OSDN Git Service

Merge tag 'sched-core-2020-06-02' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *uninitialized_var(tty);
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead)
107                 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110         if (group_dead) {
111                 tty = sig->tty;
112                 sig->tty = NULL;
113         } else {
114                 /*
115                  * If there is any task waiting for the group exit
116                  * then notify it:
117                  */
118                 if (sig->notify_count > 0 && !--sig->notify_count)
119                         wake_up_process(sig->group_exit_task);
120
121                 if (tsk == sig->curr_target)
122                         sig->curr_target = next_thread(tsk);
123         }
124
125         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126                               sizeof(unsigned long long));
127
128         /*
129          * Accumulate here the counters for all threads as they die. We could
130          * skip the group leader because it is the last user of signal_struct,
131          * but we want to avoid the race with thread_group_cputime() which can
132          * see the empty ->thread_head list.
133          */
134         task_cputime(tsk, &utime, &stime);
135         write_seqlock(&sig->stats_lock);
136         sig->utime += utime;
137         sig->stime += stime;
138         sig->gtime += task_gtime(tsk);
139         sig->min_flt += tsk->min_flt;
140         sig->maj_flt += tsk->maj_flt;
141         sig->nvcsw += tsk->nvcsw;
142         sig->nivcsw += tsk->nivcsw;
143         sig->inblock += task_io_get_inblock(tsk);
144         sig->oublock += task_io_get_oublock(tsk);
145         task_io_accounting_add(&sig->ioac, &tsk->ioac);
146         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147         sig->nr_threads--;
148         __unhash_process(tsk, group_dead);
149         write_sequnlock(&sig->stats_lock);
150
151         /*
152          * Do this under ->siglock, we can race with another thread
153          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154          */
155         flush_sigqueue(&tsk->pending);
156         tsk->sighand = NULL;
157         spin_unlock(&sighand->siglock);
158
159         __cleanup_sighand(sighand);
160         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161         if (group_dead) {
162                 flush_sigqueue(&sig->shared_pending);
163                 tty_kref_put(tty);
164         }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171         perf_event_delayed_put(tsk);
172         trace_sched_process_free(tsk);
173         put_task_struct(tsk);
174 }
175
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178         if (refcount_dec_and_test(&task->rcu_users))
179                 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
182 void release_task(struct task_struct *p)
183 {
184         struct task_struct *leader;
185         struct pid *thread_pid;
186         int zap_leader;
187 repeat:
188         /* don't need to get the RCU readlock here - the process is dead and
189          * can't be modifying its own credentials. But shut RCU-lockdep up */
190         rcu_read_lock();
191         atomic_dec(&__task_cred(p)->user->processes);
192         rcu_read_unlock();
193
194         cgroup_release(p);
195
196         write_lock_irq(&tasklist_lock);
197         ptrace_release_task(p);
198         thread_pid = get_pid(p->thread_pid);
199         __exit_signal(p);
200
201         /*
202          * If we are the last non-leader member of the thread
203          * group, and the leader is zombie, then notify the
204          * group leader's parent process. (if it wants notification.)
205          */
206         zap_leader = 0;
207         leader = p->group_leader;
208         if (leader != p && thread_group_empty(leader)
209                         && leader->exit_state == EXIT_ZOMBIE) {
210                 /*
211                  * If we were the last child thread and the leader has
212                  * exited already, and the leader's parent ignores SIGCHLD,
213                  * then we are the one who should release the leader.
214                  */
215                 zap_leader = do_notify_parent(leader, leader->exit_signal);
216                 if (zap_leader)
217                         leader->exit_state = EXIT_DEAD;
218         }
219
220         write_unlock_irq(&tasklist_lock);
221         proc_flush_pid(thread_pid);
222         put_pid(thread_pid);
223         release_thread(p);
224         put_task_struct_rcu_user(p);
225
226         p = leader;
227         if (unlikely(zap_leader))
228                 goto repeat;
229 }
230
231 void rcuwait_wake_up(struct rcuwait *w)
232 {
233         struct task_struct *task;
234
235         rcu_read_lock();
236
237         /*
238          * Order condition vs @task, such that everything prior to the load
239          * of @task is visible. This is the condition as to why the user called
240          * rcuwait_trywake() in the first place. Pairs with set_current_state()
241          * barrier (A) in rcuwait_wait_event().
242          *
243          *    WAIT                WAKE
244          *    [S] tsk = current   [S] cond = true
245          *        MB (A)              MB (B)
246          *    [L] cond            [L] tsk
247          */
248         smp_mb(); /* (B) */
249
250         task = rcu_dereference(w->task);
251         if (task)
252                 wake_up_process(task);
253         rcu_read_unlock();
254 }
255 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
256
257 /*
258  * Determine if a process group is "orphaned", according to the POSIX
259  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
260  * by terminal-generated stop signals.  Newly orphaned process groups are
261  * to receive a SIGHUP and a SIGCONT.
262  *
263  * "I ask you, have you ever known what it is to be an orphan?"
264  */
265 static int will_become_orphaned_pgrp(struct pid *pgrp,
266                                         struct task_struct *ignored_task)
267 {
268         struct task_struct *p;
269
270         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
271                 if ((p == ignored_task) ||
272                     (p->exit_state && thread_group_empty(p)) ||
273                     is_global_init(p->real_parent))
274                         continue;
275
276                 if (task_pgrp(p->real_parent) != pgrp &&
277                     task_session(p->real_parent) == task_session(p))
278                         return 0;
279         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
280
281         return 1;
282 }
283
284 int is_current_pgrp_orphaned(void)
285 {
286         int retval;
287
288         read_lock(&tasklist_lock);
289         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
290         read_unlock(&tasklist_lock);
291
292         return retval;
293 }
294
295 static bool has_stopped_jobs(struct pid *pgrp)
296 {
297         struct task_struct *p;
298
299         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
300                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
301                         return true;
302         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
303
304         return false;
305 }
306
307 /*
308  * Check to see if any process groups have become orphaned as
309  * a result of our exiting, and if they have any stopped jobs,
310  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
311  */
312 static void
313 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
314 {
315         struct pid *pgrp = task_pgrp(tsk);
316         struct task_struct *ignored_task = tsk;
317
318         if (!parent)
319                 /* exit: our father is in a different pgrp than
320                  * we are and we were the only connection outside.
