OSDN Git Service

8ff20523661b87c5e68ee263cef47debb53f1d1f
[uclinux-h8/linux.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kunmap(vmx->nested.hv_evmcs_page);
197         kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198         vmx->nested.hv_evmcs_vmptr = -1ull;
199         vmx->nested.hv_evmcs_page = NULL;
200         vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209         struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212                 return;
213
214         vmx->nested.vmxon = false;
215         vmx->nested.smm.vmxon = false;
216         free_vpid(vmx->nested.vpid02);
217         vmx->nested.posted_intr_nv = -1;
218         vmx->nested.current_vmptr = -1ull;
219         if (enable_shadow_vmcs) {
220                 vmx_disable_shadow_vmcs(vmx);
221                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
222                 free_vmcs(vmx->vmcs01.shadow_vmcs);
223                 vmx->vmcs01.shadow_vmcs = NULL;
224         }
225         kfree(vmx->nested.cached_vmcs12);
226         kfree(vmx->nested.cached_shadow_vmcs12);
227         /* Unpin physical memory we referred to in the vmcs02 */
228         if (vmx->nested.apic_access_page) {
229                 kvm_release_page_dirty(vmx->nested.apic_access_page);
230                 vmx->nested.apic_access_page = NULL;
231         }
232         if (vmx->nested.virtual_apic_page) {
233                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
234                 vmx->nested.virtual_apic_page = NULL;
235         }
236         if (vmx->nested.pi_desc_page) {
237                 kunmap(vmx->nested.pi_desc_page);
238                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
239                 vmx->nested.pi_desc_page = NULL;
240                 vmx->nested.pi_desc = NULL;
241         }
242
243         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
244
245         nested_release_evmcs(vcpu);
246
247         free_loaded_vmcs(&vmx->nested.vmcs02);
248 }
249
250 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
251 {
252         struct vcpu_vmx *vmx = to_vmx(vcpu);
253         int cpu;
254
255         if (vmx->loaded_vmcs == vmcs)
256                 return;
257
258         cpu = get_cpu();
259         vmx_vcpu_put(vcpu);
260         vmx->loaded_vmcs = vmcs;
261         vmx_vcpu_load(vcpu, cpu);
262         put_cpu();
263
264         vm_entry_controls_reset_shadow(vmx);
265         vm_exit_controls_reset_shadow(vmx);
266         vmx_segment_cache_clear(vmx);
267 }
268
269 /*
270  * Ensure that the current vmcs of the logical processor is the
271  * vmcs01 of the vcpu before calling free_nested().
272  */
273 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275         vcpu_load(vcpu);
276         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
277         free_nested(vcpu);
278         vcpu_put(vcpu);
279 }
280
281 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
282                 struct x86_exception *fault)
283 {
284         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
285         struct vcpu_vmx *vmx = to_vmx(vcpu);
286         u32 exit_reason;
287         unsigned long exit_qualification = vcpu->arch.exit_qualification;
288
289         if (vmx->nested.pml_full) {
290                 exit_reason = EXIT_REASON_PML_FULL;
291                 vmx->nested.pml_full = false;
292                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
293         } else if (fault->error_code & PFERR_RSVD_MASK)
294                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
295         else
296                 exit_reason = EXIT_REASON_EPT_VIOLATION;
297
298         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
299         vmcs12->guest_physical_address = fault->address;
300 }
301
302 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
303 {
304         WARN_ON(mmu_is_nested(vcpu));
305
306         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
307         kvm_init_shadow_ept_mmu(vcpu,
308                         to_vmx(vcpu)->nested.msrs.ept_caps &
309                         VMX_EPT_EXECUTE_ONLY_BIT,
310                         nested_ept_ad_enabled(vcpu),
311                         nested_ept_get_cr3(vcpu));
312         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
313         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
314         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
315         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
316
317         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
318 }
319
320 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
321 {
322         vcpu->arch.mmu = &vcpu->arch.root_mmu;
323         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
324 }
325
326 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
327                                             u16 error_code)
328 {
329         bool inequality, bit;
330
331         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
332         inequality =
333                 (error_code & vmcs12->page_fault_error_code_mask) !=
334                  vmcs12->page_fault_error_code_match;
335         return inequality ^ bit;
336 }
337
338
339 /*
340  * KVM wants to inject page-faults which it got to the guest. This function
341  * checks whether in a nested guest, we need to inject them to L1 or L2.
342  */
343 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
344 {
345         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
346         unsigned int nr = vcpu->arch.exception.nr;
347         bool has_payload = vcpu->arch.exception.has_payload;
348         unsigned long payload = vcpu->arch.exception.payload;
349
350         if (nr == PF_VECTOR) {
351                 if (vcpu->arch.exception.nested_apf) {
352                         *exit_qual = vcpu->arch.apf.nested_apf_token;
353                         return 1;
354                 }
355                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
356                                                     vcpu->arch.exception.error_code)) {
357                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
358                         return 1;
359                 }
360         } else if (vmcs12->exception_bitmap & (1u << nr)) {
361                 if (nr == DB_VECTOR) {
362                         if (!has_payload) {
363                                 payload = vcpu->arch.dr6;
364                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
365                                 payload ^= DR6_RTM;
366                         }
367                         *exit_qual = payload;
368                 } else
369                         *exit_qual = 0;
370                 return 1;
371         }
372
373         return 0;
374 }
375
376
377 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
378                 struct x86_exception *fault)
379 {
380         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
381
382         WARN_ON(!is_guest_mode(vcpu));
383
384         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
385                 !to_vmx(vcpu)->nested.nested_run_pending) {
386                 vmcs12->vm_exit_intr_error_code = fault->error_code;
387                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
388                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
389                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
390                                   fault->address);
391         } else {
392                 kvm_inject_page_fault(vcpu, fault);
393         }
394 }
395
396 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
397 {
398         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
399 }
400
401 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
402                                                struct vmcs12 *vmcs12)
403 {
404         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
405                 return 0;
406
407         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
408             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
409                 return -EINVAL;
410
411         return 0;
412 }
413
414 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
415                                                 struct vmcs12 *vmcs12)
416 {
417         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
418                 return 0;
419
420         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
421                 return -EINVAL;
422
423         return 0;
424 }
425
426 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
427                                                 struct vmcs12 *vmcs12)
428 {
429         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
430                 return 0;
431
432         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
433                 return -EINVAL;
434
435         return 0;
436 }
437
438 /*
439  * Check if MSR is intercepted for L01 MSR bitmap.
440  */
441 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
442 {
443         unsigned long *msr_bitmap;
444         int f = sizeof(unsigned long);
445
446         if (!cpu_has_vmx_msr_bitmap())
447                 return true;
448
449         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
450
451         if (msr <= 0x1fff) {
452                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
453         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
454                 msr &= 0x1fff;
455                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
456         }
457
458         return true;
459 }
460
461 /*
462  * If a msr is allowed by L0, we should check whether it is allowed by L1.
463  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
464  */
465 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
466                                                unsigned long *msr_bitmap_nested,
467                                                u32 msr, int type)
468 {
469         int f = sizeof(unsigned long);
470
471         /*
472          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
473          * have the write-low and read-high bitmap offsets the wrong way round.
474          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
475          */
476         if (msr <= 0x1fff) {
477                 if (type & MSR_TYPE_R &&
478                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
479                         /* read-low */
480                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
481
482                 if (type & MSR_TYPE_W &&
483                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
484                         /* write-low */
485                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
486
487         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
488                 msr &= 0x1fff;
489                 if (type & MSR_TYPE_R &&
490                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
491                         /* read-high */
492                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
493
494                 if (type & MSR_TYPE_W &&
495                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
496                         /* write-high */
497                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
498
499         }
500 }
501
502 /*
503  * Merge L0's and L1's MSR bitmap, return false to indicate that
504  * we do not use the hardware.
505  */
506 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
507                                                  struct vmcs12 *vmcs12)
508 {
509         int msr;
510         struct page *page;
511         unsigned long *msr_bitmap_l1;
512         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
513         /*
514          * pred_cmd & spec_ctrl are trying to verify two things:
515          *
516          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
517          *    ensures that we do not accidentally generate an L02 MSR bitmap
518          *    from the L12 MSR bitmap that is too permissive.
519          * 2. That L1 or L2s have actually used the MSR. This avoids
520          *    unnecessarily merging of the bitmap if the MSR is unused. This
521          *    works properly because we only update the L01 MSR bitmap lazily.
522          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
523          *    updated to reflect this when L1 (or its L2s) actually write to
524          *    the MSR.
525          */
526         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
527         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
528
529         /* Nothing to do if the MSR bitmap is not in use.  */
530         if (!cpu_has_vmx_msr_bitmap() ||
531             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
532                 return false;
533
534         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
535             !pred_cmd && !spec_ctrl)
536                 return false;
537
538         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
539         if (is_error_page(page))
540                 return false;
541
542         msr_bitmap_l1 = (unsigned long *)kmap(page);
543         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
544                 /*
545                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
546                  * just lets the processor take the value from the virtual-APIC page;
547                  * take those 256 bits directly from the L1 bitmap.
548                  */
549                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550                         unsigned word = msr / BITS_PER_LONG;
551                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
552                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
553                 }
554         } else {
555                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
556                         unsigned word = msr / BITS_PER_LONG;
557                         msr_bitmap_l0[word] = ~0;
558                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
559                 }
560         }
561
562         nested_vmx_disable_intercept_for_msr(
563                 msr_bitmap_l1, msr_bitmap_l0,
564                 X2APIC_MSR(APIC_TASKPRI),
565                 MSR_TYPE_W);
566
567         if (nested_cpu_has_vid(vmcs12)) {
568                 nested_vmx_disable_intercept_for_msr(
569                         msr_bitmap_l1, msr_bitmap_l0,
570                         X2APIC_MSR(APIC_EOI),
571                         MSR_TYPE_W);
572                 nested_vmx_disable_intercept_for_msr(
573                         msr_bitmap_l1, msr_bitmap_l0,
574                         X2APIC_MSR(APIC_SELF_IPI),
575                         MSR_TYPE_W);
576         }
577
578         if (spec_ctrl)
579                 nested_vmx_disable_intercept_for_msr(
580                                         msr_bitmap_l1, msr_bitmap_l0,
581                                         MSR_IA32_SPEC_CTRL,
582                                         MSR_TYPE_R | MSR_TYPE_W);
583
584         if (pred_cmd)
585                 nested_vmx_disable_intercept_for_msr(
586                                         msr_bitmap_l1, msr_bitmap_l0,
587                                         MSR_IA32_PRED_CMD,
588                                         MSR_TYPE_W);
589
590         kunmap(page);
591         kvm_release_page_clean(page);
592
593         return true;
594 }
595
596 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
597                                        struct vmcs12 *vmcs12)
598 {
599         struct vmcs12 *shadow;
600         struct page *page;
601
602         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
603             vmcs12->vmcs_link_pointer == -1ull)
604                 return;
605
606         shadow = get_shadow_vmcs12(vcpu);
607         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
608
609         memcpy(shadow, kmap(page), VMCS12_SIZE);
610
611         kunmap(page);
612         kvm_release_page_clean(page);
613 }
614
615 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
616                                               struct vmcs12 *vmcs12)
617 {
618         struct vcpu_vmx *vmx = to_vmx(vcpu);
619
620         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
621             vmcs12->vmcs_link_pointer == -1ull)
622                 return;
623
624         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
625                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
626 }
627
628 /*
629  * In nested virtualization, check if L1 has set
630  * VM_EXIT_ACK_INTR_ON_EXIT
631  */
632 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
633 {
634         return get_vmcs12(vcpu)->vm_exit_controls &
635                 VM_EXIT_ACK_INTR_ON_EXIT;
636 }
637
638 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
639 {
640         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
641 }
642
643 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
644                                           struct vmcs12 *vmcs12)
645 {
646         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
647             !page_address_valid(vcpu, vmcs12->apic_access_addr))
648                 return -EINVAL;
649         else
650                 return 0;
651 }
652
653 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
654                                            struct vmcs12 *vmcs12)
655 {
656         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
657             !nested_cpu_has_apic_reg_virt(vmcs12) &&
658             !nested_cpu_has_vid(vmcs12) &&
659             !nested_cpu_has_posted_intr(vmcs12))
660                 return 0;
661
662         /*
663          * If virtualize x2apic mode is enabled,
664          * virtualize apic access must be disabled.
665          */
666         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
667             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
668                 return -EINVAL;
669
670         /*
671          * If virtual interrupt delivery is enabled,
672          * we must exit on external interrupts.
673          */
674         if (nested_cpu_has_vid(vmcs12) &&
675            !nested_exit_on_intr(vcpu))
676                 return -EINVAL;
677
678         /*
679          * bits 15:8 should be zero in posted_intr_nv,
680          * the descriptor address has been already checked
681          * in nested_get_vmcs12_pages.
682          *
683          * bits 5:0 of posted_intr_desc_addr should be zero.
684          */
685         if (nested_cpu_has_posted_intr(vmcs12) &&
686            (!nested_cpu_has_vid(vmcs12) ||
687             !nested_exit_intr_ack_set(vcpu) ||
688             (vmcs12->posted_intr_nv & 0xff00) ||
689             (vmcs12->posted_intr_desc_addr & 0x3f) ||
690             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
691                 return -EINVAL;
692
693         /* tpr shadow is needed by all apicv features. */
694         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
695                 return -EINVAL;
696
697         return 0;
698 }
699
700 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
701                                        u32 count, u64 addr)
702 {
703         int maxphyaddr;
704
705         if (count == 0)
706                 return 0;
707         maxphyaddr = cpuid_maxphyaddr(vcpu);
708         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
709             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
710                 return -EINVAL;
711
712         return 0;
713 }
714
715 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
716                                                      struct vmcs12 *vmcs12)
717 {
718         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
719                                         vmcs12->vm_exit_msr_load_addr) ||
720             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
721                                         vmcs12->vm_exit_msr_store_addr))
722                 return -EINVAL;
723
724         return 0;
725 }
726
727 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
728                                                       struct vmcs12 *vmcs12)
729 {
730         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
731                                         vmcs12->vm_entry_msr_load_addr))
732                 return -EINVAL;
733
734         return 0;
735 }
736
737 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
738                                          struct vmcs12 *vmcs12)
739 {
740         if (!nested_cpu_has_pml(vmcs12))
741                 return 0;
742
743         if (!nested_cpu_has_ept(vmcs12) ||
744             !page_address_valid(vcpu, vmcs12->pml_address))
745                 return -EINVAL;
746
747         return 0;
748 }
749
750 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
751                                                         struct vmcs12 *vmcs12)
752 {
753         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
754             !nested_cpu_has_ept(vmcs12))
755                 return -EINVAL;
756         return 0;
757 }
758
759 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
760                                                          struct vmcs12 *vmcs12)
761 {
762         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
763             !nested_cpu_has_ept(vmcs12))
764                 return -EINVAL;
765         return 0;
766 }
767
768 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
769                                                  struct vmcs12 *vmcs12)
770 {
771         if (!nested_cpu_has_shadow_vmcs(vmcs12))
772                 return 0;
773
774         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
775             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
776                 return -EINVAL;
777
778         return 0;
779 }
780
781 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
782                                        struct vmx_msr_entry *e)
783 {
784         /* x2APIC MSR accesses are not allowed */
785         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
786                 return -EINVAL;
787         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
788             e->index == MSR_IA32_UCODE_REV)
789                 return -EINVAL;
790         if (e->reserved != 0)
791                 return -EINVAL;
792         return 0;
793 }
794
795 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
796                                      struct vmx_msr_entry *e)
797 {
798         if (e->index == MSR_FS_BASE ||
799             e->index == MSR_GS_BASE ||
800             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
801             nested_vmx_msr_check_common(vcpu, e))
802                 return -EINVAL;
803         return 0;
804 }
805
806 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
807                                       struct vmx_msr_entry *e)
808 {
809         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
810             nested_vmx_msr_check_common(vcpu, e))
811                 return -EINVAL;
812         return 0;
813 }
814
815 /*
816  * Load guest's/host's msr at nested entry/exit.
817  * return 0 for success, entry index for failure.
818  */
819 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
820 {
821         u32 i;
822         struct vmx_msr_entry e;
823         struct msr_data msr;
824
825         msr.host_initiated = false;
826         for (i = 0; i < count; i++) {
827                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
828                                         &e, sizeof(e))) {
829                         pr_debug_ratelimited(
830                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
831                                 __func__, i, gpa + i * sizeof(e));
832                         goto fail;
833                 }
834                 if (nested_vmx_load_msr_check(vcpu, &e)) {
835                         pr_debug_ratelimited(
836                                 "%s check failed (%u, 0x%x, 0x%x)\n",
837                                 __func__, i, e.index, e.reserved);
838                         goto fail;
839                 }
840                 msr.index = e.index;
841                 msr.data = e.value;
842                 if (kvm_set_msr(vcpu, &msr)) {
843                         pr_debug_ratelimited(
844                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
845                                 __func__, i, e.index, e.value);
846                         goto fail;
847                 }
848         }
849         return 0;
850 fail:
851         return i + 1;
852 }
853
854 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
855 {
856         u32 i;
857         struct vmx_msr_entry e;
858
859         for (i = 0; i < count; i++) {
860                 struct msr_data msr_info;
861                 if (kvm_vcpu_read_guest(vcpu,
862                                         gpa + i * sizeof(e),
863                                         &e, 2 * sizeof(u32))) {
864                         pr_debug_ratelimited(
865                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
866                                 __func__, i, gpa + i * sizeof(e));
867                         return -EINVAL;
868                 }
869                 if (nested_vmx_store_msr_check(vcpu, &e)) {
870                         pr_debug_ratelimited(
871                                 "%s check failed (%u, 0x%x, 0x%x)\n",
872                                 __func__, i, e.index, e.reserved);
873                         return -EINVAL;
874                 }
875                 msr_info.host_initiated = false;
876                 msr_info.index = e.index;
877                 if (kvm_get_msr(vcpu, &msr_info)) {
878                         pr_debug_ratelimited(
879                                 "%s cannot read MSR (%u, 0x%x)\n",
880                                 __func__, i, e.index);
881                         return -EINVAL;
882                 }
883                 if (kvm_vcpu_write_guest(vcpu,
884                                          gpa + i * sizeof(e) +
885                                              offsetof(struct vmx_msr_entry, value),
886                                          &msr_info.data, sizeof(msr_info.data))) {
887                         pr_debug_ratelimited(
888                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
889                                 __func__, i, e.index, msr_info.data);
890                         return -EINVAL;
891                 }
892         }
893         return 0;
894 }
895
896 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
897 {
898         unsigned long invalid_mask;
899
900         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
901         return (val & invalid_mask) == 0;
902 }
903
904 /*
905  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
906  * emulating VM entry into a guest with EPT enabled.
