0;
709
710         btrfs_debug_check_extent_io_range(tree, start, end);
711         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713         if (bits & EXTENT_DELALLOC)
714                 bits |= EXTENT_NORESERVE;
715
716         if (delete)
717                 bits |= ~EXTENT_CTLBITS;
718
719         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720                 clear = 1;
721 again:
722         if (!prealloc && gfpflags_allow_blocking(mask)) {
723                 /*
724                  * Don't care for allocation failure here because we might end
725                  * up not needing the pre-allocated extent state at all, which
726                  * is the case if we only have in the tree extent states that
727                  * cover our input range and don't cover too any other range.
728                  * If we end up needing a new extent state we allocate it later.
729                  */
730                 prealloc = alloc_extent_state(mask);
731         }
732
733         spin_lock(&tree->lock);
734         if (cached_state) {
735                 cached = *cached_state;
736
737                 if (clear) {
738                         *cached_state = NULL;
739                         cached_state = NULL;
740                 }
741
742                 if (cached && extent_state_in_tree(cached) &&
743                     cached->start <= start && cached->end > start) {
744                         if (clear)
745                                 refcount_dec(&cached->refs);
746                         state = cached;
747                         goto hit_next;
748                 }
749                 if (clear)
750                         free_extent_state(cached);
751         }
752         /*
753          * this search will find the extents that end after
754          * our range starts
755          */
756         node = tree_search(tree, start);
757         if (!node)
758                 goto out;
759         state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761         if (state->start > end)
762                 goto out;
763         WARN_ON(state->end < start);
764         last_end = state->end;
765
766         /* the state doesn't have the wanted bits, go ahead */
767         if (!(state->state & bits)) {
768                 state = next_state(state);
769                 goto next;
770         }
771
772         /*
773          *     | ---- desired range ---- |
774          *  | state | or
775          *  | ------------- state -------------- |
776          *
777          * We need to split the extent we found, and may flip
778          * bits on second half.
779          *
780          * If the extent we found extends past our range, we
781          * just split and search again.  It'll get split again
782          * the next time though.
783          *
784          * If the extent we found is inside our range, we clear
785          * the desired bit on it.
786          */
787
788         if (state->start < start) {
789                 prealloc = alloc_extent_state_atomic(prealloc);
790                 BUG_ON(!prealloc);
791                 err = split_state(tree, state, prealloc, start);
792                 if (err)
793                         extent_io_tree_panic(tree, err);
794
795                 prealloc = NULL;
796                 if (err)
797                         goto out;
798                 if (state->end <= end) {
799                         state = clear_state_bit(tree, state, &bits, wake,
800                                                 changeset);
801                         goto next;
802                 }
803                 goto search_again;
804         }
805         /*
806          * | ---- desired range ---- |
807          *                        | state |
808          * We need to split the extent, and clear the bit
809          * on the first half
810          */
811         if (state->start <= end && state->end > end) {
812                 prealloc = alloc_extent_state_atomic(prealloc);
813                 BUG_ON(!prealloc);
814                 err = split_state(tree, state, prealloc, end + 1);
815                 if (err)
816                         extent_io_tree_panic(tree, err);
817
818                 if (wake)
819                         wake_up(&state->wq);
820
821                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823                 prealloc = NULL;
824                 goto out;
825         }
826
827         state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829         if (last_end == (u64)-1)
830                 goto out;
831         start = last_end + 1;
832         if (start <= end && state && !need_resched())
833                 goto hit_next;
834
835 search_again:
836         if (start > end)
837                 goto out;
838         spin_unlock(&tree->lock);
839         if (gfpflags_allow_blocking(mask))
840                 cond_resched();
841         goto again;
842
843 out:
844         spin_unlock(&tree->lock);
845         if (prealloc)
846                 free_extent_state(prealloc);
847
848         return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853                           struct extent_state *state)
854                 __releases(tree->lock)
855                 __acquires(tree->lock)
856 {
857         DEFINE_WAIT(wait);
858         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859         spin_unlock(&tree->lock);
860         schedule();
861         spin_lock(&tree->lock);
862         finish_wait(&state->wq, &wait);
863 }
864
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871                             unsigned long bits)
872 {
873         struct extent_state *state;
874         struct rb_node *node;
875
876         btrfs_debug_check_extent_io_range(tree, start, end);
877
878         spin_lock(&tree->lock);
879 again:
880         while (1) {
881                 /*
882                  * this search will find all the extents that end after
883                  * our range starts
884                  */
885                 node = tree_search(tree, start);
886 process_node:
887                 if (!node)
888                         break;
889
890                 state = rb_entry(node, struct extent_state, rb_node);
891
892                 if (state->start > end)
893                         goto out;
894
895                 if (state->state & bits) {
896                         start = state->start;
897                         refcount_inc(&state->refs);
898                         wait_on_state(tree, state);
899                         free_extent_state(state);
900                         goto again;
901                 }
902                 start = state->end + 1;
903
904                 if (start > end)
905                         break;
906
907                 if (!cond_resched_lock(&tree->lock)) {
908                         node = rb_next(node);
909                         goto process_node;
910                 }
911         }
912 out:
913         spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917                            struct extent_state *state,
918                            unsigned *bits, struct extent_changeset *changeset)
919 {
920         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921         int ret;
922
923         if (tree->private_data && is_data_inode(tree->private_data))
924                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927                 u64 range = state->end - state->start + 1;
928                 tree->dirty_bytes += range;
929         }
930         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931         BUG_ON(ret < 0);
932         state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936                                  struct extent_state **cached_ptr,
937                                  unsigned flags)
938 {
939         if (cached_ptr && !(*cached_ptr)) {
940                 if (!flags || (state->state & flags)) {
941                         *cached_ptr = state;
942                         refcount_inc(&state->refs);
943                 }
944         }
945 }
946
947 static void cache_state(struct extent_state *state,
948                         struct extent_state **cached_ptr)
949 {
950         return cache_state_if_flags(state, cached_ptr,
951                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967                  unsigned bits, unsigned exclusive_bits,
968                  u64 *failed_start, struct extent_state **cached_state,
969                  gfp_t mask, struct extent_changeset *changeset)
970 {
971         struct extent_state *state;
972         struct extent_state *prealloc = NULL;
973         struct rb_node *node;
974         struct rb_node **p;
975         struct rb_node *parent;
976         int err = 0;
977         u64 last_start;
978         u64 last_end;
979
980         btrfs_debug_check_extent_io_range(tree, start, end);
981         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983 again:
984         if (!prealloc && gfpflags_allow_blocking(mask)) {
985                 /*
986                  * Don't care for allocation failure here because we might end
987                  * up not needing the pre-allocated extent state at all, which
988                  * is the case if we only have in the tree extent states that
989                  * cover our input range and don't cover too any other range.
990                  * If we end up needing a new extent state we allocate it later.
991                  */
992                 prealloc = alloc_extent_state(mask);
993         }
994
995         spin_lock(&tree->lock);
996         if (cached_state && *cached_state) {
997                 state = *cached_state;
998                 if (state->start <= start && state->end > start &&
999                     extent_state_in_tree(state)) {
1000                         node = &state->rb_node;
1001                         goto hit_next;
1002                 }
1003         }
1004         /*
1005          * this search will find all the extents that end after
1006          * our range starts.
1007          */
1008         node = tree_search_for_insert(tree, start, &p, &parent);
1009         if (!node) {
1010                 prealloc = alloc_extent_state_atomic(prealloc);
1011                 BUG_ON(!prealloc);
1012                 err = insert_state(tree, prealloc, start, end,
1013                                    &p, &parent, &bits, changeset);
1014                 if (err)
1015                         extent_io_tree_panic(tree, err);
1016
1017                 cache_state(prealloc, cached_state);
1018                 prealloc = NULL;
1019                 goto out;
1020         }
1021         state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023         last_start = state->start;
1024         last_end = state->end;
1025
1026         /*
1027          * | ---- desired range ---- |
1028          * | state |
1029          *
1030          * Just lock what we found and keep going
1031          */
1032         if (state->start == start && state->end <= end) {
1033                 if (state->state & exclusive_bits) {
1034                         *failed_start = state->start;
1035                         err = -EEXIST;
1036                         goto out;
1037                 }
1038
1039                 set_state_bits(tree, state, &bits, changeset);
1040                 cache_state(state, cached_state);
1041                 merge_state(tree, state);
1042                 if (last_end == (u64)-1)
1043                         goto out;
1044                 start = last_end + 1;
1045                 state = next_state(state);
1046                 if (start < end && state && state->start == start &&
1047                     !need_resched())
1048                         goto hit_next;
1049                 goto search_again;
1050         }
1051
1052         /*
1053          *     | ---- desired range ---- |
1054          * | state |
1055          *   or
1056          * | ------------- state -------------- |
1057          *
1058          * We need to split the extent we found, and may flip bits on
1059          * second half.
1060          *
1061          * If the extent we found extends past our
1062          * range, we just split and search again.  It'll get split
1063          * again the next time though.
1064          *
1065          * If the extent we found is inside our range, we set the
1066          * desired bit on it.
1067          */
1068         if (state->start < start) {
1069                 if (state->state & exclusive_bits) {
1070                         *failed_start = start;
1071                         err = -EEXIST;
1072                         goto out;
1073                 }
1074
1075                 /*
1076                  * If this extent already has all the bits we want set, then
1077                  * skip it, not necessary to split it or do anything with it.
1078                  */
1079                 if ((state->state & bits) == bits) {
1080                         start = state->end + 1;
1081                         cache_state(state, cached_state);
1082                         goto search_again;
1083                 }
1084
1085                 prealloc = alloc_extent_state_atomic(prealloc);
1086                 BUG_ON(!prealloc);
1087                 err = split_state(tree, state, prealloc, start);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090
1091                 prealloc = NULL;
1092                 if (err)
1093                         goto out;
1094                 if (state->end <= end) {
1095                         set_state_bits(tree, state, &bits, changeset);
1096                         cache_state(state, cached_state);
1097                         merge_state(tree, state);
1098                         if (last_end == (u64)-1)
1099                                 goto out;
1100                         start = last_end + 1;
1101                         state = next_state(state);
1102                         if (start < end && state && state->start == start &&
1103                             !need_resched())
1104                                 goto hit_next;
1105                 }
1106                 goto search_again;
1107         }
1108         /*
1109          * | ---- desired range ---- |
1110          *     | state | or               | state |
1111          *
1112          * There's a hole, we need to insert something in it and
1113          * ignore the extent we found.
1114          */
1115         if (state->start > start) {
1116                 u64 this_end;
1117                 if (end < last_start)
1118                         this_end = end;
1119                 else
1120                         this_end = last_start - 1;
1121
1122                 prealloc = alloc_extent_state_atomic(prealloc);
1123                 BUG_ON(!prealloc);
1124
1125                 /*
1126                  * Avoid to free 'prealloc' if it can be merged with
1127                  * the later extent.
1128                  */
1129                 err = insert_state(tree, prealloc, start, this_end,
1130                                    NULL, NULL, &bits, changeset);
1131                 if (err)
1132                         extent_io_tree_panic(tree, err);
1133
1134                 cache_state(prealloc, cached_state);
1135                 prealloc = NULL;
1136                 start = this_end + 1;
1137                 goto search_again;
1138         }
1139         /*
1140          * | ---- desired range ---- |
1141          *                        | state |
1142          * We need to split the extent, and set the bit
1143          * on the first half
1144          */
1145         if (state->start <= end && state->end > end) {
1146                 if (state->state & exclusive_bits) {
1147                         *failed_start = start;
1148                         err = -EEXIST;
1149                         goto out;
1150                 }
1151
1152                 prealloc = alloc_extent_state_atomic(prealloc);
1153                 BUG_ON(!prealloc);
1154                 err = split_state(tree, state, prealloc, end + 1);
1155                 if (err)
1156                         extent_io_tree_panic(tree, err);
1157
1158                 set_state_bits(tree, prealloc, &bits, changeset);
1159                 cache_state(prealloc, cached_state);
1160                 merge_state(tree, prealloc);
1161                 prealloc = NULL;
1162                 goto out;
1163         }
1164
1165 search_again:
1166         if (start > end)
1167                 goto out;
1168         spin_unlock(&tree->lock);
1169         if (gfpflags_allow_blocking(mask))
1170                 cond_resched();
1171         goto again;
1172
1173 out:
1174         spin_unlock(&tree->lock);
1175         if (prealloc)
1176                 free_extent_state(prealloc);
1177
1178         return err;
1179
1180 }
1181
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183                    unsigned bits, u64 * failed_start,
1184                    struct extent_state **cached_state, gfp_t mask)
1185 {
1186         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187                                 cached_state, mask, NULL);
1188 }
1189
1190
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  *                      another
1194  * @tree:       the io tree to search
1195  * @start:      the start offset in bytes
1196  * @end:        the end offset in bytes (inclusive)
1197  * @bits:       the bits to set in this range
1198  * @clear_bits: the bits to clear in this range
1199  * @cached_state:       state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210                        unsigned bits, unsigned clear_bits,
1211                        struct extent_state **cached_state)
1212 {
1213         struct extent_state *state;
1214         struct extent_state *prealloc = NULL;
1215         struct rb_node *node;
1216         struct rb_node **p;
1217         struct rb_node *parent;
1218         int err = 0;
1219         u64 last_start;
1220         u64 last_end;
1221         bool first_iteration = true;
1222
1223         btrfs_debug_check_extent_io_range(tree, start, end);
1224         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225                                        clear_bits);
1226
1227 again:
1228         if (!prealloc) {
1229                 /*
1230                  * Best effort, don't worry if extent state allocation fails
1231                  * here for the first iteration. We might have a cached state
1232                  * that matches exactly the target range, in which case no
1233                  * extent state allocations are needed. We'll only know this
1234                  * after locking the tree.
1235                  */
1236                 prealloc = alloc_extent_state(GFP_NOFS);
1237                 if (!prealloc && !first_iteration)
1238                         return -ENOMEM;
1239         }
1240
1241         spin_lock(&tree->lock);
1242         if (cached_state && *cached_state) {
1243                 state = *cached_state;
1244                 if (state->start <= start && state->end > start &&
1245                     extent_state_in_tree(state)) {
1246                         node = &state->rb_node;
1247                         goto hit_next;
1248                 }
1249         }
1250
1251         /*
1252          * this search will find all the extents that end after
1253          * our range starts.
1254          */
1255         node = tree_search_for_insert(tree, start, &p, &parent);
1256         if (!node) {
1257                 prealloc = alloc_extent_state_atomic(prealloc);
1258                 if (!prealloc) {
1259                         err = -ENOMEM;
1260                         goto out;
1261                 }
1262                 err = insert_state(tree, prealloc, start, end,
1263                                    &p, &parent, &bits, NULL);
1264                 if (err)
1265                         extent_io_tree_panic(tree, err);
1266                 cache_state(prealloc, cached_state);
1267                 prealloc = NULL;
1268                 goto out;
1269         }
1270         state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272         last_start = state->start;
1273         last_end = state->end;
1274
1275         /*
1276          * | ---- desired range ---- |
1277          * | state |
1278          *
1279          * Just lock what we found and keep going
1280          */
1281         if (state->start == start && state->end <= end) {
1282                 set_state_bits(tree, state, &bits, NULL);
1283                 cache_state(state, cached_state);
1284                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285                 if (last_end == (u64)-1)
1286                         goto out;
1287                 start = last_end + 1;
1288                 if (start < end && state && state->start == start &&
1289                     !need_resched())
1290                         goto hit_next;
1291                 goto search_again;
1292         }
1293
1294         /*
1295          *     | ---- desired range ---- |
1296          * | state |
1297          *   or
1298          * | ------------- state -------------- |
1299          *
1300          * We need to split the extent we found, and may flip bits on
1301          * second half.
1302          *
1303          * If the extent we found extends past our
1304          * range, we just split and search again.  It'll get split
1305          * again the next time though.
1306          *
1307          * If the extent we found is inside our range, we set the
1308          * desired bit on it.
1309          */
1310         if (state->start < start) {
1311                 prealloc = alloc_extent_state_atomic(prealloc);
1312                 if (!prealloc) {
1313                         err = -ENOMEM;
1314                         goto out;
1315                 }
1316                 err = split_state(tree, state, prealloc, start);
1317                 if (err)
1318                         extent_io_tree_panic(tree, err);
1319                 prealloc = NULL;
1320                 if (err)
1321                         goto out;
1322                 if (state->end <= end) {
1323                         set_state_bits(tree, state, &bits, NULL);
1324                         cache_state(state, cached_state);
1325                         state = clear_state_bit(tree, state, &clear_bits, 0,
1326                                                 NULL);
1327                         if (last_end == (u64)-1)
1328                                 goto out;
1329                         start = last_end + 1;
1330                         if (start < end && state && state->start == start &&
1331                             !need_resched())
1332                                 goto hit_next;
1333                 }
1334                 goto search_again;
1335         }
1336         /*
1337          * | ---- desired range ---- |
1338          *     | state | or               | state |
1339          *
1340          * There's a hole, we need to insert something in it and
1341          * ignore the extent we found.
1342          */
1343         if (state->start > start) {
1344                 u64 this_end;
1345                 if (end < last_start)
1346                         this_end = end;
1347                 else
1348                         this_end = last_start - 1;
1349
1350                 prealloc = alloc_extent_state_atomic(prealloc);
1351                 if (!prealloc) {
1352                         err = -ENOMEM;
1353                         goto out;
1354                 }
1355
1356                 /*
1357                  * Avoid to free 'prealloc' if it can be merged with
1358                  * the later extent.
1359                  */
1360                 err = insert_state(tree, prealloc, start, this_end,
1361                                    NULL, NULL, &bits, NULL);
1362                 if (err)
1363                         extent_io_tree_panic(tree, err);
1364                 cache_state(prealloc, cached_state);
1365                 prealloc = NULL;
1366                 start = this_end + 1;
1367                 goto search_again;
1368         }
1369         /*
1370          * | ---- desired range ---- |
1371          *                        | state |
1372          * We need to split the extent, and set the bit
1373          * on the first half
1374          */
1375         if (state->start <= end && state->end > end) {
1376                 prealloc = alloc_extent_state_atomic(prealloc);
1377                 if (!prealloc) {
1378                         err = -ENOMEM;
1379                         goto out;
1380                 }
1381
1382                 err = split_state(tree, state, prealloc, end + 1);
1383                 if (err)
1384                         extent_io_tree_panic(tree, err);
1385
1386                 set_state_bits(tree, prealloc, &bits, NULL);
1387                 cache_state(prealloc, cached_state);
1388                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389                 prealloc = NULL;
1390                 goto out;
1391         }
1392
1393 search_again:
1394         if (start > end)
1395                 goto out;
1396         spin_unlock(&tree->lock);
1397         cond_resched();
1398         first_iteration = false;
1399         goto again;
1400
1401 out:
1402         spin_unlock(&tree->lock);
1403         if (prealloc)
1404                 free_extent_state(prealloc);
1405
1406         return err;
1407 }
1408
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411                            unsigned bits, struct extent_changeset *changeset)
1412 {
1413         /*
1414          * We don't support EXTENT_LOCKED yet, as current changeset will
1415          * record any bits changed, so for EXTENT_LOCKED case, it will
1416          * either fail with -EEXIST or changeset will record the whole
1417          * range.
1418          */
1419         BUG_ON(bits & EXTENT_LOCKED);
1420
1421         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422                                 changeset);
1423 }
1424
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426                            unsigned bits)
1427 {
1428         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429                                 GFP_NOWAIT, NULL);
1430 }
1431
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433                      unsigned bits, int wake, int delete,
1434                      struct extent_state **cached)
1435 {
1436         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437                                   cached, GFP_NOFS, NULL);
1438 }
1439
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441                 unsigned bits, struct extent_changeset *changeset)
1442 {
1443         /*
1444          * Don't support EXTENT_LOCKED case, same reason as
1445          * set_record_extent_bits().