321                  */
322                 parent = tsk->real_parent;
323         else
324                 /* reparent: our child is in a different pgrp than
325                  * we are, and it was the only connection outside.
326                  */
327                 ignored_task = NULL;
328
329         if (task_pgrp(parent) != pgrp &&
330             task_session(parent) == task_session(tsk) &&
331             will_become_orphaned_pgrp(pgrp, ignored_task) &&
332             has_stopped_jobs(pgrp)) {
333                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
334                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
335         }
336 }
337
338 #ifdef CONFIG_MEMCG
339 /*
340  * A task is exiting.   If it owned this mm, find a new owner for the mm.
341  */
342 void mm_update_next_owner(struct mm_struct *mm)
343 {
344         struct task_struct *c, *g, *p = current;
345
346 retry:
347         /*
348          * If the exiting or execing task is not the owner, it's
349          * someone else's problem.
350          */
351         if (mm->owner != p)
352                 return;
353         /*
354          * The current owner is exiting/execing and there are no other
355          * candidates.  Do not leave the mm pointing to a possibly
356          * freed task structure.
357          */
358         if (atomic_read(&mm->mm_users) <= 1) {
359                 WRITE_ONCE(mm->owner, NULL);
360                 return;
361         }
362
363         read_lock(&tasklist_lock);
364         /*
365          * Search in the children
366          */
367         list_for_each_entry(c, &p->children, sibling) {
368                 if (c->mm == mm)
369                         goto assign_new_owner;
370         }
371
372         /*
373          * Search in the siblings
374          */
375         list_for_each_entry(c, &p->real_parent->children, sibling) {
376                 if (c->mm == mm)
377                         goto assign_new_owner;
378         }
379
380         /*
381          * Search through everything else, we should not get here often.
382          */
383         for_each_process(g) {
384                 if (g->flags & PF_KTHREAD)
385                         continue;
386                 for_each_thread(g, c) {
387                         if (c->mm == mm)
388                                 goto assign_new_owner;
389                         if (c->mm)
390                                 break;
391                 }
392         }
393         read_unlock(&tasklist_lock);
394         /*
395          * We found no owner yet mm_users > 1: this implies that we are
396          * most likely racing with swapoff (try_to_unuse()) or /proc or
397          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
398          */
399         WRITE_ONCE(mm->owner, NULL);
400         return;
401
402 assign_new_owner:
403         BUG_ON(c == p);
404         get_task_struct(c);
405         /*
406          * The task_lock protects c->mm from changing.
407          * We always want mm->owner->mm == mm
408          */
409         task_lock(c);
410         /*
411          * Delay read_unlock() till we have the task_lock()
412          * to ensure that c does not slip away underneath us
413          */
414         read_unlock(&tasklist_lock);
415         if (c->mm != mm) {
416                 task_unlock(c);
417                 put_task_struct(c);
418                 goto retry;
419         }
420         WRITE_ONCE(mm->owner, c);
421         task_unlock(c);
422         put_task_struct(c);
423 }
424 #endif /* CONFIG_MEMCG */
425
426 /*
427  * Turn us into a lazy TLB process if we
428  * aren't already..
429  */
430 static void exit_mm(void)
431 {
432         struct mm_struct *mm = current->mm;
433         struct core_state *core_state;
434
435         exit_mm_release(current, mm);
436         if (!mm)
437                 return;
438         sync_mm_rss(mm);
439         /*
440          * Serialize with any possible pending coredump.
441          * We must hold mmap_sem around checking core_state
442          * and clearing tsk->mm.  The core-inducing thread
443          * will increment ->nr_threads for each thread in the
444          * group with ->mm != NULL.
445          */
446         down_read(&mm->mmap_sem);
447         core_state = mm->core_state;
448         if (core_state) {
449                 struct core_thread self;
450
451                 up_read(&mm->mmap_sem);
452
453                 self.task = current;
454                 self.next = xchg(&core_state->dumper.next, &self);
455                 /*
456                  * Implies mb(), the result of xchg() must be visible
457                  * to core_state->dumper.
458                  */
459                 if (atomic_dec_and_test(&core_state->nr_threads))
460                         complete(&core_state->startup);
461
462                 for (;;) {
463                         set_current_state(TASK_UNINTERRUPTIBLE);
464                         if (!self.task) /* see coredump_finish() */
465                                 break;
466                         freezable_schedule();
467                 }
468                 __set_current_state(TASK_RUNNING);
469                 down_read(&mm->mmap_sem);
470         }
471         mmgrab(mm);
472         BUG_ON(mm != current->active_mm);
473         /* more a memory barrier than a real lock */
474         task_lock(current);
475         current->mm = NULL;
476         up_read(&mm->mmap_sem);
477         enter_lazy_tlb(mm, current);
478         task_unlock(current);
479         mm_update_next_owner(mm);
480         mmput(mm);
481         if (test_thread_flag(TIF_MEMDIE))
482                 exit_oom_victim();
483 }
484
485 static struct task_struct *find_alive_thread(struct task_struct *p)
486 {
487         struct task_struct *t;
488
489         for_each_thread(p, t) {
490                 if (!(t->flags & PF_EXITING))
491                         return t;
492         }
493         return NULL;
494 }
495
496 static struct task_struct *find_child_reaper(struct task_struct *father,
497                                                 struct list_head *dead)
498         __releases(&tasklist_lock)
499         __acquires(&tasklist_lock)
500 {
501         struct pid_namespace *pid_ns = task_active_pid_ns(father);
502         struct task_struct *reaper = pid_ns->child_reaper;
503         struct task_struct *p, *n;
504
505         if (likely(reaper != father))
506                 return reaper;
507
508         reaper = find_alive_thread(father);
509         if (reaper) {
510                 pid_ns->child_reaper = reaper;
511                 return reaper;
512         }
513
514         write_unlock_irq(&tasklist_lock);
515
516         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
517                 list_del_init(&p->ptrace_entry);
518                 release_task(p);
519         }
520
521         zap_pid_ns_processes(pid_ns);
522         write_lock_irq(&tasklist_lock);
523
524         return father;
525 }
526
527 /*
528  * When we die, we re-parent all our children, and try to:
529  * 1. give them to another thread in our thread group, if such a member exists
530  * 2. give it to the first ancestor process which prctl'd itself as a
531  *    child_subreaper for its children (like a service manager)
532  * 3. give it to the init process (PID 1) in our pid namespace
533  */
534 static struct task_struct *find_new_reaper(struct task_struct *father,
535                                            struct task_struct *child_reaper)
536 {
537         struct task_struct *thread, *reaper;
538
539         thread = find_alive_thread(father);
540         if (thread)
541                 return thread;
542
543         if (father->signal->has_child_subreaper) {
544                 unsigned int ns_level = task_pid(father)->level;
545                 /*
546                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
547                  * We can't check reaper != child_reaper to ensure we do not
548                  * cross the namespaces, the exiting parent could be injected
549                  * by setns() + fork().
