OSDN Git Service

kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
[uclinux-h8/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
140 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
141 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143
144 static bool __read_mostly vector_hashing = true;
145 module_param(vector_hashing, bool, S_IRUGO);
146
147 bool __read_mostly enable_vmware_backdoor = false;
148 module_param(enable_vmware_backdoor, bool, S_IRUGO);
149 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150
151 static bool __read_mostly force_emulation_prefix = false;
152 module_param(force_emulation_prefix, bool, S_IRUGO);
153
154 #define KVM_NR_SHARED_MSRS 16
155
156 struct kvm_shared_msrs_global {
157         int nr;
158         u32 msrs[KVM_NR_SHARED_MSRS];
159 };
160
161 struct kvm_shared_msrs {
162         struct user_return_notifier urn;
163         bool registered;
164         struct kvm_shared_msr_values {
165                 u64 host;
166                 u64 curr;
167         } values[KVM_NR_SHARED_MSRS];
168 };
169
170 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
171 static struct kvm_shared_msrs __percpu *shared_msrs;
172
173 struct kvm_stats_debugfs_item debugfs_entries[] = {
174         { "pf_fixed", VCPU_STAT(pf_fixed) },
175         { "pf_guest", VCPU_STAT(pf_guest) },
176         { "tlb_flush", VCPU_STAT(tlb_flush) },
177         { "invlpg", VCPU_STAT(invlpg) },
178         { "exits", VCPU_STAT(exits) },
179         { "io_exits", VCPU_STAT(io_exits) },
180         { "mmio_exits", VCPU_STAT(mmio_exits) },
181         { "signal_exits", VCPU_STAT(signal_exits) },
182         { "irq_window", VCPU_STAT(irq_window_exits) },
183         { "nmi_window", VCPU_STAT(nmi_window_exits) },
184         { "halt_exits", VCPU_STAT(halt_exits) },
185         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
186         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
187         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
188         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
189         { "hypercalls", VCPU_STAT(hypercalls) },
190         { "request_irq", VCPU_STAT(request_irq_exits) },
191         { "irq_exits", VCPU_STAT(irq_exits) },
192         { "host_state_reload", VCPU_STAT(host_state_reload) },
193         { "fpu_reload", VCPU_STAT(fpu_reload) },
194         { "insn_emulation", VCPU_STAT(insn_emulation) },
195         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
196         { "irq_injections", VCPU_STAT(irq_injections) },
197         { "nmi_injections", VCPU_STAT(nmi_injections) },
198         { "req_event", VCPU_STAT(req_event) },
199         { "l1d_flush", VCPU_STAT(l1d_flush) },
200         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
201         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
202         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
203         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
204         { "mmu_flooded", VM_STAT(mmu_flooded) },
205         { "mmu_recycled", VM_STAT(mmu_recycled) },
206         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
207         { "mmu_unsync", VM_STAT(mmu_unsync) },
208         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
209         { "largepages", VM_STAT(lpages) },
210         { "max_mmu_page_hash_collisions",
211                 VM_STAT(max_mmu_page_hash_collisions) },
212         { NULL }
213 };
214
215 u64 __read_mostly host_xcr0;
216
217 struct kmem_cache *x86_fpu_cache;
218 EXPORT_SYMBOL_GPL(x86_fpu_cache);
219
220 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
221
222 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
223 {
224         int i;
225         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
226                 vcpu->arch.apf.gfns[i] = ~0;
227 }
228
229 static void kvm_on_user_return(struct user_return_notifier *urn)
230 {
231         unsigned slot;
232         struct kvm_shared_msrs *locals
233                 = container_of(urn, struct kvm_shared_msrs, urn);
234         struct kvm_shared_msr_values *values;
235         unsigned long flags;
236
237         /*
238          * Disabling irqs at this point since the following code could be
239          * interrupted and executed through kvm_arch_hardware_disable()
240          */
241         local_irq_save(flags);
242         if (locals->registered) {
243                 locals->registered = false;
244                 user_return_notifier_unregister(urn);
245         }
246         local_irq_restore(flags);
247         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
248                 values = &locals->values[slot];
249                 if (values->host != values->curr) {
250                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
251                         values->curr = values->host;
252                 }
253         }
254 }
255
256 static void shared_msr_update(unsigned slot, u32 msr)
257 {
258         u64 value;
259         unsigned int cpu = smp_processor_id();
260         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
261
262         /* only read, and nobody should modify it at this time,
263          * so don't need lock */
264         if (slot >= shared_msrs_global.nr) {
265                 printk(KERN_ERR "kvm: invalid MSR slot!");
266                 return;
267         }
268         rdmsrl_safe(msr, &value);
269         smsr->values[slot].host = value;
270         smsr->values[slot].curr = value;
271 }
272
273 void kvm_define_shared_msr(unsigned slot, u32 msr)
274 {
275         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
276         shared_msrs_global.msrs[slot] = msr;
277         if (slot >= shared_msrs_global.nr)
278                 shared_msrs_global.nr = slot + 1;
279 }
280 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
281
282 static void kvm_shared_msr_cpu_online(void)
283 {
284         unsigned i;
285
286         for (i = 0; i < shared_msrs_global.nr; ++i)
287                 shared_msr_update(i, shared_msrs_global.msrs[i]);
288 }
289
290 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294         int err;
295
296         if (((value ^ smsr->values[slot].curr) & mask) == 0)
297                 return 0;
298         smsr->values[slot].curr = value;
299         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
300         if (err)
301                 return 1;
302
303         if (!smsr->registered) {
304                 smsr->urn.on_user_return = kvm_on_user_return;
305                 user_return_notifier_register(&smsr->urn);
306                 smsr->registered = true;
307         }
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
311
312 static void drop_user_return_notifiers(void)
313 {
314         unsigned int cpu = smp_processor_id();
315         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
316
317         if (smsr->registered)
318                 kvm_on_user_return(&smsr->urn);
319 }
320
321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
322 {
323         return vcpu->arch.apic_base;
324 }
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
326
327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
328 {
329         return kvm_apic_mode(kvm_get_apic_base(vcpu));
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
332
333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
334 {
335         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
339
340         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
341                 return 1;
342         if (!msr_info->host_initiated) {
343                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
344                         return 1;
345                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
346                         return 1;
347         }
348
349         kvm_lapic_set_base(vcpu, msr_info->data);
350         return 0;
351 }
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
353
354 asmlinkage __visible void kvm_spurious_fault(void)
355 {
356         /* Fault while not rebooting.  We want the trace. */
357         BUG();
358 }
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
360
361 #define EXCPT_BENIGN            0
362 #define EXCPT_CONTRIBUTORY      1
363 #define EXCPT_PF                2
364
365 static int exception_class(int vector)
366 {
367         switch (vector) {
368         case PF_VECTOR:
369                 return EXCPT_PF;
370         case DE_VECTOR:
371         case TS_VECTOR:
372         case NP_VECTOR:
373         case SS_VECTOR:
374         case GP_VECTOR:
375                 return EXCPT_CONTRIBUTORY;
376         default:
377                 break;
378         }
379         return EXCPT_BENIGN;
380 }
381
382 #define EXCPT_FAULT             0
383 #define EXCPT_TRAP              1
384 #define EXCPT_ABORT             2
385 #define EXCPT_INTERRUPT         3
386
387 static int exception_type(int vector)
388 {
389         unsigned int mask;
390
391         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392                 return EXCPT_INTERRUPT;
393
394         mask = 1 << vector;
395
396         /* #DB is trap, as instruction watchpoints are handled elsewhere */
397         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
398                 return EXCPT_TRAP;
399
400         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
401                 return EXCPT_ABORT;
402
403         /* Reserved exceptions will result in fault */
404         return EXCPT_FAULT;
405 }
406
407 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
408 {
409         unsigned nr = vcpu->arch.exception.nr;
410         bool has_payload = vcpu->arch.exception.has_payload;
411         unsigned long payload = vcpu->arch.exception.payload;
412
413         if (!has_payload)
414                 return;
415
416         switch (nr) {
417         case DB_VECTOR:
418                 /*
419                  * "Certain debug exceptions may clear bit 0-3.  The
420                  * remaining contents of the DR6 register are never
421                  * cleared by the processor".
422                  */
423                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
424                 /*
425                  * DR6.RTM is set by all #DB exceptions that don't clear it.
426                  */
427                 vcpu->arch.dr6 |= DR6_RTM;
428                 vcpu->arch.dr6 |= payload;
429                 /*
430                  * Bit 16 should be set in the payload whenever the #DB
431                  * exception should clear DR6.RTM. This makes the payload
432                  * compatible with the pending debug exceptions under VMX.
433                  * Though not currently documented in the SDM, this also
434                  * makes the payload compatible with the exit qualification
435                  * for #DB exceptions under VMX.
436                  */
437                 vcpu->arch.dr6 ^= payload & DR6_RTM;
438                 break;
439         case PF_VECTOR:
440                 vcpu->arch.cr2 = payload;
441                 break;
442         }
443
444         vcpu->arch.exception.has_payload = false;
445         vcpu->arch.exception.payload = 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
448
449 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
450                 unsigned nr, bool has_error, u32 error_code,
451                 bool has_payload, unsigned long payload, bool reinject)
452 {
453         u32 prev_nr;
454         int class1, class2;
455
456         kvm_make_request(KVM_REQ_EVENT, vcpu);
457
458         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
459         queue:
460                 if (has_error && !is_protmode(vcpu))
461                         has_error = false;
462                 if (reinject) {
463                         /*
464                          * On vmentry, vcpu->arch.exception.pending is only
465                          * true if an event injection was blocked by
466                          * nested_run_pending.  In that case, however,
467                          * vcpu_enter_guest requests an immediate exit,
468                          * and the guest shouldn't proceed far enough to
469                          * need reinjection.
470                          */
471                         WARN_ON_ONCE(vcpu->arch.exception.pending);
472                         vcpu->arch.exception.injected = true;
473                         if (WARN_ON_ONCE(has_payload)) {
474                                 /*
475                                  * A reinjected event has already
476                                  * delivered its payload.
477                                  */
478                                 has_payload = false;
479                                 payload = 0;
480                         }
481                 } else {
482                         vcpu->arch.exception.pending = true;
483                         vcpu->arch.exception.injected = false;
484                 }
485                 vcpu->arch.exception.has_error_code = has_error;
486                 vcpu->arch.exception.nr = nr;
487                 vcpu->arch.exception.error_code = error_code;
488                 vcpu->arch.exception.has_payload = has_payload;
489                 vcpu->arch.exception.payload = payload;
490                 /*
491                  * In guest mode, payload delivery should be deferred,
492                  * so that the L1 hypervisor can intercept #PF before
493                  * CR2 is modified (or intercept #DB before DR6 is
494                  * modified under nVMX).  However, for ABI
495                  * compatibility with KVM_GET_VCPU_EVENTS and
496                  * KVM_SET_VCPU_EVENTS, we can't delay payload
497                  * delivery unless userspace has enabled this
498                  * functionality via the per-VM capability,
499                  * KVM_CAP_EXCEPTION_PAYLOAD.
500                  */
501                 if (!vcpu->kvm->arch.exception_payload_enabled ||
502                     !is_guest_mode(vcpu))
503                         kvm_deliver_exception_payload(vcpu);
504                 return;
505         }
506
507         /* to check exception */
508         prev_nr = vcpu->arch.exception.nr;
509         if (prev_nr == DF_VECTOR) {
510                 /* triple fault -> shutdown */
511                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
512                 return;
513         }
514         class1 = exception_class(prev_nr);
515         class2 = exception_class(nr);
516         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
517                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
518                 /*
519                  * Generate double fault per SDM Table 5-5.  Set
520                  * exception.pending = true so that the double fault
521                  * can trigger a nested vmexit.
522                  */
523                 vcpu->arch.exception.pending = true;
524                 vcpu->arch.exception.injected = false;
525                 vcpu->arch.exception.has_error_code = true;
526                 vcpu->arch.exception.nr = DF_VECTOR;
527                 vcpu->arch.exception.error_code = 0;
528                 vcpu->arch.exception.has_payload = false;
529                 vcpu->arch.exception.payload = 0;
530         } else
531                 /* replace previous exception with a new one in a hope
532                    that instruction re-execution will regenerate lost
533                    exception */
534                 goto queue;
535 }
536
537 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
538 {
539         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
540 }
541 EXPORT_SYMBOL_GPL(kvm_queue_exception);
542
543 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
546 }
547 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
548
549 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
550                                   unsigned long payload)
551 {
552         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
553 }
554
555 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                     u32 error_code, unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, true, error_code,
559                                true, payload, false);
560 }
561
562 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
563 {
564         if (err)
565                 kvm_inject_gp(vcpu, 0);
566         else
567                 return kvm_skip_emulated_instruction(vcpu);
568
569         return 1;
570 }
571 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
572
573 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
574 {
575         ++vcpu->stat.pf_guest;
576         vcpu->arch.exception.nested_apf =
577                 is_guest_mode(vcpu) && fault->async_page_fault;
578         if (vcpu->arch.exception.nested_apf) {
579                 vcpu->arch.apf.nested_apf_token = fault->address;
580                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
581         } else {
582                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
583                                         fault->address);
584         }
585 }
586 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
587
588 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
589 {
590         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
591                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
592         else
593                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
594
595         return fault->nested_page_fault;
596 }
597
598 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
599 {
600         atomic_inc(&vcpu->arch.nmi_queued);
601         kvm_make_request(KVM_REQ_NMI, vcpu);
602 }
603 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
604
605 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
606 {
607         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
608 }
609 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
610
611 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
614 }
615 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
616
617 /*
618  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
619  * a #GP and return false.