1446          */
1447         BUG_ON(bits & EXTENT_LOCKED);
1448
1449         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450                                   changeset);
1451 }
1452
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458                      struct extent_state **cached_state)
1459 {
1460         int err;
1461         u64 failed_start;
1462
1463         while (1) {
1464                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465                                        EXTENT_LOCKED, &failed_start,
1466                                        cached_state, GFP_NOFS, NULL);
1467                 if (err == -EEXIST) {
1468                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469                         start = failed_start;
1470                 } else
1471                         break;
1472                 WARN_ON(start > end);
1473         }
1474         return err;
1475 }
1476
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479         int err;
1480         u64 failed_start;
1481
1482         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483                                &failed_start, NULL, GFP_NOFS, NULL);
1484         if (err == -EEXIST) {
1485                 if (failed_start > start)
1486                         clear_extent_bit(tree, start, failed_start - 1,
1487                                          EXTENT_LOCKED, 1, 0, NULL);
1488                 return 0;
1489         }
1490         return 1;
1491 }
1492
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495         unsigned long index = start >> PAGE_SHIFT;
1496         unsigned long end_index = end >> PAGE_SHIFT;
1497         struct page *page;
1498
1499         while (index <= end_index) {
1500                 page = find_get_page(inode->i_mapping, index);
1501                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502                 clear_page_dirty_for_io(page);
1503                 put_page(page);
1504                 index++;
1505         }
1506 }
1507
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510         unsigned long index = start >> PAGE_SHIFT;
1511         unsigned long end_index = end >> PAGE_SHIFT;
1512         struct page *page;
1513
1514         while (index <= end_index) {
1515                 page = find_get_page(inode->i_mapping, index);
1516                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517                 __set_page_dirty_nobuffers(page);
1518                 account_page_redirty(page);
1519                 put_page(page);
1520                 index++;
1521         }
1522 }
1523
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530                             u64 start, unsigned bits)
1531 {
1532         struct rb_node *node;
1533         struct extent_state *state;
1534
1535         /*
1536          * this search will find all the extents that end after
1537          * our range starts.
1538          */
1539         node = tree_search(tree, start);
1540         if (!node)
1541                 goto out;
1542
1543         while (1) {
1544                 state = rb_entry(node, struct extent_state, rb_node);
1545                 if (state->end >= start && (state->state & bits))
1546                         return state;
1547
1548                 node = rb_next(node);
1549                 if (!node)
1550                         break;
1551         }
1552 out:
1553         return NULL;
1554 }
1555
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564                           u64 *start_ret, u64 *end_ret, unsigned bits,
1565                           struct extent_state **cached_state)
1566 {
1567         struct extent_state *state;
1568         int ret = 1;
1569
1570         spin_lock(&tree->lock);
1571         if (cached_state && *cached_state) {
1572                 state = *cached_state;
1573                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574                         while ((state = next_state(state)) != NULL) {
1575                                 if (state->state & bits)
1576                                         goto got_it;
1577                         }
1578                         free_extent_state(*cached_state);
1579                         *cached_state = NULL;
1580                         goto out;
1581                 }
1582                 free_extent_state(*cached_state);
1583                 *cached_state = NULL;
1584         }
1585
1586         state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588         if (state) {
1589                 cache_state_if_flags(state, cached_state, 0);
1590                 *start_ret = state->start;
1591                 *end_ret = state->end;
1592                 ret = 0;
1593         }
1594 out:
1595         spin_unlock(&tree->lock);
1596         return ret;
1597 }
1598
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615                                u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617         struct extent_state *state;
1618         int ret = 1;
1619
1620         spin_lock(&tree->lock);
1621         state = find_first_extent_bit_state(tree, start, bits);
1622         if (state) {
1623                 *start_ret = state->start;
1624                 *end_ret = state->end;
1625                 while ((state = next_state(state)) != NULL) {
1626                         if (state->start > (*end_ret + 1))
1627                                 break;
1628                         *end_ret = state->end;
1629                 }
1630                 ret = 0;
1631         }
1632         spin_unlock(&tree->lock);
1633         return ret;
1634 }
1635
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654         struct extent_state *state;
1655         struct rb_node *node, *prev = NULL, *next;
1656
1657         spin_lock(&tree->lock);
1658
1659         /* Find first extent with bits cleared */
1660         while (1) {
1661                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662                 if (!node && !next && !prev) {
1663                         /*
1664                          * Tree is completely empty, send full range and let
1665                          * caller deal with it
1666                          */
1667                         *start_ret = 0;
1668                         *end_ret = -1;
1669                         goto out;
1670                 } else if (!node && !next) {
1671                         /*
1672                          * We are past the last allocated chunk, set start at
1673                          * the end of the last extent.
1674                          */
1675                         state = rb_entry(prev, struct extent_state, rb_node);
1676                         *start_ret = state->end + 1;
1677                         *end_ret = -1;
1678                         goto out;
1679                 } else if (!node) {
1680                         node = next;
1681                 }
1682                 /*
1683                  * At this point 'node' either contains 'start' or start is
1684                  * before 'node'
1685                  */
1686                 state = rb_entry(node, struct extent_state, rb_node);
1687
1688                 if (in_range(start, state->start, state->end - state->start + 1)) {
1689                         if (state->state & bits) {
1690                                 /*
1691                                  * |--range with bits sets--|
1692                                  *    |
1693                                  *    start
1694                                  */
1695                                 start = state->end + 1;
1696                         } else {
1697                                 /*
1698                                  * 'start' falls within a range that doesn't
1699                                  * have the bits set, so take its start as
1700                                  * the beginning of the desired range
1701                                  *
1702                                  * |--range with bits cleared----|
1703                                  *      |
1704                                  *      start
1705                                  */
1706                                 *start_ret = state->start;
1707                                 break;
1708                         }
1709                 } else {
1710                         /*
1711                          * |---prev range---|---hole/unset---|---node range---|
1712                          *                          |
1713                          *                        start
1714                          *
1715                          *                        or
1716                          *
1717                          * |---hole/unset--||--first node--|
1718                          * 0   |
1719                          *    start
1720                          */
1721                         if (prev) {
1722                                 state = rb_entry(prev, struct extent_state,
1723                                                  rb_node);
1724                                 *start_ret = state->end + 1;
1725                         } else {
1726                                 *start_ret = 0;
1727                         }
1728                         break;
1729                 }
1730         }
1731
1732         /*
1733          * Find the longest stretch from start until an entry which has the
1734          * bits set
1735          */
1736         while (1) {
1737                 state = rb_entry(node, struct extent_state, rb_node);
1738                 if (state->end >= start && !(state->state & bits)) {
1739                         *end_ret = state->end;
1740                 } else {
1741                         *end_ret = state->start - 1;
1742                         break;
1743                 }
1744
1745                 node = rb_next(node);
1746                 if (!node)
1747                         break;
1748         }
1749 out:
1750         spin_unlock(&tree->lock);
1751 }
1752
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760                                u64 *end, u64 max_bytes,
1761                                struct extent_state **cached_state)
1762 {
1763         struct rb_node *node;
1764         struct extent_state *state;
1765         u64 cur_start = *start;
1766         bool found = false;
1767         u64 total_bytes = 0;
1768
1769         spin_lock(&tree->lock);
1770
1771         /*
1772          * this search will find all the extents that end after
1773          * our range starts.
1774          */
1775         node = tree_search(tree, cur_start);
1776         if (!node) {
1777                 *end = (u64)-1;
1778                 goto out;
1779         }
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (found && (state->start != cur_start ||
1784                               (state->state & EXTENT_BOUNDARY))) {
1785                         goto out;
1786                 }
1787                 if (!(state->state & EXTENT_DELALLOC)) {
1788                         if (!found)
1789                                 *end = state->end;
1790                         goto out;
1791                 }
1792                 if (!found) {
1793                         *start = state->start;
1794                         *cached_state = state;
1795                         refcount_inc(&state->refs);
1796                 }
1797                 found = true;
1798                 *end = state->end;
1799                 cur_start = state->end + 1;
1800                 node = rb_next(node);
1801                 total_bytes += state->end - state->start + 1;
1802                 if (total_bytes >= max_bytes)
1803                         break;
1804                 if (!node)
1805                         break;
1806         }
1807 out:
1808         spin_unlock(&tree->lock);
1809         return found;
1810 }
1811
1812 static int __process_pages_contig(struct address_space *mapping,
1813                                   struct page *locked_page,
1814                                   pgoff_t start_index, pgoff_t end_index,
1815                                   unsigned long page_ops, pgoff_t *index_ret);
1816
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818                                            struct page *locked_page,
1819                                            u64 start, u64 end)
1820 {
1821         unsigned long index = start >> PAGE_SHIFT;
1822         unsigned long end_index = end >> PAGE_SHIFT;
1823
1824         ASSERT(locked_page);
1825         if (index == locked_page->index && end_index == index)
1826                 return;
1827
1828         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829                                PAGE_UNLOCK, NULL);
1830 }
1831
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833                                         struct page *locked_page,
1834                                         u64 delalloc_start,
1835                                         u64 delalloc_end)
1836 {
1837         unsigned long index = delalloc_start >> PAGE_SHIFT;
1838         unsigned long index_ret = index;
1839         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840         int ret;
1841
1842         ASSERT(locked_page);
1843         if (index == locked_page->index && index == end_index)
1844                 return 0;
1845
1846         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847                                      end_index, PAGE_LOCK, &index_ret);
1848         if (ret == -EAGAIN)
1849                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850                                       (u64)index_ret << PAGE_SHIFT);
1851         return ret;
1852 }
1853
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863                                     struct page *locked_page, u64 *start,
1864                                     u64 *end)
1865 {
1866         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868         u64 delalloc_start;
1869         u64 delalloc_end;
1870         bool found;
1871         struct extent_state *cached_state = NULL;
1872         int ret;
1873         int loops = 0;
1874
1875 again:
1876         /* step one, find a bunch of delalloc bytes starting at start */
1877         delalloc_start = *start;
1878         delalloc_end = 0;
1879         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880                                           max_bytes, &cached_state);
1881         if (!found || delalloc_end <= *start) {
1882                 *start = delalloc_start;
1883                 *end = delalloc_end;
1884                 free_extent_state(cached_state);
1885                 return false;
1886         }
1887
1888         /*
1889          * start comes from the offset of locked_page.  We have to lock
1890          * pages in order, so we can't process delalloc bytes before
1891          * locked_page
1892          */
1893         if (delalloc_start < *start)
1894                 delalloc_start = *start;
1895
1896         /*
1897          * make sure to limit the number of pages we try to lock down
1898          */
1899         if (delalloc_end + 1 - delalloc_start > max_bytes)
1900                 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902         /* step two, lock all the pages after the page that has start */
1903         ret = lock_delalloc_pages(inode, locked_page,
1904                                   delalloc_start, delalloc_end);
1905         ASSERT(!ret || ret == -EAGAIN);
1906         if (ret == -EAGAIN) {
1907                 /* some of the pages are gone, lets avoid looping by
1908                  * shortening the size of the delalloc range we're searching
1909                  */
1910                 free_extent_state(cached_state);
1911                 cached_state = NULL;
1912                 if (!loops) {
1913                         max_bytes = PAGE_SIZE;
1914                         loops = 1;
1915                         goto again;
1916                 } else {
1917                         found = false;
1918                         goto out_failed;
1919                 }
1920         }
1921
1922         /* step three, lock the state bits for the whole range */
1923         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925         /* then test to make sure it is all still delalloc */
1926         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927                              EXTENT_DELALLOC, 1, cached_state);
1928         if (!ret) {
1929                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930                                      &cached_state);
1931                 __unlock_for_delalloc(inode, locked_page,
1932                               delalloc_start, delalloc_end);
1933                 cond_resched();
1934                 goto again;
1935         }
1936         free_extent_state(cached_state);
1937         *start = delalloc_start;
1938         *end = delalloc_end;
1939 out_failed:
1940         return found;
1941 }
1942
1943 static int __process_pages_contig(struct address_space *mapping,
1944                                   struct page *locked_page,
1945                                   pgoff_t start_index, pgoff_t end_index,
1946                                   unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948         unsigned long nr_pages = end_index - start_index + 1;
1949         unsigned long pages_locked = 0;
1950         pgoff_t index = start_index;
1951         struct page *pages[16];
1952         unsigned ret;
1953         int err = 0;
1954         int i;
1955
1956         if (page_ops & PAGE_LOCK) {
1957                 ASSERT(page_ops == PAGE_LOCK);
1958                 ASSERT(index_ret && *index_ret == start_index);
1959         }
1960
1961         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962                 mapping_set_error(mapping, -EIO);
1963
1964         while (nr_pages > 0) {
1965                 ret = find_get_pages_contig(mapping, index,
1966                                      min_t(unsigned long,
1967                                      nr_pages, ARRAY_SIZE(pages)), pages);
1968                 if (ret == 0) {
1969                         /*
1970                          * Only if we're going to lock these pages,
1971                          * can we find nothing at @index.
1972                          */
1973                         ASSERT(page_ops & PAGE_LOCK);
1974                         err = -EAGAIN;
1975                         goto out;
1976                 }
1977
1978                 for (i = 0; i < ret; i++) {
1979                         if (page_ops & PAGE_SET_PRIVATE2)
1980                                 SetPagePrivate2(pages[i]);
1981
1982                         if (locked_page && pages[i] == locked_page) {
1983                                 put_page(pages[i]);
1984                                 pages_locked++;
1985                                 continue;
1986                         }
1987                         if (page_ops & PAGE_CLEAR_DIRTY)
1988                                 clear_page_dirty_for_io(pages[i]);
1989                         if (page_ops & PAGE_SET_WRITEBACK)
1990                                 set_page_writeback(pages[i]);
1991                         if (page_ops & PAGE_SET_ERROR)
1992                                 SetPageError(pages[i]);
1993                         if (page_ops & PAGE_END_WRITEBACK)
1994                                 end_page_writeback(pages[i]);
1995                         if (page_ops & PAGE_UNLOCK)
1996                                 unlock_page(pages[i]);
1997                         if (page_ops & PAGE_LOCK) {
1998                                 lock_page(pages[i]);
1999                                 if (!PageDirty(pages[i]) ||
2000                                     pages[i]->mapping != mapping) {
2001                                         unlock_page(pages[i]);
2002                                         put_page(pages[i]);
2003                                         err = -EAGAIN;
2004                                         goto out;
2005                                 }
2006                         }
2007                         put_page(pages[i]);
2008                         pages_locked++;
2009                 }
2010                 nr_pages -= ret;
2011                 index += ret;
2012                 cond_resched();
2013         }
2014 out:
2015         if (err && index_ret)
2016                 *index_ret = start_index + pages_locked - 1;
2017         return err;
2018 }
2019
2020 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2021                                   struct page *locked_page,
2022                                   unsigned clear_bits,
2023                                   unsigned long page_ops)
2024 {
2025         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2026                          NULL);
2027
2028         __process_pages_contig(inode->i_mapping, locked_page,
2029                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030                                page_ops, NULL);
2031 }
2032
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039                      u64 *start, u64 search_end, u64 max_bytes,
2040                      unsigned bits, int contig)
2041 {
2042         struct rb_node *node;
2043         struct extent_state *state;
2044         u64 cur_start = *start;
2045         u64 total_bytes = 0;
2046         u64 last = 0;
2047         int found = 0;
2048
2049         if (WARN_ON(search_end <= cur_start))
2050                 return 0;
2051
2052         spin_lock(&tree->lock);
2053         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054                 total_bytes = tree->dirty_bytes;
2055                 goto out;
2056         }
2057         /*
2058          * this search will find all the extents that end after
2059          * our range starts.
2060          */
2061         node = tree_search(tree, cur_start);
2062         if (!node)
2063                 goto out;
2064
2065         while (1) {
2066                 state = rb_entry(node, struct extent_state, rb_node);
2067                 if (state->start > search_end)
2068                         break;
2069                 if (contig && found && state->start > last + 1)
2070                         break;
2071                 if (state->end >= cur_start && (state->state & bits) == bits) {
2072                         total_bytes += min(search_end, state->end) + 1 -
2073                                        max(cur_start, state->start);
2074                         if (total_bytes >= max_bytes)
2075                                 break;
2076                         if (!found) {
2077                                 *start = max(cur_start, state->start);
2078                                 found = 1;
2079                         }
2080                         last = state->end;
2081                 } else if (contig && found) {
2082                         break;
2083                 }
2084                 node = rb_next(node);
2085                 if (!node)
2086                         break;
2087         }
2088 out:
2089         spin_unlock(&tree->lock);
2090         return total_bytes;
2091 }
2092
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098                       struct io_failure_record *failrec)
2099 {
2100         struct rb_node *node;
2101         struct extent_state *state;
2102         int ret = 0;
2103
2104         spin_lock(&tree->lock);
2105         /*
2106          * this search will find all the extents that end after
2107          * our range starts.
2108          */
2109         node = tree_search(tree, start);
2110         if (!node) {
2111                 ret = -ENOENT;
2112                 goto out;
2113         }
2114         state = rb_entry(node, struct extent_state, rb_node);
2115         if (state->start != start) {
2116                 ret = -ENOENT;
2117                 goto out;
2118         }
2119         state->failrec = failrec;
2120 out:
2121         spin_unlock(&tree->lock);
2122         return ret;
2123 }
2124
2125 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126                       struct io_failure_record **failrec)
2127 {
2128         struct rb_node *node;
2129         struct extent_state *state;
2130         int ret = 0;
2131
2132         spin_lock(&tree->lock);
2133         /*
2134          * this search will find all the extents that end after
2135          * our range starts.
2136          */
2137         node = tree_search(tree, start);
2138         if (!node) {
2139                 ret = -ENOENT;
2140                 goto out;
2141         }
2142         state = rb_entry(node, struct extent_state, rb_node);
2143         if (state->start != start) {
2144                 ret = -ENOENT;
2145                 goto out;
2146         }
2147         *failrec = state->failrec;
2148 out:
2149         spin_unlock(&tree->lock);
2150         return ret;
2151 }
2152
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160                    unsigned bits, int filled, struct extent_state *cached)
2161 {
2162         struct extent_state *state = NULL;
2163         struct rb_node *node;
2164         int bitset = 0;
2165
2166         spin_lock(&tree->lock);
2167         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168             cached->end > start)
2169                 node = &cached->rb_node;
2170         else
2171                 node = tree_search(tree, start);
2172         while (node && start <= end) {
2173                 state = rb_entry(node, struct extent_state, rb_node);
2174
2175                 if (filled && state->start > start) {
2176                         bitset = 0;
2177                         break;
2178                 }
2179
2180                 if (state->start > end)
2181                         break;
2182
2183                 if (state->state & bits) {
2184                         bitset = 1;
2185                         if (!filled)
2186                                 break;
2187                 } else if (filled) {
2188                         bitset = 0;
2189                         break;
2190                 }
2191
2192                 if (state->end == (u64)-1)
2193                         break;
2194
2195                 start = state->end + 1;
2196                 if (start > end)
2197                         break;
2198                 node = rb_next(node);
2199                 if (!node) {
2200                         if (filled)
2201                                 bitset = 0;
2202                         break;
2203                 }
2204         }
2205         spin_unlock(&tree->lock);
2206         return bitset;
2207 }
2208
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215         u64 start = page_offset(page);
2216         u64 end = start + PAGE_SIZE - 1;
2217         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218                 SetPageUptodate(page);
2219 }
2220
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222                     struct extent_io_tree *io_tree,
2223                     struct io_failure_record *rec)
2224 {
2225         int ret;
2226         int err = 0;
2227
2228         set_state_failrec(failure_tree, rec->start, NULL);
2229         ret = clear_extent_bits(failure_tree, rec->start,
2230                                 rec->start + rec->len - 1,
2231                                 EXTENT_LOCKED | EXTENT_DIRTY);
2232         if (ret)
2233                 err = ret;
2234
2235         ret = clear_extent_bits(io_tree, rec->start,
2236                                 rec->start + rec->len - 1,
2237                                 EXTENT_DAMAGED);
2238         if (ret && !err)
2239                 err = ret;
2240
2241         kfree(rec);
2242         return err;
2243 }
2244
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256                       u64 length, u64 logical, struct page *page,
2257                       unsigned int pg_offset, int mirror_num)
2258 {
2259         struct bio *bio;
2260         struct btrfs_device *dev;
2261         u64 map_length = 0;
2262         u64 sector;
2263         struct btrfs_bio *bbio = NULL;
2264         int ret;
2265
2266         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267         BUG_ON(!mirror_num);
2268
2269         bio = btrfs_io_bio_alloc(1);
2270         bio->bi_iter.bi_size = 0;
2271         map_length = length;
2272
2273         /*
2274          * Avoid races with device replace and make sure our bbio has devices
2275          * associated to its stripes that don't go away while we are doing the
2276          * read repair operation.