550                  * We check pid->level, this is slightly more efficient than
551                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
552                  */
553                 for (reaper = father->real_parent;
554                      task_pid(reaper)->level == ns_level;
555                      reaper = reaper->real_parent) {
556                         if (reaper == &init_task)
557                                 break;
558                         if (!reaper->signal->is_child_subreaper)
559                                 continue;
560                         thread = find_alive_thread(reaper);
561                         if (thread)
562                                 return thread;
563                 }
564         }
565
566         return child_reaper;
567 }
568
569 /*
570 * Any that need to be release_task'd are put on the @dead list.
571  */
572 static void reparent_leader(struct task_struct *father, struct task_struct *p,
573                                 struct list_head *dead)
574 {
575         if (unlikely(p->exit_state == EXIT_DEAD))
576                 return;
577
578         /* We don't want people slaying init. */
579         p->exit_signal = SIGCHLD;
580
581         /* If it has exited notify the new parent about this child's death. */
582         if (!p->ptrace &&
583             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
584                 if (do_notify_parent(p, p->exit_signal)) {
585                         p->exit_state = EXIT_DEAD;
586                         list_add(&p->ptrace_entry, dead);
587                 }
588         }
589
590         kill_orphaned_pgrp(p, father);
591 }
592
593 /*
594  * This does two things:
595  *
596  * A.  Make init inherit all the child processes
597  * B.  Check to see if any process groups have become orphaned
598  *      as a result of our exiting, and if they have any stopped
599  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
600  */
601 static void forget_original_parent(struct task_struct *father,
602                                         struct list_head *dead)
603 {
604         struct task_struct *p, *t, *reaper;
605
606         if (unlikely(!list_empty(&father->ptraced)))
607                 exit_ptrace(father, dead);
608
609         /* Can drop and reacquire tasklist_lock */
610         reaper = find_child_reaper(father, dead);
611         if (list_empty(&father->children))
612                 return;
613
614         reaper = find_new_reaper(father, reaper);
615         list_for_each_entry(p, &father->children, sibling) {
616                 for_each_thread(p, t) {
617                         RCU_INIT_POINTER(t->real_parent, reaper);
618                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
619                         if (likely(!t->ptrace))
620                                 t->parent = t->real_parent;
621                         if (t->pdeath_signal)
622                                 group_send_sig_info(t->pdeath_signal,
623                                                     SEND_SIG_NOINFO, t,
624                                                     PIDTYPE_TGID);
625                 }
626                 /*
627                  * If this is a threaded reparent there is no need to
628                  * notify anyone anything has happened.
629                  */
630                 if (!same_thread_group(reaper, father))
631                         reparent_leader(father, p, dead);
632         }
633         list_splice_tail_init(&father->children, &reaper->children);
634 }
635
636 /*
637  * Send signals to all our closest relatives so that they know
638  * to properly mourn us..
639  */
640 static void exit_notify(struct task_struct *tsk, int group_dead)
641 {
642         bool autoreap;
643         struct task_struct *p, *n;
644         LIST_HEAD(dead);
645
646         write_lock_irq(&tasklist_lock);
647         forget_original_parent(tsk, &dead);
648
649         if (group_dead)
650                 kill_orphaned_pgrp(tsk->group_leader, NULL);
651
652         tsk->exit_state = EXIT_ZOMBIE;
653         if (unlikely(tsk->ptrace)) {
654                 int sig = thread_group_leader(tsk) &&
655                                 thread_group_empty(tsk) &&
656                                 !ptrace_reparented(tsk) ?
657                         tsk->exit_signal : SIGCHLD;
658                 autoreap = do_notify_parent(tsk, sig);
659         } else if (thread_group_leader(tsk)) {
660                 autoreap = thread_group_empty(tsk) &&
661                         do_notify_parent(tsk, tsk->exit_signal);
662         } else {
663                 autoreap = true;
664         }
665
666         if (autoreap) {
667                 tsk->exit_state = EXIT_DEAD;
668                 list_add(&tsk->ptrace_entry, &dead);
669         }
670
671         /* mt-exec, de_thread() is waiting for group leader */
672         if (unlikely(tsk->signal->notify_count < 0))
673                 wake_up_process(tsk->signal->group_exit_task);
674         write_unlock_irq(&tasklist_lock);
675
676         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
677                 list_del_init(&p->ptrace_entry);
678                 release_task(p);
679         }
680 }
681
682 #ifdef CONFIG_DEBUG_STACK_USAGE
683 static void check_stack_usage(void)
684 {
685         static DEFINE_SPINLOCK(low_water_lock);
686         static int lowest_to_date = THREAD_SIZE;
687         unsigned long free;
688
689         free = stack_not_used(current);
690
691         if (free >= lowest_to_date)
692                 return;
693
694         spin_lock(&low_water_lock);
695         if (free < lowest_to_date) {
696                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
697                         current->comm, task_pid_nr(current), free);
698                 lowest_to_date = free;
699         }
700         spin_unlock(&low_water_lock);
701 }
702 #else
703 static inline void check_stack_usage(void) {}
704 #endif
705
706 void __noreturn do_exit(long code)
707 {
708         struct task_struct *tsk = current;
709         int group_dead;
710
711         /*
712          * We can get here from a kernel oops, sometimes with preemption off.
713          * Start by checking for critical errors.
714          * Then fix up important state like USER_DS and preemption.
715          * Then do everything else.