620  */
621 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
622 {
623         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
624                 return true;
625         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
626         return false;
627 }
628 EXPORT_SYMBOL_GPL(kvm_require_cpl);
629
630 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
631 {
632         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
633                 return true;
634
635         kvm_queue_exception(vcpu, UD_VECTOR);
636         return false;
637 }
638 EXPORT_SYMBOL_GPL(kvm_require_dr);
639
640 /*
641  * This function will be used to read from the physical memory of the currently
642  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
643  * can read from guest physical or from the guest's guest physical memory.
644  */
645 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
646                             gfn_t ngfn, void *data, int offset, int len,
647                             u32 access)
648 {
649         struct x86_exception exception;
650         gfn_t real_gfn;
651         gpa_t ngpa;
652
653         ngpa     = gfn_to_gpa(ngfn);
654         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
655         if (real_gfn == UNMAPPED_GVA)
656                 return -EFAULT;
657
658         real_gfn = gpa_to_gfn(real_gfn);
659
660         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
661 }
662 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
663
664 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
665                                void *data, int offset, int len, u32 access)
666 {
667         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
668                                        data, offset, len, access);
669 }
670
671 /*
672  * Load the pae pdptrs.  Return true is they are all valid.
673  */
674 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
675 {
676         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
677         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
678         int i;
679         int ret;
680         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
681
682         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
683                                       offset * sizeof(u64), sizeof(pdpte),
684                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
685         if (ret < 0) {
686                 ret = 0;
687                 goto out;
688         }
689         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
690                 if ((pdpte[i] & PT_PRESENT_MASK) &&
691                     (pdpte[i] &
692                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
693                         ret = 0;
694                         goto out;
695                 }
696         }
697         ret = 1;
698
699         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
700         __set_bit(VCPU_EXREG_PDPTR,
701                   (unsigned long *)&vcpu->arch.regs_avail);
702         __set_bit(VCPU_EXREG_PDPTR,
703                   (unsigned long *)&vcpu->arch.regs_dirty);
704 out:
705
706         return ret;
707 }
708 EXPORT_SYMBOL_GPL(load_pdptrs);
709
710 bool pdptrs_changed(struct kvm_vcpu *vcpu)
711 {
712         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
713         bool changed = true;
714         int offset;
715         gfn_t gfn;
716         int r;
717
718         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
719                 return false;
720
721         if (!test_bit(VCPU_EXREG_PDPTR,
722                       (unsigned long *)&vcpu->arch.regs_avail))
723                 return true;
724
725         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
726         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
727         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
728                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
729         if (r < 0)
730                 goto out;
731         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
732 out:
733
734         return changed;
735 }
736 EXPORT_SYMBOL_GPL(pdptrs_changed);
737
738 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
739 {
740         unsigned long old_cr0 = kvm_read_cr0(vcpu);
741         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
742
743         cr0 |= X86_CR0_ET;
744
745 #ifdef CONFIG_X86_64
746         if (cr0 & 0xffffffff00000000UL)
747                 return 1;
748 #endif
749
750         cr0 &= ~CR0_RESERVED_BITS;
751
752         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
753                 return 1;
754
755         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
756                 return 1;
757
758         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
759 #ifdef CONFIG_X86_64
760                 if ((vcpu->arch.efer & EFER_LME)) {
761                         int cs_db, cs_l;
762
763                         if (!is_pae(vcpu))
764                                 return 1;
765                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
766                         if (cs_l)
767                                 return 1;
768                 } else
769 #endif
770                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                                  kvm_read_cr3(vcpu)))
772                         return 1;
773         }
774
775         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
776                 return 1;
777
778         kvm_x86_ops->set_cr0(vcpu, cr0);
779
780         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
781                 kvm_clear_async_pf_completion_queue(vcpu);
782                 kvm_async_pf_hash_reset(vcpu);
783         }
784
785         if ((cr0 ^ old_cr0) & update_bits)
786                 kvm_mmu_reset_context(vcpu);
787
788         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
789             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
790             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
791                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr0);
796
797 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
798 {
799         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
800 }
801 EXPORT_SYMBOL_GPL(kvm_lmsw);
802
803 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
804 {
805         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
806                         !vcpu->guest_xcr0_loaded) {
807                 /* kvm_set_xcr() also depends on this */
808                 if (vcpu->arch.xcr0 != host_xcr0)
809                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
810                 vcpu->guest_xcr0_loaded = 1;
811         }
812 }
813
814 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
815 {
816         if (vcpu->guest_xcr0_loaded) {
817                 if (vcpu->arch.xcr0 != host_xcr0)
818                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
819                 vcpu->guest_xcr0_loaded = 0;
820         }
821 }
822
823 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
824 {
825         u64 xcr0 = xcr;
826         u64 old_xcr0 = vcpu->arch.xcr0;
827         u64 valid_bits;
828
829         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
830         if (index != XCR_XFEATURE_ENABLED_MASK)
831                 return 1;
832         if (!(xcr0 & XFEATURE_MASK_FP))
833                 return 1;
834         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
835                 return 1;
836
837         /*
838          * Do not allow the guest to set bits that we do not support
839          * saving.  However, xcr0 bit 0 is always set, even if the
840          * emulated CPU does not support XSAVE (see fx_init).
841          */
842         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
843         if (xcr0 & ~valid_bits)
844                 return 1;
845
846         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
847             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
848                 return 1;
849
850         if (xcr0 & XFEATURE_MASK_AVX512) {
851                 if (!(xcr0 & XFEATURE_MASK_YMM))
852                         return 1;
853                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
854                         return 1;
855         }
856         vcpu->arch.xcr0 = xcr0;
857
858         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
859                 kvm_update_cpuid(vcpu);
860         return 0;
861 }
862
863 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
864 {
865         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
866             __kvm_set_xcr(vcpu, index, xcr)) {
867                 kvm_inject_gp(vcpu, 0);
868                 return 1;
869         }
870         return 0;
871 }
872 EXPORT_SYMBOL_GPL(kvm_set_xcr);
873
874 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
875 {
876         unsigned long old_cr4 = kvm_read_cr4(vcpu);
877         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
878                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
879
880         if (cr4 & CR4_RESERVED_BITS)
881                 return 1;
882
883         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
884                 return 1;
885
886         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
887                 return 1;
888
889         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
890                 return 1;
891
892         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
893                 return 1;
894
895         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
896                 return 1;
897
898         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
899                 return 1;
900
901         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
902                 return 1;
903
904         if (is_long_mode(vcpu)) {
905                 if (!(cr4 & X86_CR4_PAE))
906                         return 1;
907         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
908                    && ((cr4 ^ old_cr4) & pdptr_bits)
909                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
910                                    kvm_read_cr3(vcpu)))
911                 return 1;
912
913         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
914                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
915                         return 1;
916
917                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
918                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
919                         return 1;
920         }
921
922         if (kvm_x86_ops->set_cr4(vcpu, cr4))
923                 return 1;
924
925         if (((cr4 ^ old_cr4) & pdptr_bits) ||
926             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
927                 kvm_mmu_reset_context(vcpu);
928
929         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
930                 kvm_update_cpuid(vcpu);
931
932         return 0;
933 }
934 EXPORT_SYMBOL_GPL(kvm_set_cr4);
935
936 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
937 {
938         bool skip_tlb_flush = false;
939 #ifdef CONFIG_X86_64
940         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
941
942         if (pcid_enabled) {
943                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
944                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
945         }
946 #endif
947
948         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
949                 if (!skip_tlb_flush) {
950                         kvm_mmu_sync_roots(vcpu);
951                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
952                 }
953                 return 0;
954         }
955
956         if (is_long_mode(vcpu) &&
957             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
958                 return 1;
959         else if (is_pae(vcpu) && is_paging(vcpu) &&
960                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
961                 return 1;
962
963         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
964         vcpu->arch.cr3 = cr3;
965         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
966
967         return 0;
968 }
969 EXPORT_SYMBOL_GPL(kvm_set_cr3);
970
971 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
972 {
973         if (cr8 & CR8_RESERVED_BITS)
974                 return 1;
975         if (lapic_in_kernel(vcpu))
976                 kvm_lapic_set_tpr(vcpu, cr8);
977         else
978                 vcpu->arch.cr8 = cr8;
979         return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_set_cr8);
982
983 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
984 {
985         if (lapic_in_kernel(vcpu))
986                 return kvm_lapic_get_cr8(vcpu);
987         else
988                 return vcpu->arch.cr8;
989 }
990 EXPORT_SYMBOL_GPL(kvm_get_cr8);
991
992 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
993 {
994         int i;
995
996         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
997                 for (i = 0; i < KVM_NR_DB_REGS; i++)
998                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
999                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1000         }
1001 }
1002
1003 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1004 {
1005         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1006                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1007 }
1008
1009 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1010 {
1011         unsigned long dr7;
1012
1013         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1014                 dr7 = vcpu->arch.guest_debug_dr7;
1015         else
1016                 dr7 = vcpu->arch.dr7;
1017         kvm_x86_ops->set_dr7(vcpu, dr7);
1018         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1019         if (dr7 & DR7_BP_EN_MASK)
1020                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1021 }
1022
1023 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1024 {
1025         u64 fixed = DR6_FIXED_1;
1026
1027         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1028                 fixed |= DR6_RTM;
1029         return fixed;
1030 }
1031
1032 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1033 {
1034         switch (dr) {
1035         case 0 ... 3:
1036                 vcpu->arch.db[dr] = val;
1037                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1038                         vcpu->arch.eff_db[dr] = val;
1039                 break;
1040         case 4:
1041                 /* fall through */
1042         case 6:
1043                 if (val & 0xffffffff00000000ULL)
1044                         return -1; /* #GP */
1045                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1046                 kvm_update_dr6(vcpu);
1047                 break;
1048         case 5:
1049                 /* fall through */
1050         default: /* 7 */
1051                 if (val & 0xffffffff00000000ULL)
1052                         return -1; /* #GP */
1053                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1054                 kvm_update_dr7(vcpu);
1055                 break;
1056         }
1057
1058         return 0;
1059 }
1060
1061 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1062 {
1063         if (__kvm_set_dr(vcpu, dr, val)) {
1064                 kvm_inject_gp(vcpu, 0);
1065                 return 1;
1066         }
1067         return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_dr);
1070
1071 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1072 {
1073         switch (dr) {
1074         case 0 ... 3:
1075                 *val = vcpu->arch.db[dr];
1076                 break;
1077         case 4:
1078                 /* fall through */
1079         case 6:
1080                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1081                         *val = vcpu->arch.dr6;
1082                 else
1083                         *val = kvm_x86_ops->get_dr6(vcpu);
1084                 break;
1085         case 5:
1086                 /* fall through */
1087         default: /* 7 */
1088                 *val = vcpu->arch.dr7;
1089                 break;
1090         }
1091         return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_get_dr);
1094
1095 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1096 {
1097         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1098         u64 data;
1099         int err;
1100
1101         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1102         if (err)
1103                 return err;
1104         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1105         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1106         return err;
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1109
1110 /*
1111  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1112  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1113  *
1114  * This list is modified at module load time to reflect the
1115  * capabilities of the host cpu. This capabilities test skips MSRs that are
1116  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1117  * may depend on host virtualization features rather than host cpu features.
1118  */
1119
1120 static u32 msrs_to_save[] = {
1121         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1122         MSR_STAR,
1123 #ifdef CONFIG_X86_64
1124         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1125 #endif
1126         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1127         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1128         MSR_IA32_SPEC_CTRL,
1129         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1130         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1131         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1132         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1133         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1134         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1135 };
1136
1137 static unsigned num_msrs_to_save;
1138
1139 static u32 emulated_msrs[] = {
1140         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1141         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1142         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1143         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1144         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1145         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1146         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1147         HV_X64_MSR_RESET,
1148         HV_X64_MSR_VP_INDEX,
1149         HV_X64_MSR_VP_RUNTIME,
1150         HV_X64_MSR_SCONTROL,
1151         HV_X64_MSR_STIMER0_CONFIG,
1152         HV_X64_MSR_VP_ASSIST_PAGE,
1153         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1154         HV_X64_MSR_TSC_EMULATION_STATUS,
1155
1156         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1157         MSR_KVM_PV_EOI_EN,
1158
1159         MSR_IA32_TSC_ADJUST,
1160         MSR_IA32_TSCDEADLINE,
1161         MSR_IA32_ARCH_CAPABILITIES,
1162         MSR_IA32_MISC_ENABLE,
1163         MSR_IA32_MCG_STATUS,
1164         MSR_IA32_MCG_CTL,
1165         MSR_IA32_MCG_EXT_CTL,
1166         MSR_IA32_SMBASE,
1167         MSR_SMI_COUNT,
1168         MSR_PLATFORM_INFO,
1169         MSR_MISC_FEATURES_ENABLES,
1170         MSR_AMD64_VIRT_SPEC_CTRL,
1171 };
1172
1173 static unsigned num_emulated_msrs;
1174
1175 /*
1176  * List of msr numbers which are used to expose MSR-based features that
1177  * can be used by a hypervisor to validate requested CPU features.