2277          */
2278         btrfs_bio_counter_inc_blocked(fs_info);
2279         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280                 /*
2281                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282                  * to update all raid stripes, but here we just want to correct
2283                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284                  * stripe's dev and sector.
2285                  */
2286                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287                                       &map_length, &bbio, 0);
2288                 if (ret) {
2289                         btrfs_bio_counter_dec(fs_info);
2290                         bio_put(bio);
2291                         return -EIO;
2292                 }
2293                 ASSERT(bbio->mirror_num == 1);
2294         } else {
2295                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296                                       &map_length, &bbio, mirror_num);
2297                 if (ret) {
2298                         btrfs_bio_counter_dec(fs_info);
2299                         bio_put(bio);
2300                         return -EIO;
2301                 }
2302                 BUG_ON(mirror_num != bbio->mirror_num);
2303         }
2304
2305         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306         bio->bi_iter.bi_sector = sector;
2307         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308         btrfs_put_bbio(bbio);
2309         if (!dev || !dev->bdev ||
2310             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311                 btrfs_bio_counter_dec(fs_info);
2312                 bio_put(bio);
2313                 return -EIO;
2314         }
2315         bio_set_dev(bio, dev->bdev);
2316         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317         bio_add_page(bio, page, length, pg_offset);
2318
2319         if (btrfsic_submit_bio_wait(bio)) {
2320                 /* try to remap that extent elsewhere? */
2321                 btrfs_bio_counter_dec(fs_info);
2322                 bio_put(bio);
2323                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324                 return -EIO;
2325         }
2326
2327         btrfs_info_rl_in_rcu(fs_info,
2328                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329                                   ino, start,
2330                                   rcu_str_deref(dev->name), sector);
2331         btrfs_bio_counter_dec(fs_info);
2332         bio_put(bio);
2333         return 0;
2334 }
2335
2336 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2337 {
2338         struct btrfs_fs_info *fs_info = eb->fs_info;
2339         u64 start = eb->start;
2340         int i, num_pages = num_extent_pages(eb);
2341         int ret = 0;
2342
2343         if (sb_rdonly(fs_info->sb))
2344                 return -EROFS;
2345
2346         for (i = 0; i < num_pages; i++) {
2347                 struct page *p = eb->pages[i];
2348
2349                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350                                         start - page_offset(p), mirror_num);
2351                 if (ret)
2352                         break;
2353                 start += PAGE_SIZE;
2354         }
2355
2356         return ret;
2357 }
2358
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364                      struct extent_io_tree *failure_tree,
2365                      struct extent_io_tree *io_tree, u64 start,
2366                      struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368         u64 private;
2369         struct io_failure_record *failrec;
2370         struct extent_state *state;
2371         int num_copies;
2372         int ret;
2373
2374         private = 0;
2375         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376                                EXTENT_DIRTY, 0);
2377         if (!ret)
2378                 return 0;
2379
2380         ret = get_state_failrec(failure_tree, start, &failrec);
2381         if (ret)
2382                 return 0;
2383
2384         BUG_ON(!failrec->this_mirror);
2385
2386         if (failrec->in_validation) {
2387                 /* there was no real error, just free the record */
2388                 btrfs_debug(fs_info,
2389                         "clean_io_failure: freeing dummy error at %llu",
2390                         failrec->start);
2391                 goto out;
2392         }
2393         if (sb_rdonly(fs_info->sb))
2394                 goto out;
2395
2396         spin_lock(&io_tree->lock);
2397         state = find_first_extent_bit_state(io_tree,
2398                                             failrec->start,
2399                                             EXTENT_LOCKED);
2400         spin_unlock(&io_tree->lock);
2401
2402         if (state && state->start <= failrec->start &&
2403             state->end >= failrec->start + failrec->len - 1) {
2404                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405                                               failrec->len);
2406                 if (num_copies > 1)  {
2407                         repair_io_failure(fs_info, ino, start, failrec->len,
2408                                           failrec->logical, page, pg_offset,
2409                                           failrec->failed_mirror);
2410                 }
2411         }
2412
2413 out:
2414         free_io_failure(failure_tree, io_tree, failrec);
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428         struct io_failure_record *failrec;
2429         struct extent_state *state, *next;
2430
2431         if (RB_EMPTY_ROOT(&failure_tree->state))
2432                 return;
2433
2434         spin_lock(&failure_tree->lock);
2435         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436         while (state) {
2437                 if (state->start > end)
2438                         break;
2439
2440                 ASSERT(state->end <= end);
2441
2442                 next = next_state(state);
2443
2444                 failrec = state->failrec;
2445                 free_extent_state(state);
2446                 kfree(failrec);
2447
2448                 state = next;
2449         }
2450         spin_unlock(&failure_tree->lock);
2451 }
2452
2453 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2454                 struct io_failure_record **failrec_ret)
2455 {
2456         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457         struct io_failure_record *failrec;
2458         struct extent_map *em;
2459         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462         int ret;
2463         u64 logical;
2464
2465         ret = get_state_failrec(failure_tree, start, &failrec);
2466         if (ret) {
2467                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468                 if (!failrec)
2469                         return -ENOMEM;
2470
2471                 failrec->start = start;
2472                 failrec->len = end - start + 1;
2473                 failrec->this_mirror = 0;
2474                 failrec->bio_flags = 0;
2475                 failrec->in_validation = 0;
2476
2477                 read_lock(&em_tree->lock);
2478                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2479                 if (!em) {
2480                         read_unlock(&em_tree->lock);
2481                         kfree(failrec);
2482                         return -EIO;
2483                 }
2484
2485                 if (em->start > start || em->start + em->len <= start) {
2486                         free_extent_map(em);
2487                         em = NULL;
2488                 }
2489                 read_unlock(&em_tree->lock);
2490                 if (!em) {
2491                         kfree(failrec);
2492                         return -EIO;
2493                 }
2494
2495                 logical = start - em->start;
2496                 logical = em->block_start + logical;
2497                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498                         logical = em->block_start;
2499                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500                         extent_set_compress_type(&failrec->bio_flags,
2501                                                  em->compress_type);
2502                 }
2503
2504                 btrfs_debug(fs_info,
2505                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506                         logical, start, failrec->len);
2507
2508                 failrec->logical = logical;
2509                 free_extent_map(em);
2510
2511                 /* set the bits in the private failure tree */
2512                 ret = set_extent_bits(failure_tree, start, end,
2513                                         EXTENT_LOCKED | EXTENT_DIRTY);
2514                 if (ret >= 0)
2515                         ret = set_state_failrec(failure_tree, start, failrec);
2516                 /* set the bits in the inode's tree */
2517                 if (ret >= 0)
2518                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2519                 if (ret < 0) {
2520                         kfree(failrec);
2521                         return ret;
2522                 }
2523         } else {
2524                 btrfs_debug(fs_info,
2525                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526                         failrec->logical, failrec->start, failrec->len,
2527                         failrec->in_validation);
2528                 /*
2529                  * when data can be on disk more than twice, add to failrec here
2530                  * (e.g. with a list for failed_mirror) to make
2531                  * clean_io_failure() clean all those errors at once.
2532                  */
2533         }
2534
2535         *failrec_ret = failrec;
2536
2537         return 0;
2538 }
2539
2540 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2541                            struct io_failure_record *failrec, int failed_mirror)
2542 {
2543         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2544         int num_copies;
2545
2546         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2547         if (num_copies == 1) {
2548                 /*
2549                  * we only have a single copy of the data, so don't bother with
2550                  * all the retry and error correction code that follows. no
2551                  * matter what the error is, it is very likely to persist.
2552                  */
2553                 btrfs_debug(fs_info,
2554                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2555                         num_copies, failrec->this_mirror, failed_mirror);
2556                 return false;
2557         }
2558
2559         /*
2560          * there are two premises:
2561          *      a) deliver good data to the caller
2562          *      b) correct the bad sectors on disk
2563          */
2564         if (failed_bio_pages > 1) {
2565                 /*
2566                  * to fulfill b), we need to know the exact failing sectors, as
2567                  * we don't want to rewrite any more than the failed ones. thus,
2568                  * we need separate read requests for the failed bio
2569                  *
2570                  * if the following BUG_ON triggers, our validation request got
2571                  * merged. we need separate requests for our algorithm to work.
2572                  */
2573                 BUG_ON(failrec->in_validation);
2574                 failrec->in_validation = 1;
2575                 failrec->this_mirror = failed_mirror;
2576         } else {
2577                 /*
2578                  * we're ready to fulfill a) and b) alongside. get a good copy
2579                  * of the failed sector and if we succeed, we have setup
2580                  * everything for repair_io_failure to do the rest for us.
2581                  */
2582                 if (failrec->in_validation) {
2583                         BUG_ON(failrec->this_mirror != failed_mirror);
2584                         failrec->in_validation = 0;
2585                         failrec->this_mirror = 0;
2586                 }
2587                 failrec->failed_mirror = failed_mirror;
2588                 failrec->this_mirror++;
2589                 if (failrec->this_mirror == failed_mirror)
2590                         failrec->this_mirror++;
2591         }
2592
2593         if (failrec->this_mirror > num_copies) {
2594                 btrfs_debug(fs_info,
2595                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2596                         num_copies, failrec->this_mirror, failed_mirror);
2597                 return false;
2598         }
2599
2600         return true;
2601 }
2602
2603
2604 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2605                                     struct io_failure_record *failrec,
2606                                     struct page *page, int pg_offset, int icsum,
2607                                     bio_end_io_t *endio_func, void *data)
2608 {
2609         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2610         struct bio *bio;
2611         struct btrfs_io_bio *btrfs_failed_bio;
2612         struct btrfs_io_bio *btrfs_bio;
2613
2614         bio = btrfs_io_bio_alloc(1);
2615         bio->bi_end_io = endio_func;
2616         bio->bi_iter.bi_sector = failrec->logical >> 9;
2617         bio->bi_iter.bi_size = 0;
2618         bio->bi_private = data;
2619
2620         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2621         if (btrfs_failed_bio->csum) {
2622                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2623
2624                 btrfs_bio = btrfs_io_bio(bio);
2625                 btrfs_bio->csum = btrfs_bio->csum_inline;
2626                 icsum *= csum_size;
2627                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2628                        csum_size);
2629         }
2630
2631         bio_add_page(bio, page, failrec->len, pg_offset);
2632
2633         return bio;
2634 }
2635
2636 /*
2637  * This is a generic handler for readpage errors. If other copies exist, read
2638  * those and write back good data to the failed position. Does not investigate
2639  * in remapping the failed extent elsewhere, hoping the device will be smart
2640  * enough to do this as needed
2641  */
2642 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2643                               struct page *page, u64 start, u64 end,
2644                               int failed_mirror)
2645 {
2646         struct io_failure_record *failrec;
2647         struct inode *inode = page->mapping->host;
2648         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2649         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2650         struct bio *bio;
2651         int read_mode = 0;
2652         blk_status_t status;
2653         int ret;
2654         unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2655
2656         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2657
2658         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2659         if (ret)
2660                 return ret;
2661
2662         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2663                                     failed_mirror)) {
2664                 free_io_failure(failure_tree, tree, failrec);
2665                 return -EIO;
2666         }
2667
2668         if (failed_bio_pages > 1)
2669                 read_mode |= REQ_FAILFAST_DEV;
2670
2671         phy_offset >>= inode->i_sb->s_blocksize_bits;
2672         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2673                                       start - page_offset(page),
2674                                       (int)phy_offset, failed_bio->bi_end_io,
2675                                       NULL);
2676         bio->bi_opf = REQ_OP_READ | read_mode;
2677
2678         btrfs_debug(btrfs_sb(inode->i_sb),
2679                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2680                 read_mode, failrec->this_mirror, failrec->in_validation);
2681
2682         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2683                                          failrec->bio_flags);
2684         if (status) {
2685                 free_io_failure(failure_tree, tree, failrec);
2686                 bio_put(bio);
2687                 ret = blk_status_to_errno(status);
2688         }
2689
2690         return ret;
2691 }
2692
2693 /* lots and lots of room for performance fixes in the end_bio funcs */
2694
2695 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2696 {
2697         int uptodate = (err == 0);
2698         int ret = 0;
2699
2700         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2701
2702         if (!uptodate) {
2703                 ClearPageUptodate(page);
2704                 SetPageError(page);
2705                 ret = err < 0 ? err : -EIO;
2706                 mapping_set_error(page->mapping, ret);
2707         }
2708 }
2709
2710 /*
2711  * after a writepage IO is done, we need to:
2712  * clear the uptodate bits on error
2713  * clear the writeback bits in the extent tree for this IO
2714  * end_page_writeback if the page has no more pending IO
2715  *
2716  * Scheduling is not allowed, so the extent state tree is expected
2717  * to have one and only one object corresponding to this IO.
2718  */
2719 static void end_bio_extent_writepage(struct bio *bio)
2720 {
2721         int error = blk_status_to_errno(bio->bi_status);
2722         struct bio_vec *bvec;
2723         u64 start;
2724         u64 end;
2725         struct bvec_iter_all iter_all;
2726
2727         ASSERT(!bio_flagged(bio, BIO_CLONED));
2728         bio_for_each_segment_all(bvec, bio, iter_all) {
2729                 struct page *page = bvec->bv_page;
2730                 struct inode *inode = page->mapping->host;
2731                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2732
2733                 /* We always issue full-page reads, but if some block
2734                  * in a page fails to read, blk_update_request() will
2735                  * advance bv_offset and adjust bv_len to compensate.
2736                  * Print a warning for nonzero offsets, and an error
2737                  * if they don't add up to a full page.  */
2738                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2739                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2740                                 btrfs_err(fs_info,
2741                                    "partial page write in btrfs with offset %u and length %u",
2742                                         bvec->bv_offset, bvec->bv_len);
2743                         else
2744                                 btrfs_info(fs_info,
2745                                    "incomplete page write in btrfs with offset %u and length %u",
2746                                         bvec->bv_offset, bvec->bv_len);
2747                 }
2748
2749                 start = page_offset(page);
2750                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2751
2752                 end_extent_writepage(page, error, start, end);
2753                 end_page_writeback(page);
2754         }
2755
2756         bio_put(bio);
2757 }
2758
2759 static void
2760 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2761                               int uptodate)
2762 {
2763         struct extent_state *cached = NULL;
2764         u64 end = start + len - 1;
2765
2766         if (uptodate && tree->track_uptodate)
2767                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2768         unlock_extent_cached_atomic(tree, start, end, &cached);
2769 }
2770
2771 /*
2772  * after a readpage IO is done, we need to:
2773  * clear the uptodate bits on error
2774  * set the uptodate bits if things worked
2775  * set the page up to date if all extents in the tree are uptodate
2776  * clear the lock bit in the extent tree
2777  * unlock the page if there are no other extents locked for it
2778  *
2779  * Scheduling is not allowed, so the extent state tree is expected
2780  * to have one and only one object corresponding to this IO.
2781  */
2782 static void end_bio_extent_readpage(struct bio *bio)
2783 {
2784         struct bio_vec *bvec;
2785         int uptodate = !bio->bi_status;
2786         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2787         struct extent_io_tree *tree, *failure_tree;
2788         u64 offset = 0;
2789         u64 start;
2790         u64 end;
2791         u64 len;
2792         u64 extent_start = 0;
2793         u64 extent_len = 0;
2794         int mirror;
2795         int ret;
2796         struct bvec_iter_all iter_all;
2797
2798         ASSERT(!bio_flagged(bio, BIO_CLONED));
2799         bio_for_each_segment_all(bvec, bio, iter_all) {
2800                 struct page *page = bvec->bv_page;
2801                 struct inode *inode = page->mapping->host;
2802                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2803                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2804                         != BTRFS_BTREE_INODE_OBJECTID;
2805
2806                 btrfs_debug(fs_info,
2807                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2808                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2809                         io_bio->mirror_num);
2810                 tree = &BTRFS_I(inode)->io_tree;
2811                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2812
2813                 /* We always issue full-page reads, but if some block
2814                  * in a page fails to read, blk_update_request() will
2815                  * advance bv_offset and adjust bv_len to compensate.
2816                  * Print a warning for nonzero offsets, and an error
2817                  * if they don't add up to a full page.  */
2818                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2819                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2820                                 btrfs_err(fs_info,
2821                                         "partial page read in btrfs with offset %u and length %u",
2822                                         bvec->bv_offset, bvec->bv_len);
2823                         else
2824                                 btrfs_info(fs_info,
2825                                         "incomplete page read in btrfs with offset %u and length %u",
2826                                         bvec->bv_offset, bvec->bv_len);
2827                 }
2828
2829                 start = page_offset(page);
2830                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2831                 len = bvec->bv_len;
2832
2833                 mirror = io_bio->mirror_num;
2834                 if (likely(uptodate)) {
2835                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2836                                                               page, start, end,
2837                                                               mirror);
2838                         if (ret)
2839                                 uptodate = 0;
2840                         else
2841                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2842                                                  failure_tree, tree, start,
2843                                                  page,
2844                                                  btrfs_ino(BTRFS_I(inode)), 0);
2845                 }
2846
2847                 if (likely(uptodate))
2848                         goto readpage_ok;
2849
2850                 if (data_inode) {
2851
2852                         /*
2853                          * The generic bio_readpage_error handles errors the
2854                          * following way: If possible, new read requests are
2855                          * created and submitted and will end up in
2856                          * end_bio_extent_readpage as well (if we're lucky,
2857                          * not in the !uptodate case). In that case it returns
2858                          * 0 and we just go on with the next page in our bio.
2859                          * If it can't handle the error it will return -EIO and
2860                          * we remain responsible for that page.
2861                          */
2862                         ret = bio_readpage_error(bio, offset, page, start, end,
2863                                                  mirror);
2864                         if (ret == 0) {
2865                                 uptodate = !bio->bi_status;
2866                                 offset += len;
2867                                 continue;
2868                         }
2869                 } else {
2870                         struct extent_buffer *eb;
2871
2872                         eb = (struct extent_buffer *)page->private;
2873                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2874                         eb->read_mirror = mirror;
2875                         atomic_dec(&eb->io_pages);
2876                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2877                                                &eb->bflags))
2878                                 btree_readahead_hook(eb, -EIO);
2879                 }
2880 readpage_ok:
2881                 if (likely(uptodate)) {
2882                         loff_t i_size = i_size_read(inode);
2883                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2884                         unsigned off;
2885
2886                         /* Zero out the end if this page straddles i_size */
2887                         off = offset_in_page(i_size);
2888                         if (page->index == end_index && off)
2889                                 zero_user_segment(page, off, PAGE_SIZE);
2890                         SetPageUptodate(page);
2891                 } else {
2892                         ClearPageUptodate(page);
2893                         SetPageError(page);
2894                 }
2895                 unlock_page(page);
2896                 offset += len;
2897
2898                 if (unlikely(!uptodate)) {
2899                         if (extent_len) {
2900                                 endio_readpage_release_extent(tree,
2901                                                               extent_start,
2902                                                               extent_len, 1);
2903                                 extent_start = 0;
2904                                 extent_len = 0;
2905                         }
2906                         endio_readpage_release_extent(tree, start,
2907                                                       end - start + 1, 0);
2908                 } else if (!extent_len) {
2909                         extent_start = start;
2910                         extent_len = end + 1 - start;
2911                 } else if (extent_start + extent_len == start) {
2912                         extent_len += end + 1 - start;
2913                 } else {
2914                         endio_readpage_release_extent(tree, extent_start,
2915                                                       extent_len, uptodate);
2916                         extent_start = start;
2917                         extent_len = end + 1 - start;
2918                 }
2919         }
2920
2921         if (extent_len)
2922                 endio_readpage_release_extent(tree, extent_start, extent_len,
2923                                               uptodate);
2924         btrfs_io_bio_free_csum(io_bio);
2925         bio_put(bio);
2926 }
2927
2928 /*
2929  * Initialize the members up to but not including 'bio'. Use after allocating a
2930  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2931  * 'bio' because use of __GFP_ZERO is not supported.