716          */
717
718         WARN_ON(blk_needs_flush_plug(tsk));
719
720         if (unlikely(in_interrupt()))
721                 panic("Aiee, killing interrupt handler!");
722         if (unlikely(!tsk->pid))
723                 panic("Attempted to kill the idle task!");
724
725         /*
726          * If do_exit is called because this processes oopsed, it's possible
727          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
728          * continuing. Amongst other possible reasons, this is to prevent
729          * mm_release()->clear_child_tid() from writing to a user-controlled
730          * kernel address.
731          */
732         set_fs(USER_DS);
733
734         if (unlikely(in_atomic())) {
735                 pr_info("note: %s[%d] exited with preempt_count %d\n",
736                         current->comm, task_pid_nr(current),
737                         preempt_count());
738                 preempt_count_set(PREEMPT_ENABLED);
739         }
740
741         profile_task_exit(tsk);
742         kcov_task_exit(tsk);
743
744         ptrace_event(PTRACE_EVENT_EXIT, code);
745
746         validate_creds_for_do_exit(tsk);
747
748         /*
749          * We're taking recursive faults here in do_exit. Safest is to just
750          * leave this task alone and wait for reboot.
751          */
752         if (unlikely(tsk->flags & PF_EXITING)) {
753                 pr_alert("Fixing recursive fault but reboot is needed!\n");
754                 futex_exit_recursive(tsk);
755                 set_current_state(TASK_UNINTERRUPTIBLE);
756                 schedule();
757         }
758
759         exit_signals(tsk);  /* sets PF_EXITING */
760
761         /* sync mm's RSS info before statistics gathering */
762         if (tsk->mm)
763                 sync_mm_rss(tsk->mm);
764         acct_update_integrals(tsk);
765         group_dead = atomic_dec_and_test(&tsk->signal->live);
766         if (group_dead) {
767                 /*
768                  * If the last thread of global init has exited, panic
769                  * immediately to get a useable coredump.
770                  */
771                 if (unlikely(is_global_init(tsk)))
772                         panic("Attempted to kill init! exitcode=0x%08x\n",
773                                 tsk->signal->group_exit_code ?: (int)code);
774
775 #ifdef CONFIG_POSIX_TIMERS
776                 hrtimer_cancel(&tsk->signal->real_timer);
777                 exit_itimers(tsk->signal);
778 #endif
779                 if (tsk->mm)
780                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
781         }
782         acct_collect(code, group_dead);
783         if (group_dead)
784                 tty_audit_exit();
785         audit_free(tsk);
786
787         tsk->exit_code = code;
788         taskstats_exit(tsk, group_dead);
789
790         exit_mm();
791
792         if (group_dead)
793                 acct_process();
794         trace_sched_process_exit(tsk);
795
796         exit_sem(tsk);
797         exit_shm(tsk);
798         exit_files(tsk);
799         exit_fs(tsk);
800         if (group_dead)
801                 disassociate_ctty(1);
802         exit_task_namespaces(tsk);
803         exit_task_work(tsk);
804         exit_thread(tsk);
805         exit_umh(tsk);
806
807         /*
808          * Flush inherited counters to the parent - before the parent
809          * gets woken up by child-exit notifications.
810          *
811          * because of cgroup mode, must be called before cgroup_exit()
812          */
813         perf_event_exit_task(tsk);
814
815         sched_autogroup_exit_task(tsk);
816         cgroup_exit(tsk);
817
818         /*
819          * FIXME: do that only when needed, using sched_exit tracepoint
820          */
821         flush_ptrace_hw_breakpoint(tsk);
822
823         exit_tasks_rcu_start();
824         exit_notify(tsk, group_dead);
825         proc_exit_connector(tsk);
826         mpol_put_task_policy(tsk);
827 #ifdef CONFIG_FUTEX
828         if (unlikely(current->pi_state_cache))
829                 kfree(current->pi_state_cache);
830 #endif
831         /*
832          * Make sure we are holding no locks:
833          */
834         debug_check_no_locks_held();
835
836         if (tsk->io_context)
837                 exit_io_context(tsk);
838
839         if (tsk->splice_pipe)
840                 free_pipe_info(tsk->splice_pipe);
841
842         if (tsk->task_frag.page)
843                 put_page(tsk->task_frag.page);
844
845         validate_creds_for_do_exit(tsk);
846
847         check_stack_usage();
848         preempt_disable();
849         if (tsk->nr_dirtied)
850                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
851         exit_rcu();
852         exit_tasks_rcu_finish();
853
854         lockdep_free_task(tsk);
855         do_task_dead();
856 }
857 EXPORT_SYMBOL_GPL(do_exit);
858
859 void complete_and_exit(struct completion *comp, long code)
860 {
861         if (comp)
862                 complete(comp);
863
864         do_exit(code);
865 }
866 EXPORT_SYMBOL(complete_and_exit);
867
868 SYSCALL_DEFINE1(exit, int, error_code)
869 {
870         do_exit((error_code&0xff)<<8);
871 }
872
873 /*
874  * Take down every thread in the group.  This is called by fatal signals
875  * as well as by sys_exit_group (below).
876  */
877 void
878 do_group_exit(int exit_code)
879 {
880         struct signal_struct *sig = current->signal;
881
882         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
883
884         if (signal_group_exit(sig))
885                 exit_code = sig->group_exit_code;
886         else if (!thread_group_empty(current)) {
887                 struct sighand_struct *const sighand = current->sighand;
888
889                 spin_lock_irq(&sighand->siglock);
890                 if (signal_group_exit(sig))
891                         /* Another thread got here before we took the lock.  */
892                         exit_code = sig->group_exit_code;
893                 else {
894                         sig->group_exit_code = exit_code;
895                         sig->flags = SIGNAL_GROUP_EXIT;
896                         zap_other_threads(current);
897                 }
898                 spin_unlock_irq(&sighand->siglock);
899         }
900
901         do_exit(exit_code);
902         /* NOTREACHED */
903 }
904
905 /*
906  * this kills every thread in the thread group. Note that any externally
907  * wait4()-ing process will get the correct exit code - even if this
908  * thread is not the thread group leader.