1178  */
1179 static u32 msr_based_features[] = {
1180         MSR_IA32_VMX_BASIC,
1181         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1182         MSR_IA32_VMX_PINBASED_CTLS,
1183         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1184         MSR_IA32_VMX_PROCBASED_CTLS,
1185         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1186         MSR_IA32_VMX_EXIT_CTLS,
1187         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1188         MSR_IA32_VMX_ENTRY_CTLS,
1189         MSR_IA32_VMX_MISC,
1190         MSR_IA32_VMX_CR0_FIXED0,
1191         MSR_IA32_VMX_CR0_FIXED1,
1192         MSR_IA32_VMX_CR4_FIXED0,
1193         MSR_IA32_VMX_CR4_FIXED1,
1194         MSR_IA32_VMX_VMCS_ENUM,
1195         MSR_IA32_VMX_PROCBASED_CTLS2,
1196         MSR_IA32_VMX_EPT_VPID_CAP,
1197         MSR_IA32_VMX_VMFUNC,
1198
1199         MSR_F10H_DECFG,
1200         MSR_IA32_UCODE_REV,
1201         MSR_IA32_ARCH_CAPABILITIES,
1202 };
1203
1204 static unsigned int num_msr_based_features;
1205
1206 u64 kvm_get_arch_capabilities(void)
1207 {
1208         u64 data;
1209
1210         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1211
1212         /*
1213          * If we're doing cache flushes (either "always" or "cond")
1214          * we will do one whenever the guest does a vmlaunch/vmresume.
1215          * If an outer hypervisor is doing the cache flush for us
1216          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1217          * capability to the guest too, and if EPT is disabled we're not
1218          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1219          * require a nested hypervisor to do a flush of its own.
1220          */
1221         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1222                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1223
1224         return data;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1227
1228 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1229 {
1230         switch (msr->index) {
1231         case MSR_IA32_ARCH_CAPABILITIES:
1232                 msr->data = kvm_get_arch_capabilities();
1233                 break;
1234         case MSR_IA32_UCODE_REV:
1235                 rdmsrl_safe(msr->index, &msr->data);
1236                 break;
1237         default:
1238                 if (kvm_x86_ops->get_msr_feature(msr))
1239                         return 1;
1240         }
1241         return 0;
1242 }
1243
1244 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1245 {
1246         struct kvm_msr_entry msr;
1247         int r;
1248
1249         msr.index = index;
1250         r = kvm_get_msr_feature(&msr);
1251         if (r)
1252                 return r;
1253
1254         *data = msr.data;
1255
1256         return 0;
1257 }
1258
1259 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1260 {
1261         if (efer & efer_reserved_bits)
1262                 return false;
1263
1264         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1265                         return false;
1266
1267         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1268                         return false;
1269
1270         return true;
1271 }
1272 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1273
1274 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1275 {
1276         u64 old_efer = vcpu->arch.efer;
1277
1278         if (!kvm_valid_efer(vcpu, efer))
1279                 return 1;
1280
1281         if (is_paging(vcpu)
1282             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1283                 return 1;
1284
1285         efer &= ~EFER_LMA;
1286         efer |= vcpu->arch.efer & EFER_LMA;
1287
1288         kvm_x86_ops->set_efer(vcpu, efer);
1289
1290         /* Update reserved bits */
1291         if ((efer ^ old_efer) & EFER_NX)
1292                 kvm_mmu_reset_context(vcpu);
1293
1294         return 0;
1295 }
1296
1297 void kvm_enable_efer_bits(u64 mask)
1298 {
1299        efer_reserved_bits &= ~mask;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1302
1303 /*
1304  * Writes msr value into into the appropriate "register".
1305  * Returns 0 on success, non-0 otherwise.
1306  * Assumes vcpu_load() was already called.
1307  */
1308 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1309 {
1310         switch (msr->index) {
1311         case MSR_FS_BASE:
1312         case MSR_GS_BASE:
1313         case MSR_KERNEL_GS_BASE:
1314         case MSR_CSTAR:
1315         case MSR_LSTAR:
1316                 if (is_noncanonical_address(msr->data, vcpu))
1317                         return 1;
1318                 break;
1319         case MSR_IA32_SYSENTER_EIP:
1320         case MSR_IA32_SYSENTER_ESP:
1321                 /*
1322                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1323                  * non-canonical address is written on Intel but not on
1324                  * AMD (which ignores the top 32-bits, because it does
1325                  * not implement 64-bit SYSENTER).
1326                  *
1327                  * 64-bit code should hence be able to write a non-canonical
1328                  * value on AMD.  Making the address canonical ensures that
1329                  * vmentry does not fail on Intel after writing a non-canonical
1330                  * value, and that something deterministic happens if the guest
1331                  * invokes 64-bit SYSENTER.
1332                  */
1333                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1334         }
1335         return kvm_x86_ops->set_msr(vcpu, msr);
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_set_msr);
1338
1339 /*
1340  * Adapt set_msr() to msr_io()'s calling convention
1341  */
1342 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1343 {
1344         struct msr_data msr;
1345         int r;
1346
1347         msr.index = index;
1348         msr.host_initiated = true;
1349         r = kvm_get_msr(vcpu, &msr);
1350         if (r)
1351                 return r;
1352
1353         *data = msr.data;
1354         return 0;
1355 }
1356
1357 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1358 {
1359         struct msr_data msr;
1360
1361         msr.data = *data;
1362         msr.index = index;
1363         msr.host_initiated = true;
1364         return kvm_set_msr(vcpu, &msr);
1365 }
1366
1367 #ifdef CONFIG_X86_64
1368 struct pvclock_gtod_data {
1369         seqcount_t      seq;
1370
1371         struct { /* extract of a clocksource struct */
1372                 int vclock_mode;
1373                 u64     cycle_last;
1374                 u64     mask;
1375                 u32     mult;
1376                 u32     shift;
1377         } clock;
1378
1379         u64             boot_ns;
1380         u64             nsec_base;
1381         u64             wall_time_sec;
1382 };
1383
1384 static struct pvclock_gtod_data pvclock_gtod_data;
1385
1386 static void update_pvclock_gtod(struct timekeeper *tk)
1387 {
1388         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1389         u64 boot_ns;
1390
1391         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1392
1393         write_seqcount_begin(&vdata->seq);
1394
1395         /* copy pvclock gtod data */
1396         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1397         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1398         vdata->clock.mask               = tk->tkr_mono.mask;
1399         vdata->clock.mult               = tk->tkr_mono.mult;
1400         vdata->clock.shift              = tk->tkr_mono.shift;
1401
1402         vdata->boot_ns                  = boot_ns;
1403         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1404
1405         vdata->wall_time_sec            = tk->xtime_sec;
1406
1407         write_seqcount_end(&vdata->seq);
1408 }
1409 #endif
1410
1411 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1412 {
1413         /*
1414          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1415          * vcpu_enter_guest.  This function is only called from
1416          * the physical CPU that is running vcpu.
1417          */
1418         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1419 }
1420
1421 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1422 {
1423         int version;
1424         int r;
1425         struct pvclock_wall_clock wc;
1426         struct timespec64 boot;
1427
1428         if (!wall_clock)
1429                 return;
1430
1431         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1432         if (r)
1433                 return;
1434
1435         if (version & 1)
1436                 ++version;  /* first time write, random junk */
1437
1438         ++version;
1439
1440         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1441                 return;
1442
1443         /*
1444          * The guest calculates current wall clock time by adding
1445          * system time (updated by kvm_guest_time_update below) to the
1446          * wall clock specified here.  guest system time equals host
1447          * system time for us, thus we must fill in host boot time here.
1448          */
1449         getboottime64(&boot);
1450
1451         if (kvm->arch.kvmclock_offset) {
1452                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1453                 boot = timespec64_sub(boot, ts);
1454         }
1455         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1456         wc.nsec = boot.tv_nsec;
1457         wc.version = version;
1458
1459         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1460
1461         version++;
1462         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1463 }
1464
1465 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1466 {
1467         do_shl32_div32(dividend, divisor);
1468         return dividend;
1469 }
1470
1471 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1472                                s8 *pshift, u32 *pmultiplier)
1473 {
1474         uint64_t scaled64;
1475         int32_t  shift = 0;
1476         uint64_t tps64;
1477         uint32_t tps32;
1478
1479         tps64 = base_hz;
1480         scaled64 = scaled_hz;
1481         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1482                 tps64 >>= 1;
1483                 shift--;
1484         }
1485
1486         tps32 = (uint32_t)tps64;
1487         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1488                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1489                         scaled64 >>= 1;
1490                 else
1491                         tps32 <<= 1;
1492                 shift++;
1493         }
1494
1495         *pshift = shift;
1496         *pmultiplier = div_frac(scaled64, tps32);
1497
1498         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1499                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1500 }
1501
1502 #ifdef CONFIG_X86_64
1503 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1504 #endif
1505
1506 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1507 static unsigned long max_tsc_khz;
1508
1509 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1510 {
1511         u64 v = (u64)khz * (1000000 + ppm);
1512         do_div(v, 1000000);
1513         return v;
1514 }
1515
1516 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1517 {
1518         u64 ratio;
1519
1520         /* Guest TSC same frequency as host TSC? */
1521         if (!scale) {
1522                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1523                 return 0;
1524         }
1525
1526         /* TSC scaling supported? */
1527         if (!kvm_has_tsc_control) {
1528                 if (user_tsc_khz > tsc_khz) {
1529                         vcpu->arch.tsc_catchup = 1;
1530                         vcpu->arch.tsc_always_catchup = 1;
1531                         return 0;
1532                 } else {
1533                         WARN(1, "user requested TSC rate below hardware speed\n");
1534                         return -1;
1535                 }
1536         }
1537
1538         /* TSC scaling required  - calculate ratio */
1539         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1540                                 user_tsc_khz, tsc_khz);
1541
1542         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1543                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1544                           user_tsc_khz);
1545                 return -1;
1546         }
1547
1548         vcpu->arch.tsc_scaling_ratio = ratio;
1549         return 0;
1550 }
1551
1552 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1553 {
1554         u32 thresh_lo, thresh_hi;
1555         int use_scaling = 0;
1556
1557         /* tsc_khz can be zero if TSC calibration fails */
1558         if (user_tsc_khz == 0) {
1559                 /* set tsc_scaling_ratio to a safe value */
1560                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1561                 return -1;
1562         }
1563
1564         /* Compute a scale to convert nanoseconds in TSC cycles */
1565         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1566                            &vcpu->arch.virtual_tsc_shift,
1567                            &vcpu->arch.virtual_tsc_mult);
1568         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1569
1570         /*
1571          * Compute the variation in TSC rate which is acceptable
1572          * within the range of tolerance and decide if the
1573          * rate being applied is within that bounds of the hardware
1574          * rate.  If so, no scaling or compensation need be done.
1575          */
1576         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1577         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1578         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1579                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1580                 use_scaling = 1;
1581         }
1582         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1583 }
1584
1585 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1586 {
1587         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1588                                       vcpu->arch.virtual_tsc_mult,
1589                                       vcpu->arch.virtual_tsc_shift);
1590         tsc += vcpu->arch.this_tsc_write;
1591         return tsc;
1592 }
1593
1594 static inline int gtod_is_based_on_tsc(int mode)
1595 {
1596         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1597 }
1598
1599 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1600 {
1601 #ifdef CONFIG_X86_64
1602         bool vcpus_matched;
1603         struct kvm_arch *ka = &vcpu->kvm->arch;
1604         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1605
1606         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1607                          atomic_read(&vcpu->kvm->online_vcpus));
1608
1609         /*
1610          * Once the masterclock is enabled, always perform request in
1611          * order to update it.
1612          *
1613          * In order to enable masterclock, the host clocksource must be TSC
1614          * and the vcpus need to have matched TSCs.  When that happens,
1615          * perform request to enable masterclock.
1616          */
1617         if (ka->use_master_clock ||
1618             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1619                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1620
1621         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1622                             atomic_read(&vcpu->kvm->online_vcpus),
1623                             ka->use_master_clock, gtod->clock.vclock_mode);
1624 #endif
1625 }
1626
1627 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1628 {
1629         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1630         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1631 }
1632
1633 /*
1634  * Multiply tsc by a fixed point number represented by ratio.
1635  *
1636  * The most significant 64-N bits (mult) of ratio represent the
1637  * integral part of the fixed point number; the remaining N bits
1638  * (frac) represent the fractional part, ie. ratio represents a fixed
1639  * point number (mult + frac * 2^(-N)).
1640  *
1641  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1642  */
1643 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1644 {
1645         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1646 }
1647
1648 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1649 {
1650         u64 _tsc = tsc;
1651         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1652
1653         if (ratio != kvm_default_tsc_scaling_ratio)
1654                 _tsc = __scale_tsc(ratio, tsc);
1655
1656         return _tsc;
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1659
1660 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1661 {
1662         u64 tsc;
1663
1664         tsc = kvm_scale_tsc(vcpu, rdtsc());
1665
1666         return target_tsc - tsc;
1667 }
1668
1669 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1670 {
1671         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1672
1673         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1674 }
1675 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1676
1677 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1678 {
1679         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1680 }
1681
1682 static inline bool kvm_check_tsc_unstable(void)
1683 {
1684 #ifdef CONFIG_X86_64
1685         /*
1686          * TSC is marked unstable when we're running on Hyper-V,
1687          * 'TSC page' clocksource is good.