2932  */
2933 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2934 {
2935         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2936 }
2937
2938 /*
2939  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2940  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2941  * for the appropriate container_of magic
2942  */
2943 struct bio *btrfs_bio_alloc(u64 first_byte)
2944 {
2945         struct bio *bio;
2946
2947         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2948         bio->bi_iter.bi_sector = first_byte >> 9;
2949         btrfs_io_bio_init(btrfs_io_bio(bio));
2950         return bio;
2951 }
2952
2953 struct bio *btrfs_bio_clone(struct bio *bio)
2954 {
2955         struct btrfs_io_bio *btrfs_bio;
2956         struct bio *new;
2957
2958         /* Bio allocation backed by a bioset does not fail */
2959         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2960         btrfs_bio = btrfs_io_bio(new);
2961         btrfs_io_bio_init(btrfs_bio);
2962         btrfs_bio->iter = bio->bi_iter;
2963         return new;
2964 }
2965
2966 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2967 {
2968         struct bio *bio;
2969
2970         /* Bio allocation backed by a bioset does not fail */
2971         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2972         btrfs_io_bio_init(btrfs_io_bio(bio));
2973         return bio;
2974 }
2975
2976 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2977 {
2978         struct bio *bio;
2979         struct btrfs_io_bio *btrfs_bio;
2980
2981         /* this will never fail when it's backed by a bioset */
2982         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2983         ASSERT(bio);
2984
2985         btrfs_bio = btrfs_io_bio(bio);
2986         btrfs_io_bio_init(btrfs_bio);
2987
2988         bio_trim(bio, offset >> 9, size >> 9);
2989         btrfs_bio->iter = bio->bi_iter;
2990         return bio;
2991 }
2992
2993 /*
2994  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2995  * @wbc:        optional writeback control for io accounting
2996  * @page:       page to add to the bio
2997  * @pg_offset:  offset of the new bio or to check whether we are adding
2998  *              a contiguous page to the previous one
2999  * @size:       portion of page that we want to write
3000  * @offset:     starting offset in the page
3001  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3002  * @end_io_func:     end_io callback for new bio
3003  * @mirror_num:      desired mirror to read/write
3004  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3005  * @bio_flags:  flags of the current bio to see if we can merge them
3006  */
3007 static int submit_extent_page(unsigned int opf,
3008                               struct writeback_control *wbc,
3009                               struct page *page, u64 offset,
3010                               size_t size, unsigned long pg_offset,
3011                               struct bio **bio_ret,
3012                               bio_end_io_t end_io_func,
3013                               int mirror_num,
3014                               unsigned long prev_bio_flags,
3015                               unsigned long bio_flags,
3016                               bool force_bio_submit)
3017 {
3018         int ret = 0;
3019         struct bio *bio;
3020         size_t page_size = min_t(size_t, size, PAGE_SIZE);
3021         sector_t sector = offset >> 9;
3022         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3023
3024         ASSERT(bio_ret);
3025
3026         if (*bio_ret) {
3027                 bool contig;
3028                 bool can_merge = true;
3029
3030                 bio = *bio_ret;
3031                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3032                         contig = bio->bi_iter.bi_sector == sector;
3033                 else
3034                         contig = bio_end_sector(bio) == sector;
3035
3036                 ASSERT(tree->ops);
3037                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3038                         can_merge = false;
3039
3040                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3041                     force_bio_submit ||
3042                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3043                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3044                         if (ret < 0) {
3045                                 *bio_ret = NULL;
3046                                 return ret;
3047                         }
3048                         bio = NULL;
3049                 } else {
3050                         if (wbc)
3051                                 wbc_account_cgroup_owner(wbc, page, page_size);
3052                         return 0;
3053                 }
3054         }
3055
3056         bio = btrfs_bio_alloc(offset);
3057         bio_add_page(bio, page, page_size, pg_offset);
3058         bio->bi_end_io = end_io_func;
3059         bio->bi_private = tree;
3060         bio->bi_write_hint = page->mapping->host->i_write_hint;
3061         bio->bi_opf = opf;
3062         if (wbc) {
3063                 struct block_device *bdev;
3064
3065                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3066                 bio_set_dev(bio, bdev);
3067                 wbc_init_bio(wbc, bio);
3068                 wbc_account_cgroup_owner(wbc, page, page_size);
3069         }
3070
3071         *bio_ret = bio;
3072
3073         return ret;
3074 }
3075
3076 static void attach_extent_buffer_page(struct extent_buffer *eb,
3077                                       struct page *page)
3078 {
3079         if (!PagePrivate(page)) {
3080                 SetPagePrivate(page);
3081                 get_page(page);
3082                 set_page_private(page, (unsigned long)eb);
3083         } else {
3084                 WARN_ON(page->private != (unsigned long)eb);
3085         }
3086 }
3087
3088 void set_page_extent_mapped(struct page *page)
3089 {
3090         if (!PagePrivate(page)) {
3091                 SetPagePrivate(page);
3092                 get_page(page);
3093                 set_page_private(page, EXTENT_PAGE_PRIVATE);
3094         }
3095 }
3096
3097 static struct extent_map *
3098 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3099                  u64 start, u64 len, get_extent_t *get_extent,
3100                  struct extent_map **em_cached)
3101 {
3102         struct extent_map *em;
3103
3104         if (em_cached && *em_cached) {
3105                 em = *em_cached;
3106                 if (extent_map_in_tree(em) && start >= em->start &&
3107                     start < extent_map_end(em)) {
3108                         refcount_inc(&em->refs);
3109                         return em;
3110                 }
3111
3112                 free_extent_map(em);
3113                 *em_cached = NULL;
3114         }
3115
3116         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3117         if (em_cached && !IS_ERR_OR_NULL(em)) {
3118                 BUG_ON(*em_cached);
3119                 refcount_inc(&em->refs);
3120                 *em_cached = em;
3121         }
3122         return em;
3123 }
3124 /*
3125  * basic readpage implementation.  Locked extent state structs are inserted
3126  * into the tree that are removed when the IO is done (by the end_io
3127  * handlers)
3128  * XXX JDM: This needs looking at to ensure proper page locking
3129  * return 0 on success, otherwise return error
3130  */
3131 static int __do_readpage(struct page *page,
3132                          get_extent_t *get_extent,
3133                          struct extent_map **em_cached,
3134                          struct bio **bio, int mirror_num,
3135                          unsigned long *bio_flags, unsigned int read_flags,
3136                          u64 *prev_em_start)
3137 {
3138         struct inode *inode = page->mapping->host;
3139         u64 start = page_offset(page);
3140         const u64 end = start + PAGE_SIZE - 1;
3141         u64 cur = start;
3142         u64 extent_offset;
3143         u64 last_byte = i_size_read(inode);
3144         u64 block_start;
3145         u64 cur_end;
3146         struct extent_map *em;
3147         int ret = 0;
3148         int nr = 0;
3149         size_t pg_offset = 0;
3150         size_t iosize;
3151         size_t disk_io_size;
3152         size_t blocksize = inode->i_sb->s_blocksize;
3153         unsigned long this_bio_flag = 0;
3154         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3155
3156         set_page_extent_mapped(page);
3157
3158         if (!PageUptodate(page)) {
3159                 if (cleancache_get_page(page) == 0) {
3160                         BUG_ON(blocksize != PAGE_SIZE);
3161                         unlock_extent(tree, start, end);
3162                         goto out;
3163                 }
3164         }
3165
3166         if (page->index == last_byte >> PAGE_SHIFT) {
3167                 char *userpage;
3168                 size_t zero_offset = offset_in_page(last_byte);
3169
3170                 if (zero_offset) {
3171                         iosize = PAGE_SIZE - zero_offset;
3172                         userpage = kmap_atomic(page);
3173                         memset(userpage + zero_offset, 0, iosize);
3174                         flush_dcache_page(page);
3175                         kunmap_atomic(userpage);
3176                 }
3177         }
3178         while (cur <= end) {
3179                 bool force_bio_submit = false;
3180                 u64 offset;
3181
3182                 if (cur >= last_byte) {
3183                         char *userpage;
3184                         struct extent_state *cached = NULL;
3185
3186                         iosize = PAGE_SIZE - pg_offset;
3187                         userpage = kmap_atomic(page);
3188                         memset(userpage + pg_offset, 0, iosize);
3189                         flush_dcache_page(page);
3190                         kunmap_atomic(userpage);
3191                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3192                                             &cached, GFP_NOFS);
3193                         unlock_extent_cached(tree, cur,
3194                                              cur + iosize - 1, &cached);
3195                         break;
3196                 }
3197                 em = __get_extent_map(inode, page, pg_offset, cur,
3198                                       end - cur + 1, get_extent, em_cached);
3199                 if (IS_ERR_OR_NULL(em)) {
3200                         SetPageError(page);
3201                         unlock_extent(tree, cur, end);
3202                         break;
3203                 }
3204                 extent_offset = cur - em->start;
3205                 BUG_ON(extent_map_end(em) <= cur);
3206                 BUG_ON(end < cur);
3207
3208                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3209                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3210                         extent_set_compress_type(&this_bio_flag,
3211                                                  em->compress_type);
3212                 }
3213
3214                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3215                 cur_end = min(extent_map_end(em) - 1, end);
3216                 iosize = ALIGN(iosize, blocksize);
3217                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3218                         disk_io_size = em->block_len;
3219                         offset = em->block_start;
3220                 } else {
3221                         offset = em->block_start + extent_offset;
3222                         disk_io_size = iosize;
3223                 }
3224                 block_start = em->block_start;
3225                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3226                         block_start = EXTENT_MAP_HOLE;
3227
3228                 /*
3229                  * If we have a file range that points to a compressed extent
3230                  * and it's followed by a consecutive file range that points to
3231                  * to the same compressed extent (possibly with a different
3232                  * offset and/or length, so it either points to the whole extent
3233                  * or only part of it), we must make sure we do not submit a
3234                  * single bio to populate the pages for the 2 ranges because
3235                  * this makes the compressed extent read zero out the pages
3236                  * belonging to the 2nd range. Imagine the following scenario:
3237                  *
3238                  *  File layout
3239                  *  [0 - 8K]                     [8K - 24K]
3240                  *    |                               |
3241                  *    |                               |
3242                  * points to extent X,         points to extent X,
3243                  * offset 4K, length of 8K     offset 0, length 16K
3244                  *
3245                  * [extent X, compressed length = 4K uncompressed length = 16K]
3246                  *
3247                  * If the bio to read the compressed extent covers both ranges,
3248                  * it will decompress extent X into the pages belonging to the
3249                  * first range and then it will stop, zeroing out the remaining
3250                  * pages that belong to the other range that points to extent X.
3251                  * So here we make sure we submit 2 bios, one for the first
3252                  * range and another one for the third range. Both will target
3253                  * the same physical extent from disk, but we can't currently
3254                  * make the compressed bio endio callback populate the pages
3255                  * for both ranges because each compressed bio is tightly
3256                  * coupled with a single extent map, and each range can have
3257                  * an extent map with a different offset value relative to the
3258                  * uncompressed data of our extent and different lengths. This
3259                  * is a corner case so we prioritize correctness over
3260                  * non-optimal behavior (submitting 2 bios for the same extent).
3261                  */
3262                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3263                     prev_em_start && *prev_em_start != (u64)-1 &&
3264                     *prev_em_start != em->start)
3265                         force_bio_submit = true;
3266
3267                 if (prev_em_start)
3268                         *prev_em_start = em->start;
3269
3270                 free_extent_map(em);
3271                 em = NULL;
3272
3273                 /* we've found a hole, just zero and go on */
3274                 if (block_start == EXTENT_MAP_HOLE) {
3275                         char *userpage;
3276                         struct extent_state *cached = NULL;
3277
3278                         userpage = kmap_atomic(page);
3279                         memset(userpage + pg_offset, 0, iosize);
3280                         flush_dcache_page(page);
3281                         kunmap_atomic(userpage);
3282
3283                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3284                                             &cached, GFP_NOFS);
3285                         unlock_extent_cached(tree, cur,
3286                                              cur + iosize - 1, &cached);
3287                         cur = cur + iosize;
3288                         pg_offset += iosize;
3289                         continue;
3290                 }
3291                 /* the get_extent function already copied into the page */
3292                 if (test_range_bit(tree, cur, cur_end,
3293                                    EXTENT_UPTODATE, 1, NULL)) {
3294                         check_page_uptodate(tree, page);
3295                         unlock_extent(tree, cur, cur + iosize - 1);
3296                         cur = cur + iosize;
3297                         pg_offset += iosize;
3298                         continue;
3299                 }
3300                 /* we have an inline extent but it didn't get marked up
3301                  * to date.  Error out
3302                  */
3303                 if (block_start == EXTENT_MAP_INLINE) {
3304                         SetPageError(page);
3305                         unlock_extent(tree, cur, cur + iosize - 1);
3306                         cur = cur + iosize;
3307                         pg_offset += iosize;
3308                         continue;
3309                 }
3310
3311                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3312                                          page, offset, disk_io_size,
3313                                          pg_offset, bio,
3314                                          end_bio_extent_readpage, mirror_num,
3315                                          *bio_flags,
3316                                          this_bio_flag,
3317                                          force_bio_submit);
3318                 if (!ret) {
3319                         nr++;
3320                         *bio_flags = this_bio_flag;
3321                 } else {
3322                         SetPageError(page);
3323                         unlock_extent(tree, cur, cur + iosize - 1);
3324                         goto out;
3325                 }
3326                 cur = cur + iosize;
3327                 pg_offset += iosize;
3328         }
3329 out:
3330         if (!nr) {
3331                 if (!PageError(page))
3332                         SetPageUptodate(page);
3333                 unlock_page(page);
3334         }
3335         return ret;
3336 }
3337
3338 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3339                                              u64 start, u64 end,
3340                                              struct extent_map **em_cached,
3341                                              struct bio **bio,
3342                                              unsigned long *bio_flags,
3343                                              u64 *prev_em_start)
3344 {
3345         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3346         int index;
3347
3348         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3349
3350         for (index = 0; index < nr_pages; index++) {
3351                 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3352                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3353                 put_page(pages[index]);
3354         }
3355 }
3356
3357 static int __extent_read_full_page(struct page *page,
3358                                    get_extent_t *get_extent,
3359                                    struct bio **bio, int mirror_num,
3360                                    unsigned long *bio_flags,
3361                                    unsigned int read_flags)
3362 {
3363         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3364         u64 start = page_offset(page);
3365         u64 end = start + PAGE_SIZE - 1;
3366         int ret;
3367
3368         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3369
3370         ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3371                             bio_flags, read_flags, NULL);
3372         return ret;
3373 }
3374
3375 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3376                           int mirror_num)
3377 {
3378         struct bio *bio = NULL;
3379         unsigned long bio_flags = 0;
3380         int ret;
3381
3382         ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3383                                       &bio_flags, 0);
3384         if (bio)
3385                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3386         return ret;
3387 }
3388
3389 static void update_nr_written(struct writeback_control *wbc,
3390                               unsigned long nr_written)
3391 {
3392         wbc->nr_to_write -= nr_written;
3393 }
3394
3395 /*
3396  * helper for __extent_writepage, doing all of the delayed allocation setup.
3397  *
3398  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3399  * to write the page (copy into inline extent).  In this case the IO has
3400  * been started and the page is already unlocked.
3401  *
3402  * This returns 0 if all went well (page still locked)
3403  * This returns < 0 if there were errors (page still locked)
3404  */
3405 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3406                 struct page *page, struct writeback_control *wbc,
3407                 u64 delalloc_start, unsigned long *nr_written)
3408 {
3409         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3410         bool found;
3411         u64 delalloc_to_write = 0;
3412         u64 delalloc_end = 0;
3413         int ret;
3414         int page_started = 0;
3415
3416
3417         while (delalloc_end < page_end) {
3418                 found = find_lock_delalloc_range(inode, page,
3419                                                &delalloc_start,
3420                                                &delalloc_end);
3421                 if (!found) {
3422                         delalloc_start = delalloc_end + 1;
3423                         continue;
3424                 }
3425                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3426                                 delalloc_end, &page_started, nr_written, wbc);
3427                 if (ret) {
3428                         SetPageError(page);
3429                         /*
3430                          * btrfs_run_delalloc_range should return < 0 for error
3431                          * but just in case, we use > 0 here meaning the IO is
3432                          * started, so we don't want to return > 0 unless
3433                          * things are going well.
3434                          */
3435                         ret = ret < 0 ? ret : -EIO;
3436                         goto done;
3437                 }
3438                 /*
3439                  * delalloc_end is already one less than the total length, so
3440                  * we don't subtract one from PAGE_SIZE
3441                  */
3442                 delalloc_to_write += (delalloc_end - delalloc_start +
3443                                       PAGE_SIZE) >> PAGE_SHIFT;
3444                 delalloc_start = delalloc_end + 1;
3445         }
3446         if (wbc->nr_to_write < delalloc_to_write) {
3447                 int thresh = 8192;
3448
3449                 if (delalloc_to_write < thresh * 2)
3450                         thresh = delalloc_to_write;
3451                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3452                                          thresh);
3453         }
3454
3455         /* did the fill delalloc function already unlock and start
3456          * the IO?
3457          */
3458         if (page_started) {
3459                 /*
3460                  * we've unlocked the page, so we can't update
3461                  * the mapping's writeback index, just update
3462                  * nr_to_write.
3463                  */
3464                 wbc->nr_to_write -= *nr_written;
3465                 return 1;
3466         }
3467
3468         ret = 0;
3469
3470 done:
3471         return ret;
3472 }
3473
3474 /*
3475  * helper for __extent_writepage.  This calls the writepage start hooks,
3476  * and does the loop to map the page into extents and bios.