907  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
908  * is assigned to entry_failure_code on failure.
909  */
910 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
911                                u32 *entry_failure_code)
912 {
913         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
914                 if (!nested_cr3_valid(vcpu, cr3)) {
915                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
916                         return 1;
917                 }
918
919                 /*
920                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
921                  * must not be dereferenced.
922                  */
923                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
924                     !nested_ept) {
925                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
926                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
927                                 return 1;
928                         }
929                 }
930         }
931
932         if (!nested_ept)
933                 kvm_mmu_new_cr3(vcpu, cr3, false);
934
935         vcpu->arch.cr3 = cr3;
936         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
937
938         kvm_init_mmu(vcpu, false);
939
940         return 0;
941 }
942
943 /*
944  * Returns if KVM is able to config CPU to tag TLB entries
945  * populated by L2 differently than TLB entries populated
946  * by L1.
947  *
948  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
949  *
950  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
951  * with different VPID (L1 entries are tagged with vmx->vpid
952  * while L2 entries are tagged with vmx->nested.vpid02).
953  */
954 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
955 {
956         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957
958         return nested_cpu_has_ept(vmcs12) ||
959                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
960 }
961
962 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
963 {
964         struct vcpu_vmx *vmx = to_vmx(vcpu);
965
966         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
967 }
968
969
970 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
971 {
972         return fixed_bits_valid(control, low, high);
973 }
974
975 static inline u64 vmx_control_msr(u32 low, u32 high)
976 {
977         return low | ((u64)high << 32);
978 }
979
980 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
981 {
982         superset &= mask;
983         subset &= mask;
984
985         return (superset | subset) == superset;
986 }
987
988 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
989 {
990         const u64 feature_and_reserved =
991                 /* feature (except bit 48; see below) */
992                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
993                 /* reserved */
994                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
995         u64 vmx_basic = vmx->nested.msrs.basic;
996
997         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
998                 return -EINVAL;
999
1000         /*
1001          * KVM does not emulate a version of VMX that constrains physical
1002          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1003          */
1004         if (data & BIT_ULL(48))
1005                 return -EINVAL;
1006
1007         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1008             vmx_basic_vmcs_revision_id(data))
1009                 return -EINVAL;
1010
1011         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1012                 return -EINVAL;
1013
1014         vmx->nested.msrs.basic = data;
1015         return 0;
1016 }
1017
1018 static int
1019 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1020 {
1021         u64 supported;
1022         u32 *lowp, *highp;
1023
1024         switch (msr_index) {
1025         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1026                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1027                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1028                 break;
1029         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1030                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1031                 highp = &vmx->nested.msrs.procbased_ctls_high;
1032                 break;
1033         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1034                 lowp = &vmx->nested.msrs.exit_ctls_low;
1035                 highp = &vmx->nested.msrs.exit_ctls_high;
1036                 break;
1037         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1038                 lowp = &vmx->nested.msrs.entry_ctls_low;
1039                 highp = &vmx->nested.msrs.entry_ctls_high;
1040                 break;
1041         case MSR_IA32_VMX_PROCBASED_CTLS2:
1042                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1043                 highp = &vmx->nested.msrs.secondary_ctls_high;
1044                 break;
1045         default:
1046                 BUG();
1047         }
1048
1049         supported = vmx_control_msr(*lowp, *highp);
1050
1051         /* Check must-be-1 bits are still 1. */
1052         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1053                 return -EINVAL;
1054
1055         /* Check must-be-0 bits are still 0. */
1056         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1057                 return -EINVAL;
1058
1059         *lowp = data;
1060         *highp = data >> 32;
1061         return 0;
1062 }
1063
1064 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1065 {
1066         const u64 feature_and_reserved_bits =
1067                 /* feature */
1068                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1069                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1070                 /* reserved */
1071                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1072         u64 vmx_misc;
1073
1074         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1075                                    vmx->nested.msrs.misc_high);
1076
1077         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1078                 return -EINVAL;
1079
1080         if ((vmx->nested.msrs.pinbased_ctls_high &
1081              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1082             vmx_misc_preemption_timer_rate(data) !=
1083             vmx_misc_preemption_timer_rate(vmx_misc))
1084                 return -EINVAL;
1085
1086         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1087                 return -EINVAL;
1088
1089         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1090                 return -EINVAL;
1091
1092         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1093                 return -EINVAL;
1094
1095         vmx->nested.msrs.misc_low = data;
1096         vmx->nested.msrs.misc_high = data >> 32;
1097
1098         /*
1099          * If L1 has read-only VM-exit information fields, use the
1100          * less permissive vmx_vmwrite_bitmap to specify write
1101          * permissions for the shadow VMCS.
1102          */
1103         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1104                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1105
1106         return 0;
1107 }
1108
1109 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1110 {
1111         u64 vmx_ept_vpid_cap;
1112
1113         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1114                                            vmx->nested.msrs.vpid_caps);
1115
1116         /* Every bit is either reserved or a feature bit. */
1117         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1118                 return -EINVAL;
1119
1120         vmx->nested.msrs.ept_caps = data;
1121         vmx->nested.msrs.vpid_caps = data >> 32;
1122         return 0;
1123 }
1124
1125 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1126 {
1127         u64 *msr;
1128
1129         switch (msr_index) {
1130         case MSR_IA32_VMX_CR0_FIXED0:
1131                 msr = &vmx->nested.msrs.cr0_fixed0;
1132                 break;
1133         case MSR_IA32_VMX_CR4_FIXED0:
1134                 msr = &vmx->nested.msrs.cr4_fixed0;
1135                 break;
1136         default:
1137                 BUG();
1138         }
1139
1140         /*
1141          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1142          * must be 1 in the restored value.
1143          */
1144         if (!is_bitwise_subset(data, *msr, -1ULL))
1145                 return -EINVAL;
1146
1147         *msr = data;
1148         return 0;
1149 }
1150
1151 /*
1152  * Called when userspace is restoring VMX MSRs.
1153  *
1154  * Returns 0 on success, non-0 otherwise.
1155  */
1156 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1157 {
1158         struct vcpu_vmx *vmx = to_vmx(vcpu);
1159
1160         /*
1161          * Don't allow changes to the VMX capability MSRs while the vCPU
1162          * is in VMX operation.
1163          */
1164         if (vmx->nested.vmxon)
1165                 return -EBUSY;
1166
1167         switch (msr_index) {
1168         case MSR_IA32_VMX_BASIC:
1169                 return vmx_restore_vmx_basic(vmx, data);
1170         case MSR_IA32_VMX_PINBASED_CTLS:
1171         case MSR_IA32_VMX_PROCBASED_CTLS:
1172         case MSR_IA32_VMX_EXIT_CTLS:
1173         case MSR_IA32_VMX_ENTRY_CTLS:
1174                 /*
1175                  * The "non-true" VMX capability MSRs are generated from the
1176                  * "true" MSRs, so we do not support restoring them directly.
1177                  *
1178                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1179                  * should restore the "true" MSRs with the must-be-1 bits
1180                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1181                  * DEFAULT SETTINGS".
1182                  */
1183                 return -EINVAL;
1184         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1185         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1186         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1187         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1188         case MSR_IA32_VMX_PROCBASED_CTLS2:
1189                 return vmx_restore_control_msr(vmx, msr_index, data);
1190         case MSR_IA32_VMX_MISC:
1191                 return vmx_restore_vmx_misc(vmx, data);
1192         case MSR_IA32_VMX_CR0_FIXED0:
1193         case MSR_IA32_VMX_CR4_FIXED0:
1194                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1195         case MSR_IA32_VMX_CR0_FIXED1:
1196         case MSR_IA32_VMX_CR4_FIXED1:
1197                 /*
1198                  * These MSRs are generated based on the vCPU's CPUID, so we
1199                  * do not support restoring them directly.
1200                  */
1201                 return -EINVAL;
1202         case MSR_IA32_VMX_EPT_VPID_CAP:
1203                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1204         case MSR_IA32_VMX_VMCS_ENUM:
1205                 vmx->nested.msrs.vmcs_enum = data;
1206                 return 0;
1207         default:
1208                 /*
1209                  * The rest of the VMX capability MSRs do not support restore.
1210                  */
1211                 return -EINVAL;
1212         }
1213 }
1214
1215 /* Returns 0 on success, non-0 otherwise. */
1216 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1217 {
1218         switch (msr_index) {
1219         case MSR_IA32_VMX_BASIC:
1220                 *pdata = msrs->basic;
1221                 break;
1222         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1223         case MSR_IA32_VMX_PINBASED_CTLS:
1224                 *pdata = vmx_control_msr(
1225                         msrs->pinbased_ctls_low,
1226                         msrs->pinbased_ctls_high);
1227                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1228                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1229                 break;
1230         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1231         case MSR_IA32_VMX_PROCBASED_CTLS:
1232                 *pdata = vmx_control_msr(
1233                         msrs->procbased_ctls_low,
1234                         msrs->procbased_ctls_high);
1235                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1236                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1237                 break;
1238         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1239         case MSR_IA32_VMX_EXIT_CTLS:
1240                 *pdata = vmx_control_msr(
1241                         msrs->exit_ctls_low,
1242                         msrs->exit_ctls_high);
1243                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1244                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1245                 break;
1246         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1247         case MSR_IA32_VMX_ENTRY_CTLS:
1248                 *pdata = vmx_control_msr(
1249                         msrs->entry_ctls_low,
1250                         msrs->entry_ctls_high);
1251                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1252                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1253                 break;
1254         case MSR_IA32_VMX_MISC:
1255                 *pdata = vmx_control_msr(
1256                         msrs->misc_low,
1257                         msrs->misc_high);
1258                 break;
1259         case MSR_IA32_VMX_CR0_FIXED0:
1260                 *pdata = msrs->cr0_fixed0;
1261                 break;
1262         case MSR_IA32_VMX_CR0_FIXED1:
1263                 *pdata = msrs->cr0_fixed1;
1264                 break;
1265         case MSR_IA32_VMX_CR4_FIXED0:
1266                 *pdata = msrs->cr4_fixed0;
1267                 break;
1268         case MSR_IA32_VMX_CR4_FIXED1:
1269                 *pdata = msrs->cr4_fixed1;
1270                 break;
1271         case MSR_IA32_VMX_VMCS_ENUM:
1272                 *pdata = msrs->vmcs_enum;
1273                 break;
1274         case MSR_IA32_VMX_PROCBASED_CTLS2:
1275                 *pdata = vmx_control_msr(
1276                         msrs->secondary_ctls_low,
1277                         msrs->secondary_ctls_high);
1278                 break;
1279         case MSR_IA32_VMX_EPT_VPID_CAP:
1280                 *pdata = msrs->ept_caps |
1281                         ((u64)msrs->vpid_caps << 32);
1282                 break;
1283         case MSR_IA32_VMX_VMFUNC:
1284                 *pdata = msrs->vmfunc_controls;
1285                 break;
1286         default:
1287                 return 1;
1288         }
1289
1290         return 0;
1291 }
1292
1293 /*
1294  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1295  * they have been modified by the L1 guest. Note that the "read-only"
1296  * VM-exit information fields are actually writable if the vCPU is
1297  * configured to support "VMWRITE to any supported field in the VMCS."
1298  */
1299 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1300 {
1301         const u16 *fields[] = {
1302                 shadow_read_write_fields,
1303                 shadow_read_only_fields
1304         };
1305         const int max_fields[] = {
1306                 max_shadow_read_write_fields,
1307                 max_shadow_read_only_fields
1308         };
1309         int i, q;
1310         unsigned long field;
1311         u64 field_value;
1312         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1313
1314         preempt_disable();
1315
1316         vmcs_load(shadow_vmcs);
1317
1318         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1319                 for (i = 0; i < max_fields[q]; i++) {
1320                         field = fields[q][i];
1321                         field_value = __vmcs_readl(field);
1322                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1323                 }
1324                 /*
1325                  * Skip the VM-exit information fields if they are read-only.
1326                  */
1327                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1328                         break;
1329         }
1330
1331         vmcs_clear(shadow_vmcs);
1332         vmcs_load(vmx->loaded_vmcs->vmcs);
1333
1334         preempt_enable();
1335 }
1336
1337 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1338 {
1339         const u16 *fields[] = {
1340                 shadow_read_write_fields,
1341                 shadow_read_only_fields
1342         };
1343         const int max_fields[] = {
1344                 max_shadow_read_write_fields,
1345                 max_shadow_read_only_fields
1346         };
1347         int i, q;
1348         unsigned long field;
1349         u64 field_value = 0;
1350         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1351
1352         vmcs_load(shadow_vmcs);
1353
1354         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1355                 for (i = 0; i < max_fields[q]; i++) {
1356                         field = fields[q][i];
1357                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1358                         __vmcs_writel(field, field_value);
1359                 }
1360         }
1361
1362         vmcs_clear(shadow_vmcs);
1363         vmcs_load(vmx->loaded_vmcs->vmcs);
1364 }
1365
1366 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1369         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1370
1371         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1372         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1373         vmcs12->guest_rip = evmcs->guest_rip;
1374
1375         if (unlikely(!(evmcs->hv_clean_fields &
1376                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1377                 vmcs12->guest_rsp = evmcs->guest_rsp;
1378                 vmcs12->guest_rflags = evmcs->guest_rflags;
1379                 vmcs12->guest_interruptibility_info =
1380                         evmcs->guest_interruptibility_info;
1381         }
1382
1383         if (unlikely(!(evmcs->hv_clean_fields &
1384                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1385                 vmcs12->cpu_based_vm_exec_control =
1386                         evmcs->cpu_based_vm_exec_control;
1387         }
1388
1389         if (unlikely(!(evmcs->hv_clean_fields &
1390                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1391                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1392         }
1393
1394         if (unlikely(!(evmcs->hv_clean_fields &
1395                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1396                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1397         }
1398
1399         if (unlikely(!(evmcs->hv_clean_fields &
1400                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1401                 vmcs12->vm_entry_intr_info_field =
1402                         evmcs->vm_entry_intr_info_field;
1403                 vmcs12->vm_entry_exception_error_code =
1404                         evmcs->vm_entry_exception_error_code;
1405                 vmcs12->vm_entry_instruction_len =
1406                         evmcs->vm_entry_instruction_len;
1407         }
1408
1409         if (unlikely(!(evmcs->hv_clean_fields &
1410                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1411                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1412                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1413                 vmcs12->host_cr0 = evmcs->host_cr0;
1414                 vmcs12->host_cr3 = evmcs->host_cr3;
1415                 vmcs12->host_cr4 = evmcs->host_cr4;
1416                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1417                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1418                 vmcs12->host_rip = evmcs->host_rip;
1419                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1420                 vmcs12->host_es_selector = evmcs->host_es_selector;
1421                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1422                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1423                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1424                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1425                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1426                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1427         }
1428
1429         if (unlikely(!(evmcs->hv_clean_fields &
1430                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1431                 vmcs12->pin_based_vm_exec_control =
1432                         evmcs->pin_based_vm_exec_control;
1433                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1434                 vmcs12->secondary_vm_exec_control =
1435                         evmcs->secondary_vm_exec_control;
1436         }
1437
1438         if (unlikely(!(evmcs->hv_clean_fields &
1439                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1440                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1441                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1442         }
1443
1444         if (unlikely(!(evmcs->hv_clean_fields &
1445                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1446                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1447         }
1448
1449         if (unlikely(!(evmcs->hv_clean_fields &
1450                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1451                 vmcs12->guest_es_base = evmcs->guest_es_base;
1452                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1453                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1454                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1455                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1456                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1457                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1458                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1459                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1460                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1461                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1462                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1463                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1464                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1465                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1466                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1467                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1468                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1469                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1470                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1471                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1472                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1473                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1474                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1475                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1476                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1477                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1478                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1479                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1480                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1481                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1482                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1483                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1484                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1485                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1486                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1487         }
1488
1489         if (unlikely(!(evmcs->hv_clean_fields &
1490                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1491                 vmcs12->tsc_offset = evmcs->tsc_offset;
1492                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1493                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1494         }
1495
1496         if (unlikely(!(evmcs->hv_clean_fields &
1497                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1498                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1499                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1500                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1501                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1502                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1503                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1504                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1505                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1506         }
1507
1508         if (unlikely(!(evmcs->hv_clean_fields &
1509                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1510                 vmcs12->host_fs_base = evmcs->host_fs_base;
1511                 vmcs12->host_gs_base = evmcs->host_gs_base;
1512                 vmcs12->host_tr_base = evmcs->host_tr_base;
1513                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1514                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1515                 vmcs12->host_rsp = evmcs->host_rsp;
1516         }
1517
1518         if (unlikely(!(evmcs->hv_clean_fields &
1519                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1520                 vmcs12->ept_pointer = evmcs->ept_pointer;
1521                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1522         }
1523
1524         if (unlikely(!(evmcs->hv_clean_fields &
1525                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1526                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1527                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1528                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1529                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1530                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1531                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1532                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1533                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1534                 vmcs12->guest_pending_dbg_exceptions =
1535                         evmcs->guest_pending_dbg_exceptions;
1536                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1537                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1538                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1539                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1540                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1541         }
1542
1543         /*
1544          * Not used?