1688          */
1689         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1690                 return false;
1691 #endif
1692         return check_tsc_unstable();
1693 }
1694
1695 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1696 {
1697         struct kvm *kvm = vcpu->kvm;
1698         u64 offset, ns, elapsed;
1699         unsigned long flags;
1700         bool matched;
1701         bool already_matched;
1702         u64 data = msr->data;
1703         bool synchronizing = false;
1704
1705         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1706         offset = kvm_compute_tsc_offset(vcpu, data);
1707         ns = ktime_get_boot_ns();
1708         elapsed = ns - kvm->arch.last_tsc_nsec;
1709
1710         if (vcpu->arch.virtual_tsc_khz) {
1711                 if (data == 0 && msr->host_initiated) {
1712                         /*
1713                          * detection of vcpu initialization -- need to sync
1714                          * with other vCPUs. This particularly helps to keep
1715                          * kvm_clock stable after CPU hotplug
1716                          */
1717                         synchronizing = true;
1718                 } else {
1719                         u64 tsc_exp = kvm->arch.last_tsc_write +
1720                                                 nsec_to_cycles(vcpu, elapsed);
1721                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1722                         /*
1723                          * Special case: TSC write with a small delta (1 second)
1724                          * of virtual cycle time against real time is
1725                          * interpreted as an attempt to synchronize the CPU.
1726                          */
1727                         synchronizing = data < tsc_exp + tsc_hz &&
1728                                         data + tsc_hz > tsc_exp;
1729                 }
1730         }
1731
1732         /*
1733          * For a reliable TSC, we can match TSC offsets, and for an unstable
1734          * TSC, we add elapsed time in this computation.  We could let the
1735          * compensation code attempt to catch up if we fall behind, but
1736          * it's better to try to match offsets from the beginning.
1737          */
1738         if (synchronizing &&
1739             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1740                 if (!kvm_check_tsc_unstable()) {
1741                         offset = kvm->arch.cur_tsc_offset;
1742                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1743                 } else {
1744                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1745                         data += delta;
1746                         offset = kvm_compute_tsc_offset(vcpu, data);
1747                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1748                 }
1749                 matched = true;
1750                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1751         } else {
1752                 /*
1753                  * We split periods of matched TSC writes into generations.
1754                  * For each generation, we track the original measured
1755                  * nanosecond time, offset, and write, so if TSCs are in
1756                  * sync, we can match exact offset, and if not, we can match
1757                  * exact software computation in compute_guest_tsc()
1758                  *
1759                  * These values are tracked in kvm->arch.cur_xxx variables.
1760                  */
1761                 kvm->arch.cur_tsc_generation++;
1762                 kvm->arch.cur_tsc_nsec = ns;
1763                 kvm->arch.cur_tsc_write = data;
1764                 kvm->arch.cur_tsc_offset = offset;
1765                 matched = false;
1766                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1767                          kvm->arch.cur_tsc_generation, data);
1768         }
1769
1770         /*
1771          * We also track th most recent recorded KHZ, write and time to
1772          * allow the matching interval to be extended at each write.
1773          */
1774         kvm->arch.last_tsc_nsec = ns;
1775         kvm->arch.last_tsc_write = data;
1776         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1777
1778         vcpu->arch.last_guest_tsc = data;
1779
1780         /* Keep track of which generation this VCPU has synchronized to */
1781         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1782         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1783         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1784
1785         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1786                 update_ia32_tsc_adjust_msr(vcpu, offset);
1787
1788         kvm_vcpu_write_tsc_offset(vcpu, offset);
1789         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1790
1791         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1792         if (!matched) {
1793                 kvm->arch.nr_vcpus_matched_tsc = 0;
1794         } else if (!already_matched) {
1795                 kvm->arch.nr_vcpus_matched_tsc++;
1796         }
1797
1798         kvm_track_tsc_matching(vcpu);
1799         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1800 }
1801
1802 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1803
1804 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1805                                            s64 adjustment)
1806 {
1807         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1808         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1809 }
1810
1811 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1812 {
1813         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1814                 WARN_ON(adjustment < 0);
1815         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1816         adjust_tsc_offset_guest(vcpu, adjustment);
1817 }
1818
1819 #ifdef CONFIG_X86_64
1820
1821 static u64 read_tsc(void)
1822 {
1823         u64 ret = (u64)rdtsc_ordered();
1824         u64 last = pvclock_gtod_data.clock.cycle_last;
1825
1826         if (likely(ret >= last))
1827                 return ret;
1828
1829         /*
1830          * GCC likes to generate cmov here, but this branch is extremely
1831          * predictable (it's just a function of time and the likely is
1832          * very likely) and there's a data dependence, so force GCC
1833          * to generate a branch instead.  I don't barrier() because
1834          * we don't actually need a barrier, and if this function
1835          * ever gets inlined it will generate worse code.
1836          */
1837         asm volatile ("");
1838         return last;
1839 }
1840
1841 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1842 {
1843         long v;
1844         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1845         u64 tsc_pg_val;
1846
1847         switch (gtod->clock.vclock_mode) {
1848         case VCLOCK_HVCLOCK:
1849                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1850                                                   tsc_timestamp);
1851                 if (tsc_pg_val != U64_MAX) {
1852                         /* TSC page valid */
1853                         *mode = VCLOCK_HVCLOCK;
1854                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1855                                 gtod->clock.mask;
1856                 } else {
1857                         /* TSC page invalid */
1858                         *mode = VCLOCK_NONE;
1859                 }
1860                 break;
1861         case VCLOCK_TSC:
1862                 *mode = VCLOCK_TSC;
1863                 *tsc_timestamp = read_tsc();
1864                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1865                         gtod->clock.mask;
1866                 break;
1867         default:
1868                 *mode = VCLOCK_NONE;
1869         }
1870
1871         if (*mode == VCLOCK_NONE)
1872                 *tsc_timestamp = v = 0;
1873
1874         return v * gtod->clock.mult;
1875 }
1876
1877 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1878 {
1879         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1880         unsigned long seq;
1881         int mode;
1882         u64 ns;
1883
1884         do {
1885                 seq = read_seqcount_begin(&gtod->seq);
1886                 ns = gtod->nsec_base;
1887                 ns += vgettsc(tsc_timestamp, &mode);
1888                 ns >>= gtod->clock.shift;
1889                 ns += gtod->boot_ns;
1890         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1891         *t = ns;
1892
1893         return mode;
1894 }
1895
1896 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1897 {
1898         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1899         unsigned long seq;
1900         int mode;
1901         u64 ns;
1902
1903         do {
1904                 seq = read_seqcount_begin(&gtod->seq);
1905                 ts->tv_sec = gtod->wall_time_sec;
1906                 ns = gtod->nsec_base;
1907                 ns += vgettsc(tsc_timestamp, &mode);
1908                 ns >>= gtod->clock.shift;
1909         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1910
1911         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1912         ts->tv_nsec = ns;
1913
1914         return mode;
1915 }
1916
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1919 {
1920         /* checked again under seqlock below */
1921         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1922                 return false;
1923
1924         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1925                                                       tsc_timestamp));
1926 }
1927
1928 /* returns true if host is using TSC based clocksource */
1929 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1930                                            u64 *tsc_timestamp)
1931 {
1932         /* checked again under seqlock below */
1933         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1934                 return false;
1935
1936         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1937 }
1938 #endif
1939
1940 /*
1941  *
1942  * Assuming a stable TSC across physical CPUS, and a stable TSC
1943  * across virtual CPUs, the following condition is possible.
1944  * Each numbered line represents an event visible to both
1945  * CPUs at the next numbered event.
1946  *
1947  * "timespecX" represents host monotonic time. "tscX" represents
1948  * RDTSC value.
1949  *
1950  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1951  *
1952  * 1.  read timespec0,tsc0
1953  * 2.                                   | timespec1 = timespec0 + N
1954  *                                      | tsc1 = tsc0 + M
1955  * 3. transition to guest               | transition to guest
1956  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1957  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1958  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1959  *
1960  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1961  *
1962  *      - ret0 < ret1
1963  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1964  *              ...
1965  *      - 0 < N - M => M < N
1966  *
1967  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1968  * always the case (the difference between two distinct xtime instances
1969  * might be smaller then the difference between corresponding TSC reads,
1970  * when updating guest vcpus pvclock areas).
1971  *
1972  * To avoid that problem, do not allow visibility of distinct
1973  * system_timestamp/tsc_timestamp values simultaneously: use a master
1974  * copy of host monotonic time values. Update that master copy
1975  * in lockstep.
1976  *
1977  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1978  *
1979  */
1980
1981 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1982 {
1983 #ifdef CONFIG_X86_64
1984         struct kvm_arch *ka = &kvm->arch;
1985         int vclock_mode;
1986         bool host_tsc_clocksource, vcpus_matched;
1987
1988         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1989                         atomic_read(&kvm->online_vcpus));
1990
1991         /*
1992          * If the host uses TSC clock, then passthrough TSC as stable
1993          * to the guest.
1994          */
1995         host_tsc_clocksource = kvm_get_time_and_clockread(
1996                                         &ka->master_kernel_ns,
1997                                         &ka->master_cycle_now);
1998
1999         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2000                                 && !ka->backwards_tsc_observed
2001                                 && !ka->boot_vcpu_runs_old_kvmclock;
2002
2003         if (ka->use_master_clock)
2004                 atomic_set(&kvm_guest_has_master_clock, 1);
2005
2006         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2007         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2008                                         vcpus_matched);
2009 #endif
2010 }
2011
2012 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2013 {
2014         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2015 }
2016
2017 static void kvm_gen_update_masterclock(struct kvm *kvm)
2018 {
2019 #ifdef CONFIG_X86_64
2020         int i;
2021         struct kvm_vcpu *vcpu;
2022         struct kvm_arch *ka = &kvm->arch;
2023
2024         spin_lock(&ka->pvclock_gtod_sync_lock);
2025         kvm_make_mclock_inprogress_request(kvm);
2026         /* no guest entries from this point */
2027         pvclock_update_vm_gtod_copy(kvm);
2028
2029         kvm_for_each_vcpu(i, vcpu, kvm)
2030                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2031
2032         /* guest entries allowed */
2033         kvm_for_each_vcpu(i, vcpu, kvm)
2034                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2035
2036         spin_unlock(&ka->pvclock_gtod_sync_lock);
2037 #endif
2038 }
2039
2040 u64 get_kvmclock_ns(struct kvm *kvm)
2041 {
2042         struct kvm_arch *ka = &kvm->arch;
2043         struct pvclock_vcpu_time_info hv_clock;
2044         u64 ret;
2045
2046         spin_lock(&ka->pvclock_gtod_sync_lock);
2047         if (!ka->use_master_clock) {
2048                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2049                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2050         }
2051
2052         hv_clock.tsc_timestamp = ka->master_cycle_now;
2053         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2054         spin_unlock(&ka->pvclock_gtod_sync_lock);
2055
2056         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2057         get_cpu();
2058
2059         if (__this_cpu_read(cpu_tsc_khz)) {
2060                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2061                                    &hv_clock.tsc_shift,
2062                                    &hv_clock.tsc_to_system_mul);
2063                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2064         } else
2065                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2066
2067         put_cpu();
2068
2069         return ret;
2070 }
2071
2072 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2073 {
2074         struct kvm_vcpu_arch *vcpu = &v->arch;
2075         struct pvclock_vcpu_time_info guest_hv_clock;
2076
2077         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2078                 &guest_hv_clock, sizeof(guest_hv_clock))))
2079                 return;
2080
2081         /* This VCPU is paused, but it's legal for a guest to read another
2082          * VCPU's kvmclock, so we really have to follow the specification where
2083          * it says that version is odd if data is being modified, and even after
2084          * it is consistent.
2085          *
2086          * Version field updates must be kept separate.  This is because
2087          * kvm_write_guest_cached might use a "rep movs" instruction, and
2088          * writes within a string instruction are weakly ordered.  So there
2089          * are three writes overall.
2090          *
2091          * As a small optimization, only write the version field in the first
2092          * and third write.  The vcpu->pv_time cache is still valid, because the
2093          * version field is the first in the struct.