3477  *
3478  * We return 1 if the IO is started and the page is unlocked,
3479  * 0 if all went well (page still locked)
3480  * < 0 if there were errors (page still locked)
3481  */
3482 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3483                                  struct page *page,
3484                                  struct writeback_control *wbc,
3485                                  struct extent_page_data *epd,
3486                                  loff_t i_size,
3487                                  unsigned long nr_written,
3488                                  int *nr_ret)
3489 {
3490         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3491         u64 start = page_offset(page);
3492         u64 page_end = start + PAGE_SIZE - 1;
3493         u64 end;
3494         u64 cur = start;
3495         u64 extent_offset;
3496         u64 block_start;
3497         u64 iosize;
3498         struct extent_map *em;
3499         size_t pg_offset = 0;
3500         size_t blocksize;
3501         int ret = 0;
3502         int nr = 0;
3503         const unsigned int write_flags = wbc_to_write_flags(wbc);
3504         bool compressed;
3505
3506         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3507         if (ret) {
3508                 /* Fixup worker will requeue */
3509                 redirty_page_for_writepage(wbc, page);
3510                 update_nr_written(wbc, nr_written);
3511                 unlock_page(page);
3512                 return 1;
3513         }
3514
3515         /*
3516          * we don't want to touch the inode after unlocking the page,
3517          * so we update the mapping writeback index now
3518          */
3519         update_nr_written(wbc, nr_written + 1);
3520
3521         end = page_end;
3522         blocksize = inode->i_sb->s_blocksize;
3523
3524         while (cur <= end) {
3525                 u64 em_end;
3526                 u64 offset;
3527
3528                 if (cur >= i_size) {
3529                         btrfs_writepage_endio_finish_ordered(page, cur,
3530                                                              page_end, 1);
3531                         break;
3532                 }
3533                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3534                                       end - cur + 1);
3535                 if (IS_ERR_OR_NULL(em)) {
3536                         SetPageError(page);
3537                         ret = PTR_ERR_OR_ZERO(em);
3538                         break;
3539                 }
3540
3541                 extent_offset = cur - em->start;
3542                 em_end = extent_map_end(em);
3543                 BUG_ON(em_end <= cur);
3544                 BUG_ON(end < cur);
3545                 iosize = min(em_end - cur, end - cur + 1);
3546                 iosize = ALIGN(iosize, blocksize);
3547                 offset = em->block_start + extent_offset;
3548                 block_start = em->block_start;
3549                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3550                 free_extent_map(em);
3551                 em = NULL;
3552
3553                 /*
3554                  * compressed and inline extents are written through other
3555                  * paths in the FS
3556                  */
3557                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3558                     block_start == EXTENT_MAP_INLINE) {
3559                         if (compressed)
3560                                 nr++;
3561                         else
3562                                 btrfs_writepage_endio_finish_ordered(page, cur,
3563                                                         cur + iosize - 1, 1);
3564                         cur += iosize;
3565                         pg_offset += iosize;
3566                         continue;
3567                 }
3568
3569                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3570                 if (!PageWriteback(page)) {
3571                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3572                                    "page %lu not writeback, cur %llu end %llu",
3573                                page->index, cur, end);
3574                 }
3575
3576                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3577                                          page, offset, iosize, pg_offset,
3578                                          &epd->bio,
3579                                          end_bio_extent_writepage,
3580                                          0, 0, 0, false);
3581                 if (ret) {
3582                         SetPageError(page);
3583                         if (PageWriteback(page))
3584                                 end_page_writeback(page);
3585                 }
3586
3587                 cur = cur + iosize;
3588                 pg_offset += iosize;
3589                 nr++;
3590         }
3591         *nr_ret = nr;
3592         return ret;
3593 }
3594
3595 /*
3596  * the writepage semantics are similar to regular writepage.  extent
3597  * records are inserted to lock ranges in the tree, and as dirty areas
3598  * are found, they are marked writeback.  Then the lock bits are removed
3599  * and the end_io handler clears the writeback ranges
3600  *
3601  * Return 0 if everything goes well.
3602  * Return <0 for error.
3603  */
3604 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3605                               struct extent_page_data *epd)
3606 {
3607         struct inode *inode = page->mapping->host;
3608         u64 start = page_offset(page);
3609         u64 page_end = start + PAGE_SIZE - 1;
3610         int ret;
3611         int nr = 0;
3612         size_t pg_offset;
3613         loff_t i_size = i_size_read(inode);
3614         unsigned long end_index = i_size >> PAGE_SHIFT;
3615         unsigned long nr_written = 0;
3616
3617         trace___extent_writepage(page, inode, wbc);
3618
3619         WARN_ON(!PageLocked(page));
3620
3621         ClearPageError(page);
3622
3623         pg_offset = offset_in_page(i_size);
3624         if (page->index > end_index ||
3625            (page->index == end_index && !pg_offset)) {
3626                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3627                 unlock_page(page);
3628                 return 0;
3629         }
3630
3631         if (page->index == end_index) {
3632                 char *userpage;
3633
3634                 userpage = kmap_atomic(page);
3635                 memset(userpage + pg_offset, 0,
3636                        PAGE_SIZE - pg_offset);
3637                 kunmap_atomic(userpage);
3638                 flush_dcache_page(page);
3639         }
3640
3641         set_page_extent_mapped(page);
3642
3643         if (!epd->extent_locked) {
3644                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3645                 if (ret == 1)
3646                         return 0;
3647                 if (ret)
3648                         goto done;
3649         }
3650
3651         ret = __extent_writepage_io(inode, page, wbc, epd,
3652                                     i_size, nr_written, &nr);
3653         if (ret == 1)
3654                 return 0;
3655
3656 done:
3657         if (nr == 0) {
3658                 /* make sure the mapping tag for page dirty gets cleared */
3659                 set_page_writeback(page);
3660                 end_page_writeback(page);
3661         }
3662         if (PageError(page)) {
3663                 ret = ret < 0 ? ret : -EIO;
3664                 end_extent_writepage(page, ret, start, page_end);
3665         }
3666         unlock_page(page);
3667         ASSERT(ret <= 0);
3668         return ret;
3669 }
3670
3671 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3672 {
3673         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3674                        TASK_UNINTERRUPTIBLE);
3675 }
3676
3677 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3678 {
3679         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3680         smp_mb__after_atomic();
3681         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3682 }
3683
3684 /*
3685  * Lock eb pages and flush the bio if we can't the locks
3686  *
3687  * Return  0 if nothing went wrong
3688  * Return >0 is same as 0, except bio is not submitted
3689  * Return <0 if something went wrong, no page is locked
3690  */
3691 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3692                           struct extent_page_data *epd)
3693 {
3694         struct btrfs_fs_info *fs_info = eb->fs_info;
3695         int i, num_pages, failed_page_nr;
3696         int flush = 0;
3697         int ret = 0;
3698
3699         if (!btrfs_try_tree_write_lock(eb)) {
3700                 ret = flush_write_bio(epd);
3701                 if (ret < 0)
3702                         return ret;
3703                 flush = 1;
3704                 btrfs_tree_lock(eb);
3705         }
3706
3707         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3708                 btrfs_tree_unlock(eb);
3709                 if (!epd->sync_io)
3710                         return 0;
3711                 if (!flush) {
3712                         ret = flush_write_bio(epd);
3713                         if (ret < 0)
3714                                 return ret;
3715                         flush = 1;
3716                 }
3717                 while (1) {
3718                         wait_on_extent_buffer_writeback(eb);
3719                         btrfs_tree_lock(eb);
3720                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3721                                 break;
3722                         btrfs_tree_unlock(eb);
3723                 }
3724         }
3725
3726         /*
3727          * We need to do this to prevent races in people who check if the eb is
3728          * under IO since we can end up having no IO bits set for a short period
3729          * of time.
3730          */
3731         spin_lock(&eb->refs_lock);
3732         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3733                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3734                 spin_unlock(&eb->refs_lock);
3735                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3736                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3737                                          -eb->len,
3738                                          fs_info->dirty_metadata_batch);
3739                 ret = 1;
3740         } else {
3741                 spin_unlock(&eb->refs_lock);
3742         }
3743
3744         btrfs_tree_unlock(eb);
3745
3746         if (!ret)
3747                 return ret;
3748
3749         num_pages = num_extent_pages(eb);
3750         for (i = 0; i < num_pages; i++) {
3751                 struct page *p = eb->pages[i];
3752
3753                 if (!trylock_page(p)) {
3754                         if (!flush) {
3755                                 int err;
3756
3757                                 err = flush_write_bio(epd);
3758                                 if (err < 0) {
3759                                         ret = err;
3760                                         failed_page_nr = i;
3761                                         goto err_unlock;
3762                                 }
3763                                 flush = 1;
3764                         }
3765                         lock_page(p);
3766                 }
3767         }
3768
3769         return ret;
3770 err_unlock:
3771         /* Unlock already locked pages */
3772         for (i = 0; i < failed_page_nr; i++)
3773                 unlock_page(eb->pages[i]);
3774         /*
3775          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3776          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3777          * be made and undo everything done before.
3778          */
3779         btrfs_tree_lock(eb);
3780         spin_lock(&eb->refs_lock);
3781         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3782         end_extent_buffer_writeback(eb);
3783         spin_unlock(&eb->refs_lock);
3784         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3785                                  fs_info->dirty_metadata_batch);
3786         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3787         btrfs_tree_unlock(eb);
3788         return ret;
3789 }
3790
3791 static void set_btree_ioerr(struct page *page)
3792 {
3793         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3794         struct btrfs_fs_info *fs_info;
3795
3796         SetPageError(page);
3797         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3798                 return;
3799
3800         /*
3801          * If we error out, we should add back the dirty_metadata_bytes
3802          * to make it consistent.
3803          */
3804         fs_info = eb->fs_info;
3805         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3806                                  eb->len, fs_info->dirty_metadata_batch);
3807
3808         /*
3809          * If writeback for a btree extent that doesn't belong to a log tree
3810          * failed, increment the counter transaction->eb_write_errors.
3811          * We do this because while the transaction is running and before it's
3812          * committing (when we call filemap_fdata[write|wait]_range against
3813          * the btree inode), we might have
3814          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3815          * returns an error or an error happens during writeback, when we're
3816          * committing the transaction we wouldn't know about it, since the pages
3817          * can be no longer dirty nor marked anymore for writeback (if a
3818          * subsequent modification to the extent buffer didn't happen before the
3819          * transaction commit), which makes filemap_fdata[write|wait]_range not
3820          * able to find the pages tagged with SetPageError at transaction
3821          * commit time. So if this happens we must abort the transaction,
3822          * otherwise we commit a super block with btree roots that point to
3823          * btree nodes/leafs whose content on disk is invalid - either garbage
3824          * or the content of some node/leaf from a past generation that got
3825          * cowed or deleted and is no longer valid.
3826          *
3827          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3828          * not be enough - we need to distinguish between log tree extents vs
3829          * non-log tree extents, and the next filemap_fdatawait_range() call
3830          * will catch and clear such errors in the mapping - and that call might
3831          * be from a log sync and not from a transaction commit. Also, checking
3832          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3833          * not done and would not be reliable - the eb might have been released
3834          * from memory and reading it back again means that flag would not be
3835          * set (since it's a runtime flag, not persisted on disk).
3836          *
3837          * Using the flags below in the btree inode also makes us achieve the
3838          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3839          * writeback for all dirty pages and before filemap_fdatawait_range()
3840          * is called, the writeback for all dirty pages had already finished
3841          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3842          * filemap_fdatawait_range() would return success, as it could not know
3843          * that writeback errors happened (the pages were no longer tagged for
3844          * writeback).
3845          */
3846         switch (eb->log_index) {
3847         case -1:
3848                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3849                 break;
3850         case 0:
3851                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3852                 break;
3853         case 1:
3854                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3855                 break;
3856         default:
3857                 BUG(); /* unexpected, logic error */
3858         }
3859 }
3860
3861 static void end_bio_extent_buffer_writepage(struct bio *bio)
3862 {
3863         struct bio_vec *bvec;
3864         struct extent_buffer *eb;
3865         int done;
3866         struct bvec_iter_all iter_all;
3867
3868         ASSERT(!bio_flagged(bio, BIO_CLONED));
3869         bio_for_each_segment_all(bvec, bio, iter_all) {
3870                 struct page *page = bvec->bv_page;
3871
3872                 eb = (struct extent_buffer *)page->private;
3873                 BUG_ON(!eb);
3874                 done = atomic_dec_and_test(&eb->io_pages);
3875
3876                 if (bio->bi_status ||
3877                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3878                         ClearPageUptodate(page);
3879                         set_btree_ioerr(page);
3880                 }
3881
3882                 end_page_writeback(page);
3883
3884                 if (!done)
3885                         continue;
3886
3887                 end_extent_buffer_writeback(eb);
3888         }
3889
3890         bio_put(bio);
3891 }
3892
3893 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3894                         struct writeback_control *wbc,
3895                         struct extent_page_data *epd)
3896 {
3897         u64 offset = eb->start;
3898         u32 nritems;
3899         int i, num_pages;
3900         unsigned long start, end;
3901         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3902         int ret = 0;
3903
3904         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3905         num_pages = num_extent_pages(eb);
3906         atomic_set(&eb->io_pages, num_pages);
3907
3908         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3909         nritems = btrfs_header_nritems(eb);
3910         if (btrfs_header_level(eb) > 0) {
3911                 end = btrfs_node_key_ptr_offset(nritems);
3912
3913                 memzero_extent_buffer(eb, end, eb->len - end);
3914         } else {
3915                 /*
3916                  * leaf:
3917                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3918                  */
3919                 start = btrfs_item_nr_offset(nritems);
3920                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3921                 memzero_extent_buffer(eb, start, end - start);
3922         }
3923
3924         for (i = 0; i < num_pages; i++) {
3925                 struct page *p = eb->pages[i];
3926
3927                 clear_page_dirty_for_io(p);
3928                 set_page_writeback(p);
3929                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3930                                          p, offset, PAGE_SIZE, 0,
3931                                          &epd->bio,
3932                                          end_bio_extent_buffer_writepage,
3933                                          0, 0, 0, false);
3934                 if (ret) {
3935                         set_btree_ioerr(p);
3936                         if (PageWriteback(p))
3937                                 end_page_writeback(p);
3938                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3939                                 end_extent_buffer_writeback(eb);
3940                         ret = -EIO;
3941                         break;
3942                 }
3943                 offset += PAGE_SIZE;
3944                 update_nr_written(wbc, 1);
3945                 unlock_page(p);
3946         }
3947
3948         if (unlikely(ret)) {
3949                 for (; i < num_pages; i++) {
3950                         struct page *p = eb->pages[i];
3951                         clear_page_dirty_for_io(p);
3952                         unlock_page(p);
3953                 }
3954         }
3955
3956         return ret;
3957 }
3958
3959 int btree_write_cache_pages(struct address_space *mapping,
3960                                    struct writeback_control *wbc)
3961 {
3962         struct extent_buffer *eb, *prev_eb = NULL;
3963         struct extent_page_data epd = {
3964                 .bio = NULL,
3965                 .extent_locked = 0,
3966                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3967         };
3968         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3969         int ret = 0;
3970         int done = 0;
3971         int nr_to_write_done = 0;
3972         struct pagevec pvec;
3973         int nr_pages;
3974         pgoff_t index;
3975         pgoff_t end;            /* Inclusive */
3976         int scanned = 0;
3977         xa_mark_t tag;
3978
3979         pagevec_init(&pvec);
3980         if (wbc->range_cyclic) {
3981                 index = mapping->writeback_index; /* Start from prev offset */
3982                 end = -1;
3983                 /*
3984                  * Start from the beginning does not need to cycle over the
3985                  * range, mark it as scanned.
3986                  */
3987                 scanned = (index == 0);
3988         } else {
3989                 index = wbc->range_start >> PAGE_SHIFT;
3990                 end = wbc->range_end >> PAGE_SHIFT;
3991                 scanned = 1;
3992         }
3993         if (wbc->sync_mode == WB_SYNC_ALL)
3994                 tag = PAGECACHE_TAG_TOWRITE;
3995         else
3996                 tag = PAGECACHE_TAG_DIRTY;
3997 retry:
3998         if (wbc->sync_mode == WB_SYNC_ALL)
3999                 tag_pages_for_writeback(mapping, index, end);
4000         while (!done && !nr_to_write_done && (index <= end) &&
4001                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4002                         tag))) {
4003                 unsigned i;
4004
4005                 for (i = 0; i < nr_pages; i++) {
4006                         struct page *page = pvec.pages[i];
4007
4008                         if (!PagePrivate(page))
4009                                 continue;
4010
4011                         spin_lock(&mapping->private_lock);
4012                         if (!PagePrivate(page)) {
4013                                 spin_unlock(&mapping->private_lock);
4014                                 continue;
4015                         }
4016
4017                         eb = (struct extent_buffer *)page->private;
4018
4019                         /*
4020                          * Shouldn't happen and normally this would be a BUG_ON
4021                          * but no sense in crashing the users box for something
4022                          * we can survive anyway.
4023                          */
4024                         if (WARN_ON(!eb)) {
4025                                 spin_unlock(&mapping->private_lock);
4026                                 continue;
4027                         }
4028
4029                         if (eb == prev_eb) {
4030                                 spin_unlock(&mapping->private_lock);
4031                                 continue;
4032                         }
4033
4034                         ret = atomic_inc_not_zero(&eb->refs);
4035                         spin_unlock(&mapping->private_lock);
4036                         if (!ret)
4037                                 continue;
4038
4039                         prev_eb = eb;
4040                         ret = lock_extent_buffer_for_io(eb, &epd);
4041                         if (!ret) {
4042                                 free_extent_buffer(eb);
4043                                 continue;
4044                         } else if (ret < 0) {
4045                                 done = 1;
4046                                 free_extent_buffer(eb);
4047                                 break;
4048                         }
4049
4050                         ret = write_one_eb(eb, wbc, &epd);
4051                         if (ret) {
4052                                 done = 1;
4053                                 free_extent_buffer(eb);
4054                                 break;
4055                         }
4056                         free_extent_buffer(eb);
4057
4058                         /*
4059                          * the filesystem may choose to bump up nr_to_write.
4060                          * We have to make sure to honor the new nr_to_write
4061                          * at any time
4062                          */
4063                         nr_to_write_done = wbc->nr_to_write <= 0;
4064                 }
4065                 pagevec_release(&pvec);
4066                 cond_resched();
4067         }
4068         if (!scanned && !done) {
4069                 /*
4070                  * We hit the last page and there is more work to be done: wrap
4071                  * back to the start of the file
4072                  */
4073                 scanned = 1;
4074                 index = 0;
4075                 goto retry;
4076         }
4077         ASSERT(ret <= 0);
4078         if (ret < 0) {
4079                 end_write_bio(&epd, ret);
4080                 return ret;
4081         }
4082         /*
4083          * If something went wrong, don't allow any metadata write bio to be
4084          * submitted.
4085          *
4086          * This would prevent use-after-free if we had dirty pages not
4087          * cleaned up, which can still happen by fuzzed images.
4088          *
4089          * - Bad extent tree
4090          *   Allowing existing tree block to be allocated for other trees.
4091          *
4092          * - Log tree operations
4093          *   Exiting tree blocks get allocated to log tree, bumps its
4094          *   generation, then get cleaned in tree re-balance.
4095          *   Such tree block will not be written back, since it's clean,
4096          *   thus no WRITTEN flag set.
4097          *   And after log writes back, this tree block is not traced by
4098          *   any dirty extent_io_tree.
4099          *
4100          * - Offending tree block gets re-dirtied from its original owner
4101          *   Since it has bumped generation, no WRITTEN flag, it can be
4102          *   reused without COWing. This tree block will not be traced
4103          *   by btrfs_transaction::dirty_pages.
4104          *
4105          *   Now such dirty tree block will not be cleaned by any dirty
4106          *   extent io tree. Thus we don't want to submit such wild eb
4107          *   if the fs already has error.
4108          */
4109         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4110                 ret = flush_write_bio(&epd);
4111         } else {
4112                 ret = -EUCLEAN;
4113                 end_write_bio(&epd, ret);
4114         }
4115         return ret;
4116 }
4117
4118 /**
4119  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4120  * @mapping: address space structure to write
4121  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4122  * @data: data passed to __extent_writepage function
4123  *
4124  * If a page is already under I/O, write_cache_pages() skips it, even
4125  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4126  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4127  * and msync() need to guarantee that all the data which was dirty at the time
4128  * the call was made get new I/O started against them.  If wbc->sync_mode is
4129  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4130  * existing IO to complete.
4131  */
4132 static int extent_write_cache_pages(struct address_space *mapping,
4133                              struct writeback_control *wbc,
4134                              struct extent_page_data *epd)
4135 {
4136         struct inode *inode = mapping->host;
4137         int ret = 0;
4138         int done = 0;
4139         int nr_to_write_done = 0;
4140         struct pagevec pvec;
4141         int nr_pages;
4142         pgoff_t index;
4143         pgoff_t end;            /* Inclusive */
4144         pgoff_t done_index;
4145         int range_whole = 0;
4146         int scanned = 0;
4147         xa_mark_t tag;
4148
4149         /*
4150          * We have to hold onto the inode so that ordered extents can do their
4151          * work when the IO finishes.  The alternative to this is failing to add
4152          * an ordered extent if the igrab() fails there and that is a huge pain
4153          * to deal with, so instead just hold onto the inode throughout the
4154          * writepages operation.  If it fails here we are freeing up the inode
4155          * anyway and we'd rather not waste our time writing out stuff that is
4156          * going to be truncated anyway.