1545          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1546          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1547          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1548          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1549          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1550          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1551          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1552          * vmcs12->page_fault_error_code_mask =
1553          *              evmcs->page_fault_error_code_mask;
1554          * vmcs12->page_fault_error_code_match =
1555          *              evmcs->page_fault_error_code_match;
1556          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1557          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1558          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1559          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1560          */
1561
1562         /*
1563          * Read only fields:
1564          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1565          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1566          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1567          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1568          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1569          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1570          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1571          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1572          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1573          * vmcs12->exit_qualification = evmcs->exit_qualification;
1574          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1575          *
1576          * Not present in struct vmcs12:
1577          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1578          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1579          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1580          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1581          */
1582
1583         return 0;
1584 }
1585
1586 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1587 {
1588         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1589         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1590
1591         /*
1592          * Should not be changed by KVM:
1593          *
1594          * evmcs->host_es_selector = vmcs12->host_es_selector;
1595          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1596          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1597          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1598          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1599          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1600          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1601          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1602          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1603          * evmcs->host_cr0 = vmcs12->host_cr0;
1604          * evmcs->host_cr3 = vmcs12->host_cr3;
1605          * evmcs->host_cr4 = vmcs12->host_cr4;
1606          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1607          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1608          * evmcs->host_rip = vmcs12->host_rip;
1609          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1610          * evmcs->host_fs_base = vmcs12->host_fs_base;
1611          * evmcs->host_gs_base = vmcs12->host_gs_base;
1612          * evmcs->host_tr_base = vmcs12->host_tr_base;
1613          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1614          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1615          * evmcs->host_rsp = vmcs12->host_rsp;
1616          * sync_vmcs12() doesn't read these:
1617          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1618          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1619          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1620          * evmcs->ept_pointer = vmcs12->ept_pointer;
1621          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1622          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1623          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1624          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1625          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1626          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1627          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1628          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1629          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1630          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1631          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1632          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1633          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1634          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1635          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1636          * evmcs->page_fault_error_code_mask =
1637          *              vmcs12->page_fault_error_code_mask;
1638          * evmcs->page_fault_error_code_match =
1639          *              vmcs12->page_fault_error_code_match;
1640          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1641          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1642          * evmcs->tsc_offset = vmcs12->tsc_offset;
1643          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1644          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1645          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1646          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1647          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1648          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1649          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1650          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1651          *
1652          * Not present in struct vmcs12:
1653          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1654          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1655          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1656          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1657          */
1658
1659         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1660         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1661         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1662         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1663         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1664         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1665         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1666         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1667
1668         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1669         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1670         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1671         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1672         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1673         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1674         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1675         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1676         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1677         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1678
1679         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1680         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1681         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1682         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1683         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1684         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1685         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1686         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1687
1688         evmcs->guest_es_base = vmcs12->guest_es_base;
1689         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1690         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1691         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1692         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1693         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1694         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1695         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1696         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1697         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1698
1699         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1700         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1701
1702         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1703         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1704         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1705         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1706
1707         evmcs->guest_pending_dbg_exceptions =
1708                 vmcs12->guest_pending_dbg_exceptions;
1709         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1710         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1711
1712         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1713         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1714
1715         evmcs->guest_cr0 = vmcs12->guest_cr0;
1716         evmcs->guest_cr3 = vmcs12->guest_cr3;
1717         evmcs->guest_cr4 = vmcs12->guest_cr4;
1718         evmcs->guest_dr7 = vmcs12->guest_dr7;
1719
1720         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1721
1722         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1723         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1724         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1725         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1726         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1727         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1728         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1729         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1730
1731         evmcs->exit_qualification = vmcs12->exit_qualification;
1732
1733         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1734         evmcs->guest_rsp = vmcs12->guest_rsp;
1735         evmcs->guest_rflags = vmcs12->guest_rflags;
1736
1737         evmcs->guest_interruptibility_info =
1738                 vmcs12->guest_interruptibility_info;
1739         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1740         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1741         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1742         evmcs->vm_entry_exception_error_code =
1743                 vmcs12->vm_entry_exception_error_code;
1744         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1745
1746         evmcs->guest_rip = vmcs12->guest_rip;
1747
1748         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1749
1750         return 0;
1751 }
1752
1753 /*
1754  * This is an equivalent of the nested hypervisor executing the vmptrld
1755  * instruction.
1756  */
1757 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1758                                                  bool from_launch)
1759 {
1760         struct vcpu_vmx *vmx = to_vmx(vcpu);
1761         struct hv_vp_assist_page assist_page;
1762
1763         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1764                 return 1;
1765
1766         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1767                 return 1;
1768
1769         if (unlikely(!assist_page.enlighten_vmentry))
1770                 return 1;
1771
1772         if (unlikely(assist_page.current_nested_vmcs !=
1773                      vmx->nested.hv_evmcs_vmptr)) {
1774
1775                 if (!vmx->nested.hv_evmcs)
1776                         vmx->nested.current_vmptr = -1ull;
1777
1778                 nested_release_evmcs(vcpu);
1779
1780                 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1781                         vcpu, assist_page.current_nested_vmcs);
1782
1783                 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1784                         return 0;
1785
1786                 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1787
1788                 /*
1789                  * Currently, KVM only supports eVMCS version 1
1790                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1791                  * value to first u32 field of eVMCS which should specify eVMCS
1792                  * VersionNumber.
1793                  *
1794                  * Guest should be aware of supported eVMCS versions by host by
1795                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1796                  * expected to set this CPUID leaf according to the value
1797                  * returned in vmcs_version from nested_enable_evmcs().
1798                  *
1799                  * However, it turns out that Microsoft Hyper-V fails to comply
1800                  * to their own invented interface: When Hyper-V use eVMCS, it
1801                  * just sets first u32 field of eVMCS to revision_id specified
1802                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1803                  * which is one of the supported versions specified in
1804                  * CPUID.0x4000000A.EAX[0:15].
1805                  *
1806                  * To overcome Hyper-V bug, we accept here either a supported
1807                  * eVMCS version or VMCS12 revision_id as valid values for first
1808                  * u32 field of eVMCS.
1809                  */
1810                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1811                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1812                         nested_release_evmcs(vcpu);
1813                         return 0;
1814                 }
1815
1816                 vmx->nested.dirty_vmcs12 = true;
1817                 /*
1818                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1819                  * can't be used when we switch between them. Reset it here for
1820                  * simplicity.
1821                  */
1822                 vmx->nested.hv_evmcs->hv_clean_fields &=
1823                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1824                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1825
1826                 /*
1827                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1828                  * reloaded from guest's memory (read only fields, fields not
1829                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1830                  * are no leftovers.
1831                  */
1832                 if (from_launch) {
1833                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1834                         memset(vmcs12, 0, sizeof(*vmcs12));
1835                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1836                 }
1837
1838         }
1839         return 1;
1840 }
1841
1842 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1843 {
1844         struct vcpu_vmx *vmx = to_vmx(vcpu);
1845
1846         /*
1847          * hv_evmcs may end up being not mapped after migration (when
1848          * L2 was running), map it here to make sure vmcs12 changes are
1849          * properly reflected.
1850          */
1851         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1852                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1853
1854         if (vmx->nested.hv_evmcs) {
1855                 copy_vmcs12_to_enlightened(vmx);
1856                 /* All fields are clean */
1857                 vmx->nested.hv_evmcs->hv_clean_fields |=
1858                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1859         } else {
1860                 copy_vmcs12_to_shadow(vmx);
1861         }
1862
1863         vmx->nested.need_vmcs12_sync = false;
1864 }
1865
1866 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1867 {
1868         struct vcpu_vmx *vmx =
1869                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1870
1871         vmx->nested.preemption_timer_expired = true;
1872         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1873         kvm_vcpu_kick(&vmx->vcpu);
1874
1875         return HRTIMER_NORESTART;
1876 }
1877
1878 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1879 {
1880         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1881         struct vcpu_vmx *vmx = to_vmx(vcpu);
1882
1883         /*
1884          * A timer value of zero is architecturally guaranteed to cause
1885          * a VMExit prior to executing any instructions in the guest.
1886          */
1887         if (preemption_timeout == 0) {
1888                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1889                 return;
1890         }
1891
1892         if (vcpu->arch.virtual_tsc_khz == 0)
1893                 return;
1894
1895         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1896         preemption_timeout *= 1000000;
1897         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1898         hrtimer_start(&vmx->nested.preemption_timer,
1899                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1900 }
1901
1902 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1903 {
1904         if (vmx->nested.nested_run_pending &&
1905             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1906                 return vmcs12->guest_ia32_efer;
1907         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1908                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1909         else
1910                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1911 }
1912
1913 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1914 {
1915         /*
1916          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1917          * according to L0's settings (vmcs12 is irrelevant here).  Host
1918          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1919          * will be set as needed prior to VMLAUNCH/VMRESUME.
1920          */
1921         if (vmx->nested.vmcs02_initialized)
1922                 return;
1923         vmx->nested.vmcs02_initialized = true;
1924
1925         /*
1926          * We don't care what the EPTP value is we just need to guarantee
1927          * it's valid so we don't get a false positive when doing early
1928          * consistency checks.
1929          */
1930         if (enable_ept && nested_early_check)
1931                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1932
1933         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1934         if (cpu_has_vmx_vmfunc())
1935                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1936
1937         if (cpu_has_vmx_posted_intr())
1938                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1939
1940         if (cpu_has_vmx_msr_bitmap())
1941                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1942
1943         if (enable_pml)
1944                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1945
1946         /*
1947          * Set the MSR load/store lists to match L0's settings.  Only the
1948          * addresses are constant (for vmcs02), the counts can change based
1949          * on L2's behavior, e.g. switching to/from long mode.
1950          */
1951         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1952         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1953         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1954
1955         vmx_set_constant_host_state(vmx);
1956 }
1957
1958 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1959                                       struct vmcs12 *vmcs12)
1960 {
1961         prepare_vmcs02_constant_state(vmx);
1962
1963         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1964
1965         if (enable_vpid) {
1966                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1967                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1968                 else
1969                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1970         }
1971 }
1972
1973 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1974 {
1975         u32 exec_control, vmcs12_exec_ctrl;
1976         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1977
1978         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1979                 prepare_vmcs02_early_full(vmx, vmcs12);
1980
1981         /*
1982          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
1983          * entry, but only if the current (host) sp changed from the value
1984          * we wrote last (vmx->host_rsp).  This cache is no longer relevant
1985          * if we switch vmcs, and rather than hold a separate cache per vmcs,
1986          * here we just force the write to happen on entry.  host_rsp will
1987          * also be written unconditionally by nested_vmx_check_vmentry_hw()
1988          * if we are doing early consistency checks via hardware.
1989          */
1990         vmx->host_rsp = 0;
1991
1992         /*
1993          * PIN CONTROLS
1994          */
1995         exec_control = vmcs12->pin_based_vm_exec_control;
1996
1997         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1998         exec_control |= vmcs_config.pin_based_exec_ctrl;
1999         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2000         vmx->loaded_vmcs->hv_timer_armed = false;
2001
2002         /* Posted interrupts setting is only taken from vmcs12.  */
2003         if (nested_cpu_has_posted_intr(vmcs12)) {
2004                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2005                 vmx->nested.pi_pending = false;
2006         } else {
2007                 exec_control &= ~PIN_BASED_POSTED_INTR;
2008         }
2009         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2010
2011         /*
2012          * EXEC CONTROLS
2013          */
2014         exec_control = vmx_exec_control(vmx); /* L0's desires */
2015         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2016         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2017         exec_control &= ~CPU_BASED_TPR_SHADOW;
2018         exec_control |= vmcs12->cpu_based_vm_exec_control;
2019
2020         /*
2021          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2022          * nested_get_vmcs12_pages can't fix it up, the illegal value
2023          * will result in a VM entry failure.
2024          */
2025         if (exec_control & CPU_BASED_TPR_SHADOW) {
2026                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2027                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2028         } else {
2029 #ifdef CONFIG_X86_64
2030                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2031                                 CPU_BASED_CR8_STORE_EXITING;
2032 #endif
2033         }
2034
2035         /*
2036          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2037          * for I/O port accesses.
2038          */
2039         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2040         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2041         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2042
2043         /*
2044          * SECONDARY EXEC CONTROLS
2045          */
2046         if (cpu_has_secondary_exec_ctrls()) {
2047                 exec_control = vmx->secondary_exec_control;
2048
2049                 /* Take the following fields only from vmcs12 */
2050                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2051                                   SECONDARY_EXEC_ENABLE_INVPCID |
2052                                   SECONDARY_EXEC_RDTSCP |
2053                                   SECONDARY_EXEC_XSAVES |
2054                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2055                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2056                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2057                 if (nested_cpu_has(vmcs12,
2058                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2059                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2060                                 ~SECONDARY_EXEC_ENABLE_PML;
2061                         exec_control |= vmcs12_exec_ctrl;
2062                 }
2063
2064                 /* VMCS shadowing for L2 is emulated for now */
2065                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2066
2067                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2068                         vmcs_write16(GUEST_INTR_STATUS,
2069                                 vmcs12->guest_intr_status);
2070
2071                 /*
2072                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2073                  * nested_get_vmcs12_pages will either fix it up or
2074                  * remove the VM execution control.
2075                  */
2076                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2077                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2078
2079                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2080                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2081
2082                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2083         }
2084
2085         /*
2086          * ENTRY CONTROLS
2087          *
2088          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2089          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2090          * on the related bits (if supported by the CPU) in the hope that
2091          * we can avoid VMWrites during vmx_set_efer().
2092          */
2093         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2094                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2095         if (cpu_has_load_ia32_efer()) {
2096                 if (guest_efer & EFER_LMA)
2097                         exec_control |= VM_ENTRY_IA32E_MODE;
2098                 if (guest_efer != host_efer)
2099                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2100         }
2101         vm_entry_controls_init(vmx, exec_control);
2102
2103         /*
2104          * EXIT CONTROLS
2105          *
2106          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2107          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2108          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2109          */
2110         exec_control = vmx_vmexit_ctrl();
2111         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2112                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2113         vm_exit_controls_init(vmx, exec_control);
2114
2115         /*
2116          * Conceptually we want to copy the PML address and index from
2117          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2118          * since we always flush the log on each vmexit and never change
2119          * the PML address (once set), this happens to be equivalent to
2120          * simply resetting the index in vmcs02.
2121          */
2122         if (enable_pml)
2123                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2124
2125         /*
2126          * Interrupt/Exception Fields
2127          */
2128         if (vmx->nested.nested_run_pending) {
2129                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2130                              vmcs12->vm_entry_intr_info_field);
2131                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2132                              vmcs12->vm_entry_exception_error_code);
2133                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2134                              vmcs12->vm_entry_instruction_len);
2135                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2136                              vmcs12->guest_interruptibility_info);
2137                 vmx->loaded_vmcs->nmi_known_unmasked =
2138                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2139         } else {
2140                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2141         }
2142 }
2143
2144 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2145 {
2146         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2147
2148         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2149                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2150                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2151                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2152                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2153                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2154                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2155                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2156                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2157                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2158                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2159                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2160                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2161                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2162                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2163                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2164                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2165                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2166                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2167                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2168                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2169                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2170                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2171                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2172                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2173                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2174                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2175                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2176                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2177                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2178                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2179                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2180                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2181                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2182                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2183                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2184         }
2185
2186         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2187                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2188                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2189                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2190                             vmcs12->guest_pending_dbg_exceptions);
2191                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2192                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2193
2194                 /*
2195                  * L1 may access the L2's PDPTR, so save them to construct
2196                  * vmcs12
2197                  */
2198                 if (enable_ept) {
2199                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2200                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2201                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2202                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2203                 }
2204         }
2205
2206         if (nested_cpu_has_xsaves(vmcs12))
2207                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2208
2209         /*
2210          * Whether page-faults are trapped is determined by a combination of
2211          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2212          * If enable_ept, L0 doesn't care about page faults and we should
2213          * set all of these to L1's desires. However, if !enable_ept, L0 does
2214          * care about (at least some) page faults, and because it is not easy
2215          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2216          * to exit on each and every L2 page fault. This is done by setting
2217          * MASK=MATCH=0 and (see below) EB.PF=1.
2218          * Note that below we don't need special code to set EB.PF beyond the
2219          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2220          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2221          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2222          */
2223         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2224                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2225         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2226                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2227
2228         if (cpu_has_vmx_apicv()) {
2229                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2230                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2231                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2232                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2233         }
2234
2235         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2236         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2237
2238         set_cr4_guest_host_mask(vmx);
2239
2240         if (kvm_mpx_supported()) {
2241                 if (vmx->nested.nested_run_pending &&
2242                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2243                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2244                 else
2245                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2246         }
2247 }
2248
2249 /*
2250  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2251  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2252  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2253  * guest in a way that will both be appropriate to L1's requests, and our
2254  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2255  * function also has additional necessary side-effects, like setting various
2256  * vcpu->arch fields.
2257  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2258  * is assigned to entry_failure_code on failure.
2259  */
2260 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2261                           u32 *entry_failure_code)
2262 {
2263         struct vcpu_vmx *vmx = to_vmx(vcpu);
2264         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2265
2266         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2267                 prepare_vmcs02_full(vmx, vmcs12);
2268                 vmx->nested.dirty_vmcs12 = false;
2269         }
2270
2271         /*
2272          * First, the fields that are shadowed.  This must be kept in sync
2273          * with vmcs_shadow_fields.h.
2274          */
2275         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2276                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2277                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2278                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2279         }
2280
2281         if (vmx->nested.nested_run_pending &&
2282             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2283                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2284                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2285         } else {
2286                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2287                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2288         }
2289         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2290
2291         vmx->nested.preemption_timer_expired = false;
2292         if (nested_cpu_has_preemption_timer(vmcs12))
2293                 vmx_start_preemption_timer(vcpu);
2294
2295         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2296          * bitwise-or of what L1 wants to trap for L2, and what we want to
2297          * trap. Note that CR0.TS also needs updating - we do this later.
2298          */
2299         update_exception_bitmap(vcpu);
2300         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2301         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2302
2303         if (vmx->nested.nested_run_pending &&
2304             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2305                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2306                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2307         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2308                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2309         }
2310
2311         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2312
2313         if (kvm_has_tsc_control)
2314                 decache_tsc_multiplier(vmx);
2315
2316         if (enable_vpid) {
2317                 /*
2318                  * There is no direct mapping between vpid02 and vpid12, the
2319                  * vpid02 is per-vCPU for L0 and reused while the value of
2320                  * vpid12 is changed w/ one invvpid during nested vmentry.
2321                  * The vpid12 is allocated by L1 for L2, so it will not
2322                  * influence global bitmap(for vpid01 and vpid02 allocation)
2323                  * even if spawn a lot of nested vCPUs.
2324                  */
2325                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2326                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2327                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2328                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2329                         }
2330                 } else {
2331                         /*
2332                          * If L1 use EPT, then L0 needs to execute INVEPT on
2333                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2334                          * flush until vmcs02->eptp is fully updated by
2335                          * KVM_REQ_LOAD_CR3. Note that this assumes
2336                          * KVM_REQ_TLB_FLUSH is evaluated after
2337                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2338                          */
2339                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2340                 }
2341         }
2342
2343         if (nested_cpu_has_ept(vmcs12))
2344                 nested_ept_init_mmu_context(vcpu);
2345         else if (nested_cpu_has2(vmcs12,
2346                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2347                 vmx_flush_tlb(vcpu, true);
2348
2349         /*
2350          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2351          * bits which we consider mandatory enabled.
2352          * The CR0_READ_SHADOW is what L2 should have expected to read given
2353          * the specifications by L1; It's not enough to take
2354          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2355          * have more bits than L1 expected.
2356          */
2357         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2358         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2359
2360         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2361         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2362
2363         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2364         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2365         vmx_set_efer(vcpu, vcpu->arch.efer);
2366
2367         /*
2368          * Guest state is invalid and unrestricted guest is disabled,
2369          * which means L1 attempted VMEntry to L2 with invalid state.
2370          * Fail the VMEntry.