2094          */
2095         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2096
2097         if (guest_hv_clock.version & 1)
2098                 ++guest_hv_clock.version;  /* first time write, random junk */
2099
2100         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2101         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2102                                 &vcpu->hv_clock,
2103                                 sizeof(vcpu->hv_clock.version));
2104
2105         smp_wmb();
2106
2107         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2108         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2109
2110         if (vcpu->pvclock_set_guest_stopped_request) {
2111                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2112                 vcpu->pvclock_set_guest_stopped_request = false;
2113         }
2114
2115         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2116
2117         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2118                                 &vcpu->hv_clock,
2119                                 sizeof(vcpu->hv_clock));
2120
2121         smp_wmb();
2122
2123         vcpu->hv_clock.version++;
2124         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2125                                 &vcpu->hv_clock,
2126                                 sizeof(vcpu->hv_clock.version));
2127 }
2128
2129 static int kvm_guest_time_update(struct kvm_vcpu *v)
2130 {
2131         unsigned long flags, tgt_tsc_khz;
2132         struct kvm_vcpu_arch *vcpu = &v->arch;
2133         struct kvm_arch *ka = &v->kvm->arch;
2134         s64 kernel_ns;
2135         u64 tsc_timestamp, host_tsc;
2136         u8 pvclock_flags;
2137         bool use_master_clock;
2138
2139         kernel_ns = 0;
2140         host_tsc = 0;
2141
2142         /*
2143          * If the host uses TSC clock, then passthrough TSC as stable
2144          * to the guest.
2145          */
2146         spin_lock(&ka->pvclock_gtod_sync_lock);
2147         use_master_clock = ka->use_master_clock;
2148         if (use_master_clock) {
2149                 host_tsc = ka->master_cycle_now;
2150                 kernel_ns = ka->master_kernel_ns;
2151         }
2152         spin_unlock(&ka->pvclock_gtod_sync_lock);
2153
2154         /* Keep irq disabled to prevent changes to the clock */
2155         local_irq_save(flags);
2156         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2157         if (unlikely(tgt_tsc_khz == 0)) {
2158                 local_irq_restore(flags);
2159                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2160                 return 1;
2161         }
2162         if (!use_master_clock) {
2163                 host_tsc = rdtsc();
2164                 kernel_ns = ktime_get_boot_ns();
2165         }
2166
2167         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2168
2169         /*
2170          * We may have to catch up the TSC to match elapsed wall clock
2171          * time for two reasons, even if kvmclock is used.
2172          *   1) CPU could have been running below the maximum TSC rate
2173          *   2) Broken TSC compensation resets the base at each VCPU
2174          *      entry to avoid unknown leaps of TSC even when running
2175          *      again on the same CPU.  This may cause apparent elapsed
2176          *      time to disappear, and the guest to stand still or run
2177          *      very slowly.
2178          */
2179         if (vcpu->tsc_catchup) {
2180                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2181                 if (tsc > tsc_timestamp) {
2182                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2183                         tsc_timestamp = tsc;
2184                 }
2185         }
2186
2187         local_irq_restore(flags);
2188
2189         /* With all the info we got, fill in the values */
2190
2191         if (kvm_has_tsc_control)
2192                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2193
2194         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2195                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2196                                    &vcpu->hv_clock.tsc_shift,
2197                                    &vcpu->hv_clock.tsc_to_system_mul);
2198                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2199         }
2200
2201         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2202         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2203         vcpu->last_guest_tsc = tsc_timestamp;
2204
2205         /* If the host uses TSC clocksource, then it is stable */
2206         pvclock_flags = 0;
2207         if (use_master_clock)
2208                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2209
2210         vcpu->hv_clock.flags = pvclock_flags;
2211
2212         if (vcpu->pv_time_enabled)
2213                 kvm_setup_pvclock_page(v);
2214         if (v == kvm_get_vcpu(v->kvm, 0))
2215                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2216         return 0;
2217 }
2218
2219 /*
2220  * kvmclock updates which are isolated to a given vcpu, such as
2221  * vcpu->cpu migration, should not allow system_timestamp from
2222  * the rest of the vcpus to remain static. Otherwise ntp frequency
2223  * correction applies to one vcpu's system_timestamp but not
2224  * the others.
2225  *
2226  * So in those cases, request a kvmclock update for all vcpus.
2227  * We need to rate-limit these requests though, as they can
2228  * considerably slow guests that have a large number of vcpus.
2229  * The time for a remote vcpu to update its kvmclock is bound
2230  * by the delay we use to rate-limit the updates.
2231  */
2232
2233 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2234
2235 static void kvmclock_update_fn(struct work_struct *work)
2236 {
2237         int i;
2238         struct delayed_work *dwork = to_delayed_work(work);
2239         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2240                                            kvmclock_update_work);
2241         struct kvm *kvm = container_of(ka, struct kvm, arch);
2242         struct kvm_vcpu *vcpu;
2243
2244         kvm_for_each_vcpu(i, vcpu, kvm) {
2245                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2246                 kvm_vcpu_kick(vcpu);
2247         }
2248 }
2249
2250 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2251 {
2252         struct kvm *kvm = v->kvm;
2253
2254         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2255         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2256                                         KVMCLOCK_UPDATE_DELAY);
2257 }
2258
2259 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2260
2261 static void kvmclock_sync_fn(struct work_struct *work)
2262 {
2263         struct delayed_work *dwork = to_delayed_work(work);
2264         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2265                                            kvmclock_sync_work);
2266         struct kvm *kvm = container_of(ka, struct kvm, arch);
2267
2268         if (!kvmclock_periodic_sync)
2269                 return;
2270
2271         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2272         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2273                                         KVMCLOCK_SYNC_PERIOD);
2274 }
2275
2276 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2277 {
2278         u64 mcg_cap = vcpu->arch.mcg_cap;
2279         unsigned bank_num = mcg_cap & 0xff;
2280         u32 msr = msr_info->index;
2281         u64 data = msr_info->data;
2282
2283         switch (msr) {
2284         case MSR_IA32_MCG_STATUS:
2285                 vcpu->arch.mcg_status = data;
2286                 break;
2287         case MSR_IA32_MCG_CTL:
2288                 if (!(mcg_cap & MCG_CTL_P) &&
2289                     (data || !msr_info->host_initiated))
2290                         return 1;
2291                 if (data != 0 && data != ~(u64)0)
2292                         return 1;
2293                 vcpu->arch.mcg_ctl = data;
2294                 break;
2295         default:
2296                 if (msr >= MSR_IA32_MC0_CTL &&
2297                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2298                         u32 offset = msr - MSR_IA32_MC0_CTL;
2299                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2300                          * some Linux kernels though clear bit 10 in bank 4 to
2301                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2302                          * this to avoid an uncatched #GP in the guest
2303                          */
2304                         if ((offset & 0x3) == 0 &&
2305                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2306                                 return -1;
2307                         if (!msr_info->host_initiated &&
2308                                 (offset & 0x3) == 1 && data != 0)
2309                                 return -1;
2310                         vcpu->arch.mce_banks[offset] = data;
2311                         break;
2312                 }
2313                 return 1;
2314         }
2315         return 0;
2316 }
2317
2318 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2319 {
2320         struct kvm *kvm = vcpu->kvm;
2321         int lm = is_long_mode(vcpu);
2322         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2323                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2324         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2325                 : kvm->arch.xen_hvm_config.blob_size_32;
2326         u32 page_num = data & ~PAGE_MASK;
2327         u64 page_addr = data & PAGE_MASK;
2328         u8 *page;
2329         int r;
2330
2331         r = -E2BIG;
2332         if (page_num >= blob_size)
2333                 goto out;
2334         r = -ENOMEM;
2335         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2336         if (IS_ERR(page)) {
2337                 r = PTR_ERR(page);
2338                 goto out;
2339         }
2340         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2341                 goto out_free;
2342         r = 0;
2343 out_free:
2344         kfree(page);
2345 out:
2346         return r;
2347 }
2348
2349 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2350 {
2351         gpa_t gpa = data & ~0x3f;
2352
2353         /* Bits 3:5 are reserved, Should be zero */
2354         if (data & 0x38)
2355                 return 1;
2356
2357         vcpu->arch.apf.msr_val = data;
2358
2359         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2360                 kvm_clear_async_pf_completion_queue(vcpu);
2361                 kvm_async_pf_hash_reset(vcpu);
2362                 return 0;
2363         }
2364
2365         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2366                                         sizeof(u32)))
2367                 return 1;
2368
2369         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2370         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2371         kvm_async_pf_wakeup_all(vcpu);
2372         return 0;
2373 }
2374
2375 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2376 {
2377         vcpu->arch.pv_time_enabled = false;
2378 }
2379
2380 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2381 {
2382         ++vcpu->stat.tlb_flush;
2383         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2384 }
2385
2386 static void record_steal_time(struct kvm_vcpu *vcpu)
2387 {
2388         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2389                 return;
2390
2391         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2392                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2393                 return;
2394
2395         /*
2396          * Doing a TLB flush here, on the guest's behalf, can avoid
2397          * expensive IPIs.
2398          */
2399         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2400                 kvm_vcpu_flush_tlb(vcpu, false);
2401
2402         if (vcpu->arch.st.steal.version & 1)
2403                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2404
2405         vcpu->arch.st.steal.version += 1;
2406
2407         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2408                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2409
2410         smp_wmb();
2411
2412         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2413                 vcpu->arch.st.last_steal;
2414         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2415
2416         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2417                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2418
2419         smp_wmb();
2420
2421         vcpu->arch.st.steal.version += 1;
2422
2423         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2424                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2425 }
2426
2427 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2428 {
2429         bool pr = false;
2430         u32 msr = msr_info->index;
2431         u64 data = msr_info->data;
2432
2433         switch (msr) {
2434         case MSR_AMD64_NB_CFG:
2435         case MSR_IA32_UCODE_WRITE:
2436         case MSR_VM_HSAVE_PA:
2437         case MSR_AMD64_PATCH_LOADER:
2438         case MSR_AMD64_BU_CFG2:
2439         case MSR_AMD64_DC_CFG:
2440         case MSR_F15H_EX_CFG:
2441                 break;
2442
2443         case MSR_IA32_UCODE_REV:
2444                 if (msr_info->host_initiated)
2445                         vcpu->arch.microcode_version = data;
2446                 break;
2447         case MSR_IA32_ARCH_CAPABILITIES:
2448                 if (!msr_info->host_initiated)
2449                         return 1;
2450                 vcpu->arch.arch_capabilities = data;
2451                 break;
2452         case MSR_EFER:
2453                 return set_efer(vcpu, data);
2454         case MSR_K7_HWCR:
2455                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2456                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2457                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2458                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2459                 if (data != 0) {
2460                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2461                                     data);
2462                         return 1;
2463                 }
2464                 break;
2465         case MSR_FAM10H_MMIO_CONF_BASE:
2466                 if (data != 0) {
2467                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2468                                     "0x%llx\n", data);
2469                         return 1;
2470                 }
2471                 break;
2472         case MSR_IA32_DEBUGCTLMSR:
2473                 if (!data) {
2474                         /* We support the non-activated case already */
2475                         break;
2476                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2477                         /* Values other than LBR and BTF are vendor-specific,
2478                            thus reserved and should throw a #GP */
2479                         return 1;
2480                 }
2481                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2482                             __func__, data);
2483                 break;
2484         case 0x200 ... 0x2ff:
2485                 return kvm_mtrr_set_msr(vcpu, msr, data);
2486         case MSR_IA32_APICBASE:
2487                 return kvm_set_apic_base(vcpu, msr_info);
2488         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2489                 return kvm_x2apic_msr_write(vcpu, msr, data);
2490         case MSR_IA32_TSCDEADLINE:
2491                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2492                 break;
2493         case MSR_IA32_TSC_ADJUST:
2494                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2495                         if (!msr_info->host_initiated) {
2496                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2497                                 adjust_tsc_offset_guest(vcpu, adj);
2498                         }
2499                         vcpu->arch.ia32_tsc_adjust_msr = data;
2500                 }
2501                 break;
2502         case MSR_IA32_MISC_ENABLE:
2503                 vcpu->arch.ia32_misc_enable_msr = data;
2504                 break;
2505         case MSR_IA32_SMBASE:
2506                 if (!msr_info->host_initiated)
2507                         return 1;
2508                 vcpu->arch.smbase = data;
2509                 break;
2510         case MSR_IA32_TSC:
2511                 kvm_write_tsc(vcpu, msr_info);
2512                 break;
2513         case MSR_SMI_COUNT:
2514                 if (!msr_info->host_initiated)
2515                         return 1;
2516                 vcpu->arch.smi_count = data;
2517                 break;
2518         case MSR_KVM_WALL_CLOCK_NEW:
2519         case MSR_KVM_WALL_CLOCK:
2520                 vcpu->kvm->arch.wall_clock = data;
2521                 kvm_write_wall_clock(vcpu->kvm, data);
2522                 break;
2523         case MSR_KVM_SYSTEM_TIME_NEW:
2524         case MSR_KVM_SYSTEM_TIME: {
2525                 struct kvm_arch *ka = &vcpu->kvm->arch;
2526
2527                 kvmclock_reset(vcpu);
2528
2529                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2530                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2531
2532                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2533                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2534
2535                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2536                 }
2537
2538                 vcpu->arch.time = data;
2539                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2540
2541                 /* we verify if the enable bit is set... */
2542                 if (!(data & 1))
2543                         break;
2544
2545                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2546                      &vcpu->arch.pv_time, data & ~1ULL,
2547                      sizeof(struct pvclock_vcpu_time_info)))
2548                         vcpu->arch.pv_time_enabled = false;
2549                 else
2550                         vcpu->arch.pv_time_enabled = true;
2551
2552                 break;
2553         }
2554         case MSR_KVM_ASYNC_PF_EN:
2555                 if (kvm_pv_enable_async_pf(vcpu, data))
2556                         return 1;
2557                 break;
2558         case MSR_KVM_STEAL_TIME:
2559
2560                 if (unlikely(!sched_info_on()))
2561                         return 1;
2562
2563                 if (data & KVM_STEAL_RESERVED_MASK)
2564                         return 1;
2565
2566                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2567                                                 data & KVM_STEAL_VALID_BITS,
2568                                                 sizeof(struct kvm_steal_time)))
2569                         return 1;
2570
2571                 vcpu->arch.st.msr_val = data;
2572
2573                 if (!(data & KVM_MSR_ENABLED))
2574                         break;
2575
2576                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2577
2578                 break;
2579         case MSR_KVM_PV_EOI_EN:
2580                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2581                         return 1;
2582                 break;
2583
2584         case MSR_IA32_MCG_CTL:
2585         case MSR_IA32_MCG_STATUS:
2586         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2587                 return set_msr_mce(vcpu, msr_info);
2588
2589         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2590         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2591                 pr = true; /* fall through */
2592         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2593         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2594                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2595                         return kvm_pmu_set_msr(vcpu, msr_info);
2596
2597                 if (pr || data != 0)
2598                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2599                                     "0x%x data 0x%llx\n", msr, data);
2600                 break;
2601         case MSR_K7_CLK_CTL:
2602                 /*
2603                  * Ignore all writes to this no longer documented MSR.