4157          */
4158         if (!igrab(inode))
4159                 return 0;
4160
4161         pagevec_init(&pvec);
4162         if (wbc->range_cyclic) {
4163                 index = mapping->writeback_index; /* Start from prev offset */
4164                 end = -1;
4165                 /*
4166                  * Start from the beginning does not need to cycle over the
4167                  * range, mark it as scanned.
4168                  */
4169                 scanned = (index == 0);
4170         } else {
4171                 index = wbc->range_start >> PAGE_SHIFT;
4172                 end = wbc->range_end >> PAGE_SHIFT;
4173                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4174                         range_whole = 1;
4175                 scanned = 1;
4176         }
4177
4178         /*
4179          * We do the tagged writepage as long as the snapshot flush bit is set
4180          * and we are the first one who do the filemap_flush() on this inode.
4181          *
4182          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4183          * not race in and drop the bit.
4184          */
4185         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4186             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4187                                &BTRFS_I(inode)->runtime_flags))
4188                 wbc->tagged_writepages = 1;
4189
4190         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4191                 tag = PAGECACHE_TAG_TOWRITE;
4192         else
4193                 tag = PAGECACHE_TAG_DIRTY;
4194 retry:
4195         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4196                 tag_pages_for_writeback(mapping, index, end);
4197         done_index = index;
4198         while (!done && !nr_to_write_done && (index <= end) &&
4199                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4200                                                 &index, end, tag))) {
4201                 unsigned i;
4202
4203                 for (i = 0; i < nr_pages; i++) {
4204                         struct page *page = pvec.pages[i];
4205
4206                         done_index = page->index + 1;
4207                         /*
4208                          * At this point we hold neither the i_pages lock nor
4209                          * the page lock: the page may be truncated or
4210                          * invalidated (changing page->mapping to NULL),
4211                          * or even swizzled back from swapper_space to
4212                          * tmpfs file mapping
4213                          */
4214                         if (!trylock_page(page)) {
4215                                 ret = flush_write_bio(epd);
4216                                 BUG_ON(ret < 0);
4217                                 lock_page(page);
4218                         }
4219
4220                         if (unlikely(page->mapping != mapping)) {
4221                                 unlock_page(page);
4222                                 continue;
4223                         }
4224
4225                         if (wbc->sync_mode != WB_SYNC_NONE) {
4226                                 if (PageWriteback(page)) {
4227                                         ret = flush_write_bio(epd);
4228                                         BUG_ON(ret < 0);
4229                                 }
4230                                 wait_on_page_writeback(page);
4231                         }
4232
4233                         if (PageWriteback(page) ||
4234                             !clear_page_dirty_for_io(page)) {
4235                                 unlock_page(page);
4236                                 continue;
4237                         }
4238
4239                         ret = __extent_writepage(page, wbc, epd);
4240                         if (ret < 0) {
4241                                 done = 1;
4242                                 break;
4243                         }
4244
4245                         /*
4246                          * the filesystem may choose to bump up nr_to_write.
4247                          * We have to make sure to honor the new nr_to_write
4248                          * at any time
4249                          */
4250                         nr_to_write_done = wbc->nr_to_write <= 0;
4251                 }
4252                 pagevec_release(&pvec);
4253                 cond_resched();
4254         }
4255         if (!scanned && !done) {
4256                 /*
4257                  * We hit the last page and there is more work to be done: wrap
4258                  * back to the start of the file
4259                  */
4260                 scanned = 1;
4261                 index = 0;
4262
4263                 /*
4264                  * If we're looping we could run into a page that is locked by a
4265                  * writer and that writer could be waiting on writeback for a
4266                  * page in our current bio, and thus deadlock, so flush the
4267                  * write bio here.
4268                  */
4269                 ret = flush_write_bio(epd);
4270                 if (!ret)
4271                         goto retry;
4272         }
4273
4274         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4275                 mapping->writeback_index = done_index;
4276
4277         btrfs_add_delayed_iput(inode);
4278         return ret;
4279 }
4280
4281 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4282 {
4283         int ret;
4284         struct extent_page_data epd = {
4285                 .bio = NULL,
4286                 .extent_locked = 0,
4287                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4288         };
4289
4290         ret = __extent_writepage(page, wbc, &epd);
4291         ASSERT(ret <= 0);
4292         if (ret < 0) {
4293                 end_write_bio(&epd, ret);
4294                 return ret;
4295         }
4296
4297         ret = flush_write_bio(&epd);
4298         ASSERT(ret <= 0);
4299         return ret;
4300 }
4301
4302 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4303                               int mode)
4304 {
4305         int ret = 0;
4306         struct address_space *mapping = inode->i_mapping;
4307         struct page *page;
4308         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4309                 PAGE_SHIFT;
4310
4311         struct extent_page_data epd = {
4312                 .bio = NULL,
4313                 .extent_locked = 1,
4314                 .sync_io = mode == WB_SYNC_ALL,
4315         };
4316         struct writeback_control wbc_writepages = {
4317                 .sync_mode      = mode,
4318                 .nr_to_write    = nr_pages * 2,
4319                 .range_start    = start,
4320                 .range_end      = end + 1,
4321                 /* We're called from an async helper function */
4322                 .punt_to_cgroup = 1,
4323                 .no_cgroup_owner = 1,
4324         };
4325
4326         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4327         while (start <= end) {
4328                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4329                 if (clear_page_dirty_for_io(page))
4330                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4331                 else {
4332                         btrfs_writepage_endio_finish_ordered(page, start,
4333                                                     start + PAGE_SIZE - 1, 1);
4334                         unlock_page(page);
4335                 }
4336                 put_page(page);
4337                 start += PAGE_SIZE;
4338         }
4339
4340         ASSERT(ret <= 0);
4341         if (ret == 0)
4342                 ret = flush_write_bio(&epd);
4343         else
4344                 end_write_bio(&epd, ret);
4345
4346         wbc_detach_inode(&wbc_writepages);
4347         return ret;
4348 }
4349
4350 int extent_writepages(struct address_space *mapping,
4351                       struct writeback_control *wbc)
4352 {
4353         int ret = 0;
4354         struct extent_page_data epd = {
4355                 .bio = NULL,
4356                 .extent_locked = 0,
4357                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4358         };
4359
4360         ret = extent_write_cache_pages(mapping, wbc, &epd);
4361         ASSERT(ret <= 0);
4362         if (ret < 0) {
4363                 end_write_bio(&epd, ret);
4364                 return ret;
4365         }
4366         ret = flush_write_bio(&epd);
4367         return ret;
4368 }
4369
4370 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4371                      unsigned nr_pages)
4372 {
4373         struct bio *bio = NULL;
4374         unsigned long bio_flags = 0;
4375         struct page *pagepool[16];
4376         struct extent_map *em_cached = NULL;
4377         int nr = 0;
4378         u64 prev_em_start = (u64)-1;
4379
4380         while (!list_empty(pages)) {
4381                 u64 contig_end = 0;
4382
4383                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4384                         struct page *page = lru_to_page(pages);
4385
4386                         prefetchw(&page->flags);
4387                         list_del(&page->lru);
4388                         if (add_to_page_cache_lru(page, mapping, page->index,
4389                                                 readahead_gfp_mask(mapping))) {
4390                                 put_page(page);
4391                                 break;
4392                         }
4393
4394                         pagepool[nr++] = page;
4395                         contig_end = page_offset(page) + PAGE_SIZE - 1;
4396                 }
4397
4398                 if (nr) {
4399                         u64 contig_start = page_offset(pagepool[0]);
4400
4401                         ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4402
4403                         contiguous_readpages(pagepool, nr, contig_start,
4404                                      contig_end, &em_cached, &bio, &bio_flags,
4405                                      &prev_em_start);
4406                 }
4407         }
4408
4409         if (em_cached)
4410                 free_extent_map(em_cached);
4411
4412         if (bio)
4413                 return submit_one_bio(bio, 0, bio_flags);
4414         return 0;
4415 }
4416
4417 /*
4418  * basic invalidatepage code, this waits on any locked or writeback
4419  * ranges corresponding to the page, and then deletes any extent state
4420  * records from the tree
4421  */
4422 int extent_invalidatepage(struct extent_io_tree *tree,
4423                           struct page *page, unsigned long offset)
4424 {
4425         struct extent_state *cached_state = NULL;
4426         u64 start = page_offset(page);
4427         u64 end = start + PAGE_SIZE - 1;
4428         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4429
4430         start += ALIGN(offset, blocksize);
4431         if (start > end)
4432                 return 0;
4433
4434         lock_extent_bits(tree, start, end, &cached_state);
4435         wait_on_page_writeback(page);
4436         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4437                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4438         return 0;
4439 }
4440
4441 /*
4442  * a helper for releasepage, this tests for areas of the page that
4443  * are locked or under IO and drops the related state bits if it is safe
4444  * to drop the page.
4445  */
4446 static int try_release_extent_state(struct extent_io_tree *tree,
4447                                     struct page *page, gfp_t mask)
4448 {
4449         u64 start = page_offset(page);
4450         u64 end = start + PAGE_SIZE - 1;
4451         int ret = 1;
4452
4453         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4454                 ret = 0;
4455         } else {
4456                 /*
4457                  * at this point we can safely clear everything except the
4458                  * locked bit and the nodatasum bit
4459                  */
4460                 ret = __clear_extent_bit(tree, start, end,
4461                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4462                                  0, 0, NULL, mask, NULL);
4463
4464                 /* if clear_extent_bit failed for enomem reasons,
4465                  * we can't allow the release to continue.
4466                  */
4467                 if (ret < 0)
4468                         ret = 0;
4469                 else
4470                         ret = 1;
4471         }
4472         return ret;
4473 }
4474
4475 /*
4476  * a helper for releasepage.  As long as there are no locked extents
4477  * in the range corresponding to the page, both state records and extent
4478  * map records are removed
4479  */
4480 int try_release_extent_mapping(struct page *page, gfp_t mask)
4481 {
4482         struct extent_map *em;
4483         u64 start = page_offset(page);
4484         u64 end = start + PAGE_SIZE - 1;
4485         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4486         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4487         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4488
4489         if (gfpflags_allow_blocking(mask) &&
4490             page->mapping->host->i_size > SZ_16M) {
4491                 u64 len;
4492                 while (start <= end) {
4493                         len = end - start + 1;
4494                         write_lock(&map->lock);
4495                         em = lookup_extent_mapping(map, start, len);
4496                         if (!em) {
4497                                 write_unlock(&map->lock);
4498                                 break;
4499                         }
4500                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4501                             em->start != start) {
4502                                 write_unlock(&map->lock);
4503                                 free_extent_map(em);
4504                                 break;
4505                         }
4506                         if (!test_range_bit(tree, em->start,
4507                                             extent_map_end(em) - 1,
4508                                             EXTENT_LOCKED, 0, NULL)) {
4509                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4510                                         &btrfs_inode->runtime_flags);
4511                                 remove_extent_mapping(map, em);
4512                                 /* once for the rb tree */
4513                                 free_extent_map(em);
4514                         }
4515                         start = extent_map_end(em);
4516                         write_unlock(&map->lock);
4517
4518                         /* once for us */
4519                         free_extent_map(em);
4520                 }
4521         }
4522         return try_release_extent_state(tree, page, mask);
4523 }
4524
4525 /*
4526  * helper function for fiemap, which doesn't want to see any holes.
4527  * This maps until we find something past 'last'
4528  */
4529 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4530                                                 u64 offset, u64 last)
4531 {
4532         u64 sectorsize = btrfs_inode_sectorsize(inode);
4533         struct extent_map *em;
4534         u64 len;
4535
4536         if (offset >= last)
4537                 return NULL;
4538
4539         while (1) {
4540                 len = last - offset;
4541                 if (len == 0)
4542                         break;
4543                 len = ALIGN(len, sectorsize);
4544                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4545                 if (IS_ERR_OR_NULL(em))
4546                         return em;
4547
4548                 /* if this isn't a hole return it */
4549                 if (em->block_start != EXTENT_MAP_HOLE)
4550                         return em;
4551
4552                 /* this is a hole, advance to the next extent */
4553                 offset = extent_map_end(em);
4554                 free_extent_map(em);
4555                 if (offset >= last)
4556                         break;
4557         }
4558         return NULL;
4559 }
4560
4561 /*
4562  * To cache previous fiemap extent
4563  *
4564  * Will be used for merging fiemap extent
4565  */
4566 struct fiemap_cache {
4567         u64 offset;
4568         u64 phys;
4569         u64 len;
4570         u32 flags;
4571         bool cached;
4572 };
4573
4574 /*
4575  * Helper to submit fiemap extent.
4576  *
4577  * Will try to merge current fiemap extent specified by @offset, @phys,
4578  * @len and @flags with cached one.
4579  * And only when we fails to merge, cached one will be submitted as
4580  * fiemap extent.
4581  *
4582  * Return value is the same as fiemap_fill_next_extent().
4583  */
4584 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4585                                 struct fiemap_cache *cache,
4586                                 u64 offset, u64 phys, u64 len, u32 flags)
4587 {
4588         int ret = 0;
4589
4590         if (!cache->cached)
4591                 goto assign;
4592
4593         /*
4594          * Sanity check, extent_fiemap() should have ensured that new
4595          * fiemap extent won't overlap with cached one.
4596          * Not recoverable.
4597          *
4598          * NOTE: Physical address can overlap, due to compression
4599          */
4600         if (cache->offset + cache->len > offset) {
4601                 WARN_ON(1);
4602                 return -EINVAL;
4603         }
4604
4605         /*
4606          * Only merges fiemap extents if
4607          * 1) Their logical addresses are continuous
4608          *
4609          * 2) Their physical addresses are continuous
4610          *    So truly compressed (physical size smaller than logical size)
4611          *    extents won't get merged with each other
4612          *
4613          * 3) Share same flags except FIEMAP_EXTENT_LAST
4614          *    So regular extent won't get merged with prealloc extent
4615          */
4616         if (cache->offset + cache->len  == offset &&
4617             cache->phys + cache->len == phys  &&
4618             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4619                         (flags & ~FIEMAP_EXTENT_LAST)) {
4620                 cache->len += len;
4621                 cache->flags |= flags;
4622                 goto try_submit_last;
4623         }
4624
4625         /* Not mergeable, need to submit cached one */
4626         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4627                                       cache->len, cache->flags);
4628         cache->cached = false;
4629         if (ret)
4630                 return ret;
4631 assign:
4632         cache->cached = true;
4633         cache->offset = offset;
4634         cache->phys = phys;
4635         cache->len = len;
4636         cache->flags = flags;
4637 try_submit_last:
4638         if (cache->flags & FIEMAP_EXTENT_LAST) {
4639                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4640                                 cache->phys, cache->len, cache->flags);
4641                 cache->cached = false;
4642         }
4643         return ret;
4644 }
4645
4646 /*
4647  * Emit last fiemap cache
4648  *
4649  * The last fiemap cache may still be cached in the following case:
4650  * 0                  4k                    8k
4651  * |<- Fiemap range ->|
4652  * |<------------  First extent ----------->|
4653  *
4654  * In this case, the first extent range will be cached but not emitted.
4655  * So we must emit it before ending extent_fiemap().
4656  */
4657 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4658                                   struct fiemap_cache *cache)
4659 {
4660         int ret;
4661
4662         if (!cache->cached)
4663                 return 0;
4664
4665         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4666                                       cache->len, cache->flags);
4667         cache->cached = false;
4668         if (ret > 0)
4669                 ret = 0;
4670         return ret;
4671 }
4672
4673 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4674                 __u64 start, __u64 len)
4675 {
4676         int ret = 0;
4677         u64 off = start;
4678         u64 max = start + len;
4679         u32 flags = 0;
4680         u32 found_type;
4681         u64 last;
4682         u64 last_for_get_extent = 0;
4683         u64 disko = 0;
4684         u64 isize = i_size_read(inode);
4685         struct btrfs_key found_key;
4686         struct extent_map *em = NULL;
4687         struct extent_state *cached_state = NULL;
4688         struct btrfs_path *path;
4689         struct btrfs_root *root = BTRFS_I(inode)->root;
4690         struct fiemap_cache cache = { 0 };
4691         struct ulist *roots;
4692         struct ulist *tmp_ulist;
4693         int end = 0;
4694         u64 em_start = 0;
4695         u64 em_len = 0;
4696         u64 em_end = 0;
4697
4698         if (len == 0)
4699                 return -EINVAL;
4700
4701         path = btrfs_alloc_path();
4702         if (!path)
4703                 return -ENOMEM;
4704         path->leave_spinning = 1;
4705
4706         roots = ulist_alloc(GFP_KERNEL);
4707         tmp_ulist = ulist_alloc(GFP_KERNEL);
4708         if (!roots || !tmp_ulist) {
4709                 ret = -ENOMEM;
4710                 goto out_free_ulist;
4711         }
4712
4713         start = round_down(start, btrfs_inode_sectorsize(inode));
4714         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4715
4716         /*
4717          * lookup the last file extent.  We're not using i_size here
4718          * because there might be preallocation past i_size
4719          */
4720         ret = btrfs_lookup_file_extent(NULL, root, path,
4721                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4722         if (ret < 0) {
4723                 goto out_free_ulist;
4724         } else {
4725                 WARN_ON(!ret);
4726                 if (ret == 1)
4727                         ret = 0;
4728         }
4729
4730         path->slots[0]--;
4731         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4732         found_type = found_key.type;
4733
4734         /* No extents, but there might be delalloc bits */
4735         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4736             found_type != BTRFS_EXTENT_DATA_KEY) {
4737                 /* have to trust i_size as the end */
4738                 last = (u64)-1;
4739                 last_for_get_extent = isize;
4740         } else {
4741                 /*
4742                  * remember the start of the last extent.  There are a
4743                  * bunch of different factors that go into the length of the
4744                  * extent, so its much less complex to remember where it started
4745                  */
4746                 last = found_key.offset;
4747                 last_for_get_extent = last + 1;
4748         }
4749         btrfs_release_path(path);
4750
4751         /*
4752          * we might have some extents allocated but more delalloc past those
4753          * extents.  so, we trust isize unless the start of the last extent is
4754          * beyond isize
4755          */
4756         if (last < isize) {
4757                 last = (u64)-1;
4758                 last_for_get_extent = isize;
4759         }
4760
4761         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4762                          &cached_state);
4763
4764         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4765         if (!em)
4766                 goto out;
4767         if (IS_ERR(em)) {
4768                 ret = PTR_ERR(em);
4769                 goto out;
4770         }
4771
4772         while (!end) {
4773                 u64 offset_in_extent = 0;
4774
4775                 /* break if the extent we found is outside the range */
4776                 if (em->start >= max || extent_map_end(em) < off)
4777                         break;
4778
4779                 /*
4780                  * get_extent may return an extent that starts before our
4781                  * requested range.  We have to make sure the ranges
4782                  * we return to fiemap always move forward and don't
4783                  * overlap, so adjust the offsets here
4784                  */
4785                 em_start = max(em->start, off);
4786
4787                 /*
4788                  * record the offset from the start of the extent
4789                  * for adjusting the disk offset below.  Only do this if the
4790                  * extent isn't compressed since our in ram offset may be past
4791                  * what we have actually allocated on disk.
4792                  */
4793                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4794                         offset_in_extent = em_start - em->start;
4795                 em_end = extent_map_end(em);
4796                 em_len = em_end - em_start;
4797                 flags = 0;
4798                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4799                         disko = em->block_start + offset_in_extent;
4800                 else
4801                         disko = 0;
4802
4803                 /*
4804                  * bump off for our next call to get_extent
4805                  */
4806                 off = extent_map_end(em);
4807                 if (off >= max)
4808                         end = 1;
4809
4810                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4811                         end = 1;
4812                         flags |= FIEMAP_EXTENT_LAST;
4813                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4814                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4815                                   FIEMAP_EXTENT_NOT_ALIGNED);
4816                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4817                         flags |= (FIEMAP_EXTENT_DELALLOC |
4818                                   FIEMAP_EXTENT_UNKNOWN);
4819                 } else if (fieinfo->fi_extents_max) {
4820                         u64 bytenr = em->block_start -
4821                                 (em->start - em->orig_start);
4822
4823                         /*
4824                          * As btrfs supports shared space, this information
4825                          * can be exported to userspace tools via
4826                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4827                          * then we're just getting a count and we can skip the
4828                          * lookup stuff.