909  */
910 SYSCALL_DEFINE1(exit_group, int, error_code)
911 {
912         do_group_exit((error_code & 0xff) << 8);
913         /* NOTREACHED */
914         return 0;
915 }
916
917 struct waitid_info {
918         pid_t pid;
919         uid_t uid;
920         int status;
921         int cause;
922 };
923
924 struct wait_opts {
925         enum pid_type           wo_type;
926         int                     wo_flags;
927         struct pid              *wo_pid;
928
929         struct waitid_info      *wo_info;
930         int                     wo_stat;
931         struct rusage           *wo_rusage;
932
933         wait_queue_entry_t              child_wait;
934         int                     notask_error;
935 };
936
937 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
938 {
939         return  wo->wo_type == PIDTYPE_MAX ||
940                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
941 }
942
943 static int
944 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
945 {
946         if (!eligible_pid(wo, p))
947                 return 0;
948
949         /*
950          * Wait for all children (clone and not) if __WALL is set or
951          * if it is traced by us.
952          */
953         if (ptrace || (wo->wo_flags & __WALL))
954                 return 1;
955
956         /*
957          * Otherwise, wait for clone children *only* if __WCLONE is set;
958          * otherwise, wait for non-clone children *only*.
959          *
960          * Note: a "clone" child here is one that reports to its parent
961          * using a signal other than SIGCHLD, or a non-leader thread which
962          * we can only see if it is traced by us.
963          */
964         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
965                 return 0;
966
967         return 1;
968 }
969
970 /*
971  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
972  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
973  * the lock and this task is uninteresting.  If we return nonzero, we have
974  * released the lock and the system call should return.
975  */
976 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
977 {
978         int state, status;
979         pid_t pid = task_pid_vnr(p);
980         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
981         struct waitid_info *infop;
982
983         if (!likely(wo->wo_flags & WEXITED))
984                 return 0;
985
986         if (unlikely(wo->wo_flags & WNOWAIT)) {
987                 status = p->exit_code;
988                 get_task_struct(p);
989                 read_unlock(&tasklist_lock);
990                 sched_annotate_sleep();
991                 if (wo->wo_rusage)
992                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
993                 put_task_struct(p);
994                 goto out_info;
995         }
996         /*
997          * Move the task's state to DEAD/TRACE, only one thread can do this.
998          */
999         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1000                 EXIT_TRACE : EXIT_DEAD;
1001         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1002                 return 0;
1003         /*
1004          * We own this thread, nobody else can reap it.
1005          */
1006         read_unlock(&tasklist_lock);
1007         sched_annotate_sleep();
1008
1009         /*
1010          * Check thread_group_leader() to exclude the traced sub-threads.
1011          */
1012         if (state == EXIT_DEAD && thread_group_leader(p)) {
1013                 struct signal_struct *sig = p->signal;
1014                 struct signal_struct *psig = current->signal;
1015                 unsigned long maxrss;
1016                 u64 tgutime, tgstime;
1017
1018                 /*
1019                  * The resource counters for the group leader are in its
1020                  * own task_struct.  Those for dead threads in the group
1021                  * are in its signal_struct, as are those for the child
1022                  * processes it has previously reaped.  All these
1023                  * accumulate in the parent's signal_struct c* fields.
1024                  *
1025                  * We don't bother to take a lock here to protect these
1026                  * p->signal fields because the whole thread group is dead
1027                  * and nobody can change them.
1028                  *
1029                  * psig->stats_lock also protects us from our sub-theads
1030                  * which can reap other children at the same time. Until
1031                  * we change k_getrusage()-like users to rely on this lock
1032                  * we have to take ->siglock as well.
1033                  *
1034                  * We use thread_group_cputime_adjusted() to get times for
1035                  * the thread group, which consolidates times for all threads
1036                  * in the group including the group leader.
1037                  */
1038                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1039                 spin_lock_irq(&current->sighand->siglock);
1040                 write_seqlock(&psig->stats_lock);
1041                 psig->cutime += tgutime + sig->cutime;
1042                 psig->cstime += tgstime + sig->cstime;
1043                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1044                 psig->cmin_flt +=
1045                         p->min_flt + sig->min_flt + sig->cmin_flt;
1046                 psig->cmaj_flt +=
1047                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1048                 psig->cnvcsw +=
1049                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1050                 psig->cnivcsw +=
1051                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1052                 psig->cinblock +=
1053                         task_io_get_inblock(p) +
1054                         sig->inblock + sig->cinblock;
1055                 psig->coublock +=
1056                         task_io_get_oublock(p) +
1057                         sig->oublock + sig->coublock;
1058                 maxrss = max(sig->maxrss, sig->cmaxrss);
1059                 if (psig->cmaxrss < maxrss)
1060                         psig->cmaxrss = maxrss;
1061                 task_io_accounting_add(&psig->ioac, &p->ioac);
1062                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1063                 write_sequnlock(&psig->stats_lock);
1064                 spin_unlock_irq(&current->sighand->siglock);
1065         }
1066
1067         if (wo->wo_rusage)
1068                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1069         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1070                 ? p->signal->group_exit_code : p->exit_code;
1071         wo->wo_stat = status;
1072
1073         if (state == EXIT_TRACE) {
1074                 write_lock_irq(&tasklist_lock);
1075                 /* We dropped tasklist, ptracer could die and untrace */
1076                 ptrace_unlink(p);
1077
1078                 /* If parent wants a zombie, don't release it now */
1079                 state = EXIT_ZOMBIE;
1080                 if (do_notify_parent(p, p->exit_signal))
1081                         state = EXIT_DEAD;
1082                 p->exit_state = state;
1083                 write_unlock_irq(&tasklist_lock);
1084         }
1085         if (state == EXIT_DEAD)
1086                 release_task(p);
1087
1088 out_info:
1089         infop = wo->wo_info;
1090         if (infop) {
1091                 if ((status & 0x7f) == 0) {
1092                         infop->cause = CLD_EXITED;
1093                         infop->status = status >> 8;
1094                 } else {
1095                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096                         infop->status = status & 0x7f;
1097                 }
1098                 infop->pid = pid;
1099                 infop->uid = uid;
1100         }
1101
1102         return pid;
1103 }
1104
1105 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1106 {
1107         if (ptrace) {
1108                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1109                         return &p->exit_code;
1110         } else {
1111                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1112                         return &p->signal->group_exit_code;
1113         }
1114         return NULL;
1115 }
1116
1117 /**
1118  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1119  * @wo: wait options
1120  * @ptrace: is the wait for ptrace
1121  * @p: task to wait for
1122  *
1123  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1124  *
1125  * CONTEXT:
1126  * read_lock(&tasklist_lock), which is released if return value is
1127  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1128  *
1129  * RETURNS:
1130  * 0 if wait condition didn't exist and search for other wait conditions
1131  * should continue.  Non-zero return, -errno on failure and @p's pid on
1132  * success, implies that tasklist_lock is released and wait condition
1133  * search should terminate.