2371          */
2372         if (vmx->emulation_required) {
2373                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2374                 return 1;
2375         }
2376
2377         /* Shadow page tables on either EPT or shadow page tables. */
2378         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2379                                 entry_failure_code))
2380                 return 1;
2381
2382         if (!enable_ept)
2383                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2384
2385         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2386         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2387         return 0;
2388 }
2389
2390 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2391 {
2392         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2393             nested_cpu_has_virtual_nmis(vmcs12))
2394                 return -EINVAL;
2395
2396         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2397             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2398                 return -EINVAL;
2399
2400         return 0;
2401 }
2402
2403 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2404 {
2405         struct vcpu_vmx *vmx = to_vmx(vcpu);
2406         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2407
2408         /* Check for memory type validity */
2409         switch (address & VMX_EPTP_MT_MASK) {
2410         case VMX_EPTP_MT_UC:
2411                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2412                         return false;
2413                 break;
2414         case VMX_EPTP_MT_WB:
2415                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2416                         return false;
2417                 break;
2418         default:
2419                 return false;
2420         }
2421
2422         /* only 4 levels page-walk length are valid */
2423         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2424                 return false;
2425
2426         /* Reserved bits should not be set */
2427         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2428                 return false;
2429
2430         /* AD, if set, should be supported */
2431         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2432                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2433                         return false;
2434         }
2435
2436         return true;
2437 }
2438
2439 /*
2440  * Checks related to VM-Execution Control Fields
2441  */
2442 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2443                                               struct vmcs12 *vmcs12)
2444 {
2445         struct vcpu_vmx *vmx = to_vmx(vcpu);
2446
2447         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2448                                 vmx->nested.msrs.pinbased_ctls_low,
2449                                 vmx->nested.msrs.pinbased_ctls_high) ||
2450             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2451                                 vmx->nested.msrs.procbased_ctls_low,
2452                                 vmx->nested.msrs.procbased_ctls_high))
2453                 return -EINVAL;
2454
2455         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2456             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2457                                  vmx->nested.msrs.secondary_ctls_low,
2458                                  vmx->nested.msrs.secondary_ctls_high))
2459                 return -EINVAL;
2460
2461         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2462             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2463             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2464             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2465             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2466             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2467             nested_vmx_check_nmi_controls(vmcs12) ||
2468             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2469             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2470             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2471             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2472             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2473                 return -EINVAL;
2474
2475         if (nested_cpu_has_ept(vmcs12) &&
2476             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2477                 return -EINVAL;
2478
2479         if (nested_cpu_has_vmfunc(vmcs12)) {
2480                 if (vmcs12->vm_function_control &
2481                     ~vmx->nested.msrs.vmfunc_controls)
2482                         return -EINVAL;
2483
2484                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2485                         if (!nested_cpu_has_ept(vmcs12) ||
2486                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2487                                 return -EINVAL;
2488                 }
2489         }
2490
2491         return 0;
2492 }
2493
2494 /*
2495  * Checks related to VM-Exit Control Fields
2496  */
2497 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2498                                          struct vmcs12 *vmcs12)
2499 {
2500         struct vcpu_vmx *vmx = to_vmx(vcpu);
2501
2502         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2503                                 vmx->nested.msrs.exit_ctls_low,
2504                                 vmx->nested.msrs.exit_ctls_high) ||
2505             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2506                 return -EINVAL;
2507
2508         return 0;
2509 }
2510
2511 /*
2512  * Checks related to VM-Entry Control Fields
2513  */
2514 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2515                                           struct vmcs12 *vmcs12)
2516 {
2517         struct vcpu_vmx *vmx = to_vmx(vcpu);
2518
2519         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2520                                 vmx->nested.msrs.entry_ctls_low,
2521                                 vmx->nested.msrs.entry_ctls_high))
2522                 return -EINVAL;
2523
2524         /*
2525          * From the Intel SDM, volume 3:
2526          * Fields relevant to VM-entry event injection must be set properly.
2527          * These fields are the VM-entry interruption-information field, the
2528          * VM-entry exception error code, and the VM-entry instruction length.
2529          */
2530         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2531                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2532                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2533                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2534                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2535                 bool should_have_error_code;
2536                 bool urg = nested_cpu_has2(vmcs12,
2537                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2538                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2539
2540                 /* VM-entry interruption-info field: interruption type */
2541                 if (intr_type == INTR_TYPE_RESERVED ||
2542                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2543                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2544                         return -EINVAL;
2545
2546                 /* VM-entry interruption-info field: vector */
2547                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2548                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2549                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2550                         return -EINVAL;
2551
2552                 /* VM-entry interruption-info field: deliver error code */
2553                 should_have_error_code =
2554                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2555                         x86_exception_has_error_code(vector);
2556                 if (has_error_code != should_have_error_code)
2557                         return -EINVAL;
2558
2559                 /* VM-entry exception error code */
2560                 if (has_error_code &&
2561                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2562                         return -EINVAL;
2563
2564                 /* VM-entry interruption-info field: reserved bits */
2565                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2566                         return -EINVAL;
2567
2568                 /* VM-entry instruction length */
2569                 switch (intr_type) {
2570                 case INTR_TYPE_SOFT_EXCEPTION:
2571                 case INTR_TYPE_SOFT_INTR:
2572                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2573                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2574                             (vmcs12->vm_entry_instruction_len == 0 &&
2575                              !nested_cpu_has_zero_length_injection(vcpu)))
2576                                 return -EINVAL;
2577                 }
2578         }
2579
2580         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2581                 return -EINVAL;
2582
2583         return 0;
2584 }
2585
2586 /*
2587  * Checks related to Host Control Registers and MSRs
2588  */
2589 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2590                                           struct vmcs12 *vmcs12)
2591 {
2592         bool ia32e;
2593
2594         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2595             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2596             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2597                 return -EINVAL;
2598         /*
2599          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2600          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2601          * the values of the LMA and LME bits in the field must each be that of
2602          * the host address-space size VM-exit control.
2603          */
2604         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2605                 ia32e = (vmcs12->vm_exit_controls &
2606                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2607                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2608                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2609                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2610                         return -EINVAL;
2611         }
2612
2613         return 0;
2614 }
2615
2616 /*
2617  * Checks related to Guest Non-register State
2618  */
2619 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2620 {
2621         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2622             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2623                 return -EINVAL;
2624
2625         return 0;
2626 }
2627
2628 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2629                                             struct vmcs12 *vmcs12)
2630 {
2631         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2632             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2633             nested_check_vm_entry_controls(vcpu, vmcs12))
2634                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2635
2636         if (nested_check_host_control_regs(vcpu, vmcs12))
2637                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2638
2639         if (nested_check_guest_non_reg_state(vmcs12))
2640                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2641
2642         return 0;
2643 }
2644
2645 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2646                                           struct vmcs12 *vmcs12)
2647 {
2648         int r;
2649         struct page *page;
2650         struct vmcs12 *shadow;
2651
2652         if (vmcs12->vmcs_link_pointer == -1ull)
2653                 return 0;
2654
2655         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2656                 return -EINVAL;
2657
2658         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2659         if (is_error_page(page))
2660                 return -EINVAL;
2661
2662         r = 0;
2663         shadow = kmap(page);
2664         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2665             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2666                 r = -EINVAL;
2667         kunmap(page);
2668         kvm_release_page_clean(page);
2669         return r;
2670 }
2671
2672 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2673                                              struct vmcs12 *vmcs12,
2674                                              u32 *exit_qual)
2675 {
2676         bool ia32e;
2677
2678         *exit_qual = ENTRY_FAIL_DEFAULT;
2679
2680         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2681             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2682                 return 1;
2683
2684         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2685                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2686                 return 1;
2687         }
2688
2689         /*
2690          * If the load IA32_EFER VM-entry control is 1, the following checks
2691          * are performed on the field for the IA32_EFER MSR:
2692          * - Bits reserved in the IA32_EFER MSR must be 0.
2693          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2694          *   the IA-32e mode guest VM-exit control. It must also be identical
2695          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2696          *   CR0.PG) is 1.
2697          */
2698         if (to_vmx(vcpu)->nested.nested_run_pending &&
2699             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2700                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2701                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2702                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2703                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2704                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2705                         return 1;
2706         }
2707
2708         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2709                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2710                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2711                         return 1;
2712
2713         return 0;
2714 }
2715
2716 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2717 {
2718         struct vcpu_vmx *vmx = to_vmx(vcpu);
2719         unsigned long cr3, cr4;
2720
2721         if (!nested_early_check)
2722                 return 0;
2723
2724         if (vmx->msr_autoload.host.nr)
2725                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2726         if (vmx->msr_autoload.guest.nr)
2727                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2728
2729         preempt_disable();
2730
2731         vmx_prepare_switch_to_guest(vcpu);
2732
2733         /*
2734          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2735          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2736          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2737          * there is no need to preserve other bits or save/restore the field.
2738          */
2739         vmcs_writel(GUEST_RFLAGS, 0);
2740
2741         cr3 = __get_current_cr3_fast();
2742         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2743                 vmcs_writel(HOST_CR3, cr3);
2744                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2745         }
2746
2747         cr4 = cr4_read_shadow();
2748         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2749                 vmcs_writel(HOST_CR4, cr4);
2750                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2751         }
2752
2753         vmx->__launched = vmx->loaded_vmcs->launched;
2754
2755         asm(
2756                 /* Set HOST_RSP */
2757                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2758                 __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
2759                 "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
2760                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2761
2762                 /* Check if vmlaunch or vmresume is needed */
2763                 "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
2764
2765                 "call vmx_vmenter\n\t"
2766
2767                 /* Set vmx->fail accordingly */
2768                 "setbe %c[fail](%% " _ASM_CX")\n\t"
2769               : ASM_CALL_CONSTRAINT
2770               : "c"(vmx), "d"((unsigned long)HOST_RSP),
2771                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
2772                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2773                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
2774                 [wordsize]"i"(sizeof(ulong))
2775               : "rax", "cc", "memory"
2776         );
2777
2778         preempt_enable();
2779
2780         if (vmx->msr_autoload.host.nr)
2781                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2782         if (vmx->msr_autoload.guest.nr)
2783                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2784
2785         if (vmx->fail) {
2786                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2787                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2788                 vmx->fail = 0;
2789                 return 1;
2790         }
2791
2792         /*
2793          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2794          */
2795         local_irq_enable();
2796         if (hw_breakpoint_active())
2797                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2798
2799         /*
2800          * A non-failing VMEntry means we somehow entered guest mode with
2801          * an illegal RIP, and that's just the tip of the iceberg.  There
2802          * is no telling what memory has been modified or what state has
2803          * been exposed to unknown code.  Hitting this all but guarantees
2804          * a (very critical) hardware issue.
2805          */
2806         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2807                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2808
2809         return 0;
2810 }
2811 STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
2812
2813
2814 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2815                                                  struct vmcs12 *vmcs12);
2816
2817 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2818 {
2819         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2820         struct vcpu_vmx *vmx = to_vmx(vcpu);
2821         struct page *page;
2822         u64 hpa;
2823
2824         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2825                 /*
2826                  * Translate L1 physical address to host physical
2827                  * address for vmcs02. Keep the page pinned, so this
2828                  * physical address remains valid. We keep a reference
2829                  * to it so we can release it later.
2830                  */
2831                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2832                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2833                         vmx->nested.apic_access_page = NULL;
2834                 }
2835                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2836                 /*
2837                  * If translation failed, no matter: This feature asks
2838                  * to exit when accessing the given address, and if it
2839                  * can never be accessed, this feature won't do
2840                  * anything anyway.
2841                  */
2842                 if (!is_error_page(page)) {
2843                         vmx->nested.apic_access_page = page;
2844                         hpa = page_to_phys(vmx->nested.apic_access_page);
2845                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2846                 } else {
2847                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2848                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2849                 }
2850         }
2851
2852         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2853                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2854                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2855                         vmx->nested.virtual_apic_page = NULL;
2856                 }
2857                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2858
2859                 /*
2860                  * If translation failed, VM entry will fail because
2861                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2862                  * Failing the vm entry is _not_ what the processor
2863                  * does but it's basically the only possibility we
2864                  * have.  We could still enter the guest if CR8 load
2865                  * exits are enabled, CR8 store exits are enabled, and
2866                  * virtualize APIC access is disabled; in this case
2867                  * the processor would never use the TPR shadow and we
2868                  * could simply clear the bit from the execution
2869                  * control.  But such a configuration is useless, so
2870                  * let's keep the code simple.
2871                  */
2872                 if (!is_error_page(page)) {
2873                         vmx->nested.virtual_apic_page = page;
2874                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
2875                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2876                 }
2877         }
2878
2879         if (nested_cpu_has_posted_intr(vmcs12)) {
2880                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2881                         kunmap(vmx->nested.pi_desc_page);
2882                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
2883                         vmx->nested.pi_desc_page = NULL;
2884                         vmx->nested.pi_desc = NULL;
2885                         vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2886                 }
2887                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2888                 if (is_error_page(page))
2889                         return;
2890                 vmx->nested.pi_desc_page = page;
2891                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2892                 vmx->nested.pi_desc =
2893                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
2894                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2895                         (PAGE_SIZE - 1)));
2896                 vmcs_write64(POSTED_INTR_DESC_ADDR,
2897                         page_to_phys(vmx->nested.pi_desc_page) +
2898                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2899                         (PAGE_SIZE - 1)));
2900         }
2901         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2902                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2903                               CPU_BASED_USE_MSR_BITMAPS);
2904         else
2905                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2906                                 CPU_BASED_USE_MSR_BITMAPS);
2907 }
2908
2909 /*
2910  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2911  * for running VMX instructions (except VMXON, whose prerequisites are
2912  * slightly different). It also specifies what exception to inject otherwise.
2913  * Note that many of these exceptions have priority over VM exits, so they
2914  * don't have to be checked again here.
2915  */
2916 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2917 {
2918         if (!to_vmx(vcpu)->nested.vmxon) {
2919                 kvm_queue_exception(vcpu, UD_VECTOR);
2920                 return 0;
2921         }
2922
2923         if (vmx_get_cpl(vcpu)) {
2924                 kvm_inject_gp(vcpu, 0);
2925                 return 0;
2926         }
2927
2928         return 1;
2929 }
2930
2931 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2932 {
2933         u8 rvi = vmx_get_rvi();
2934         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2935
2936         return ((rvi & 0xf0) > (vppr & 0xf0));
2937 }
2938
2939 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2940                                    struct vmcs12 *vmcs12);
2941
2942 /*
2943  * If from_vmentry is false, this is being called from state restore (either RSM
2944  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2945 + *
2946 + * Returns:
2947 + *   0 - success, i.e. proceed with actual VMEnter
2948 + *   1 - consistency check VMExit
2949 + *  -1 - consistency check VMFail
2950  */
2951 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2952 {
2953         struct vcpu_vmx *vmx = to_vmx(vcpu);
2954         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2955         bool evaluate_pending_interrupts;
2956         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2957         u32 exit_qual;
2958
2959         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2960                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2961         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2962                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2963
2964         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2965                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2966         if (kvm_mpx_supported() &&
2967                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2968                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2969
2970         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2971
2972         prepare_vmcs02_early(vmx, vmcs12);
2973
2974         if (from_vmentry) {
2975                 nested_get_vmcs12_pages(vcpu);
2976
2977                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2978                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2979                         return -1;
2980                 }
2981
2982                 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2983                         goto vmentry_fail_vmexit;
2984         }
2985
2986         enter_guest_mode(vcpu);
2987         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2988                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2989
2990         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2991                 goto vmentry_fail_vmexit_guest_mode;
2992
2993         if (from_vmentry) {
2994                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2995                 exit_qual = nested_vmx_load_msr(vcpu,
2996                                                 vmcs12->vm_entry_msr_load_addr,
2997                                                 vmcs12->vm_entry_msr_load_count);
2998                 if (exit_qual)
2999                         goto vmentry_fail_vmexit_guest_mode;
3000         } else {
3001                 /*
3002                  * The MMU is not initialized to point at the right entities yet and
3003                  * "get pages" would need to read data from the guest (i.e. we will
3004                  * need to perform gpa to hpa translation). Request a call
3005                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3006                  * have already been set at vmentry time and should not be reset.
3007                  */
3008                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3009         }
3010
3011         /*
3012          * If L1 had a pending IRQ/NMI until it executed
3013          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3014          * disallowed (e.g. interrupts disabled), L0 needs to
3015          * evaluate if this pending event should cause an exit from L2
3016          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3017          * intercept EXTERNAL_INTERRUPT).
3018          *
3019          * Usually this would be handled by the processor noticing an
3020          * IRQ/NMI window request, or checking RVI during evaluation of
3021          * pending virtual interrupts.  However, this setting was done
3022          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3023          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3024          */
3025         if (unlikely(evaluate_pending_interrupts))
3026                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3027
3028         /*
3029          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3030          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3031          * returned as far as L1 is concerned. It will only return (and set
3032          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3033          */
3034         return 0;
3035
3036         /*
3037          * A failed consistency check that leads to a VMExit during L1's
3038          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3039          * 26.7 "VM-entry failures during or after loading guest state".
3040          */
3041 vmentry_fail_vmexit_guest_mode:
3042         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3043                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3044         leave_guest_mode(vcpu);
3045
3046 vmentry_fail_vmexit:
3047         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3048
3049         if (!from_vmentry)
3050                 return 1;
3051
3052         load_vmcs12_host_state(vcpu, vmcs12);
3053         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3054         vmcs12->exit_qualification = exit_qual;
3055         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3056                 vmx->nested.need_vmcs12_sync = true;
3057         return 1;
3058 }
3059
3060 /*
3061  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3062  * for running an L2 nested guest.
3063  */
3064 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3065 {
3066         struct vmcs12 *vmcs12;
3067         struct vcpu_vmx *vmx = to_vmx(vcpu);
3068         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3069         int ret;
3070
3071         if (!nested_vmx_check_permission(vcpu))
3072                 return 1;
3073
3074         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3075                 return 1;
3076
3077         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3078                 return nested_vmx_failInvalid(vcpu);
3079
3080         vmcs12 = get_vmcs12(vcpu);
3081
3082         /*
3083          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3084          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3085          * rather than RFLAGS.ZF, and no error number is stored to the
3086          * VM-instruction error field.
3087          */
3088         if (vmcs12->hdr.shadow_vmcs)
3089                 return nested_vmx_failInvalid(vcpu);
3090
3091         if (vmx->nested.hv_evmcs) {
3092                 copy_enlightened_to_vmcs12(vmx);
3093                 /* Enlightened VMCS doesn't have launch state */
3094                 vmcs12->launch_state = !launch;
3095         } else if (enable_shadow_vmcs) {
3096                 copy_shadow_to_vmcs12(vmx);
3097         }
3098
3099         /*
3100          * The nested entry process starts with enforcing various prerequisites
3101          * on vmcs12 as required by the Intel SDM, and act appropriately when
3102          * they fail: As the SDM explains, some conditions should cause the
3103          * instruction to fail, while others will cause the instruction to seem
3104          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3105          * To speed up the normal (success) code path, we should avoid checking
3106          * for misconfigurations which will anyway be caught by the processor
3107          * when using the merged vmcs02.