4829                          */
4830                         ret = btrfs_check_shared(root,
4831                                                  btrfs_ino(BTRFS_I(inode)),
4832                                                  bytenr, roots, tmp_ulist);
4833                         if (ret < 0)
4834                                 goto out_free;
4835                         if (ret)
4836                                 flags |= FIEMAP_EXTENT_SHARED;
4837                         ret = 0;
4838                 }
4839                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4840                         flags |= FIEMAP_EXTENT_ENCODED;
4841                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4842                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4843
4844                 free_extent_map(em);
4845                 em = NULL;
4846                 if ((em_start >= last) || em_len == (u64)-1 ||
4847                    (last == (u64)-1 && isize <= em_end)) {
4848                         flags |= FIEMAP_EXTENT_LAST;
4849                         end = 1;
4850                 }
4851
4852                 /* now scan forward to see if this is really the last extent. */
4853                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4854                 if (IS_ERR(em)) {
4855                         ret = PTR_ERR(em);
4856                         goto out;
4857                 }
4858                 if (!em) {
4859                         flags |= FIEMAP_EXTENT_LAST;
4860                         end = 1;
4861                 }
4862                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4863                                            em_len, flags);
4864                 if (ret) {
4865                         if (ret == 1)
4866                                 ret = 0;
4867                         goto out_free;
4868                 }
4869         }
4870 out_free:
4871         if (!ret)
4872                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4873         free_extent_map(em);
4874 out:
4875         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4876                              &cached_state);
4877
4878 out_free_ulist:
4879         btrfs_free_path(path);
4880         ulist_free(roots);
4881         ulist_free(tmp_ulist);
4882         return ret;
4883 }
4884
4885 static void __free_extent_buffer(struct extent_buffer *eb)
4886 {
4887         kmem_cache_free(extent_buffer_cache, eb);
4888 }
4889
4890 int extent_buffer_under_io(struct extent_buffer *eb)
4891 {
4892         return (atomic_read(&eb->io_pages) ||
4893                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4894                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4895 }
4896
4897 /*
4898  * Release all pages attached to the extent buffer.
4899  */
4900 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4901 {
4902         int i;
4903         int num_pages;
4904         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4905
4906         BUG_ON(extent_buffer_under_io(eb));
4907
4908         num_pages = num_extent_pages(eb);
4909         for (i = 0; i < num_pages; i++) {
4910                 struct page *page = eb->pages[i];
4911
4912                 if (!page)
4913                         continue;
4914                 if (mapped)
4915                         spin_lock(&page->mapping->private_lock);
4916                 /*
4917                  * We do this since we'll remove the pages after we've
4918                  * removed the eb from the radix tree, so we could race
4919                  * and have this page now attached to the new eb.  So
4920                  * only clear page_private if it's still connected to
4921                  * this eb.
4922                  */
4923                 if (PagePrivate(page) &&
4924                     page->private == (unsigned long)eb) {
4925                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4926                         BUG_ON(PageDirty(page));
4927                         BUG_ON(PageWriteback(page));
4928                         /*
4929                          * We need to make sure we haven't be attached
4930                          * to a new eb.
4931                          */
4932                         ClearPagePrivate(page);
4933                         set_page_private(page, 0);
4934                         /* One for the page private */
4935                         put_page(page);
4936                 }
4937
4938                 if (mapped)
4939                         spin_unlock(&page->mapping->private_lock);
4940
4941                 /* One for when we allocated the page */
4942                 put_page(page);
4943         }
4944 }
4945
4946 /*
4947  * Helper for releasing the extent buffer.
4948  */
4949 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4950 {
4951         btrfs_release_extent_buffer_pages(eb);
4952         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4953         __free_extent_buffer(eb);
4954 }
4955
4956 static struct extent_buffer *
4957 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4958                       unsigned long len)
4959 {
4960         struct extent_buffer *eb = NULL;
4961
4962         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4963         eb->start = start;
4964         eb->len = len;
4965         eb->fs_info = fs_info;
4966         eb->bflags = 0;
4967         rwlock_init(&eb->lock);
4968         atomic_set(&eb->blocking_readers, 0);
4969         eb->blocking_writers = 0;
4970         eb->lock_nested = false;
4971         init_waitqueue_head(&eb->write_lock_wq);
4972         init_waitqueue_head(&eb->read_lock_wq);
4973
4974         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4975                              &fs_info->allocated_ebs);
4976
4977         spin_lock_init(&eb->refs_lock);
4978         atomic_set(&eb->refs, 1);
4979         atomic_set(&eb->io_pages, 0);
4980
4981         /*
4982          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4983          */
4984         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4985                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4986         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4987
4988 #ifdef CONFIG_BTRFS_DEBUG
4989         eb->spinning_writers = 0;
4990         atomic_set(&eb->spinning_readers, 0);
4991         atomic_set(&eb->read_locks, 0);
4992         eb->write_locks = 0;
4993 #endif
4994
4995         return eb;
4996 }
4997
4998 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4999 {
5000         int i;
5001         struct page *p;
5002         struct extent_buffer *new;
5003         int num_pages = num_extent_pages(src);
5004
5005         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5006         if (new == NULL)
5007                 return NULL;
5008
5009         for (i = 0; i < num_pages; i++) {
5010                 p = alloc_page(GFP_NOFS);
5011                 if (!p) {
5012                         btrfs_release_extent_buffer(new);
5013                         return NULL;
5014                 }
5015                 attach_extent_buffer_page(new, p);
5016                 WARN_ON(PageDirty(p));
5017                 SetPageUptodate(p);
5018                 new->pages[i] = p;
5019                 copy_page(page_address(p), page_address(src->pages[i]));
5020         }
5021
5022         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5023         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5024
5025         return new;
5026 }
5027
5028 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5029                                                   u64 start, unsigned long len)
5030 {
5031         struct extent_buffer *eb;
5032         int num_pages;
5033         int i;
5034
5035         eb = __alloc_extent_buffer(fs_info, start, len);
5036         if (!eb)
5037                 return NULL;
5038
5039         num_pages = num_extent_pages(eb);
5040         for (i = 0; i < num_pages; i++) {
5041                 eb->pages[i] = alloc_page(GFP_NOFS);
5042                 if (!eb->pages[i])
5043                         goto err;
5044         }
5045         set_extent_buffer_uptodate(eb);
5046         btrfs_set_header_nritems(eb, 0);
5047         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5048
5049         return eb;
5050 err:
5051         for (; i > 0; i--)
5052                 __free_page(eb->pages[i - 1]);
5053         __free_extent_buffer(eb);
5054         return NULL;
5055 }
5056
5057 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5058                                                 u64 start)
5059 {
5060         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5061 }
5062
5063 static void check_buffer_tree_ref(struct extent_buffer *eb)
5064 {
5065         int refs;
5066         /* the ref bit is tricky.  We have to make sure it is set
5067          * if we have the buffer dirty.   Otherwise the
5068          * code to free a buffer can end up dropping a dirty
5069          * page
5070          *
5071          * Once the ref bit is set, it won't go away while the
5072          * buffer is dirty or in writeback, and it also won't
5073          * go away while we have the reference count on the
5074          * eb bumped.
5075          *
5076          * We can't just set the ref bit without bumping the
5077          * ref on the eb because free_extent_buffer might
5078          * see the ref bit and try to clear it.  If this happens
5079          * free_extent_buffer might end up dropping our original
5080          * ref by mistake and freeing the page before we are able
5081          * to add one more ref.
5082          *
5083          * So bump the ref count first, then set the bit.  If someone
5084          * beat us to it, drop the ref we added.
5085          */
5086         refs = atomic_read(&eb->refs);
5087         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5088                 return;
5089
5090         spin_lock(&eb->refs_lock);
5091         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5092                 atomic_inc(&eb->refs);
5093         spin_unlock(&eb->refs_lock);
5094 }
5095
5096 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5097                 struct page *accessed)
5098 {
5099         int num_pages, i;
5100
5101         check_buffer_tree_ref(eb);
5102
5103         num_pages = num_extent_pages(eb);
5104         for (i = 0; i < num_pages; i++) {
5105                 struct page *p = eb->pages[i];
5106
5107                 if (p != accessed)
5108                         mark_page_accessed(p);
5109         }
5110 }
5111
5112 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5113                                          u64 start)
5114 {
5115         struct extent_buffer *eb;
5116
5117         rcu_read_lock();
5118         eb = radix_tree_lookup(&fs_info->buffer_radix,
5119                                start >> PAGE_SHIFT);
5120         if (eb && atomic_inc_not_zero(&eb->refs)) {
5121                 rcu_read_unlock();
5122                 /*
5123                  * Lock our eb's refs_lock to avoid races with
5124                  * free_extent_buffer. When we get our eb it might be flagged
5125                  * with EXTENT_BUFFER_STALE and another task running
5126                  * free_extent_buffer might have seen that flag set,
5127                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5128                  * writeback flags not set) and it's still in the tree (flag
5129                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5130                  * of decrementing the extent buffer's reference count twice.
5131                  * So here we could race and increment the eb's reference count,
5132                  * clear its stale flag, mark it as dirty and drop our reference
5133                  * before the other task finishes executing free_extent_buffer,
5134                  * which would later result in an attempt to free an extent
5135                  * buffer that is dirty.
5136                  */
5137                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5138                         spin_lock(&eb->refs_lock);
5139                         spin_unlock(&eb->refs_lock);
5140                 }
5141                 mark_extent_buffer_accessed(eb, NULL);
5142                 return eb;
5143         }
5144         rcu_read_unlock();
5145
5146         return NULL;
5147 }
5148
5149 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5150 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5151                                         u64 start)
5152 {
5153         struct extent_buffer *eb, *exists = NULL;
5154         int ret;
5155
5156         eb = find_extent_buffer(fs_info, start);
5157         if (eb)
5158                 return eb;
5159         eb = alloc_dummy_extent_buffer(fs_info, start);
5160         if (!eb)
5161                 return ERR_PTR(-ENOMEM);
5162         eb->fs_info = fs_info;
5163 again:
5164         ret = radix_tree_preload(GFP_NOFS);
5165         if (ret) {
5166                 exists = ERR_PTR(ret);
5167                 goto free_eb;
5168         }
5169         spin_lock(&fs_info->buffer_lock);
5170         ret = radix_tree_insert(&fs_info->buffer_radix,
5171                                 start >> PAGE_SHIFT, eb);
5172         spin_unlock(&fs_info->buffer_lock);
5173         radix_tree_preload_end();
5174         if (ret == -EEXIST) {
5175                 exists = find_extent_buffer(fs_info, start);
5176                 if (exists)
5177                         goto free_eb;
5178                 else
5179                         goto again;
5180         }
5181         check_buffer_tree_ref(eb);
5182         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5183
5184         return eb;
5185 free_eb:
5186         btrfs_release_extent_buffer(eb);
5187         return exists;
5188 }
5189 #endif
5190
5191 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5192                                           u64 start)
5193 {
5194         unsigned long len = fs_info->nodesize;
5195         int num_pages;
5196         int i;
5197         unsigned long index = start >> PAGE_SHIFT;
5198         struct extent_buffer *eb;
5199         struct extent_buffer *exists = NULL;
5200         struct page *p;
5201         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5202         int uptodate = 1;
5203         int ret;
5204
5205         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5206                 btrfs_err(fs_info, "bad tree block start %llu", start);
5207                 return ERR_PTR(-EINVAL);
5208         }
5209
5210         eb = find_extent_buffer(fs_info, start);
5211         if (eb)
5212                 return eb;
5213
5214         eb = __alloc_extent_buffer(fs_info, start, len);
5215         if (!eb)
5216                 return ERR_PTR(-ENOMEM);
5217
5218         num_pages = num_extent_pages(eb);
5219         for (i = 0; i < num_pages; i++, index++) {
5220                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5221                 if (!p) {
5222                         exists = ERR_PTR(-ENOMEM);
5223                         goto free_eb;
5224                 }
5225
5226                 spin_lock(&mapping->private_lock);
5227                 if (PagePrivate(p)) {
5228                         /*
5229                          * We could have already allocated an eb for this page
5230                          * and attached one so lets see if we can get a ref on
5231                          * the existing eb, and if we can we know it's good and
5232                          * we can just return that one, else we know we can just
5233                          * overwrite page->private.
5234                          */
5235                         exists = (struct extent_buffer *)p->private;
5236                         if (atomic_inc_not_zero(&exists->refs)) {
5237                                 spin_unlock(&mapping->private_lock);
5238                                 unlock_page(p);
5239                                 put_page(p);
5240                                 mark_extent_buffer_accessed(exists, p);
5241                                 goto free_eb;
5242                         }
5243                         exists = NULL;
5244
5245                         /*
5246                          * Do this so attach doesn't complain and we need to
5247                          * drop the ref the old guy had.
5248                          */
5249                         ClearPagePrivate(p);
5250                         WARN_ON(PageDirty(p));
5251                         put_page(p);
5252                 }
5253                 attach_extent_buffer_page(eb, p);
5254                 spin_unlock(&mapping->private_lock);
5255                 WARN_ON(PageDirty(p));
5256                 eb->pages[i] = p;
5257                 if (!PageUptodate(p))
5258                         uptodate = 0;
5259
5260                 /*
5261                  * We can't unlock the pages just yet since the extent buffer
5262                  * hasn't been properly inserted in the radix tree, this
5263                  * opens a race with btree_releasepage which can free a page
5264                  * while we are still filling in all pages for the buffer and
5265                  * we could crash.
5266                  */
5267         }
5268         if (uptodate)
5269                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5270 again:
5271         ret = radix_tree_preload(GFP_NOFS);
5272         if (ret) {
5273                 exists = ERR_PTR(ret);
5274                 goto free_eb;
5275         }
5276
5277         spin_lock(&fs_info->buffer_lock);
5278         ret = radix_tree_insert(&fs_info->buffer_radix,
5279                                 start >> PAGE_SHIFT, eb);
5280         spin_unlock(&fs_info->buffer_lock);
5281         radix_tree_preload_end();
5282         if (ret == -EEXIST) {
5283                 exists = find_extent_buffer(fs_info, start);
5284                 if (exists)
5285                         goto free_eb;
5286                 else
5287                         goto again;
5288         }
5289         /* add one reference for the tree */
5290         check_buffer_tree_ref(eb);
5291         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5292
5293         /*
5294          * Now it's safe to unlock the pages because any calls to
5295          * btree_releasepage will correctly detect that a page belongs to a
5296          * live buffer and won't free them prematurely.
5297          */
5298         for (i = 0; i < num_pages; i++)
5299                 unlock_page(eb->pages[i]);
5300         return eb;
5301
5302 free_eb:
5303         WARN_ON(!atomic_dec_and_test(&eb->refs));
5304         for (i = 0; i < num_pages; i++) {
5305                 if (eb->pages[i])
5306                         unlock_page(eb->pages[i]);
5307         }
5308
5309         btrfs_release_extent_buffer(eb);
5310         return exists;
5311 }
5312
5313 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5314 {
5315         struct extent_buffer *eb =
5316                         container_of(head, struct extent_buffer, rcu_head);
5317
5318         __free_extent_buffer(eb);
5319 }
5320
5321 static int release_extent_buffer(struct extent_buffer *eb)
5322         __releases(&eb->refs_lock)
5323 {
5324         lockdep_assert_held(&eb->refs_lock);
5325
5326         WARN_ON(atomic_read(&eb->refs) == 0);
5327         if (atomic_dec_and_test(&eb->refs)) {
5328                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5329                         struct btrfs_fs_info *fs_info = eb->fs_info;
5330
5331                         spin_unlock(&eb->refs_lock);
5332
5333                         spin_lock(&fs_info->buffer_lock);
5334                         radix_tree_delete(&fs_info->buffer_radix,
5335                                           eb->start >> PAGE_SHIFT);
5336                         spin_unlock(&fs_info->buffer_lock);
5337                 } else {
5338                         spin_unlock(&eb->refs_lock);
5339                 }
5340
5341                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5342                 /* Should be safe to release our pages at this point */
5343                 btrfs_release_extent_buffer_pages(eb);
5344 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5345                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5346                         __free_extent_buffer(eb);
5347                         return 1;
5348                 }
5349 #endif
5350                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5351                 return 1;
5352         }
5353         spin_unlock(&eb->refs_lock);
5354
5355         return 0;
5356 }
5357
5358 void free_extent_buffer(struct extent_buffer *eb)
5359 {
5360         int refs;
5361         int old;
5362         if (!eb)
5363                 return;
5364
5365         while (1) {
5366                 refs = atomic_read(&eb->refs);
5367                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5368                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5369                         refs == 1))
5370                         break;
5371                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5372                 if (old == refs)
5373                         return;
5374         }
5375
5376         spin_lock(&eb->refs_lock);
5377         if (atomic_read(&eb->refs) == 2 &&
5378             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5379             !extent_buffer_under_io(eb) &&
5380             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5381                 atomic_dec(&eb->refs);
5382
5383         /*
5384          * I know this is terrible, but it's temporary until we stop tracking
5385          * the uptodate bits and such for the extent buffers.
5386          */
5387         release_extent_buffer(eb);
5388 }
5389
5390 void free_extent_buffer_stale(struct extent_buffer *eb)
5391 {
5392         if (!eb)
5393                 return;
5394
5395         spin_lock(&eb->refs_lock);
5396         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5397
5398         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5399             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5400                 atomic_dec(&eb->refs);
5401         release_extent_buffer(eb);
5402 }
5403
5404 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5405 {
5406         int i;
5407         int num_pages;
5408         struct page *page;
5409
5410         num_pages = num_extent_pages(eb);
5411
5412         for (i = 0; i < num_pages; i++) {
5413                 page = eb->pages[i];
5414                 if (!PageDirty(page))
5415                         continue;
5416
5417                 lock_page(page);
5418                 WARN_ON(!PagePrivate(page));
5419
5420                 clear_page_dirty_for_io(page);
5421                 xa_lock_irq(&page->mapping->i_pages);
5422                 if (!PageDirty(page))
5423                         __xa_clear_mark(&page->mapping->i_pages,
5424                                         page_index(page), PAGECACHE_TAG_DIRTY);
5425                 xa_unlock_irq(&page->mapping->i_pages);
5426                 ClearPageError(page);
5427                 unlock_page(page);
5428         }
5429         WARN_ON(atomic_read(&eb->refs) == 0);
5430 }
5431
5432 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5433 {
5434         int i;
5435         int num_pages;
5436         bool was_dirty;
5437
5438         check_buffer_tree_ref(eb);
5439
5440         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5441
5442         num_pages = num_extent_pages(eb);
5443         WARN_ON(atomic_read(&eb->refs) == 0);
5444         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5445
5446         if (!was_dirty)
5447                 for (i = 0; i < num_pages; i++)
5448                         set_page_dirty(eb->pages[i]);
5449
5450 #ifdef CONFIG_BTRFS_DEBUG
5451         for (i = 0; i < num_pages; i++)
5452                 ASSERT(PageDirty(eb->pages[i]));
5453 #endif
5454
5455         return was_dirty;
5456 }
5457
5458 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5459 {
5460         int i;
5461         struct page *page;
5462         int num_pages;
5463
5464         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5465         num_pages = num_extent_pages(eb);
5466         for (i = 0; i < num_pages; i++) {
5467                 page = eb->pages[i];
5468                 if (page)
5469                         ClearPageUptodate(page);
5470         }
5471 }
5472
5473 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5474 {
5475         int i;
5476         struct page *page;
5477         int num_pages;
5478
5479         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5480         num_pages = num_extent_pages(eb);
5481         for (i = 0; i < num_pages; i++) {
5482                 page = eb->pages[i];
5483                 SetPageUptodate(page);
5484         }
5485 }
5486
5487 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5488 {
5489         int i;
5490         struct page *page;
5491         int err;
5492         int ret = 0;
5493         int locked_pages = 0;
5494         int all_uptodate = 1;
5495         int num_pages;
5496         unsigned long num_reads = 0;
5497         struct bio *bio = NULL;
5498         unsigned long bio_flags = 0;
5499
5500         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5501                 return 0;
5502
5503         num_pages = num_extent_pages(eb);
5504         for (i = 0; i < num_pages; i++) {
5505                 page = eb->pages[i];
5506                 if (wait == WAIT_NONE) {
5507                         if (!trylock_page(page))
5508                                 goto unlock_exit;
5509                 } else {
5510                         lock_page(page);
5511                 }
5512                 locked_pages++;
5513         }
5514         /*
5515          * We need to firstly lock all pages to make sure that
5516          * the uptodate bit of our pages won't be affected by
5517          * clear_extent_buffer_uptodate().