2604                  * Writes are only relevant for old K7 processors,
2605                  * all pre-dating SVM, but a recommended workaround from
2606                  * AMD for these chips. It is possible to specify the
2607                  * affected processor models on the command line, hence
2608                  * the need to ignore the workaround.
2609                  */
2610                 break;
2611         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2612         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2613         case HV_X64_MSR_CRASH_CTL:
2614         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2615         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2616         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2617         case HV_X64_MSR_TSC_EMULATION_STATUS:
2618                 return kvm_hv_set_msr_common(vcpu, msr, data,
2619                                              msr_info->host_initiated);
2620         case MSR_IA32_BBL_CR_CTL3:
2621                 /* Drop writes to this legacy MSR -- see rdmsr
2622                  * counterpart for further detail.
2623                  */
2624                 if (report_ignored_msrs)
2625                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2626                                 msr, data);
2627                 break;
2628         case MSR_AMD64_OSVW_ID_LENGTH:
2629                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2630                         return 1;
2631                 vcpu->arch.osvw.length = data;
2632                 break;
2633         case MSR_AMD64_OSVW_STATUS:
2634                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2635                         return 1;
2636                 vcpu->arch.osvw.status = data;
2637                 break;
2638         case MSR_PLATFORM_INFO:
2639                 if (!msr_info->host_initiated ||
2640                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2641                      cpuid_fault_enabled(vcpu)))
2642                         return 1;
2643                 vcpu->arch.msr_platform_info = data;
2644                 break;
2645         case MSR_MISC_FEATURES_ENABLES:
2646                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2647                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2648                      !supports_cpuid_fault(vcpu)))
2649                         return 1;
2650                 vcpu->arch.msr_misc_features_enables = data;
2651                 break;
2652         default:
2653                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2654                         return xen_hvm_config(vcpu, data);
2655                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2656                         return kvm_pmu_set_msr(vcpu, msr_info);
2657                 if (!ignore_msrs) {
2658                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2659                                     msr, data);
2660                         return 1;
2661                 } else {
2662                         if (report_ignored_msrs)
2663                                 vcpu_unimpl(vcpu,
2664                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2665                                         msr, data);
2666                         break;
2667                 }
2668         }
2669         return 0;
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2672
2673
2674 /*
2675  * Reads an msr value (of 'msr_index') into 'pdata'.
2676  * Returns 0 on success, non-0 otherwise.
2677  * Assumes vcpu_load() was already called.
2678  */
2679 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2680 {
2681         return kvm_x86_ops->get_msr(vcpu, msr);
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_get_msr);
2684
2685 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2686 {
2687         u64 data;
2688         u64 mcg_cap = vcpu->arch.mcg_cap;
2689         unsigned bank_num = mcg_cap & 0xff;
2690
2691         switch (msr) {
2692         case MSR_IA32_P5_MC_ADDR:
2693         case MSR_IA32_P5_MC_TYPE:
2694                 data = 0;
2695                 break;
2696         case MSR_IA32_MCG_CAP:
2697                 data = vcpu->arch.mcg_cap;
2698                 break;
2699         case MSR_IA32_MCG_CTL:
2700                 if (!(mcg_cap & MCG_CTL_P) && !host)
2701                         return 1;
2702                 data = vcpu->arch.mcg_ctl;
2703                 break;
2704         case MSR_IA32_MCG_STATUS:
2705                 data = vcpu->arch.mcg_status;
2706                 break;
2707         default:
2708                 if (msr >= MSR_IA32_MC0_CTL &&
2709                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2710                         u32 offset = msr - MSR_IA32_MC0_CTL;
2711                         data = vcpu->arch.mce_banks[offset];
2712                         break;
2713                 }
2714                 return 1;
2715         }
2716         *pdata = data;
2717         return 0;
2718 }
2719
2720 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2721 {
2722         switch (msr_info->index) {
2723         case MSR_IA32_PLATFORM_ID:
2724         case MSR_IA32_EBL_CR_POWERON:
2725         case MSR_IA32_DEBUGCTLMSR:
2726         case MSR_IA32_LASTBRANCHFROMIP:
2727         case MSR_IA32_LASTBRANCHTOIP:
2728         case MSR_IA32_LASTINTFROMIP:
2729         case MSR_IA32_LASTINTTOIP:
2730         case MSR_K8_SYSCFG:
2731         case MSR_K8_TSEG_ADDR:
2732         case MSR_K8_TSEG_MASK:
2733         case MSR_K7_HWCR:
2734         case MSR_VM_HSAVE_PA:
2735         case MSR_K8_INT_PENDING_MSG:
2736         case MSR_AMD64_NB_CFG:
2737         case MSR_FAM10H_MMIO_CONF_BASE:
2738         case MSR_AMD64_BU_CFG2:
2739         case MSR_IA32_PERF_CTL:
2740         case MSR_AMD64_DC_CFG:
2741         case MSR_F15H_EX_CFG:
2742                 msr_info->data = 0;
2743                 break;
2744         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2745         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2746         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2747         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2748         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2749                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2750                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2751                 msr_info->data = 0;
2752                 break;
2753         case MSR_IA32_UCODE_REV:
2754                 msr_info->data = vcpu->arch.microcode_version;
2755                 break;
2756         case MSR_IA32_ARCH_CAPABILITIES:
2757                 if (!msr_info->host_initiated &&
2758                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2759                         return 1;
2760                 msr_info->data = vcpu->arch.arch_capabilities;
2761                 break;
2762         case MSR_IA32_TSC:
2763                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2764                 break;
2765         case MSR_MTRRcap:
2766         case 0x200 ... 0x2ff:
2767                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2768         case 0xcd: /* fsb frequency */
2769                 msr_info->data = 3;
2770                 break;
2771                 /*
2772                  * MSR_EBC_FREQUENCY_ID
2773                  * Conservative value valid for even the basic CPU models.
2774                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2775                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2776                  * and 266MHz for model 3, or 4. Set Core Clock
2777                  * Frequency to System Bus Frequency Ratio to 1 (bits
2778                  * 31:24) even though these are only valid for CPU
2779                  * models > 2, however guests may end up dividing or
2780                  * multiplying by zero otherwise.
2781                  */
2782         case MSR_EBC_FREQUENCY_ID:
2783                 msr_info->data = 1 << 24;
2784                 break;
2785         case MSR_IA32_APICBASE:
2786                 msr_info->data = kvm_get_apic_base(vcpu);
2787                 break;
2788         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2789                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2790                 break;
2791         case MSR_IA32_TSCDEADLINE:
2792                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2793                 break;
2794         case MSR_IA32_TSC_ADJUST:
2795                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2796                 break;
2797         case MSR_IA32_MISC_ENABLE:
2798                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2799                 break;
2800         case MSR_IA32_SMBASE:
2801                 if (!msr_info->host_initiated)
2802                         return 1;
2803                 msr_info->data = vcpu->arch.smbase;
2804                 break;
2805         case MSR_SMI_COUNT:
2806                 msr_info->data = vcpu->arch.smi_count;
2807                 break;
2808         case MSR_IA32_PERF_STATUS:
2809                 /* TSC increment by tick */
2810                 msr_info->data = 1000ULL;
2811                 /* CPU multiplier */
2812                 msr_info->data |= (((uint64_t)4ULL) << 40);
2813                 break;
2814         case MSR_EFER:
2815                 msr_info->data = vcpu->arch.efer;
2816                 break;
2817         case MSR_KVM_WALL_CLOCK:
2818         case MSR_KVM_WALL_CLOCK_NEW:
2819                 msr_info->data = vcpu->kvm->arch.wall_clock;
2820                 break;
2821         case MSR_KVM_SYSTEM_TIME:
2822         case MSR_KVM_SYSTEM_TIME_NEW:
2823                 msr_info->data = vcpu->arch.time;
2824                 break;
2825         case MSR_KVM_ASYNC_PF_EN:
2826                 msr_info->data = vcpu->arch.apf.msr_val;
2827                 break;
2828         case MSR_KVM_STEAL_TIME:
2829                 msr_info->data = vcpu->arch.st.msr_val;
2830                 break;
2831         case MSR_KVM_PV_EOI_EN:
2832                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2833                 break;
2834         case MSR_IA32_P5_MC_ADDR:
2835         case MSR_IA32_P5_MC_TYPE:
2836         case MSR_IA32_MCG_CAP:
2837         case MSR_IA32_MCG_CTL:
2838         case MSR_IA32_MCG_STATUS:
2839         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2840                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2841                                    msr_info->host_initiated);
2842         case MSR_K7_CLK_CTL:
2843                 /*
2844                  * Provide expected ramp-up count for K7. All other
2845                  * are set to zero, indicating minimum divisors for
2846                  * every field.
2847                  *
2848                  * This prevents guest kernels on AMD host with CPU
2849                  * type 6, model 8 and higher from exploding due to
2850                  * the rdmsr failing.
2851                  */
2852                 msr_info->data = 0x20000000;
2853                 break;
2854         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2855         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2856         case HV_X64_MSR_CRASH_CTL:
2857         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2858         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2859         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2860         case HV_X64_MSR_TSC_EMULATION_STATUS:
2861                 return kvm_hv_get_msr_common(vcpu,
2862                                              msr_info->index, &msr_info->data,
2863                                              msr_info->host_initiated);
2864                 break;
2865         case MSR_IA32_BBL_CR_CTL3:
2866                 /* This legacy MSR exists but isn't fully documented in current
2867                  * silicon.  It is however accessed by winxp in very narrow
2868                  * scenarios where it sets bit #19, itself documented as
2869                  * a "reserved" bit.  Best effort attempt to source coherent
2870                  * read data here should the balance of the register be
2871                  * interpreted by the guest:
2872                  *
2873                  * L2 cache control register 3: 64GB range, 256KB size,
2874                  * enabled, latency 0x1, configured
2875                  */
2876                 msr_info->data = 0xbe702111;
2877                 break;
2878         case MSR_AMD64_OSVW_ID_LENGTH:
2879                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2880                         return 1;
2881                 msr_info->data = vcpu->arch.osvw.length;
2882                 break;
2883         case MSR_AMD64_OSVW_STATUS:
2884                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2885                         return 1;
2886                 msr_info->data = vcpu->arch.osvw.status;
2887                 break;
2888         case MSR_PLATFORM_INFO:
2889                 if (!msr_info->host_initiated &&
2890                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2891                         return 1;
2892                 msr_info->data = vcpu->arch.msr_platform_info;
2893                 break;
2894         case MSR_MISC_FEATURES_ENABLES:
2895                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2896                 break;
2897         default:
2898                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2899                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2900                 if (!ignore_msrs) {
2901                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2902                                                msr_info->index);
2903                         return 1;
2904                 } else {
2905                         if (report_ignored_msrs)
2906                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2907                                         msr_info->index);
2908                         msr_info->data = 0;
2909                 }
2910                 break;
2911         }
2912         return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2915
2916 /*
2917  * Read or write a bunch of msrs. All parameters are kernel addresses.
2918  *
2919  * @return number of msrs set successfully.
2920  */
2921 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2922                     struct kvm_msr_entry *entries,
2923                     int (*do_msr)(struct kvm_vcpu *vcpu,
2924                                   unsigned index, u64 *data))
2925 {
2926         int i;
2927
2928         for (i = 0; i < msrs->nmsrs; ++i)
2929                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2930                         break;
2931
2932         return i;
2933 }
2934
2935 /*
2936  * Read or write a bunch of msrs. Parameters are user addresses.
2937  *
2938  * @return number of msrs set successfully.