3108          */
3109         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3110                 return nested_vmx_failValid(vcpu,
3111                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3112
3113         if (vmcs12->launch_state == launch)
3114                 return nested_vmx_failValid(vcpu,
3115                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3116                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3117
3118         ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3119         if (ret)
3120                 return nested_vmx_failValid(vcpu, ret);
3121
3122         /*
3123          * We're finally done with prerequisite checking, and can start with
3124          * the nested entry.
3125          */
3126         vmx->nested.nested_run_pending = 1;
3127         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3128         vmx->nested.nested_run_pending = !ret;
3129         if (ret > 0)
3130                 return 1;
3131         else if (ret)
3132                 return nested_vmx_failValid(vcpu,
3133                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3134
3135         /* Hide L1D cache contents from the nested guest.  */
3136         vmx->vcpu.arch.l1tf_flush_l1d = true;
3137
3138         /*
3139          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3140          * also be used as part of restoring nVMX state for
3141          * snapshot restore (migration).
3142          *
3143          * In this flow, it is assumed that vmcs12 cache was
3144          * trasferred as part of captured nVMX state and should
3145          * therefore not be read from guest memory (which may not
3146          * exist on destination host yet).
3147          */
3148         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3149
3150         /*
3151          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3152          * awakened by event injection or by an NMI-window VM-exit or
3153          * by an interrupt-window VM-exit, halt the vcpu.
3154          */
3155         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3156             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3157             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3158             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3159               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3160                 vmx->nested.nested_run_pending = 0;
3161                 return kvm_vcpu_halt(vcpu);
3162         }
3163         return 1;
3164 }
3165
3166 /*
3167  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3168  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3169  * This function returns the new value we should put in vmcs12.guest_cr0.
3170  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3171  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3172  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3173  *     didn't trap the bit, because if L1 did, so would L0).
3174  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3175  *     been modified by L2, and L1 knows it. So just leave the old value of
3176  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3177  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3178  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3179  *     changed these bits, and therefore they need to be updated, but L0
3180  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3181  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3182  */
3183 static inline unsigned long
3184 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3185 {
3186         return
3187         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3188         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3189         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3190                         vcpu->arch.cr0_guest_owned_bits));
3191 }
3192
3193 static inline unsigned long
3194 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3195 {
3196         return
3197         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3198         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3199         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3200                         vcpu->arch.cr4_guest_owned_bits));
3201 }
3202
3203 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3204                                       struct vmcs12 *vmcs12)
3205 {
3206         u32 idt_vectoring;
3207         unsigned int nr;
3208
3209         if (vcpu->arch.exception.injected) {
3210                 nr = vcpu->arch.exception.nr;
3211                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3212
3213                 if (kvm_exception_is_soft(nr)) {
3214                         vmcs12->vm_exit_instruction_len =
3215                                 vcpu->arch.event_exit_inst_len;
3216                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3217                 } else
3218                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3219
3220                 if (vcpu->arch.exception.has_error_code) {
3221                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3222                         vmcs12->idt_vectoring_error_code =
3223                                 vcpu->arch.exception.error_code;
3224                 }
3225
3226                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3227         } else if (vcpu->arch.nmi_injected) {
3228                 vmcs12->idt_vectoring_info_field =
3229                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3230         } else if (vcpu->arch.interrupt.injected) {
3231                 nr = vcpu->arch.interrupt.nr;
3232                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3233
3234                 if (vcpu->arch.interrupt.soft) {
3235                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3236                         vmcs12->vm_entry_instruction_len =
3237                                 vcpu->arch.event_exit_inst_len;
3238                 } else
3239                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3240
3241                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3242         }
3243 }
3244
3245
3246 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3247 {
3248         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3249         gfn_t gfn;
3250
3251         /*
3252          * Don't need to mark the APIC access page dirty; it is never
3253          * written to by the CPU during APIC virtualization.
3254          */
3255
3256         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3257                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3258                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3259         }
3260
3261         if (nested_cpu_has_posted_intr(vmcs12)) {
3262                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3263                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3264         }
3265 }
3266
3267 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3268 {
3269         struct vcpu_vmx *vmx = to_vmx(vcpu);
3270         int max_irr;
3271         void *vapic_page;
3272         u16 status;
3273
3274         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3275                 return;
3276
3277         vmx->nested.pi_pending = false;
3278         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3279                 return;
3280
3281         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3282         if (max_irr != 256) {
3283                 vapic_page = kmap(vmx->nested.virtual_apic_page);
3284                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3285                         vapic_page, &max_irr);
3286                 kunmap(vmx->nested.virtual_apic_page);
3287
3288                 status = vmcs_read16(GUEST_INTR_STATUS);
3289                 if ((u8)max_irr > ((u8)status & 0xff)) {
3290                         status &= ~0xff;
3291                         status |= (u8)max_irr;
3292                         vmcs_write16(GUEST_INTR_STATUS, status);
3293                 }
3294         }
3295
3296         nested_mark_vmcs12_pages_dirty(vcpu);
3297 }
3298
3299 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3300                                                unsigned long exit_qual)
3301 {
3302         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3303         unsigned int nr = vcpu->arch.exception.nr;
3304         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3305
3306         if (vcpu->arch.exception.has_error_code) {
3307                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3308                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3309         }
3310
3311         if (kvm_exception_is_soft(nr))
3312                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3313         else
3314                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3315
3316         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3317             vmx_get_nmi_mask(vcpu))
3318                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3319
3320         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3321 }
3322
3323 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3324 {
3325         struct vcpu_vmx *vmx = to_vmx(vcpu);
3326         unsigned long exit_qual;
3327         bool block_nested_events =
3328             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3329
3330         if (vcpu->arch.exception.pending &&
3331                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3332                 if (block_nested_events)
3333                         return -EBUSY;
3334                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3335                 return 0;
3336         }
3337
3338         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3339             vmx->nested.preemption_timer_expired) {
3340                 if (block_nested_events)
3341                         return -EBUSY;
3342                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3343                 return 0;
3344         }
3345
3346         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3347                 if (block_nested_events)
3348                         return -EBUSY;
3349                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3350                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3351                                   INTR_INFO_VALID_MASK, 0);
3352                 /*
3353                  * The NMI-triggered VM exit counts as injection:
3354                  * clear this one and block further NMIs.
3355                  */
3356                 vcpu->arch.nmi_pending = 0;
3357                 vmx_set_nmi_mask(vcpu, true);
3358                 return 0;
3359         }
3360
3361         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3362             nested_exit_on_intr(vcpu)) {
3363                 if (block_nested_events)
3364                         return -EBUSY;
3365                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3366                 return 0;
3367         }
3368
3369         vmx_complete_nested_posted_interrupt(vcpu);
3370         return 0;
3371 }
3372
3373 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3374 {
3375         ktime_t remaining =
3376                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3377         u64 value;
3378
3379         if (ktime_to_ns(remaining) <= 0)
3380                 return 0;
3381
3382         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3383         do_div(value, 1000000);
3384         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3385 }
3386
3387 /*
3388  * Update the guest state fields of vmcs12 to reflect changes that
3389  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3390  * VM-entry controls is also updated, since this is really a guest
3391  * state bit.)
3392  */
3393 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3394 {
3395         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3396         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3397
3398         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3399         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3400         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3401
3402         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3403         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3404         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3405         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3406         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3407         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3408         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3409         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3410         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3411         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3412         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3413         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3414         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3415         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3416         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3417         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3418         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3419         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3420         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3421         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3422         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3423         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3424         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3425         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3426         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3427         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3428         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3429         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3430         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3431         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3432         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3433         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3434         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3435         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3436         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3437         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3438
3439         vmcs12->guest_interruptibility_info =
3440                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3441         vmcs12->guest_pending_dbg_exceptions =
3442                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3443         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3444                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3445         else
3446                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3447
3448         if (nested_cpu_has_preemption_timer(vmcs12)) {
3449                 if (vmcs12->vm_exit_controls &
3450                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3451                         vmcs12->vmx_preemption_timer_value =
3452                                 vmx_get_preemption_timer_value(vcpu);
3453                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3454         }
3455
3456         /*
3457          * In some cases (usually, nested EPT), L2 is allowed to change its
3458          * own CR3 without exiting. If it has changed it, we must keep it.
3459          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3460          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3461          *
3462          * Additionally, restore L2's PDPTR to vmcs12.
3463          */
3464         if (enable_ept) {
3465                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3466                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3467                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3468                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3469                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3470         }
3471
3472         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3473
3474         if (nested_cpu_has_vid(vmcs12))
3475                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3476
3477         vmcs12->vm_entry_controls =
3478                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3479                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3480
3481         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3482                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3483                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3484         }
3485
3486         /* TODO: These cannot have changed unless we have MSR bitmaps and
3487          * the relevant bit asks not to trap the change */
3488         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3489                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3490         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3491                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3492         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3493         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3494         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3495         if (kvm_mpx_supported())
3496                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3497 }
3498
3499 /*
3500  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3501  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3502  * and this function updates it to reflect the changes to the guest state while
3503  * L2 was running (and perhaps made some exits which were handled directly by L0
3504  * without going back to L1), and to reflect the exit reason.
3505  * Note that we do not have to copy here all VMCS fields, just those that
3506  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3507  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3508  * which already writes to vmcs12 directly.
3509  */
3510 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3511                            u32 exit_reason, u32 exit_intr_info,
3512                            unsigned long exit_qualification)
3513 {
3514         /* update guest state fields: */
3515         sync_vmcs12(vcpu, vmcs12);
3516
3517         /* update exit information fields: */
3518
3519         vmcs12->vm_exit_reason = exit_reason;
3520         vmcs12->exit_qualification = exit_qualification;
3521         vmcs12->vm_exit_intr_info = exit_intr_info;
3522
3523         vmcs12->idt_vectoring_info_field = 0;
3524         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3525         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3526
3527         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3528                 vmcs12->launch_state = 1;
3529
3530                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3531                  * instead of reading the real value. */
3532                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3533
3534                 /*
3535                  * Transfer the event that L0 or L1 may wanted to inject into
3536                  * L2 to IDT_VECTORING_INFO_FIELD.
3537                  */
3538                 vmcs12_save_pending_event(vcpu, vmcs12);
3539
3540                 /*
3541                  * According to spec, there's no need to store the guest's
3542                  * MSRs if the exit is due to a VM-entry failure that occurs
3543                  * during or after loading the guest state. Since this exit
3544                  * does not fall in that category, we need to save the MSRs.
3545                  */
3546                 if (nested_vmx_store_msr(vcpu,
3547                                          vmcs12->vm_exit_msr_store_addr,
3548                                          vmcs12->vm_exit_msr_store_count))
3549                         nested_vmx_abort(vcpu,
3550                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3551         }
3552
3553         /*
3554          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3555          * preserved above and would only end up incorrectly in L1.
3556          */
3557         vcpu->arch.nmi_injected = false;
3558         kvm_clear_exception_queue(vcpu);
3559         kvm_clear_interrupt_queue(vcpu);
3560 }
3561
3562 /*
3563  * A part of what we need to when the nested L2 guest exits and we want to
3564  * run its L1 parent, is to reset L1's guest state to the host state specified
3565  * in vmcs12.
3566  * This function is to be called not only on normal nested exit, but also on
3567  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3568  * Failures During or After Loading Guest State").
3569  * This function should be called when the active VMCS is L1's (vmcs01).
3570  */
3571 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3572                                    struct vmcs12 *vmcs12)
3573 {
3574         struct kvm_segment seg;
3575         u32 entry_failure_code;
3576
3577         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3578                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3579         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3580                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3581         else
3582                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3583         vmx_set_efer(vcpu, vcpu->arch.efer);
3584
3585         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3586         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3587         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3588         vmx_set_interrupt_shadow(vcpu, 0);
3589
3590         /*
3591          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3592          * actually changed, because vmx_set_cr0 refers to efer set above.
3593          *
3594          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3595          * (KVM doesn't change it);
3596          */
3597         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3598         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3599
3600         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3601         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3602         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3603
3604         nested_ept_uninit_mmu_context(vcpu);
3605
3606         /*
3607          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3608          * couldn't have changed.
3609          */
3610         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3611                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3612
3613         if (!enable_ept)
3614                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3615
3616         /*
3617          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3618          * VMEntry/VMExit. Thus, no need to flush TLB.
3619          *
3620          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3621          * flushed on every VMEntry/VMExit.
3622          *
3623          * Otherwise, we can preserve TLB entries as long as we are
3624          * able to tag L1 TLB entries differently than L2 TLB entries.
3625          *
3626          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3627          * and therefore we request the TLB flush to happen only after VMCS EPTP
3628          * has been set by KVM_REQ_LOAD_CR3.
3629          */
3630         if (enable_vpid &&
3631             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3632                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3633         }
3634
3635         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3636         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3637         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3638         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3639         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3640         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3641         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3642
3643         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3644         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3645                 vmcs_write64(GUEST_BNDCFGS, 0);
3646
3647         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3648                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3649                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3650         }
3651         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3652                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3653                         vmcs12->host_ia32_perf_global_ctrl);
3654
3655         /* Set L1 segment info according to Intel SDM
3656             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3657         seg = (struct kvm_segment) {
3658                 .base = 0,
3659                 .limit = 0xFFFFFFFF,
3660                 .selector = vmcs12->host_cs_selector,
3661                 .type = 11,
3662                 .present = 1,
3663                 .s = 1,
3664                 .g = 1
3665         };
3666         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3667                 seg.l = 1;
3668         else
3669                 seg.db = 1;
3670         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3671         seg = (struct kvm_segment) {
3672                 .base = 0,
3673                 .limit = 0xFFFFFFFF,
3674                 .type = 3,
3675                 .present = 1,
3676                 .s = 1,
3677                 .db = 1,
3678                 .g = 1
3679         };
3680         seg.selector = vmcs12->host_ds_selector;
3681         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3682         seg.selector = vmcs12->host_es_selector;
3683         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3684         seg.selector = vmcs12->host_ss_selector;
3685         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3686         seg.selector = vmcs12->host_fs_selector;
3687         seg.base = vmcs12->host_fs_base;
3688         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3689         seg.selector = vmcs12->host_gs_selector;
3690         seg.base = vmcs12->host_gs_base;
3691         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3692         seg = (struct kvm_segment) {
3693                 .base = vmcs12->host_tr_base,
3694                 .limit = 0x67,
3695                 .selector = vmcs12->host_tr_selector,
3696                 .type = 11,
3697                 .present = 1
3698         };
3699         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3700
3701         kvm_set_dr(vcpu, 7, 0x400);
3702         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3703
3704         if (cpu_has_vmx_msr_bitmap())
3705                 vmx_update_msr_bitmap(vcpu);
3706
3707         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3708                                 vmcs12->vm_exit_msr_load_count))
3709                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3710 }
3711
3712 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3713 {
3714         struct shared_msr_entry *efer_msr;
3715         unsigned int i;
3716
3717         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3718                 return vmcs_read64(GUEST_IA32_EFER);
3719
3720         if (cpu_has_load_ia32_efer())
3721                 return host_efer;
3722
3723         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3724                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3725                         return vmx->msr_autoload.guest.val[i].value;
3726         }
3727
3728         efer_msr = find_msr_entry(vmx, MSR_EFER);
3729         if (efer_msr)
3730                 return efer_msr->data;
3731
3732         return host_efer;
3733 }
3734
3735 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3736 {
3737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3738         struct vcpu_vmx *vmx = to_vmx(vcpu);
3739         struct vmx_msr_entry g, h;
3740         struct msr_data msr;
3741         gpa_t gpa;
3742         u32 i, j;
3743
3744         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3745
3746         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3747                 /*
3748                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3749                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3750                  * and vcpu->arch.dr7 is not squirreled away before the
3751                  * nested VMENTER (not worth adding a variable in nested_vmx).
3752                  */
3753                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3754                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3755                 else
3756                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3757         }
3758
3759         /*
3760          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3761          * handle a variety of side effects to KVM's software model.
3762          */
3763         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3764
3765         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3766         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3767
3768         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3769         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3770
3771         nested_ept_uninit_mmu_context(vcpu);
3772         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3773         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3774
3775         /*
3776          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3777          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3778          * VMFail, like everything else we just need to ensure our
3779          * software model is up-to-date.
3780          */
3781         ept_save_pdptrs(vcpu);
3782
3783         kvm_mmu_reset_context(vcpu);
3784
3785         if (cpu_has_vmx_msr_bitmap())
3786                 vmx_update_msr_bitmap(vcpu);
3787
3788         /*
3789          * This nasty bit of open coding is a compromise between blindly
3790          * loading L1's MSRs using the exit load lists (incorrect emulation
3791          * of VMFail), leaving the nested VM's MSRs in the software model
3792          * (incorrect behavior) and snapshotting the modified MSRs (too
3793          * expensive since the lists are unbound by hardware).  For each
3794          * MSR that was (prematurely) loaded from the nested VMEntry load
3795          * list, reload it from the exit load list if it exists and differs
3796          * from the guest value.  The intent is to stuff host state as
3797          * silently as possible, not to fully process the exit load list.
3798          */
3799         msr.host_initiated = false;
3800         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3801                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3802                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3803                         pr_debug_ratelimited(
3804                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3805                                 __func__, i, gpa);
3806                         goto vmabort;
3807                 }
3808
3809                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3810                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3811                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3812                                 pr_debug_ratelimited(
3813                                         "%s read MSR failed (%u, 0x%08llx)\n",
3814                                         __func__, j, gpa);
3815                                 goto vmabort;
3816                         }
3817                         if (h.index != g.index)
3818                                 continue;
3819                         if (h.value == g.value)
3820                                 break;
3821
3822                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3823                                 pr_debug_ratelimited(
3824                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3825                                         __func__, j, h.index, h.reserved);
3826                                 goto vmabort;
3827                         }
3828
3829                         msr.index = h.index;
3830                         msr.data = h.value;
3831                         if (kvm_set_msr(vcpu, &msr)) {
3832                                 pr_debug_ratelimited(
3833                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3834                                         __func__, j, h.index, h.value);
3835                                 goto vmabort;
3836                         }
3837                 }
3838         }
3839
3840         return;
3841
3842 vmabort:
3843         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3844 }
3845
3846 /*
3847  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3848  * and modify vmcs12 to make it see what it would expect to see there if
3849  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3850  */
3851 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3852                        u32 exit_intr_info, unsigned long exit_qualification)
3853 {
3854         struct vcpu_vmx *vmx = to_vmx(vcpu);
3855         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3856
3857         /* trying to cancel vmlaunch/vmresume is a bug */
3858         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3859
3860         leave_guest_mode(vcpu);
3861
3862         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3863                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3864
3865         if (likely(!vmx->fail)) {
3866                 if (exit_reason == -1)
3867                         sync_vmcs12(vcpu, vmcs12);
3868                 else
3869                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3870                                        exit_qualification);
3871
3872                 /*
3873                  * Must happen outside of sync_vmcs12() as it will
3874                  * also be used to capture vmcs12 cache as part of
3875                  * capturing nVMX state for snapshot (migration).