1134  */
1135 static int wait_task_stopped(struct wait_opts *wo,
1136                                 int ptrace, struct task_struct *p)
1137 {
1138         struct waitid_info *infop;
1139         int exit_code, *p_code, why;
1140         uid_t uid = 0; /* unneeded, required by compiler */
1141         pid_t pid;
1142
1143         /*
1144          * Traditionally we see ptrace'd stopped tasks regardless of options.
1145          */
1146         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1147                 return 0;
1148
1149         if (!task_stopped_code(p, ptrace))
1150                 return 0;
1151
1152         exit_code = 0;
1153         spin_lock_irq(&p->sighand->siglock);
1154
1155         p_code = task_stopped_code(p, ptrace);
1156         if (unlikely(!p_code))
1157                 goto unlock_sig;
1158
1159         exit_code = *p_code;
1160         if (!exit_code)
1161                 goto unlock_sig;
1162
1163         if (!unlikely(wo->wo_flags & WNOWAIT))
1164                 *p_code = 0;
1165
1166         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1167 unlock_sig:
1168         spin_unlock_irq(&p->sighand->siglock);
1169         if (!exit_code)
1170                 return 0;
1171
1172         /*
1173          * Now we are pretty sure this task is interesting.
1174          * Make sure it doesn't get reaped out from under us while we
1175          * give up the lock and then examine it below.  We don't want to
1176          * keep holding onto the tasklist_lock while we call getrusage and
1177          * possibly take page faults for user memory.
1178          */
1179         get_task_struct(p);
1180         pid = task_pid_vnr(p);
1181         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1182         read_unlock(&tasklist_lock);
1183         sched_annotate_sleep();
1184         if (wo->wo_rusage)
1185                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1186         put_task_struct(p);
1187
1188         if (likely(!(wo->wo_flags & WNOWAIT)))
1189                 wo->wo_stat = (exit_code << 8) | 0x7f;
1190
1191         infop = wo->wo_info;
1192         if (infop) {
1193                 infop->cause = why;
1194                 infop->status = exit_code;
1195                 infop->pid = pid;
1196                 infop->uid = uid;
1197         }
1198         return pid;
1199 }
1200
1201 /*
1202  * Handle do_wait work for one task in a live, non-stopped state.
1203  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1204  * the lock and this task is uninteresting.  If we return nonzero, we have
1205  * released the lock and the system call should return.
1206  */
1207 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1208 {
1209         struct waitid_info *infop;
1210         pid_t pid;
1211         uid_t uid;
1212
1213         if (!unlikely(wo->wo_flags & WCONTINUED))
1214                 return 0;
1215
1216         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1217                 return 0;
1218
1219         spin_lock_irq(&p->sighand->siglock);
1220         /* Re-check with the lock held.  */
1221         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1222                 spin_unlock_irq(&p->sighand->siglock);
1223                 return 0;
1224         }
1225         if (!unlikely(wo->wo_flags & WNOWAIT))
1226                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1227         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1228         spin_unlock_irq(&p->sighand->siglock);
1229
1230         pid = task_pid_vnr(p);
1231         get_task_struct(p);
1232         read_unlock(&tasklist_lock);
1233         sched_annotate_sleep();
1234         if (wo->wo_rusage)
1235                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1236         put_task_struct(p);
1237
1238         infop = wo->wo_info;
1239         if (!infop) {
1240                 wo->wo_stat = 0xffff;
1241         } else {
1242                 infop->cause = CLD_CONTINUED;
1243                 infop->pid = pid;
1244                 infop->uid = uid;
1245                 infop->status = SIGCONT;
1246         }
1247         return pid;
1248 }
1249
1250 /*
1251  * Consider @p for a wait by @parent.
1252  *
1253  * -ECHILD should be in ->notask_error before the first call.
1254  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1255  * Returns zero if the search for a child should continue;
1256  * then ->notask_error is 0 if @p is an eligible child,
1257  * or still -ECHILD.
1258  */
1259 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1260                                 struct task_struct *p)
1261 {
1262         /*
1263          * We can race with wait_task_zombie() from another thread.
1264          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1265          * can't confuse the checks below.
1266          */
1267         int exit_state = READ_ONCE(p->exit_state);
1268         int ret;
1269
1270         if (unlikely(exit_state == EXIT_DEAD))
1271                 return 0;
1272
1273         ret = eligible_child(wo, ptrace, p);
1274         if (!ret)
1275                 return ret;
1276
1277         if (unlikely(exit_state == EXIT_TRACE)) {
1278                 /*
1279                  * ptrace == 0 means we are the natural parent. In this case
1280                  * we should clear notask_error, debugger will notify us.
1281                  */
1282                 if (likely(!ptrace))
1283                         wo->notask_error = 0;
1284                 return 0;
1285         }
1286
1287         if (likely(!ptrace) && unlikely(p->ptrace)) {
1288                 /*
1289                  * If it is traced by its real parent's group, just pretend
1290                  * the caller is ptrace_do_wait() and reap this child if it
1291                  * is zombie.
1292                  *
1293                  * This also hides group stop state from real parent; otherwise
1294                  * a single stop can be reported twice as group and ptrace stop.
1295                  * If a ptracer wants to distinguish these two events for its
1296                  * own children it should create a separate process which takes
1297                  * the role of real parent.
1298                  */
1299                 if (!ptrace_reparented(p))
1300                         ptrace = 1;
1301         }
1302
1303         /* slay zombie? */
1304         if (exit_state == EXIT_ZOMBIE) {
1305                 /* we don't reap group leaders with subthreads */
1306                 if (!delay_group_leader(p)) {
1307                         /*
1308                          * A zombie ptracee is only visible to its ptracer.