2939  */
2940 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2941                   int (*do_msr)(struct kvm_vcpu *vcpu,
2942                                 unsigned index, u64 *data),
2943                   int writeback)
2944 {
2945         struct kvm_msrs msrs;
2946         struct kvm_msr_entry *entries;
2947         int r, n;
2948         unsigned size;
2949
2950         r = -EFAULT;
2951         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2952                 goto out;
2953
2954         r = -E2BIG;
2955         if (msrs.nmsrs >= MAX_IO_MSRS)
2956                 goto out;
2957
2958         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2959         entries = memdup_user(user_msrs->entries, size);
2960         if (IS_ERR(entries)) {
2961                 r = PTR_ERR(entries);
2962                 goto out;
2963         }
2964
2965         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2966         if (r < 0)
2967                 goto out_free;
2968
2969         r = -EFAULT;
2970         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2971                 goto out_free;
2972
2973         r = n;
2974
2975 out_free:
2976         kfree(entries);
2977 out:
2978         return r;
2979 }
2980
2981 static inline bool kvm_can_mwait_in_guest(void)
2982 {
2983         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2984                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2985                 boot_cpu_has(X86_FEATURE_ARAT);
2986 }
2987
2988 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2989 {
2990         int r = 0;
2991
2992         switch (ext) {
2993         case KVM_CAP_IRQCHIP:
2994         case KVM_CAP_HLT:
2995         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2996         case KVM_CAP_SET_TSS_ADDR:
2997         case KVM_CAP_EXT_CPUID:
2998         case KVM_CAP_EXT_EMUL_CPUID:
2999         case KVM_CAP_CLOCKSOURCE:
3000         case KVM_CAP_PIT:
3001         case KVM_CAP_NOP_IO_DELAY:
3002         case KVM_CAP_MP_STATE:
3003         case KVM_CAP_SYNC_MMU:
3004         case KVM_CAP_USER_NMI:
3005         case KVM_CAP_REINJECT_CONTROL:
3006         case KVM_CAP_IRQ_INJECT_STATUS:
3007         case KVM_CAP_IOEVENTFD:
3008         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3009         case KVM_CAP_PIT2:
3010         case KVM_CAP_PIT_STATE2:
3011         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3012         case KVM_CAP_XEN_HVM:
3013         case KVM_CAP_VCPU_EVENTS:
3014         case KVM_CAP_HYPERV:
3015         case KVM_CAP_HYPERV_VAPIC:
3016         case KVM_CAP_HYPERV_SPIN:
3017         case KVM_CAP_HYPERV_SYNIC:
3018         case KVM_CAP_HYPERV_SYNIC2:
3019         case KVM_CAP_HYPERV_VP_INDEX:
3020         case KVM_CAP_HYPERV_EVENTFD:
3021         case KVM_CAP_HYPERV_TLBFLUSH:
3022         case KVM_CAP_HYPERV_SEND_IPI:
3023         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3024         case KVM_CAP_HYPERV_CPUID:
3025         case KVM_CAP_PCI_SEGMENT:
3026         case KVM_CAP_DEBUGREGS:
3027         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3028         case KVM_CAP_XSAVE:
3029         case KVM_CAP_ASYNC_PF:
3030         case KVM_CAP_GET_TSC_KHZ:
3031         case KVM_CAP_KVMCLOCK_CTRL:
3032         case KVM_CAP_READONLY_MEM:
3033         case KVM_CAP_HYPERV_TIME:
3034         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3035         case KVM_CAP_TSC_DEADLINE_TIMER:
3036         case KVM_CAP_DISABLE_QUIRKS:
3037         case KVM_CAP_SET_BOOT_CPU_ID:
3038         case KVM_CAP_SPLIT_IRQCHIP:
3039         case KVM_CAP_IMMEDIATE_EXIT:
3040         case KVM_CAP_GET_MSR_FEATURES:
3041         case KVM_CAP_MSR_PLATFORM_INFO:
3042         case KVM_CAP_EXCEPTION_PAYLOAD:
3043                 r = 1;
3044                 break;
3045         case KVM_CAP_SYNC_REGS:
3046                 r = KVM_SYNC_X86_VALID_FIELDS;
3047                 break;
3048         case KVM_CAP_ADJUST_CLOCK:
3049                 r = KVM_CLOCK_TSC_STABLE;
3050                 break;
3051         case KVM_CAP_X86_DISABLE_EXITS:
3052                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3053                 if(kvm_can_mwait_in_guest())
3054                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3055                 break;
3056         case KVM_CAP_X86_SMM:
3057                 /* SMBASE is usually relocated above 1M on modern chipsets,
3058                  * and SMM handlers might indeed rely on 4G segment limits,
3059                  * so do not report SMM to be available if real mode is
3060                  * emulated via vm86 mode.  Still, do not go to great lengths
3061                  * to avoid userspace's usage of the feature, because it is a
3062                  * fringe case that is not enabled except via specific settings
3063                  * of the module parameters.
3064                  */
3065                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3066                 break;
3067         case KVM_CAP_VAPIC:
3068                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3069                 break;
3070         case KVM_CAP_NR_VCPUS:
3071                 r = KVM_SOFT_MAX_VCPUS;
3072                 break;
3073         case KVM_CAP_MAX_VCPUS:
3074                 r = KVM_MAX_VCPUS;
3075                 break;
3076         case KVM_CAP_NR_MEMSLOTS:
3077                 r = KVM_USER_MEM_SLOTS;
3078                 break;
3079         case KVM_CAP_PV_MMU:    /* obsolete */
3080                 r = 0;
3081                 break;
3082         case KVM_CAP_MCE:
3083                 r = KVM_MAX_MCE_BANKS;
3084                 break;
3085         case KVM_CAP_XCRS:
3086                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3087                 break;
3088         case KVM_CAP_TSC_CONTROL:
3089                 r = kvm_has_tsc_control;
3090                 break;
3091         case KVM_CAP_X2APIC_API:
3092                 r = KVM_X2APIC_API_VALID_FLAGS;
3093                 break;
3094         case KVM_CAP_NESTED_STATE:
3095                 r = kvm_x86_ops->get_nested_state ?
3096                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3097                 break;
3098         default:
3099                 break;
3100         }
3101         return r;
3102
3103 }
3104
3105 long kvm_arch_dev_ioctl(struct file *filp,
3106                         unsigned int ioctl, unsigned long arg)
3107 {
3108         void __user *argp = (void __user *)arg;
3109         long r;
3110
3111         switch (ioctl) {
3112         case KVM_GET_MSR_INDEX_LIST: {
3113                 struct kvm_msr_list __user *user_msr_list = argp;
3114                 struct kvm_msr_list msr_list;
3115                 unsigned n;
3116
3117                 r = -EFAULT;
3118                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3119                         goto out;
3120                 n = msr_list.nmsrs;
3121                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3122                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3123                         goto out;
3124                 r = -E2BIG;
3125                 if (n < msr_list.nmsrs)
3126                         goto out;
3127                 r = -EFAULT;
3128                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3129                                  num_msrs_to_save * sizeof(u32)))
3130                         goto out;
3131                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3132                                  &emulated_msrs,
3133                                  num_emulated_msrs * sizeof(u32)))
3134                         goto out;
3135                 r = 0;
3136                 break;
3137         }
3138         case KVM_GET_SUPPORTED_CPUID:
3139         case KVM_GET_EMULATED_CPUID: {
3140                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3141                 struct kvm_cpuid2 cpuid;
3142
3143                 r = -EFAULT;
3144                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3145                         goto out;
3146
3147                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3148                                             ioctl);
3149                 if (r)
3150                         goto out;
3151
3152                 r = -EFAULT;
3153                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3154                         goto out;
3155                 r = 0;
3156                 break;
3157         }
3158         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3159                 r = -EFAULT;
3160                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3161                                  sizeof(kvm_mce_cap_supported)))
3162                         goto out;
3163                 r = 0;
3164                 break;
3165         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3166                 struct kvm_msr_list __user *user_msr_list = argp;
3167                 struct kvm_msr_list msr_list;
3168                 unsigned int n;
3169
3170                 r = -EFAULT;
3171                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3172                         goto out;
3173                 n = msr_list.nmsrs;
3174                 msr_list.nmsrs = num_msr_based_features;
3175                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3176                         goto out;
3177                 r = -E2BIG;
3178                 if (n < msr_list.nmsrs)
3179                         goto out;
3180                 r = -EFAULT;
3181                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3182                                  num_msr_based_features * sizeof(u32)))
3183                         goto out;
3184                 r = 0;
3185                 break;
3186         }
3187         case KVM_GET_MSRS:
3188                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3189                 break;
3190         }
3191         default:
3192                 r = -EINVAL;
3193         }
3194 out:
3195         return r;
3196 }
3197
3198 static void wbinvd_ipi(void *garbage)
3199 {
3200         wbinvd();
3201 }
3202
3203 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3204 {
3205         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3206 }
3207
3208 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3209 {
3210         /* Address WBINVD may be executed by guest */
3211         if (need_emulate_wbinvd(vcpu)) {
3212                 if (kvm_x86_ops->has_wbinvd_exit())
3213                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3214                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3215                         smp_call_function_single(vcpu->cpu,
3216                                         wbinvd_ipi, NULL, 1);
3217         }
3218
3219         kvm_x86_ops->vcpu_load(vcpu, cpu);
3220
3221         /* Apply any externally detected TSC adjustments (due to suspend) */
3222         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3223                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3224                 vcpu->arch.tsc_offset_adjustment = 0;
3225                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3226         }
3227
3228         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3229                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3230                                 rdtsc() - vcpu->arch.last_host_tsc;
3231                 if (tsc_delta < 0)
3232                         mark_tsc_unstable("KVM discovered backwards TSC");
3233
3234                 if (kvm_check_tsc_unstable()) {
3235                         u64 offset = kvm_compute_tsc_offset(vcpu,
3236                                                 vcpu->arch.last_guest_tsc);
3237                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3238                         vcpu->arch.tsc_catchup = 1;
3239                 }
3240
3241                 if (kvm_lapic_hv_timer_in_use(vcpu))
3242                         kvm_lapic_restart_hv_timer(vcpu);
3243
3244                 /*
3245                  * On a host with synchronized TSC, there is no need to update
3246                  * kvmclock on vcpu->cpu migration
3247                  */
3248                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3249                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3250                 if (vcpu->cpu != cpu)
3251                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3252                 vcpu->cpu = cpu;
3253         }
3254
3255         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3256 }
3257
3258 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3259 {
3260         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3261                 return;
3262
3263         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3264
3265         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3266                         &vcpu->arch.st.steal.preempted,
3267                         offsetof(struct kvm_steal_time, preempted),
3268                         sizeof(vcpu->arch.st.steal.preempted));
3269 }
3270
3271 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3272 {
3273         int idx;
3274
3275         if (vcpu->preempted)
3276                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3277
3278         /*
3279          * Disable page faults because we're in atomic context here.
3280          * kvm_write_guest_offset_cached() would call might_fault()
3281          * that relies on pagefault_disable() to tell if there's a
3282          * bug. NOTE: the write to guest memory may not go through if
3283          * during postcopy live migration or if there's heavy guest
3284          * paging.
3285          */
3286         pagefault_disable();
3287         /*
3288          * kvm_memslots() will be called by
3289          * kvm_write_guest_offset_cached() so take the srcu lock.
3290          */
3291         idx = srcu_read_lock(&vcpu->kvm->srcu);
3292         kvm_steal_time_set_preempted(vcpu);
3293         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3294         pagefault_enable();
3295         kvm_x86_ops->vcpu_put(vcpu);
3296         vcpu->arch.last_host_tsc = rdtsc();
3297         /*
3298          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3299          * on every vmexit, but if not, we might have a stale dr6 from the
3300          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3301          */
3302         set_debugreg(0, 6);
3303 }
3304
3305 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3306                                     struct kvm_lapic_state *s)
3307 {
3308         if (vcpu->arch.apicv_active)
3309                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3310
3311         return kvm_apic_get_state(vcpu, s);
3312 }
3313
3314 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3315                                     struct kvm_lapic_state *s)
3316 {
3317         int r;
3318
3319         r = kvm_apic_set_state(vcpu, s);
3320         if (r)
3321                 return r;
3322         update_cr8_intercept(vcpu);
3323
3324         return 0;
3325 }
3326
3327 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3328 {
3329         return (!lapic_in_kernel(vcpu) ||
3330                 kvm_apic_accept_pic_intr(vcpu));
3331 }
3332
3333 /*
3334  * if userspace requested an interrupt window, check that the
3335  * interrupt window is open.
3336  *
3337  * No need to exit to userspace if we already have an interrupt queued.
3338  */
3339 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3340 {
3341         return kvm_arch_interrupt_allowed(vcpu) &&
3342                 !kvm_cpu_has_interrupt(vcpu) &&
3343                 !kvm_event_needs_reinjection(vcpu) &&
3344                 kvm_cpu_accept_dm_intr(vcpu);
3345 }
3346
3347 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3348                                     struct kvm_interrupt *irq)
3349 {
3350         if (irq->irq >= KVM_NR_INTERRUPTS)
3351                 return -EINVAL;
3352
3353         if (!irqchip_in_kernel(vcpu->kvm)) {
3354                 kvm_queue_interrupt(vcpu, irq->irq, false);
3355                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3356                 return 0;
3357         }
3358
3359         /*
3360          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3361          * fail for in-kernel 8259.