3876                  *
3877                  * Otherwise, this flush will dirty guest memory at a
3878                  * point it is already assumed by user-space to be
3879                  * immutable.
3880                  */
3881                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3882         } else {
3883                 /*
3884                  * The only expected VM-instruction error is "VM entry with
3885                  * invalid control field(s)." Anything else indicates a
3886                  * problem with L0.  And we should never get here with a
3887                  * VMFail of any type if early consistency checks are enabled.
3888                  */
3889                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3890                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3891                 WARN_ON_ONCE(nested_early_check);
3892         }
3893
3894         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3895
3896         /* Update any VMCS fields that might have changed while L2 ran */
3897         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3898         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3899         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3900
3901         if (kvm_has_tsc_control)
3902                 decache_tsc_multiplier(vmx);
3903
3904         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3905                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3906                 vmx_set_virtual_apic_mode(vcpu);
3907         } else if (!nested_cpu_has_ept(vmcs12) &&
3908                    nested_cpu_has2(vmcs12,
3909                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3910                 vmx_flush_tlb(vcpu, true);
3911         }
3912
3913         /* This is needed for same reason as it was needed in prepare_vmcs02 */
3914         vmx->host_rsp = 0;
3915
3916         /* Unpin physical memory we referred to in vmcs02 */
3917         if (vmx->nested.apic_access_page) {
3918                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3919                 vmx->nested.apic_access_page = NULL;
3920         }
3921         if (vmx->nested.virtual_apic_page) {
3922                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3923                 vmx->nested.virtual_apic_page = NULL;
3924         }
3925         if (vmx->nested.pi_desc_page) {
3926                 kunmap(vmx->nested.pi_desc_page);
3927                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3928                 vmx->nested.pi_desc_page = NULL;
3929                 vmx->nested.pi_desc = NULL;
3930         }
3931
3932         /*
3933          * We are now running in L2, mmu_notifier will force to reload the
3934          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3935          */
3936         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3937
3938         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3939                 vmx->nested.need_vmcs12_sync = true;
3940
3941         /* in case we halted in L2 */
3942         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3943
3944         if (likely(!vmx->fail)) {
3945                 /*
3946                  * TODO: SDM says that with acknowledge interrupt on
3947                  * exit, bit 31 of the VM-exit interrupt information
3948                  * (valid interrupt) is always set to 1 on
3949                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3950                  * need kvm_cpu_has_interrupt().  See the commit
3951                  * message for details.
3952                  */
3953                 if (nested_exit_intr_ack_set(vcpu) &&
3954                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3955                     kvm_cpu_has_interrupt(vcpu)) {
3956                         int irq = kvm_cpu_get_interrupt(vcpu);
3957                         WARN_ON(irq < 0);
3958                         vmcs12->vm_exit_intr_info = irq |
3959                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3960                 }
3961
3962                 if (exit_reason != -1)
3963                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3964                                                        vmcs12->exit_qualification,
3965                                                        vmcs12->idt_vectoring_info_field,
3966                                                        vmcs12->vm_exit_intr_info,
3967                                                        vmcs12->vm_exit_intr_error_code,
3968                                                        KVM_ISA_VMX);
3969
3970                 load_vmcs12_host_state(vcpu, vmcs12);
3971
3972                 return;
3973         }
3974
3975         /*
3976          * After an early L2 VM-entry failure, we're now back
3977          * in L1 which thinks it just finished a VMLAUNCH or
3978          * VMRESUME instruction, so we need to set the failure
3979          * flag and the VM-instruction error field of the VMCS
3980          * accordingly, and skip the emulated instruction.
3981          */
3982         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3983
3984         /*
3985          * Restore L1's host state to KVM's software model.  We're here
3986          * because a consistency check was caught by hardware, which
3987          * means some amount of guest state has been propagated to KVM's
3988          * model and needs to be unwound to the host's state.
3989          */
3990         nested_vmx_restore_host_state(vcpu);
3991
3992         vmx->fail = 0;
3993 }
3994
3995 /*
3996  * Decode the memory-address operand of a vmx instruction, as recorded on an
3997  * exit caused by such an instruction (run by a guest hypervisor).
3998  * On success, returns 0. When the operand is invalid, returns 1 and throws
3999  * #UD or #GP.
4000  */
4001 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4002                         u32 vmx_instruction_info, bool wr, gva_t *ret)
4003 {
4004         gva_t off;
4005         bool exn;
4006         struct kvm_segment s;
4007
4008         /*
4009          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4010          * Execution", on an exit, vmx_instruction_info holds most of the
4011          * addressing components of the operand. Only the displacement part
4012          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4013          * For how an actual address is calculated from all these components,
4014          * refer to Vol. 1, "Operand Addressing".
4015          */
4016         int  scaling = vmx_instruction_info & 3;
4017         int  addr_size = (vmx_instruction_info >> 7) & 7;
4018         bool is_reg = vmx_instruction_info & (1u << 10);
4019         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4020         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4021         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4022         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4023         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4024
4025         if (is_reg) {
4026                 kvm_queue_exception(vcpu, UD_VECTOR);
4027                 return 1;
4028         }
4029
4030         /* Addr = segment_base + offset */
4031         /* offset = base + [index * scale] + displacement */
4032         off = exit_qualification; /* holds the displacement */
4033         if (base_is_valid)
4034                 off += kvm_register_read(vcpu, base_reg);
4035         if (index_is_valid)
4036                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4037         vmx_get_segment(vcpu, &s, seg_reg);
4038         *ret = s.base + off;
4039
4040         if (addr_size == 1) /* 32 bit */
4041                 *ret &= 0xffffffff;
4042
4043         /* Checks for #GP/#SS exceptions. */
4044         exn = false;
4045         if (is_long_mode(vcpu)) {
4046                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4047                  * non-canonical form. This is the only check on the memory
4048                  * destination for long mode!
4049                  */
4050                 exn = is_noncanonical_address(*ret, vcpu);
4051         } else if (is_protmode(vcpu)) {
4052                 /* Protected mode: apply checks for segment validity in the
4053                  * following order:
4054                  * - segment type check (#GP(0) may be thrown)
4055                  * - usability check (#GP(0)/#SS(0))
4056                  * - limit check (#GP(0)/#SS(0))
4057                  */
4058                 if (wr)
4059                         /* #GP(0) if the destination operand is located in a
4060                          * read-only data segment or any code segment.
4061                          */
4062                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4063                 else
4064                         /* #GP(0) if the source operand is located in an
4065                          * execute-only code segment
4066                          */
4067                         exn = ((s.type & 0xa) == 8);
4068                 if (exn) {
4069                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4070                         return 1;
4071                 }
4072                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4073                  */
4074                 exn = (s.unusable != 0);
4075                 /* Protected mode: #GP(0)/#SS(0) if the memory
4076                  * operand is outside the segment limit.
4077                  */
4078                 exn = exn || (off + sizeof(u64) > s.limit);
4079         }
4080         if (exn) {
4081                 kvm_queue_exception_e(vcpu,
4082                                       seg_reg == VCPU_SREG_SS ?
4083                                                 SS_VECTOR : GP_VECTOR,
4084                                       0);
4085                 return 1;
4086         }
4087
4088         return 0;
4089 }
4090
4091 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4092 {
4093         gva_t gva;
4094         struct x86_exception e;
4095
4096         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4097                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4098                 return 1;
4099
4100         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4101                 kvm_inject_page_fault(vcpu, &e);
4102                 return 1;
4103         }
4104
4105         return 0;
4106 }
4107
4108 /*
4109  * Allocate a shadow VMCS and associate it with the currently loaded
4110  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4111  * VMCS is also VMCLEARed, so that it is ready for use.
4112  */
4113 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4114 {
4115         struct vcpu_vmx *vmx = to_vmx(vcpu);
4116         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4117
4118         /*
4119          * We should allocate a shadow vmcs for vmcs01 only when L1
4120          * executes VMXON and free it when L1 executes VMXOFF.
4121          * As it is invalid to execute VMXON twice, we shouldn't reach
4122          * here when vmcs01 already have an allocated shadow vmcs.
4123          */
4124         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4125
4126         if (!loaded_vmcs->shadow_vmcs) {
4127                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4128                 if (loaded_vmcs->shadow_vmcs)
4129                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4130         }
4131         return loaded_vmcs->shadow_vmcs;
4132 }
4133
4134 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4135 {
4136         struct vcpu_vmx *vmx = to_vmx(vcpu);
4137         int r;
4138
4139         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4140         if (r < 0)
4141                 goto out_vmcs02;
4142
4143         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4144         if (!vmx->nested.cached_vmcs12)
4145                 goto out_cached_vmcs12;
4146
4147         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4148         if (!vmx->nested.cached_shadow_vmcs12)
4149                 goto out_cached_shadow_vmcs12;
4150
4151         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4152                 goto out_shadow_vmcs;
4153
4154         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4155                      HRTIMER_MODE_REL_PINNED);
4156         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4157
4158         vmx->nested.vpid02 = allocate_vpid();
4159
4160         vmx->nested.vmcs02_initialized = false;
4161         vmx->nested.vmxon = true;
4162
4163         if (pt_mode == PT_MODE_HOST_GUEST) {
4164                 vmx->pt_desc.guest.ctl = 0;
4165                 pt_update_intercept_for_msr(vmx);
4166         }
4167
4168         return 0;
4169
4170 out_shadow_vmcs:
4171         kfree(vmx->nested.cached_shadow_vmcs12);
4172
4173 out_cached_shadow_vmcs12:
4174         kfree(vmx->nested.cached_vmcs12);
4175
4176 out_cached_vmcs12:
4177         free_loaded_vmcs(&vmx->nested.vmcs02);
4178
4179 out_vmcs02:
4180         return -ENOMEM;
4181 }
4182
4183 /*
4184  * Emulate the VMXON instruction.
4185  * Currently, we just remember that VMX is active, and do not save or even
4186  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4187  * do not currently need to store anything in that guest-allocated memory
4188  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4189  * argument is different from the VMXON pointer (which the spec says they do).
4190  */
4191 static int handle_vmon(struct kvm_vcpu *vcpu)
4192 {
4193         int ret;
4194         gpa_t vmptr;
4195         struct page *page;
4196         struct vcpu_vmx *vmx = to_vmx(vcpu);
4197         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4198                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4199
4200         /*
4201          * The Intel VMX Instruction Reference lists a bunch of bits that are
4202          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4203          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4204          * Otherwise, we should fail with #UD.  But most faulting conditions
4205          * have already been checked by hardware, prior to the VM-exit for
4206          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4207          * that bit set to 1 in non-root mode.
4208          */
4209         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4210                 kvm_queue_exception(vcpu, UD_VECTOR);
4211                 return 1;
4212         }
4213
4214         /* CPL=0 must be checked manually. */
4215         if (vmx_get_cpl(vcpu)) {
4216                 kvm_inject_gp(vcpu, 0);
4217                 return 1;
4218         }
4219
4220         if (vmx->nested.vmxon)
4221                 return nested_vmx_failValid(vcpu,
4222                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4223
4224         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4225                         != VMXON_NEEDED_FEATURES) {
4226                 kvm_inject_gp(vcpu, 0);
4227                 return 1;
4228         }
4229
4230         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4231                 return 1;
4232
4233         /*
4234          * SDM 3: 24.11.5
4235          * The first 4 bytes of VMXON region contain the supported
4236          * VMCS revision identifier
4237          *
4238          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4239          * which replaces physical address width with 32
4240          */
4241         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4242                 return nested_vmx_failInvalid(vcpu);
4243
4244         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4245         if (is_error_page(page))
4246                 return nested_vmx_failInvalid(vcpu);
4247
4248         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4249                 kunmap(page);
4250                 kvm_release_page_clean(page);
4251                 return nested_vmx_failInvalid(vcpu);
4252         }
4253         kunmap(page);
4254         kvm_release_page_clean(page);
4255
4256         vmx->nested.vmxon_ptr = vmptr;
4257         ret = enter_vmx_operation(vcpu);
4258         if (ret)
4259                 return ret;
4260
4261         return nested_vmx_succeed(vcpu);
4262 }
4263
4264 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4265 {
4266         struct vcpu_vmx *vmx = to_vmx(vcpu);
4267
4268         if (vmx->nested.current_vmptr == -1ull)
4269                 return;
4270
4271         if (enable_shadow_vmcs) {
4272                 /* copy to memory all shadowed fields in case
4273                    they were modified */
4274                 copy_shadow_to_vmcs12(vmx);
4275                 vmx->nested.need_vmcs12_sync = false;
4276                 vmx_disable_shadow_vmcs(vmx);
4277         }
4278         vmx->nested.posted_intr_nv = -1;
4279
4280         /* Flush VMCS12 to guest memory */
4281         kvm_vcpu_write_guest_page(vcpu,
4282                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4283                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4284
4285         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4286
4287         vmx->nested.current_vmptr = -1ull;
4288 }
4289
4290 /* Emulate the VMXOFF instruction */
4291 static int handle_vmoff(struct kvm_vcpu *vcpu)
4292 {
4293         if (!nested_vmx_check_permission(vcpu))
4294                 return 1;
4295         free_nested(vcpu);
4296         return nested_vmx_succeed(vcpu);
4297 }
4298
4299 /* Emulate the VMCLEAR instruction */
4300 static int handle_vmclear(struct kvm_vcpu *vcpu)
4301 {
4302         struct vcpu_vmx *vmx = to_vmx(vcpu);
4303         u32 zero = 0;
4304         gpa_t vmptr;
4305
4306         if (!nested_vmx_check_permission(vcpu))
4307                 return 1;
4308
4309         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4310                 return 1;
4311
4312         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4313                 return nested_vmx_failValid(vcpu,
4314                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4315
4316         if (vmptr == vmx->nested.vmxon_ptr)
4317                 return nested_vmx_failValid(vcpu,
4318                         VMXERR_VMCLEAR_VMXON_POINTER);
4319
4320         if (vmx->nested.hv_evmcs_page) {
4321                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4322                         nested_release_evmcs(vcpu);
4323         } else {
4324                 if (vmptr == vmx->nested.current_vmptr)
4325                         nested_release_vmcs12(vcpu);
4326
4327                 kvm_vcpu_write_guest(vcpu,
4328                                      vmptr + offsetof(struct vmcs12,
4329                                                       launch_state),
4330                                      &zero, sizeof(zero));
4331         }
4332
4333         return nested_vmx_succeed(vcpu);
4334 }
4335
4336 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4337
4338 /* Emulate the VMLAUNCH instruction */
4339 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4340 {
4341         return nested_vmx_run(vcpu, true);
4342 }
4343
4344 /* Emulate the VMRESUME instruction */
4345 static int handle_vmresume(struct kvm_vcpu *vcpu)
4346 {
4347
4348         return nested_vmx_run(vcpu, false);
4349 }
4350
4351 static int handle_vmread(struct kvm_vcpu *vcpu)
4352 {
4353         unsigned long field;
4354         u64 field_value;
4355         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4356         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4357         gva_t gva = 0;
4358         struct vmcs12 *vmcs12;
4359
4360         if (!nested_vmx_check_permission(vcpu))
4361                 return 1;
4362
4363         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4364                 return nested_vmx_failInvalid(vcpu);
4365
4366         if (!is_guest_mode(vcpu))
4367                 vmcs12 = get_vmcs12(vcpu);
4368         else {
4369                 /*
4370                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4371                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4372                  */
4373                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4374                         return nested_vmx_failInvalid(vcpu);
4375                 vmcs12 = get_shadow_vmcs12(vcpu);
4376         }
4377
4378         /* Decode instruction info and find the field to read */
4379         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4380         /* Read the field, zero-extended to a u64 field_value */
4381         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4382                 return nested_vmx_failValid(vcpu,
4383                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4384
4385         /*
4386          * Now copy part of this value to register or memory, as requested.
4387          * Note that the number of bits actually copied is 32 or 64 depending
4388          * on the guest's mode (32 or 64 bit), not on the given field's length.
4389          */
4390         if (vmx_instruction_info & (1u << 10)) {
4391                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4392                         field_value);
4393         } else {
4394                 if (get_vmx_mem_address(vcpu, exit_qualification,
4395                                 vmx_instruction_info, true, &gva))
4396                         return 1;
4397                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4398                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4399                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4400         }
4401
4402         return nested_vmx_succeed(vcpu);
4403 }
4404
4405
4406 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4407 {
4408         unsigned long field;
4409         gva_t gva;
4410         struct vcpu_vmx *vmx = to_vmx(vcpu);
4411         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4412         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4413
4414         /* The value to write might be 32 or 64 bits, depending on L1's long
4415          * mode, and eventually we need to write that into a field of several
4416          * possible lengths. The code below first zero-extends the value to 64
4417          * bit (field_value), and then copies only the appropriate number of
4418          * bits into the vmcs12 field.
4419          */
4420         u64 field_value = 0;
4421         struct x86_exception e;
4422         struct vmcs12 *vmcs12;
4423
4424         if (!nested_vmx_check_permission(vcpu))
4425                 return 1;
4426
4427         if (vmx->nested.current_vmptr == -1ull)
4428                 return nested_vmx_failInvalid(vcpu);
4429
4430         if (vmx_instruction_info & (1u << 10))
4431                 field_value = kvm_register_readl(vcpu,
4432                         (((vmx_instruction_info) >> 3) & 0xf));
4433         else {
4434                 if (get_vmx_mem_address(vcpu, exit_qualification,
4435                                 vmx_instruction_info, false, &gva))
4436                         return 1;
4437                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4438                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4439                         kvm_inject_page_fault(vcpu, &e);
4440                         return 1;
4441                 }
4442         }
4443
4444
4445         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4446         /*
4447          * If the vCPU supports "VMWRITE to any supported field in the
4448          * VMCS," then the "read-only" fields are actually read/write.