1309                          * Notification and reaping will be cascaded to the
1310                          * real parent when the ptracer detaches.
1311                          */
1312                         if (unlikely(ptrace) || likely(!p->ptrace))
1313                                 return wait_task_zombie(wo, p);
1314                 }
1315
1316                 /*
1317                  * Allow access to stopped/continued state via zombie by
1318                  * falling through.  Clearing of notask_error is complex.
1319                  *
1320                  * When !@ptrace:
1321                  *
1322                  * If WEXITED is set, notask_error should naturally be
1323                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1324                  * so, if there are live subthreads, there are events to
1325                  * wait for.  If all subthreads are dead, it's still safe
1326                  * to clear - this function will be called again in finite
1327                  * amount time once all the subthreads are released and
1328                  * will then return without clearing.
1329                  *
1330                  * When @ptrace:
1331                  *
1332                  * Stopped state is per-task and thus can't change once the
1333                  * target task dies.  Only continued and exited can happen.
1334                  * Clear notask_error if WCONTINUED | WEXITED.
1335                  */
1336                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1337                         wo->notask_error = 0;
1338         } else {
1339                 /*
1340                  * @p is alive and it's gonna stop, continue or exit, so
1341                  * there always is something to wait for.
1342                  */
1343                 wo->notask_error = 0;
1344         }
1345
1346         /*
1347          * Wait for stopped.  Depending on @ptrace, different stopped state
1348          * is used and the two don't interact with each other.
1349          */
1350         ret = wait_task_stopped(wo, ptrace, p);
1351         if (ret)
1352                 return ret;
1353
1354         /*
1355          * Wait for continued.  There's only one continued state and the
1356          * ptracer can consume it which can confuse the real parent.  Don't
1357          * use WCONTINUED from ptracer.  You don't need or want it.
1358          */
1359         return wait_task_continued(wo, p);
1360 }
1361
1362 /*
1363  * Do the work of do_wait() for one thread in the group, @tsk.
1364  *
1365  * -ECHILD should be in ->notask_error before the first call.
1366  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1367  * Returns zero if the search for a child should continue; then
1368  * ->notask_error is 0 if there were any eligible children,
1369  * or still -ECHILD.
1370  */
1371 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1372 {
1373         struct task_struct *p;
1374
1375         list_for_each_entry(p, &tsk->children, sibling) {
1376                 int ret = wait_consider_task(wo, 0, p);
1377
1378                 if (ret)
1379                         return ret;
1380         }
1381
1382         return 0;
1383 }
1384
1385 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1386 {
1387         struct task_struct *p;
1388
1389         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1390                 int ret = wait_consider_task(wo, 1, p);
1391
1392                 if (ret)
1393                         return ret;
1394         }
1395
1396         return 0;
1397 }
1398
1399 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1400                                 int sync, void *key)
1401 {
1402         struct wait_opts *wo = container_of(wait, struct wait_opts,
1403                                                 child_wait);
1404         struct task_struct *p = key;
1405
1406         if (!eligible_pid(wo, p))
1407                 return 0;
1408
1409         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1410                 return 0;
1411
1412         return default_wake_function(wait, mode, sync, key);
1413 }
1414
1415 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1416 {
1417         __wake_up_sync_key(&parent->signal->wait_chldexit,
1418                            TASK_INTERRUPTIBLE, p);
1419 }
1420
1421 static long do_wait(struct wait_opts *wo)
1422 {
1423         struct task_struct *tsk;
1424         int retval;
1425
1426         trace_sched_process_wait(wo->wo_pid);
1427
1428         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1429         wo->child_wait.private = current;
1430         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1431 repeat:
1432         /*
1433          * If there is nothing that can match our criteria, just get out.
1434          * We will clear ->notask_error to zero if we see any child that
1435          * might later match our criteria, even if we are not able to reap
1436          * it yet.
1437          */
1438         wo->notask_error = -ECHILD;
1439         if ((wo->wo_type < PIDTYPE_MAX) &&
1440            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1441                 goto notask;
1442
1443         set_current_state(TASK_INTERRUPTIBLE);
1444         read_lock(&tasklist_lock);
1445         tsk = current;
1446         do {
1447                 retval = do_wait_thread(wo, tsk);
1448                 if (retval)
1449                         goto end;
1450
1451                 retval = ptrace_do_wait(wo, tsk);
1452                 if (retval)
1453                         goto end;
1454
1455                 if (wo->wo_flags & __WNOTHREAD)
1456                         break;
1457         } while_each_thread(current, tsk);
1458         read_unlock(&tasklist_lock);
1459
1460 notask:
1461         retval = wo->notask_error;
1462         if (!retval && !(wo->wo_flags & WNOHANG)) {
1463                 retval = -ERESTARTSYS;
1464                 if (!signal_pending(current)) {
1465                         schedule();
1466                         goto repeat;
1467                 }
1468         }
1469 end:
1470         __set_current_state(TASK_RUNNING);
1471         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1472         return retval;
1473 }
1474
1475 static struct pid *pidfd_get_pid(unsigned int fd)
1476 {
1477         struct fd f;
1478         struct pid *pid;
1479
1480         f = fdget(fd);
1481         if (!f.file)
1482                 return ERR_PTR(-EBADF);
1483
1484         pid = pidfd_pid(f.file);
1485         if (!IS_ERR(pid))
1486                 get_pid(pid);
1487
1488         fdput(f);
1489         return pid;
1490 }
1491
1492 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1493                           int options, struct rusage *ru)
1494 {
1495         struct wait_opts wo;
1496         struct pid *pid = NULL;
1497         enum pid_type type;
1498         long ret;
1499
1500         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1501                         __WNOTHREAD|__WCLONE|__WALL))
1502                 return -EINVAL;
1503         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1504                 return -EINVAL;
1505
1506         switch (which) {