5518          */
5519         for (i = 0; i < num_pages; i++) {
5520                 page = eb->pages[i];
5521                 if (!PageUptodate(page)) {
5522                         num_reads++;
5523                         all_uptodate = 0;
5524                 }
5525         }
5526
5527         if (all_uptodate) {
5528                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5529                 goto unlock_exit;
5530         }
5531
5532         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5533         eb->read_mirror = 0;
5534         atomic_set(&eb->io_pages, num_reads);
5535         for (i = 0; i < num_pages; i++) {
5536                 page = eb->pages[i];
5537
5538                 if (!PageUptodate(page)) {
5539                         if (ret) {
5540                                 atomic_dec(&eb->io_pages);
5541                                 unlock_page(page);
5542                                 continue;
5543                         }
5544
5545                         ClearPageError(page);
5546                         err = __extent_read_full_page(page,
5547                                                       btree_get_extent, &bio,
5548                                                       mirror_num, &bio_flags,
5549                                                       REQ_META);
5550                         if (err) {
5551                                 ret = err;
5552                                 /*
5553                                  * We use &bio in above __extent_read_full_page,
5554                                  * so we ensure that if it returns error, the
5555                                  * current page fails to add itself to bio and
5556                                  * it's been unlocked.
5557                                  *
5558                                  * We must dec io_pages by ourselves.
5559                                  */
5560                                 atomic_dec(&eb->io_pages);
5561                         }
5562                 } else {
5563                         unlock_page(page);
5564                 }
5565         }
5566
5567         if (bio) {
5568                 err = submit_one_bio(bio, mirror_num, bio_flags);
5569                 if (err)
5570                         return err;
5571         }
5572
5573         if (ret || wait != WAIT_COMPLETE)
5574                 return ret;
5575
5576         for (i = 0; i < num_pages; i++) {
5577                 page = eb->pages[i];
5578                 wait_on_page_locked(page);
5579                 if (!PageUptodate(page))
5580                         ret = -EIO;
5581         }
5582
5583         return ret;
5584
5585 unlock_exit:
5586         while (locked_pages > 0) {
5587                 locked_pages--;
5588                 page = eb->pages[locked_pages];
5589                 unlock_page(page);
5590         }
5591         return ret;
5592 }
5593
5594 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5595                         unsigned long start, unsigned long len)
5596 {
5597         size_t cur;
5598         size_t offset;
5599         struct page *page;
5600         char *kaddr;
5601         char *dst = (char *)dstv;
5602         size_t start_offset = offset_in_page(eb->start);
5603         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5604
5605         if (start + len > eb->len) {
5606                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5607                      eb->start, eb->len, start, len);
5608                 memset(dst, 0, len);
5609                 return;
5610         }
5611
5612         offset = offset_in_page(start_offset + start);
5613
5614         while (len > 0) {
5615                 page = eb->pages[i];
5616
5617                 cur = min(len, (PAGE_SIZE - offset));
5618                 kaddr = page_address(page);
5619                 memcpy(dst, kaddr + offset, cur);
5620
5621                 dst += cur;
5622                 len -= cur;
5623                 offset = 0;
5624                 i++;
5625         }
5626 }
5627
5628 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5629                                void __user *dstv,
5630                                unsigned long start, unsigned long len)
5631 {
5632         size_t cur;
5633         size_t offset;
5634         struct page *page;
5635         char *kaddr;
5636         char __user *dst = (char __user *)dstv;
5637         size_t start_offset = offset_in_page(eb->start);
5638         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5639         int ret = 0;
5640
5641         WARN_ON(start > eb->len);
5642         WARN_ON(start + len > eb->start + eb->len);
5643
5644         offset = offset_in_page(start_offset + start);
5645
5646         while (len > 0) {
5647                 page = eb->pages[i];
5648
5649                 cur = min(len, (PAGE_SIZE - offset));
5650                 kaddr = page_address(page);
5651                 if (copy_to_user(dst, kaddr + offset, cur)) {
5652                         ret = -EFAULT;
5653                         break;
5654                 }
5655
5656                 dst += cur;
5657                 len -= cur;
5658                 offset = 0;
5659                 i++;
5660         }
5661
5662         return ret;
5663 }
5664
5665 /*
5666  * return 0 if the item is found within a page.
5667  * return 1 if the item spans two pages.
5668  * return -EINVAL otherwise.
5669  */
5670 int map_private_extent_buffer(const struct extent_buffer *eb,
5671                               unsigned long start, unsigned long min_len,
5672                               char **map, unsigned long *map_start,
5673                               unsigned long *map_len)
5674 {
5675         size_t offset;
5676         char *kaddr;
5677         struct page *p;
5678         size_t start_offset = offset_in_page(eb->start);
5679         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5680         unsigned long end_i = (start_offset + start + min_len - 1) >>
5681                 PAGE_SHIFT;
5682
5683         if (start + min_len > eb->len) {
5684                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5685                        eb->start, eb->len, start, min_len);
5686                 return -EINVAL;
5687         }
5688
5689         if (i != end_i)
5690                 return 1;
5691
5692         if (i == 0) {
5693                 offset = start_offset;
5694                 *map_start = 0;
5695         } else {
5696                 offset = 0;
5697                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5698         }
5699
5700         p = eb->pages[i];
5701         kaddr = page_address(p);
5702         *map = kaddr + offset;
5703         *map_len = PAGE_SIZE - offset;
5704         return 0;
5705 }
5706
5707 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5708                          unsigned long start, unsigned long len)
5709 {
5710         size_t cur;
5711         size_t offset;
5712         struct page *page;
5713         char *kaddr;
5714         char *ptr = (char *)ptrv;
5715         size_t start_offset = offset_in_page(eb->start);
5716         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5717         int ret = 0;
5718
5719         WARN_ON(start > eb->len);
5720         WARN_ON(start + len > eb->start + eb->len);
5721
5722         offset = offset_in_page(start_offset + start);
5723
5724         while (len > 0) {
5725                 page = eb->pages[i];
5726
5727                 cur = min(len, (PAGE_SIZE - offset));
5728
5729                 kaddr = page_address(page);
5730                 ret = memcmp(ptr, kaddr + offset, cur);
5731                 if (ret)
5732                         break;
5733
5734                 ptr += cur;
5735                 len -= cur;
5736                 offset = 0;
5737                 i++;
5738         }
5739         return ret;
5740 }
5741
5742 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5743                 const void *srcv)
5744 {
5745         char *kaddr;
5746
5747         WARN_ON(!PageUptodate(eb->pages[0]));
5748         kaddr = page_address(eb->pages[0]);
5749         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5750                         BTRFS_FSID_SIZE);
5751 }
5752
5753 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5754 {
5755         char *kaddr;
5756
5757         WARN_ON(!PageUptodate(eb->pages[0]));
5758         kaddr = page_address(eb->pages[0]);
5759         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5760                         BTRFS_FSID_SIZE);
5761 }
5762
5763 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5764                          unsigned long start, unsigned long len)
5765 {
5766         size_t cur;
5767         size_t offset;
5768         struct page *page;
5769         char *kaddr;
5770         char *src = (char *)srcv;
5771         size_t start_offset = offset_in_page(eb->start);
5772         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5773
5774         WARN_ON(start > eb->len);
5775         WARN_ON(start + len > eb->start + eb->len);
5776
5777         offset = offset_in_page(start_offset + start);
5778
5779         while (len > 0) {
5780                 page = eb->pages[i];
5781                 WARN_ON(!PageUptodate(page));
5782
5783                 cur = min(len, PAGE_SIZE - offset);
5784                 kaddr = page_address(page);
5785                 memcpy(kaddr + offset, src, cur);
5786
5787                 src += cur;
5788                 len -= cur;
5789                 offset = 0;
5790                 i++;
5791         }
5792 }
5793
5794 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5795                 unsigned long len)
5796 {
5797         size_t cur;
5798         size_t offset;
5799         struct page *page;
5800         char *kaddr;
5801         size_t start_offset = offset_in_page(eb->start);
5802         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5803
5804         WARN_ON(start > eb->len);
5805         WARN_ON(start + len > eb->start + eb->len);
5806
5807         offset = offset_in_page(start_offset + start);
5808
5809         while (len > 0) {
5810                 page = eb->pages[i];
5811                 WARN_ON(!PageUptodate(page));
5812
5813                 cur = min(len, PAGE_SIZE - offset);
5814                 kaddr = page_address(page);
5815                 memset(kaddr + offset, 0, cur);
5816
5817                 len -= cur;
5818                 offset = 0;
5819                 i++;
5820         }
5821 }
5822
5823 void copy_extent_buffer_full(struct extent_buffer *dst,
5824                              struct extent_buffer *src)
5825 {
5826         int i;
5827         int num_pages;
5828
5829         ASSERT(dst->len == src->len);
5830
5831         num_pages = num_extent_pages(dst);
5832         for (i = 0; i < num_pages; i++)
5833                 copy_page(page_address(dst->pages[i]),
5834                                 page_address(src->pages[i]));
5835 }
5836
5837 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5838                         unsigned long dst_offset, unsigned long src_offset,
5839                         unsigned long len)
5840 {
5841         u64 dst_len = dst->len;
5842         size_t cur;
5843         size_t offset;
5844         struct page *page;
5845         char *kaddr;
5846         size_t start_offset = offset_in_page(dst->start);
5847         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5848
5849         WARN_ON(src->len != dst_len);
5850
5851         offset = offset_in_page(start_offset + dst_offset);
5852
5853         while (len > 0) {
5854                 page = dst->pages[i];
5855                 WARN_ON(!PageUptodate(page));
5856
5857                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5858
5859                 kaddr = page_address(page);
5860                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5861
5862                 src_offset += cur;
5863                 len -= cur;
5864                 offset = 0;
5865                 i++;
5866         }
5867 }
5868
5869 /*
5870  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5871  * given bit number
5872  * @eb: the extent buffer
5873  * @start: offset of the bitmap item in the extent buffer
5874  * @nr: bit number
5875  * @page_index: return index of the page in the extent buffer that contains the
5876  * given bit number
5877  * @page_offset: return offset into the page given by page_index
5878  *
5879  * This helper hides the ugliness of finding the byte in an extent buffer which
5880  * contains a given bit.
5881  */
5882 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5883                                     unsigned long start, unsigned long nr,
5884                                     unsigned long *page_index,
5885                                     size_t *page_offset)
5886 {
5887         size_t start_offset = offset_in_page(eb->start);
5888         size_t byte_offset = BIT_BYTE(nr);
5889         size_t offset;
5890
5891         /*
5892          * The byte we want is the offset of the extent buffer + the offset of
5893          * the bitmap item in the extent buffer + the offset of the byte in the
5894          * bitmap item.
5895          */
5896         offset = start_offset + start + byte_offset;
5897
5898         *page_index = offset >> PAGE_SHIFT;
5899         *page_offset = offset_in_page(offset);
5900 }
5901
5902 /**
5903  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5904  * @eb: the extent buffer
5905  * @start: offset of the bitmap item in the extent buffer
5906  * @nr: bit number to test
5907  */
5908 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5909                            unsigned long nr)
5910 {
5911         u8 *kaddr;
5912         struct page *page;
5913         unsigned long i;
5914         size_t offset;
5915
5916         eb_bitmap_offset(eb, start, nr, &i, &offset);
5917         page = eb->pages[i];
5918         WARN_ON(!PageUptodate(page));
5919         kaddr = page_address(page);
5920         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5921 }
5922
5923 /**
5924  * extent_buffer_bitmap_set - set an area of a bitmap
5925  * @eb: the extent buffer
5926  * @start: offset of the bitmap item in the extent buffer
5927  * @pos: bit number of the first bit
5928  * @len: number of bits to set
5929  */
5930 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5931                               unsigned long pos, unsigned long len)
5932 {
5933         u8 *kaddr;
5934         struct page *page;
5935         unsigned long i;
5936         size_t offset;
5937         const unsigned int size = pos + len;
5938         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5939         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5940
5941         eb_bitmap_offset(eb, start, pos, &i, &offset);
5942         page = eb->pages[i];
5943         WARN_ON(!PageUptodate(page));
5944         kaddr = page_address(page);
5945
5946         while (len >= bits_to_set) {
5947                 kaddr[offset] |= mask_to_set;
5948                 len -= bits_to_set;
5949                 bits_to_set = BITS_PER_BYTE;
5950                 mask_to_set = ~0;
5951                 if (++offset >= PAGE_SIZE && len > 0) {
5952                         offset = 0;
5953                         page = eb->pages[++i];
5954                         WARN_ON(!PageUptodate(page));
5955                         kaddr = page_address(page);
5956                 }
5957         }
5958         if (len) {
5959                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5960                 kaddr[offset] |= mask_to_set;
5961         }
5962 }
5963
5964
5965 /**
5966  * extent_buffer_bitmap_clear - clear an area of a bitmap
5967  * @eb: the extent buffer
5968  * @start: offset of the bitmap item in the extent buffer
5969  * @pos: bit number of the first bit
5970  * @len: number of bits to clear
5971  */
5972 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5973                                 unsigned long pos, unsigned long len)
5974 {
5975         u8 *kaddr;
5976         struct page *page;
5977         unsigned long i;
5978         size_t offset;
5979         const unsigned int size = pos + len;
5980         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5981         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5982
5983         eb_bitmap_offset(eb, start, pos, &i, &offset);
5984         page = eb->pages[i];
5985         WARN_ON(!PageUptodate(page));
5986         kaddr = page_address(page);
5987
5988         while (len >= bits_to_clear) {
5989                 kaddr[offset] &= ~mask_to_clear;
5990                 len -= bits_to_clear;
5991                 bits_to_clear = BITS_PER_BYTE;
5992                 mask_to_clear = ~0;
5993                 if (++offset >= PAGE_SIZE && len > 0) {
5994                         offset = 0;
5995                         page = eb->pages[++i];
5996                         WARN_ON(!PageUptodate(page));
5997                         kaddr = page_address(page);
5998                 }
5999         }
6000         if (len) {
6001                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6002                 kaddr[offset] &= ~mask_to_clear;
6003         }
6004 }
6005
6006 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6007 {
6008         unsigned long distance = (src > dst) ? src - dst : dst - src;
6009         return distance < len;
6010 }
6011
6012 static void copy_pages(struct page *dst_page, struct page *src_page,
6013                        unsigned long dst_off, unsigned long src_off,
6014                        unsigned long len)
6015 {
6016         char *dst_kaddr = page_address(dst_page);
6017         char *src_kaddr;
6018         int must_memmove = 0;
6019
6020         if (dst_page != src_page) {
6021                 src_kaddr = page_address(src_page);
6022         } else {
6023                 src_kaddr = dst_kaddr;
6024                 if (areas_overlap(src_off, dst_off, len))
6025                         must_memmove = 1;
6026         }
6027
6028         if (must_memmove)
6029                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6030         else
6031                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6032 }
6033
6034 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6035                            unsigned long src_offset, unsigned long len)
6036 {
6037         struct btrfs_fs_info *fs_info = dst->fs_info;
6038         size_t cur;
6039         size_t dst_off_in_page;
6040         size_t src_off_in_page;
6041         size_t start_offset = offset_in_page(dst->start);
6042         unsigned long dst_i;
6043         unsigned long src_i;
6044
6045         if (src_offset + len > dst->len) {
6046                 btrfs_err(fs_info,
6047                         "memmove bogus src_offset %lu move len %lu dst len %lu",
6048                          src_offset, len, dst->len);
6049                 BUG();
6050         }
6051         if (dst_offset + len > dst->len) {
6052                 btrfs_err(fs_info,
6053                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
6054                          dst_offset, len, dst->len);
6055                 BUG();
6056         }
6057
6058         while (len > 0) {
6059                 dst_off_in_page = offset_in_page(start_offset + dst_offset);
6060                 src_off_in_page = offset_in_page(start_offset + src_offset);
6061
6062                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
6063                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
6064
6065                 cur = min(len, (unsigned long)(PAGE_SIZE -
6066                                                src_off_in_page));
6067                 cur = min_t(unsigned long, cur,
6068                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6069
6070                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6071                            dst_off_in_page, src_off_in_page, cur);
6072
6073                 src_offset += cur;
6074                 dst_offset += cur;
6075                 len -= cur;
6076         }
6077 }
6078
6079 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6080                            unsigned long src_offset, unsigned long len)
6081 {
6082         struct btrfs_fs_info *fs_info = dst->fs_info;
6083         size_t cur;
6084         size_t dst_off_in_page;
6085         size_t src_off_in_page;
6086         unsigned long dst_end = dst_offset + len - 1;
6087         unsigned long src_end = src_offset + len - 1;
6088         size_t start_offset = offset_in_page(dst->start);
6089         unsigned long dst_i;
6090         unsigned long src_i;
6091
6092         if (src_offset + len > dst->len) {
6093                 btrfs_err(fs_info,
6094                           "memmove bogus src_offset %lu move len %lu len %lu",
6095                           src_offset, len, dst->len);
6096                 BUG();
6097         }
6098         if (dst_offset + len > dst->len) {
6099                 btrfs_err(fs_info,
6100                           "memmove bogus dst_offset %lu move len %lu len %lu",
6101                           dst_offset, len, dst->len);
6102                 BUG();
6103         }
6104         if (dst_offset < src_offset) {
6105                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6106                 return;
6107         }
6108         while (len > 0) {
6109                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6110                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6111
6112                 dst_off_in_page = offset_in_page(start_offset + dst_end);
6113                 src_off_in_page = offset_in_page(start_offset + src_end);
6114
6115                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6116                 cur = min(cur, dst_off_in_page + 1);
6117                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6118                            dst_off_in_page - cur + 1,
6119                            src_off_in_page - cur + 1, cur);
6120
6121                 dst_end -= cur;
6122                 src_end -= cur;
6123                 len -= cur;
6124         }
6125 }
6126
6127 int try_release_extent_buffer(struct page *page)
6128 {
6129         struct extent_buffer *eb;
6130
6131         /*
6132          * We need to make sure nobody is attaching this page to an eb right
6133          * now.
6134          */
6135         spin_lock(&page->mapping->private_lock);
6136         if (!PagePrivate(page)) {
6137                 spin_unlock(&page->mapping->private_lock);
6138                 return 1;
6139         }
6140
6141         eb = (struct extent_buffer *)page->private;
6142         BUG_ON(!eb);
6143
6144         /*
6145          * This is a little awful but should be ok, we need to make sure that
6146          * the eb doesn't disappear out from under us while we're looking at
6147          * this page.
6148          */
6149         spin_lock(&eb->refs_lock);
6150         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6151                 spin_unlock(&eb->refs_lock);
6152                 spin_unlock(&page->mapping->private_lock);
6153                 return 0;
6154         }
6155         spin_unlock(&page->mapping->private_lock);
6156
6157         /*
6158          * If tree ref isn't set then we know the ref on this eb is a real ref,
6159          * so just return, this page will likely be freed soon anyway.
6160          */
6161         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6162                 spin_unlock(&eb->refs_lock);
6163                 return 0;
6164         }
6165
6166         return release_extent_buffer(eb);
6167 }