4449          */
4450         if (vmcs_field_readonly(field) &&
4451             !nested_cpu_has_vmwrite_any_field(vcpu))
4452                 return nested_vmx_failValid(vcpu,
4453                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4454
4455         if (!is_guest_mode(vcpu))
4456                 vmcs12 = get_vmcs12(vcpu);
4457         else {
4458                 /*
4459                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4460                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4461                  */
4462                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4463                         return nested_vmx_failInvalid(vcpu);
4464                 vmcs12 = get_shadow_vmcs12(vcpu);
4465         }
4466
4467         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4468                 return nested_vmx_failValid(vcpu,
4469                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4470
4471         /*
4472          * Do not track vmcs12 dirty-state if in guest-mode
4473          * as we actually dirty shadow vmcs12 instead of vmcs12.
4474          */
4475         if (!is_guest_mode(vcpu)) {
4476                 switch (field) {
4477 #define SHADOW_FIELD_RW(x) case x:
4478 #include "vmcs_shadow_fields.h"
4479                         /*
4480                          * The fields that can be updated by L1 without a vmexit are
4481                          * always updated in the vmcs02, the others go down the slow
4482                          * path of prepare_vmcs02.
4483                          */
4484                         break;
4485                 default:
4486                         vmx->nested.dirty_vmcs12 = true;
4487                         break;
4488                 }
4489         }
4490
4491         return nested_vmx_succeed(vcpu);
4492 }
4493
4494 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4495 {
4496         vmx->nested.current_vmptr = vmptr;
4497         if (enable_shadow_vmcs) {
4498                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4499                               SECONDARY_EXEC_SHADOW_VMCS);
4500                 vmcs_write64(VMCS_LINK_POINTER,
4501                              __pa(vmx->vmcs01.shadow_vmcs));
4502                 vmx->nested.need_vmcs12_sync = true;
4503         }
4504         vmx->nested.dirty_vmcs12 = true;
4505 }
4506
4507 /* Emulate the VMPTRLD instruction */
4508 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4509 {
4510         struct vcpu_vmx *vmx = to_vmx(vcpu);
4511         gpa_t vmptr;
4512
4513         if (!nested_vmx_check_permission(vcpu))
4514                 return 1;
4515
4516         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4517                 return 1;
4518
4519         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4520                 return nested_vmx_failValid(vcpu,
4521                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4522
4523         if (vmptr == vmx->nested.vmxon_ptr)
4524                 return nested_vmx_failValid(vcpu,
4525                         VMXERR_VMPTRLD_VMXON_POINTER);
4526
4527         /* Forbid normal VMPTRLD if Enlightened version was used */
4528         if (vmx->nested.hv_evmcs)
4529                 return 1;
4530
4531         if (vmx->nested.current_vmptr != vmptr) {
4532                 struct vmcs12 *new_vmcs12;
4533                 struct page *page;
4534
4535                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4536                 if (is_error_page(page)) {
4537                         /*
4538                          * Reads from an unbacked page return all 1s,
4539                          * which means that the 32 bits located at the
4540                          * given physical address won't match the required
4541                          * VMCS12_REVISION identifier.
4542                          */
4543                         return nested_vmx_failValid(vcpu,
4544                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4545                 }
4546                 new_vmcs12 = kmap(page);
4547                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4548                     (new_vmcs12->hdr.shadow_vmcs &&
4549                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4550                         kunmap(page);
4551                         kvm_release_page_clean(page);
4552                         return nested_vmx_failValid(vcpu,
4553                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4554                 }
4555
4556                 nested_release_vmcs12(vcpu);
4557
4558                 /*
4559                  * Load VMCS12 from guest memory since it is not already
4560                  * cached.
4561                  */
4562                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4563                 kunmap(page);
4564                 kvm_release_page_clean(page);
4565
4566                 set_current_vmptr(vmx, vmptr);
4567         }
4568
4569         return nested_vmx_succeed(vcpu);
4570 }
4571
4572 /* Emulate the VMPTRST instruction */
4573 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4574 {
4575         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4576         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4577         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4578         struct x86_exception e;
4579         gva_t gva;
4580
4581         if (!nested_vmx_check_permission(vcpu))
4582                 return 1;
4583
4584         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4585                 return 1;
4586
4587         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4588                 return 1;
4589         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4590         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4591                                         sizeof(gpa_t), &e)) {
4592                 kvm_inject_page_fault(vcpu, &e);
4593                 return 1;
4594         }
4595         return nested_vmx_succeed(vcpu);
4596 }
4597
4598 /* Emulate the INVEPT instruction */
4599 static int handle_invept(struct kvm_vcpu *vcpu)
4600 {
4601         struct vcpu_vmx *vmx = to_vmx(vcpu);
4602         u32 vmx_instruction_info, types;
4603         unsigned long type;
4604         gva_t gva;
4605         struct x86_exception e;
4606         struct {
4607                 u64 eptp, gpa;
4608         } operand;
4609
4610         if (!(vmx->nested.msrs.secondary_ctls_high &
4611               SECONDARY_EXEC_ENABLE_EPT) ||
4612             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4613                 kvm_queue_exception(vcpu, UD_VECTOR);
4614                 return 1;
4615         }
4616
4617         if (!nested_vmx_check_permission(vcpu))
4618                 return 1;
4619
4620         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4621         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4622
4623         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4624
4625         if (type >= 32 || !(types & (1 << type)))
4626                 return nested_vmx_failValid(vcpu,
4627                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4628
4629         /* According to the Intel VMX instruction reference, the memory
4630          * operand is read even if it isn't needed (e.g., for type==global)
4631          */
4632         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4633                         vmx_instruction_info, false, &gva))
4634                 return 1;
4635         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4636                 kvm_inject_page_fault(vcpu, &e);
4637                 return 1;
4638         }
4639
4640         switch (type) {
4641         case VMX_EPT_EXTENT_GLOBAL:
4642         /*
4643          * TODO: track mappings and invalidate
4644          * single context requests appropriately
4645          */
4646         case VMX_EPT_EXTENT_CONTEXT:
4647                 kvm_mmu_sync_roots(vcpu);
4648                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4649                 break;
4650         default:
4651                 BUG_ON(1);
4652                 break;
4653         }
4654
4655         return nested_vmx_succeed(vcpu);
4656 }
4657
4658 static int handle_invvpid(struct kvm_vcpu *vcpu)
4659 {
4660         struct vcpu_vmx *vmx = to_vmx(vcpu);
4661         u32 vmx_instruction_info;
4662         unsigned long type, types;
4663         gva_t gva;
4664         struct x86_exception e;
4665         struct {
4666                 u64 vpid;
4667                 u64 gla;
4668         } operand;
4669         u16 vpid02;
4670
4671         if (!(vmx->nested.msrs.secondary_ctls_high &
4672               SECONDARY_EXEC_ENABLE_VPID) ||
4673                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4674                 kvm_queue_exception(vcpu, UD_VECTOR);
4675                 return 1;
4676         }
4677
4678         if (!nested_vmx_check_permission(vcpu))
4679                 return 1;
4680
4681         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4682         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4683
4684         types = (vmx->nested.msrs.vpid_caps &
4685                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4686
4687         if (type >= 32 || !(types & (1 << type)))
4688                 return nested_vmx_failValid(vcpu,
4689                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4690
4691         /* according to the intel vmx instruction reference, the memory
4692          * operand is read even if it isn't needed (e.g., for type==global)
4693          */
4694         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4695                         vmx_instruction_info, false, &gva))
4696                 return 1;
4697         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4698                 kvm_inject_page_fault(vcpu, &e);
4699                 return 1;
4700         }
4701         if (operand.vpid >> 16)
4702                 return nested_vmx_failValid(vcpu,
4703                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4704
4705         vpid02 = nested_get_vpid02(vcpu);
4706         switch (type) {
4707         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4708                 if (!operand.vpid ||
4709                     is_noncanonical_address(operand.gla, vcpu))
4710                         return nested_vmx_failValid(vcpu,
4711                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4712                 if (cpu_has_vmx_invvpid_individual_addr()) {
4713                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4714                                 vpid02, operand.gla);
4715                 } else
4716                         __vmx_flush_tlb(vcpu, vpid02, false);
4717                 break;
4718         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4719         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4720                 if (!operand.vpid)
4721                         return nested_vmx_failValid(vcpu,
4722                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4723                 __vmx_flush_tlb(vcpu, vpid02, false);
4724                 break;
4725         case VMX_VPID_EXTENT_ALL_CONTEXT:
4726                 __vmx_flush_tlb(vcpu, vpid02, false);
4727                 break;
4728         default:
4729                 WARN_ON_ONCE(1);
4730                 return kvm_skip_emulated_instruction(vcpu);
4731         }
4732
4733         return nested_vmx_succeed(vcpu);
4734 }
4735
4736 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4737                                      struct vmcs12 *vmcs12)
4738 {
4739         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4740         u64 address;
4741         bool accessed_dirty;
4742         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4743
4744         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4745             !nested_cpu_has_ept(vmcs12))
4746                 return 1;
4747
4748         if (index >= VMFUNC_EPTP_ENTRIES)
4749                 return 1;
4750
4751
4752         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4753                                      &address, index * 8, 8))
4754                 return 1;
4755
4756         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4757
4758         /*
4759          * If the (L2) guest does a vmfunc to the currently
4760          * active ept pointer, we don't have to do anything else
4761          */
4762         if (vmcs12->ept_pointer != address) {
4763                 if (!valid_ept_address(vcpu, address))
4764                         return 1;
4765
4766                 kvm_mmu_unload(vcpu);
4767                 mmu->ept_ad = accessed_dirty;
4768                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4769                 vmcs12->ept_pointer = address;
4770                 /*
4771                  * TODO: Check what's the correct approach in case
4772                  * mmu reload fails. Currently, we just let the next
4773                  * reload potentially fail
4774                  */
4775                 kvm_mmu_reload(vcpu);
4776         }
4777
4778         return 0;
4779 }
4780
4781 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4782 {
4783         struct vcpu_vmx *vmx = to_vmx(vcpu);
4784         struct vmcs12 *vmcs12;
4785         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4786
4787         /*
4788          * VMFUNC is only supported for nested guests, but we always enable the
4789          * secondary control for simplicity; for non-nested mode, fake that we
4790          * didn't by injecting #UD.
4791          */
4792         if (!is_guest_mode(vcpu)) {
4793                 kvm_queue_exception(vcpu, UD_VECTOR);
4794                 return 1;
4795         }
4796
4797         vmcs12 = get_vmcs12(vcpu);
4798         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4799                 goto fail;
4800
4801         switch (function) {
4802         case 0:
4803                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4804                         goto fail;
4805                 break;
4806         default:
4807                 goto fail;
4808         }
4809         return kvm_skip_emulated_instruction(vcpu);
4810
4811 fail:
4812         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4813                           vmcs_read32(VM_EXIT_INTR_INFO),
4814                           vmcs_readl(EXIT_QUALIFICATION));
4815         return 1;
4816 }
4817
4818
4819 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4820                                        struct vmcs12 *vmcs12)
4821 {
4822         unsigned long exit_qualification;
4823         gpa_t bitmap, last_bitmap;
4824         unsigned int port;
4825         int size;
4826         u8 b;
4827
4828         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4829                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4830
4831         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4832
4833         port = exit_qualification >> 16;
4834         size = (exit_qualification & 7) + 1;
4835
4836         last_bitmap = (gpa_t)-1;
4837         b = -1;
4838
4839         while (size > 0) {
4840                 if (port < 0x8000)
4841                         bitmap = vmcs12->io_bitmap_a;
4842                 else if (port < 0x10000)
4843                         bitmap = vmcs12->io_bitmap_b;
4844                 else
4845                         return true;
4846                 bitmap += (port & 0x7fff) / 8;
4847
4848                 if (last_bitmap != bitmap)
4849                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4850                                 return true;
4851                 if (b & (1 << (port & 7)))
4852                         return true;
4853
4854                 port++;
4855                 size--;
4856                 last_bitmap = bitmap;
4857         }
4858
4859         return false;
4860 }
4861
4862 /*
4863  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4864  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4865  * disinterest in the current event (read or write a specific MSR) by using an
4866  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4867  */
4868 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4869         struct vmcs12 *vmcs12, u32 exit_reason)
4870 {
4871         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4872         gpa_t bitmap;
4873
4874         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4875                 return true;
4876
4877         /*
4878          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4879          * for the four combinations of read/write and low/high MSR numbers.
4880          * First we need to figure out which of the four to use:
4881          */
4882         bitmap = vmcs12->msr_bitmap;
4883         if (exit_reason == EXIT_REASON_MSR_WRITE)
4884                 bitmap += 2048;
4885         if (msr_index >= 0xc0000000) {
4886                 msr_index -= 0xc0000000;
4887                 bitmap += 1024;
4888         }
4889
4890         /* Then read the msr_index'th bit from this bitmap: */
4891         if (msr_index < 1024*8) {
4892                 unsigned char b;
4893                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4894                         return true;
4895                 return 1 & (b >> (msr_index & 7));
4896         } else
4897                 return true; /* let L1 handle the wrong parameter */
4898 }
4899
4900 /*
4901  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4902  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4903  * intercept (via guest_host_mask etc.) the current event.
4904  */
4905 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4906         struct vmcs12 *vmcs12)
4907 {
4908         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4909         int cr = exit_qualification & 15;
4910         int reg;
4911         unsigned long val;
4912
4913         switch ((exit_qualification >> 4) & 3) {
4914         case 0: /* mov to cr */
4915                 reg = (exit_qualification >> 8) & 15;
4916                 val = kvm_register_readl(vcpu, reg);
4917                 switch (cr) {
4918                 case 0:
4919                         if (vmcs12->cr0_guest_host_mask &
4920                             (val ^ vmcs12->cr0_read_shadow))
4921                                 return true;
4922                         break;
4923                 case 3:
4924                         if ((vmcs12->cr3_target_count >= 1 &&
4925                                         vmcs12->cr3_target_value0 == val) ||
4926                                 (vmcs12->cr3_target_count >= 2 &&
4927                                         vmcs12->cr3_target_value1 == val) ||
4928                                 (vmcs12->cr3_target_count >= 3 &&
4929                                         vmcs12->cr3_target_value2 == val) ||
4930                                 (vmcs12->cr3_target_count >= 4 &&
4931                                         vmcs12->cr3_target_value3 == val))
4932                                 return false;
4933                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4934                                 return true;
4935                         break;
4936                 case 4:
4937                         if (vmcs12->cr4_guest_host_mask &
4938                             (vmcs12->cr4_read_shadow ^ val))
4939                                 return true;
4940                         break;
4941                 case 8:
4942                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4943                                 return true;
4944                         break;
4945                 }
4946                 break;
4947         case 2: /* clts */
4948                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4949                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4950                         return true;
4951                 break;
4952         case 1: /* mov from cr */
4953                 switch (cr) {
4954                 case 3:
4955                         if (vmcs12->cpu_based_vm_exec_control &
4956                             CPU_BASED_CR3_STORE_EXITING)
4957                                 return true;
4958                         break;
4959                 case 8:
4960                         if (vmcs12->cpu_based_vm_exec_control &
4961                             CPU_BASED_CR8_STORE_EXITING)
4962                                 return true;
4963                         break;
4964                 }
4965                 break;
4966         case 3: /* lmsw */
4967                 /*
4968                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4969                  * cr0. Other attempted changes are ignored, with no exit.
4970                  */
4971                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4972                 if (vmcs12->cr0_guest_host_mask & 0xe &
4973                     (val ^ vmcs12->cr0_read_shadow))
4974                         return true;
4975                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4976                     !(vmcs12->cr0_read_shadow & 0x1) &&
4977                     (val & 0x1))
4978                         return true;
4979                 break;
4980         }
4981         return false;
4982 }
4983
4984 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
4985         struct vmcs12 *vmcs12, gpa_t bitmap)
4986 {
4987         u32 vmx_instruction_info;
4988         unsigned long field;
4989         u8 b;
4990
4991         if (!nested_cpu_has_shadow_vmcs(vmcs12))
4992                 return true;
4993
4994         /* Decode instruction info and find the field to access */
4995         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4996         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4997
4998         /* Out-of-range fields always cause a VM exit from L2 to L1 */
4999         if (field >> 15)
5000                 return true;
5001
5002         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5003                 return true;
5004
5005         return 1 & (b >> (field & 7));
5006 }
5007
5008 /*
5009  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5010  * should handle it ourselves in L0 (and then continue L2). Only call this
5011  * when in is_guest_mode (L2).
5012  */
5013 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5014 {
5015         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5016         struct vcpu_vmx *vmx = to_vmx(vcpu);
5017         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5018
5019         if (vmx->nested.nested_run_pending)
5020                 return false;
5021
5022         if (unlikely(vmx->fail)) {
5023                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5024                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5025                 return true;
5026         }
5027
5028         /*
5029          * The host physical addresses of some pages of guest memory
5030          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5031          * Page). The CPU may write to these pages via their host
5032          * physical address while L2 is running, bypassing any
5033          * address-translation-based dirty tracking (e.g. EPT write
5034          * protection).
5035          *
5036          * Mark them dirty on every exit from L2 to prevent them from
5037          * getting out of sync with dirty tracking.
5038          */
5039         nested_mark_vmcs12_pages_dirty(vcpu);
5040
5041         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5042                                 vmcs_readl(EXIT_QUALIFICATION),
5043                                 vmx->idt_vectoring_info,
5044                                 intr_info,
5045                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5046                                 KVM_ISA_VMX);
5047
5048         switch (exit_reason) {
5049         case EXIT_REASON_EXCEPTION_NMI:
5050                 if (is_nmi(intr_info))
5051                         return false;
5052                 else if (is_page_fault(intr_info))
5053                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5054                 else if (is_debug(intr_info) &&
5055                          vcpu->guest_debug &
5056                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5057                         return false;
5058                 else if (is_breakpoint(intr_info) &&
5059                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5060                         return false;
5061                 return vmcs12->exception_bitmap &
5062                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5063         case EXIT_REASON_EXTERNAL_INTERRUPT:
5064                 return false;
5065         case EXIT_REASON_TRIPLE_FAULT:
5066                 return true;
5067         case EXIT_REASON_PENDING_INTERRUPT:
5068                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5069         case EXIT_REASON_NMI_WINDOW:
5070                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5071         case EXIT_REASON_TASK_SWITCH:
5072                 return true;
5073         case EXIT_REASON_CPUID:
5074                 return true;
5075         case EXIT_REASON_HLT:
5076                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5077         case EXIT_REASON_INVD:
5078                 return true;
5079         case EXIT_REASON_INVLPG:
5080                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5081         case EXIT_REASON_RDPMC:
5082                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5083         case EXIT_REASON_RDRAND:
5084                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5085         case EXIT_REASON_RDSEED:
5086                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5087         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5088                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5089         case EXIT_REASON_VMREAD:
5090                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5091                         vmcs12->vmread_bitmap);
5092         case EXIT_REASON_VMWRITE:
5093                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5094                         vmcs12->vmwrite_bitmap);
5095         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5096         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5097         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5098         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5099         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5100                 /*
5101                  * VMX instructions trap unconditionally. This allows L1 to
5102                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5103                  */
5104                 return true;
5105         case EXIT_REASON_CR_ACCESS:
5106                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5107         case EXIT_REASON_DR_ACCESS:
5108                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5109         case EXIT_REASON_IO_INSTRUCTION:
5110                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5111         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5112                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5113         case EXIT_REASON_MSR_READ:
5114         case EXIT_REASON_MSR_WRITE:
5115                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5116         case EXIT_REASON_INVALID_STATE:
5117                 return true;
5118         case EXIT_REASON_MWAIT_INSTRUCTION:
5119                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5120         case EXIT_REASON_MONITOR_TRAP_FLAG:
5121                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5122         case EXIT_REASON_MONITOR_INSTRUCTION:
5123                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5124         case EXIT_REASON_PAUSE_INSTRUCTION:
5125                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5126                         nested_cpu_has2(vmcs12,
5127                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5128         case EXIT_REASON_MCE_DURING_VMENTRY:
5129                 return false;
5130         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5131                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5132         case EXIT_REASON_APIC_ACCESS:
5133         case EXIT_REASON_APIC_WRITE:
5134         case EXIT_REASON_EOI_INDUCED:
5135                 /*
5136                  * The controls for "virtualize APIC accesses," "APIC-
5137                  * register virtualization," and "virtual-interrupt
5138                  * delivery" only come from vmcs12.