1507         case P_ALL:
1508                 type = PIDTYPE_MAX;
1509                 break;
1510         case P_PID:
1511                 type = PIDTYPE_PID;
1512                 if (upid <= 0)
1513                         return -EINVAL;
1514
1515                 pid = find_get_pid(upid);
1516                 break;
1517         case P_PGID:
1518                 type = PIDTYPE_PGID;
1519                 if (upid < 0)
1520                         return -EINVAL;
1521
1522                 if (upid)
1523                         pid = find_get_pid(upid);
1524                 else
1525                         pid = get_task_pid(current, PIDTYPE_PGID);
1526                 break;
1527         case P_PIDFD:
1528                 type = PIDTYPE_PID;
1529                 if (upid < 0)
1530                         return -EINVAL;
1531
1532                 pid = pidfd_get_pid(upid);
1533                 if (IS_ERR(pid))
1534                         return PTR_ERR(pid);
1535                 break;
1536         default:
1537                 return -EINVAL;
1538         }
1539
1540         wo.wo_type      = type;
1541         wo.wo_pid       = pid;
1542         wo.wo_flags     = options;
1543         wo.wo_info      = infop;
1544         wo.wo_rusage    = ru;
1545         ret = do_wait(&wo);
1546
1547         put_pid(pid);
1548         return ret;
1549 }
1550
1551 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1552                 infop, int, options, struct rusage __user *, ru)
1553 {
1554         struct rusage r;
1555         struct waitid_info info = {.status = 0};
1556         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1557         int signo = 0;
1558
1559         if (err > 0) {
1560                 signo = SIGCHLD;
1561                 err = 0;
1562                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1563                         return -EFAULT;
1564         }
1565         if (!infop)
1566                 return err;
1567
1568         if (!user_write_access_begin(infop, sizeof(*infop)))
1569                 return -EFAULT;
1570
1571         unsafe_put_user(signo, &infop->si_signo, Efault);
1572         unsafe_put_user(0, &infop->si_errno, Efault);
1573         unsafe_put_user(info.cause, &infop->si_code, Efault);
1574         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1575         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1576         unsafe_put_user(info.status, &infop->si_status, Efault);
1577         user_write_access_end();
1578         return err;
1579 Efault:
1580         user_write_access_end();
1581         return -EFAULT;
1582 }
1583
1584 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1585                   struct rusage *ru)
1586 {
1587         struct wait_opts wo;
1588         struct pid *pid = NULL;
1589         enum pid_type type;
1590         long ret;
1591
1592         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1593                         __WNOTHREAD|__WCLONE|__WALL))
1594                 return -EINVAL;
1595
1596         /* -INT_MIN is not defined */
1597         if (upid == INT_MIN)
1598                 return -ESRCH;
1599
1600         if (upid == -1)
1601                 type = PIDTYPE_MAX;
1602         else if (upid < 0) {
1603                 type = PIDTYPE_PGID;
1604                 pid = find_get_pid(-upid);
1605         } else if (upid == 0) {
1606                 type = PIDTYPE_PGID;
1607                 pid = get_task_pid(current, PIDTYPE_PGID);
1608         } else /* upid > 0 */ {
1609                 type = PIDTYPE_PID;
1610                 pid = find_get_pid(upid);
1611         }
1612
1613         wo.wo_type      = type;
1614         wo.wo_pid       = pid;
1615         wo.wo_flags     = options | WEXITED;
1616         wo.wo_info      = NULL;
1617         wo.wo_stat      = 0;
1618         wo.wo_rusage    = ru;
1619         ret = do_wait(&wo);
1620         put_pid(pid);
1621         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1622                 ret = -EFAULT;
1623
1624         return ret;
1625 }
1626
1627 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1628                 int, options, struct rusage __user *, ru)
1629 {
1630         struct rusage r;
1631         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1632
1633         if (err > 0) {
1634                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1635                         return -EFAULT;
1636         }
1637         return err;
1638 }
1639
1640 #ifdef __ARCH_WANT_SYS_WAITPID
1641
1642 /*
1643  * sys_waitpid() remains for compatibility. waitpid() should be
1644  * implemented by calling sys_wait4() from libc.a.
1645  */
1646 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1647 {
1648         return kernel_wait4(pid, stat_addr, options, NULL);
1649 }
1650
1651 #endif
1652
1653 #ifdef CONFIG_COMPAT
1654 COMPAT_SYSCALL_DEFINE4(wait4,
1655         compat_pid_t, pid,
1656         compat_uint_t __user *, stat_addr,
1657         int, options,
1658         struct compat_rusage __user *, ru)
1659 {
1660         struct rusage r;
1661         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1662         if (err > 0) {
1663                 if (ru && put_compat_rusage(&r, ru))
1664                         return -EFAULT;
1665         }
1666         return err;
1667 }
1668
1669 COMPAT_SYSCALL_DEFINE5(waitid,
1670                 int, which, compat_pid_t, pid,
1671                 struct compat_siginfo __user *, infop, int, options,
1672                 struct compat_rusage __user *, uru)
1673 {
1674         struct rusage ru;
1675         struct waitid_info info = {.status = 0};
1676         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1677         int signo = 0;
1678         if (err > 0) {
1679                 signo = SIGCHLD;
1680                 err = 0;
1681                 if (uru) {
1682                         /* kernel_waitid() overwrites everything in ru */
1683                         if (COMPAT_USE_64BIT_TIME)
1684                                 err = copy_to_user(uru, &ru, sizeof(ru));
1685                         else
1686                                 err = put_compat_rusage(&ru, uru);
1687                         if (err)
1688                                 return -EFAULT;
1689                 }
1690         }
1691
1692         if (!infop)
1693                 return err;
1694
1695         if (!user_write_access_begin(infop, sizeof(*infop)))
1696                 return -EFAULT;
1697
1698         unsafe_put_user(signo, &infop->si_signo, Efault);
1699         unsafe_put_user(0, &infop->si_errno, Efault);
1700         unsafe_put_user(info.cause, &infop->si_code, Efault);
1701         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1702         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1703         unsafe_put_user(info.status, &infop->si_status, Efault);
1704         user_write_access_end();
1705         return err;
1706 Efault:
1707         user_write_access_end();
1708         return -EFAULT;
1709 }
1710 #endif
1711
1712 __weak void abort(void)
1713 {
1714         BUG();
1715
1716         /* if that doesn't kill us, halt */
1717         panic("Oops failed to kill thread");
1718 }
1719 EXPORT_SYMBOL(abort);