5139                  */
5140                 return true;
5141         case EXIT_REASON_EPT_VIOLATION:
5142                 /*
5143                  * L0 always deals with the EPT violation. If nested EPT is
5144                  * used, and the nested mmu code discovers that the address is
5145                  * missing in the guest EPT table (EPT12), the EPT violation
5146                  * will be injected with nested_ept_inject_page_fault()
5147                  */
5148                 return false;
5149         case EXIT_REASON_EPT_MISCONFIG:
5150                 /*
5151                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5152                  * table (shadow on EPT) or a merged EPT table that L0 built
5153                  * (EPT on EPT). So any problems with the structure of the
5154                  * table is L0's fault.
5155                  */
5156                 return false;
5157         case EXIT_REASON_INVPCID:
5158                 return
5159                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5160                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5161         case EXIT_REASON_WBINVD:
5162                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5163         case EXIT_REASON_XSETBV:
5164                 return true;
5165         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5166                 /*
5167                  * This should never happen, since it is not possible to
5168                  * set XSS to a non-zero value---neither in L1 nor in L2.
5169                  * If if it were, XSS would have to be checked against
5170                  * the XSS exit bitmap in vmcs12.
5171                  */
5172                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5173         case EXIT_REASON_PREEMPTION_TIMER:
5174                 return false;
5175         case EXIT_REASON_PML_FULL:
5176                 /* We emulate PML support to L1. */
5177                 return false;
5178         case EXIT_REASON_VMFUNC:
5179                 /* VM functions are emulated through L2->L0 vmexits. */
5180                 return false;
5181         case EXIT_REASON_ENCLS:
5182                 /* SGX is never exposed to L1 */
5183                 return false;
5184         default:
5185                 return true;
5186         }
5187 }
5188
5189
5190 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5191                                 struct kvm_nested_state __user *user_kvm_nested_state,
5192                                 u32 user_data_size)
5193 {
5194         struct vcpu_vmx *vmx;
5195         struct vmcs12 *vmcs12;
5196         struct kvm_nested_state kvm_state = {
5197                 .flags = 0,
5198                 .format = 0,
5199                 .size = sizeof(kvm_state),
5200                 .vmx.vmxon_pa = -1ull,
5201                 .vmx.vmcs_pa = -1ull,
5202         };
5203
5204         if (!vcpu)
5205                 return kvm_state.size + 2 * VMCS12_SIZE;
5206
5207         vmx = to_vmx(vcpu);
5208         vmcs12 = get_vmcs12(vcpu);
5209
5210         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5211                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5212
5213         if (nested_vmx_allowed(vcpu) &&
5214             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5215                 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5216                 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5217
5218                 if (vmx_has_valid_vmcs12(vcpu)) {
5219                         kvm_state.size += VMCS12_SIZE;
5220
5221                         if (is_guest_mode(vcpu) &&
5222                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5223                             vmcs12->vmcs_link_pointer != -1ull)
5224                                 kvm_state.size += VMCS12_SIZE;
5225                 }
5226
5227                 if (vmx->nested.smm.vmxon)
5228                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5229
5230                 if (vmx->nested.smm.guest_mode)
5231                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5232
5233                 if (is_guest_mode(vcpu)) {
5234                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5235
5236                         if (vmx->nested.nested_run_pending)
5237                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5238                 }
5239         }
5240
5241         if (user_data_size < kvm_state.size)
5242                 goto out;
5243
5244         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5245                 return -EFAULT;
5246
5247         if (!vmx_has_valid_vmcs12(vcpu))
5248                 goto out;
5249
5250         /*
5251          * When running L2, the authoritative vmcs12 state is in the
5252          * vmcs02. When running L1, the authoritative vmcs12 state is
5253          * in the shadow or enlightened vmcs linked to vmcs01, unless
5254          * need_vmcs12_sync is set, in which case, the authoritative
5255          * vmcs12 state is in the vmcs12 already.
5256          */
5257         if (is_guest_mode(vcpu)) {
5258                 sync_vmcs12(vcpu, vmcs12);
5259         } else if (!vmx->nested.need_vmcs12_sync) {
5260                 if (vmx->nested.hv_evmcs)
5261                         copy_enlightened_to_vmcs12(vmx);
5262                 else if (enable_shadow_vmcs)
5263                         copy_shadow_to_vmcs12(vmx);
5264         }
5265
5266         /*
5267          * Copy over the full allocated size of vmcs12 rather than just the size
5268          * of the struct.
5269          */
5270         if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5271                 return -EFAULT;
5272
5273         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5274             vmcs12->vmcs_link_pointer != -1ull) {
5275                 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5276                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5277                         return -EFAULT;
5278         }
5279
5280 out:
5281         return kvm_state.size;
5282 }
5283
5284 /*
5285  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5286  */
5287 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5288 {
5289         if (is_guest_mode(vcpu)) {
5290                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5291                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5292         }
5293         free_nested(vcpu);
5294 }
5295
5296 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5297                                 struct kvm_nested_state __user *user_kvm_nested_state,
5298                                 struct kvm_nested_state *kvm_state)
5299 {
5300         struct vcpu_vmx *vmx = to_vmx(vcpu);
5301         struct vmcs12 *vmcs12;
5302         u32 exit_qual;
5303         int ret;
5304
5305         if (kvm_state->format != 0)
5306                 return -EINVAL;
5307
5308         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5309                 nested_enable_evmcs(vcpu, NULL);
5310
5311         if (!nested_vmx_allowed(vcpu))
5312                 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5313
5314         if (kvm_state->vmx.vmxon_pa == -1ull) {
5315                 if (kvm_state->vmx.smm.flags)
5316                         return -EINVAL;
5317
5318                 if (kvm_state->vmx.vmcs_pa != -1ull)
5319                         return -EINVAL;
5320
5321                 vmx_leave_nested(vcpu);
5322                 return 0;
5323         }
5324
5325         if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5326                 return -EINVAL;
5327
5328         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5329             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5330                 return -EINVAL;
5331
5332         if (kvm_state->vmx.smm.flags &
5333             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5334                 return -EINVAL;
5335
5336         /*
5337          * SMM temporarily disables VMX, so we cannot be in guest mode,
5338          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5339          * must be zero.
5340          */
5341         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5342                 return -EINVAL;
5343
5344         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5345             !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5346                 return -EINVAL;
5347
5348         vmx_leave_nested(vcpu);
5349         if (kvm_state->vmx.vmxon_pa == -1ull)
5350                 return 0;
5351
5352         vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5353         ret = enter_vmx_operation(vcpu);
5354         if (ret)
5355                 return ret;
5356
5357         /* Empty 'VMXON' state is permitted */
5358         if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5359                 return 0;
5360
5361         if (kvm_state->vmx.vmcs_pa != -1ull) {
5362                 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5363                     !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5364                         return -EINVAL;
5365
5366                 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5367         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5368                 /*
5369                  * Sync eVMCS upon entry as we may not have
5370                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5371                  */
5372                 vmx->nested.need_vmcs12_sync = true;
5373         } else {
5374                 return -EINVAL;
5375         }
5376
5377         if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5378                 vmx->nested.smm.vmxon = true;
5379                 vmx->nested.vmxon = false;
5380
5381                 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5382                         vmx->nested.smm.guest_mode = true;
5383         }
5384
5385         vmcs12 = get_vmcs12(vcpu);
5386         if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5387                 return -EFAULT;
5388
5389         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5390                 return -EINVAL;
5391
5392         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5393                 return 0;
5394
5395         vmx->nested.nested_run_pending =
5396                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5397
5398         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5399             vmcs12->vmcs_link_pointer != -1ull) {
5400                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5401
5402                 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5403                         return -EINVAL;
5404
5405                 if (copy_from_user(shadow_vmcs12,
5406                                    user_kvm_nested_state->data + VMCS12_SIZE,
5407                                    sizeof(*vmcs12)))
5408                         return -EFAULT;
5409
5410                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5411                     !shadow_vmcs12->hdr.shadow_vmcs)
5412                         return -EINVAL;
5413         }
5414
5415         if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5416             nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5417                 return -EINVAL;
5418
5419         vmx->nested.dirty_vmcs12 = true;
5420         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5421         if (ret)
5422                 return -EINVAL;
5423
5424         return 0;
5425 }
5426
5427 void nested_vmx_vcpu_setup(void)
5428 {
5429         if (enable_shadow_vmcs) {
5430                 /*
5431                  * At vCPU creation, "VMWRITE to any supported field
5432                  * in the VMCS" is supported, so use the more
5433                  * permissive vmx_vmread_bitmap to specify both read
5434                  * and write permissions for the shadow VMCS.
5435                  */
5436                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5437                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5438         }
5439 }
5440
5441 /*
5442  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5443  * returned for the various VMX controls MSRs when nested VMX is enabled.
5444  * The same values should also be used to verify that vmcs12 control fields are
5445  * valid during nested entry from L1 to L2.
5446  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5447  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5448  * bit in the high half is on if the corresponding bit in the control field
5449  * may be on. See also vmx_control_verify().
5450  */
5451 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5452                                 bool apicv)
5453 {
5454         /*
5455          * Note that as a general rule, the high half of the MSRs (bits in
5456          * the control fields which may be 1) should be initialized by the
5457          * intersection of the underlying hardware's MSR (i.e., features which
5458          * can be supported) and the list of features we want to expose -
5459          * because they are known to be properly supported in our code.
5460          * Also, usually, the low half of the MSRs (bits which must be 1) can
5461          * be set to 0, meaning that L1 may turn off any of these bits. The
5462          * reason is that if one of these bits is necessary, it will appear
5463          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5464          * fields of vmcs01 and vmcs02, will turn these bits off - and
5465          * nested_vmx_exit_reflected() will not pass related exits to L1.
5466          * These rules have exceptions below.
5467          */
5468
5469         /* pin-based controls */
5470         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5471                 msrs->pinbased_ctls_low,
5472                 msrs->pinbased_ctls_high);
5473         msrs->pinbased_ctls_low |=
5474                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5475         msrs->pinbased_ctls_high &=
5476                 PIN_BASED_EXT_INTR_MASK |
5477                 PIN_BASED_NMI_EXITING |
5478                 PIN_BASED_VIRTUAL_NMIS |
5479                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5480         msrs->pinbased_ctls_high |=
5481                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5482                 PIN_BASED_VMX_PREEMPTION_TIMER;
5483
5484         /* exit controls */
5485         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5486                 msrs->exit_ctls_low,
5487                 msrs->exit_ctls_high);
5488         msrs->exit_ctls_low =
5489                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5490
5491         msrs->exit_ctls_high &=
5492 #ifdef CONFIG_X86_64
5493                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5494 #endif
5495                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5496         msrs->exit_ctls_high |=
5497                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5498                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5499                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5500
5501         /* We support free control of debug control saving. */
5502         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5503
5504         /* entry controls */
5505         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5506                 msrs->entry_ctls_low,
5507                 msrs->entry_ctls_high);
5508         msrs->entry_ctls_low =
5509                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5510         msrs->entry_ctls_high &=
5511 #ifdef CONFIG_X86_64
5512                 VM_ENTRY_IA32E_MODE |
5513 #endif
5514                 VM_ENTRY_LOAD_IA32_PAT;
5515         msrs->entry_ctls_high |=
5516                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5517
5518         /* We support free control of debug control loading. */
5519         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5520
5521         /* cpu-based controls */
5522         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5523                 msrs->procbased_ctls_low,
5524                 msrs->procbased_ctls_high);
5525         msrs->procbased_ctls_low =
5526                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5527         msrs->procbased_ctls_high &=
5528                 CPU_BASED_VIRTUAL_INTR_PENDING |
5529                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5530                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5531                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5532                 CPU_BASED_CR3_STORE_EXITING |
5533 #ifdef CONFIG_X86_64
5534                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5535 #endif
5536                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5537                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5538                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5539                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5540                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5541         /*
5542          * We can allow some features even when not supported by the
5543          * hardware. For example, L1 can specify an MSR bitmap - and we
5544          * can use it to avoid exits to L1 - even when L0 runs L2
5545          * without MSR bitmaps.
5546          */
5547         msrs->procbased_ctls_high |=
5548                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5549                 CPU_BASED_USE_MSR_BITMAPS;
5550
5551         /* We support free control of CR3 access interception. */
5552         msrs->procbased_ctls_low &=
5553                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5554
5555         /*
5556          * secondary cpu-based controls.  Do not include those that
5557          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5558          */
5559         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5560                 msrs->secondary_ctls_low,
5561                 msrs->secondary_ctls_high);
5562         msrs->secondary_ctls_low = 0;
5563         msrs->secondary_ctls_high &=
5564                 SECONDARY_EXEC_DESC |
5565                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5566                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5567                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5568                 SECONDARY_EXEC_WBINVD_EXITING;
5569
5570         /*
5571          * We can emulate "VMCS shadowing," even if the hardware
5572          * doesn't support it.
5573          */
5574         msrs->secondary_ctls_high |=
5575                 SECONDARY_EXEC_SHADOW_VMCS;
5576
5577         if (enable_ept) {
5578                 /* nested EPT: emulate EPT also to L1 */
5579                 msrs->secondary_ctls_high |=
5580                         SECONDARY_EXEC_ENABLE_EPT;
5581                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5582                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5583                 if (cpu_has_vmx_ept_execute_only())
5584                         msrs->ept_caps |=
5585                                 VMX_EPT_EXECUTE_ONLY_BIT;
5586                 msrs->ept_caps &= ept_caps;
5587                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5588                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5589                         VMX_EPT_1GB_PAGE_BIT;
5590                 if (enable_ept_ad_bits) {
5591                         msrs->secondary_ctls_high |=
5592                                 SECONDARY_EXEC_ENABLE_PML;
5593                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5594                 }
5595         }
5596
5597         if (cpu_has_vmx_vmfunc()) {
5598                 msrs->secondary_ctls_high |=
5599                         SECONDARY_EXEC_ENABLE_VMFUNC;
5600                 /*
5601                  * Advertise EPTP switching unconditionally
5602                  * since we emulate it
5603                  */
5604                 if (enable_ept)
5605                         msrs->vmfunc_controls =
5606                                 VMX_VMFUNC_EPTP_SWITCHING;
5607         }
5608
5609         /*
5610          * Old versions of KVM use the single-context version without
5611          * checking for support, so declare that it is supported even
5612          * though it is treated as global context.  The alternative is
5613          * not failing the single-context invvpid, and it is worse.
5614          */
5615         if (enable_vpid) {
5616                 msrs->secondary_ctls_high |=
5617                         SECONDARY_EXEC_ENABLE_VPID;
5618                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5619                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5620         }
5621
5622         if (enable_unrestricted_guest)
5623                 msrs->secondary_ctls_high |=
5624                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5625
5626         if (flexpriority_enabled)
5627                 msrs->secondary_ctls_high |=
5628                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5629
5630         /* miscellaneous data */
5631         rdmsr(MSR_IA32_VMX_MISC,
5632                 msrs->misc_low,
5633                 msrs->misc_high);
5634         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5635         msrs->misc_low |=
5636                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5637                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5638                 VMX_MISC_ACTIVITY_HLT;
5639         msrs->misc_high = 0;
5640
5641         /*
5642          * This MSR reports some information about VMX support. We
5643          * should return information about the VMX we emulate for the
5644          * guest, and the VMCS structure we give it - not about the
5645          * VMX support of the underlying hardware.
5646          */
5647         msrs->basic =
5648                 VMCS12_REVISION |
5649                 VMX_BASIC_TRUE_CTLS |
5650                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5651                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5652
5653         if (cpu_has_vmx_basic_inout())
5654                 msrs->basic |= VMX_BASIC_INOUT;
5655
5656         /*
5657          * These MSRs specify bits which the guest must keep fixed on
5658          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5659          * We picked the standard core2 setting.
5660          */
5661 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5662 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5663         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5664         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5665
5666         /* These MSRs specify bits which the guest must keep fixed off. */
5667         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5668         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5669
5670         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5671         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5672 }
5673
5674 void nested_vmx_hardware_unsetup(void)
5675 {
5676         int i;
5677
5678         if (enable_shadow_vmcs) {
5679                 for (i = 0; i < VMX_BITMAP_NR; i++)
5680                         free_page((unsigned long)vmx_bitmap[i]);
5681         }
5682 }
5683
5684 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5685 {
5686         int i;
5687
5688         if (!cpu_has_vmx_shadow_vmcs())
5689                 enable_shadow_vmcs = 0;
5690         if (enable_shadow_vmcs) {
5691                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5692                         vmx_bitmap[i] = (unsigned long *)
5693                                 __get_free_page(GFP_KERNEL);
5694                         if (!vmx_bitmap[i]) {
5695                                 nested_vmx_hardware_unsetup();
5696                                 return -ENOMEM;
5697                         }
5698                 }
5699
5700                 init_vmcs_shadow_fields();
5701         }
5702
5703         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5704         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5705         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5706         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5707         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5708         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5709         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5710         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5711         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5712         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5713         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5714         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5715
5716         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5717         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5718         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5719         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5720         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5721         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5722
5723         return 0;
5724 }