3362          */
3363         if (pic_in_kernel(vcpu->kvm))
3364                 return -ENXIO;
3365
3366         if (vcpu->arch.pending_external_vector != -1)
3367                 return -EEXIST;
3368
3369         vcpu->arch.pending_external_vector = irq->irq;
3370         kvm_make_request(KVM_REQ_EVENT, vcpu);
3371         return 0;
3372 }
3373
3374 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3375 {
3376         kvm_inject_nmi(vcpu);
3377
3378         return 0;
3379 }
3380
3381 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3382 {
3383         kvm_make_request(KVM_REQ_SMI, vcpu);
3384
3385         return 0;
3386 }
3387
3388 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3389                                            struct kvm_tpr_access_ctl *tac)
3390 {
3391         if (tac->flags)
3392                 return -EINVAL;
3393         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3394         return 0;
3395 }
3396
3397 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3398                                         u64 mcg_cap)
3399 {
3400         int r;
3401         unsigned bank_num = mcg_cap & 0xff, bank;
3402
3403         r = -EINVAL;
3404         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3405                 goto out;
3406         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3407                 goto out;
3408         r = 0;
3409         vcpu->arch.mcg_cap = mcg_cap;
3410         /* Init IA32_MCG_CTL to all 1s */
3411         if (mcg_cap & MCG_CTL_P)
3412                 vcpu->arch.mcg_ctl = ~(u64)0;
3413         /* Init IA32_MCi_CTL to all 1s */
3414         for (bank = 0; bank < bank_num; bank++)
3415                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3416
3417         if (kvm_x86_ops->setup_mce)
3418                 kvm_x86_ops->setup_mce(vcpu);
3419 out:
3420         return r;
3421 }
3422
3423 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3424                                       struct kvm_x86_mce *mce)
3425 {
3426         u64 mcg_cap = vcpu->arch.mcg_cap;
3427         unsigned bank_num = mcg_cap & 0xff;
3428         u64 *banks = vcpu->arch.mce_banks;
3429
3430         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3431                 return -EINVAL;
3432         /*
3433          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3434          * reporting is disabled
3435          */
3436         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3437             vcpu->arch.mcg_ctl != ~(u64)0)
3438                 return 0;
3439         banks += 4 * mce->bank;
3440         /*
3441          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3442          * reporting is disabled for the bank
3443          */
3444         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3445                 return 0;
3446         if (mce->status & MCI_STATUS_UC) {
3447                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3448                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3449                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3450                         return 0;
3451                 }
3452                 if (banks[1] & MCI_STATUS_VAL)
3453                         mce->status |= MCI_STATUS_OVER;
3454                 banks[2] = mce->addr;
3455                 banks[3] = mce->misc;
3456                 vcpu->arch.mcg_status = mce->mcg_status;
3457                 banks[1] = mce->status;
3458                 kvm_queue_exception(vcpu, MC_VECTOR);
3459         } else if (!(banks[1] & MCI_STATUS_VAL)
3460                    || !(banks[1] & MCI_STATUS_UC)) {
3461                 if (banks[1] & MCI_STATUS_VAL)
3462                         mce->status |= MCI_STATUS_OVER;
3463                 banks[2] = mce->addr;
3464                 banks[3] = mce->misc;
3465                 banks[1] = mce->status;
3466         } else
3467                 banks[1] |= MCI_STATUS_OVER;
3468         return 0;
3469 }
3470
3471 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3472                                                struct kvm_vcpu_events *events)
3473 {
3474         process_nmi(vcpu);
3475
3476         /*
3477          * The API doesn't provide the instruction length for software
3478          * exceptions, so don't report them. As long as the guest RIP
3479          * isn't advanced, we should expect to encounter the exception
3480          * again.
3481          */
3482         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3483                 events->exception.injected = 0;
3484                 events->exception.pending = 0;
3485         } else {
3486                 events->exception.injected = vcpu->arch.exception.injected;
3487                 events->exception.pending = vcpu->arch.exception.pending;
3488                 /*
3489                  * For ABI compatibility, deliberately conflate
3490                  * pending and injected exceptions when
3491                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3492                  */
3493                 if (!vcpu->kvm->arch.exception_payload_enabled)
3494                         events->exception.injected |=
3495                                 vcpu->arch.exception.pending;
3496         }
3497         events->exception.nr = vcpu->arch.exception.nr;
3498         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3499         events->exception.error_code = vcpu->arch.exception.error_code;
3500         events->exception_has_payload = vcpu->arch.exception.has_payload;
3501         events->exception_payload = vcpu->arch.exception.payload;
3502
3503         events->interrupt.injected =
3504                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3505         events->interrupt.nr = vcpu->arch.interrupt.nr;
3506         events->interrupt.soft = 0;
3507         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3508
3509         events->nmi.injected = vcpu->arch.nmi_injected;
3510         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3511         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3512         events->nmi.pad = 0;
3513
3514         events->sipi_vector = 0; /* never valid when reporting to user space */
3515
3516         events->smi.smm = is_smm(vcpu);
3517         events->smi.pending = vcpu->arch.smi_pending;
3518         events->smi.smm_inside_nmi =
3519                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3520         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3521
3522         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3523                          | KVM_VCPUEVENT_VALID_SHADOW
3524                          | KVM_VCPUEVENT_VALID_SMM);
3525         if (vcpu->kvm->arch.exception_payload_enabled)
3526                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3527
3528         memset(&events->reserved, 0, sizeof(events->reserved));
3529 }
3530
3531 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3532
3533 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3534                                               struct kvm_vcpu_events *events)
3535 {
3536         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3537                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3538                               | KVM_VCPUEVENT_VALID_SHADOW
3539                               | KVM_VCPUEVENT_VALID_SMM
3540                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3541                 return -EINVAL;
3542
3543         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3544                 if (!vcpu->kvm->arch.exception_payload_enabled)
3545                         return -EINVAL;
3546                 if (events->exception.pending)
3547                         events->exception.injected = 0;
3548                 else
3549                         events->exception_has_payload = 0;
3550         } else {
3551                 events->exception.pending = 0;
3552                 events->exception_has_payload = 0;
3553         }
3554
3555         if ((events->exception.injected || events->exception.pending) &&
3556             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3557                 return -EINVAL;
3558
3559         /* INITs are latched while in SMM */
3560         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3561             (events->smi.smm || events->smi.pending) &&
3562             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3563                 return -EINVAL;
3564
3565         process_nmi(vcpu);
3566         vcpu->arch.exception.injected = events->exception.injected;
3567         vcpu->arch.exception.pending = events->exception.pending;
3568         vcpu->arch.exception.nr = events->exception.nr;
3569         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3570         vcpu->arch.exception.error_code = events->exception.error_code;
3571         vcpu->arch.exception.has_payload = events->exception_has_payload;
3572         vcpu->arch.exception.payload = events->exception_payload;
3573
3574         vcpu->arch.interrupt.injected = events->interrupt.injected;
3575         vcpu->arch.interrupt.nr = events->interrupt.nr;
3576         vcpu->arch.interrupt.soft = events->interrupt.soft;
3577         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3578                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3579                                                   events->interrupt.shadow);
3580
3581         vcpu->arch.nmi_injected = events->nmi.injected;
3582         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3583                 vcpu->arch.nmi_pending = events->nmi.pending;
3584         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3585
3586         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3587             lapic_in_kernel(vcpu))
3588                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3589
3590         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3591                 u32 hflags = vcpu->arch.hflags;
3592                 if (events->smi.smm)
3593                         hflags |= HF_SMM_MASK;
3594                 else
3595                         hflags &= ~HF_SMM_MASK;
3596                 kvm_set_hflags(vcpu, hflags);
3597
3598                 vcpu->arch.smi_pending = events->smi.pending;
3599
3600                 if (events->smi.smm) {
3601                         if (events->smi.smm_inside_nmi)
3602                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3603                         else
3604                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3605                         if (lapic_in_kernel(vcpu)) {
3606                                 if (events->smi.latched_init)
3607                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3608                                 else
3609                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3610                         }
3611                 }
3612         }
3613
3614         kvm_make_request(KVM_REQ_EVENT, vcpu);
3615
3616         return 0;
3617 }
3618
3619 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3620                                              struct kvm_debugregs *dbgregs)
3621 {
3622         unsigned long val;
3623
3624         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3625         kvm_get_dr(vcpu, 6, &val);
3626         dbgregs->dr6 = val;
3627         dbgregs->dr7 = vcpu->arch.dr7;
3628         dbgregs->flags = 0;
3629         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3630 }
3631
3632 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3633                                             struct kvm_debugregs *dbgregs)
3634 {
3635         if (dbgregs->flags)
3636                 return -EINVAL;
3637
3638         if (dbgregs->dr6 & ~0xffffffffull)
3639                 return -EINVAL;
3640         if (dbgregs->dr7 & ~0xffffffffull)
3641                 return -EINVAL;
3642
3643         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3644         kvm_update_dr0123(vcpu);
3645         vcpu->arch.dr6 = dbgregs->dr6;
3646         kvm_update_dr6(vcpu);
3647         vcpu->arch.dr7 = dbgregs->dr7;
3648         kvm_update_dr7(vcpu);
3649
3650         return 0;
3651 }
3652
3653 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3654
3655 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3656 {
3657         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3658         u64 xstate_bv = xsave->header.xfeatures;
3659         u64 valid;
3660
3661         /*
3662          * Copy legacy XSAVE area, to avoid complications with CPUID
3663          * leaves 0 and 1 in the loop below.
3664          */
3665         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3666
3667         /* Set XSTATE_BV */
3668         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3669         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3670
3671         /*
3672          * Copy each region from the possibly compacted offset to the
3673          * non-compacted offset.
3674          */
3675         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3676         while (valid) {
3677                 u64 feature = valid & -valid;
3678                 int index = fls64(feature) - 1;
3679                 void *src = get_xsave_addr(xsave, feature);
3680
3681                 if (src) {
3682                         u32 size, offset, ecx, edx;
3683                         cpuid_count(XSTATE_CPUID, index,
3684                                     &size, &offset, &ecx, &edx);
3685                         if (feature == XFEATURE_MASK_PKRU)
3686                                 memcpy(dest + offset, &vcpu->arch.pkru,
3687                                        sizeof(vcpu->arch.pkru));
3688                         else
3689                                 memcpy(dest + offset, src, size);
3690
3691                 }
3692
3693                 valid -= feature;
3694         }
3695 }
3696
3697 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3698 {
3699         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3700         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3701         u64 valid;
3702
3703         /*
3704          * Copy legacy XSAVE area, to avoid complications with CPUID
3705          * leaves 0 and 1 in the loop below.
3706          */
3707         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3708
3709         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3710         xsave->header.xfeatures = xstate_bv;
3711         if (boot_cpu_has(X86_FEATURE_XSAVES))
3712                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3713
3714         /*
3715          * Copy each region from the non-compacted offset to the
3716          * possibly compacted offset.
3717          */
3718         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3719         while (valid) {
3720                 u64 feature = valid & -valid;
3721                 int index = fls64(feature) - 1;
3722                 void *dest = get_xsave_addr(xsave, feature);
3723
3724                 if (dest) {
3725                         u32 size, offset, ecx, edx;
3726                         cpuid_count(XSTATE_CPUID, index,
3727                                     &size, &offset, &ecx, &edx);
3728                         if (feature == XFEATURE_MASK_PKRU)
3729                                 memcpy(&vcpu->arch.pkru, src + offset,
3730                                        sizeof(vcpu->arch.pkru));
3731                         else
3732                                 memcpy(dest, src + offset, size);
3733                 }
3734
3735                 valid -= feature;
3736         }
3737 }
3738
3739 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3740                                          struct kvm_xsave *guest_xsave)
3741 {
3742         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3743                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3744                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3745         } else {
3746                 memcpy(guest_xsave->region,
3747                         &vcpu->arch.guest_fpu->state.fxsave,
3748                         sizeof(struct fxregs_state));
3749                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3750                         XFEATURE_MASK_FPSSE;
3751         }
3752 }
3753
3754 #define XSAVE_MXCSR_OFFSET 24
3755
3756 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3757                                         struct kvm_xsave *guest_xsave)
3758 {
3759         u64 xstate_bv =
3760                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3761         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3762
3763         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3764                 /*
3765                  * Here we allow setting states that are not present in
3766                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3767                  * with old userspace.
3768                  */
3769                 if (xstate_bv & ~kvm_supported_xcr0() ||
3770                         mxcsr & ~mxcsr_feature_mask)
3771                         return -EINVAL;
3772                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3773         } else {
3774                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3775                         mxcsr & ~mxcsr_feature_mask)
3776                         return -EINVAL;
3777                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3778                         guest_xsave->region, sizeof(struct fxregs_state));
3779         }
3780         return 0;
3781 }
3782
3783 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3784                                         struct kvm_xcrs *guest_xcrs)
3785 {
3786         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3787                 guest_xcrs->nr_xcrs = 0;
3788                 return;
3789         }
3790
3791         guest_xcrs->nr_xcrs = 1;
3792         guest_xcrs->flags = 0;
3793         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3794         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3795 }
3796
3797 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3798                                        struct kvm_xcrs *guest_xcrs)
3799 {
3800         int i, r = 0;
3801
3802         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3803                 return -EINVAL;
3804
3805         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3806                 return -EINVAL;
3807
3808         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3809                 /* Only support XCR0 currently */
3810                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3811                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3812                                 guest_xcrs->xcrs[i].value);
3813                         break;
3814                 }
3815         if (r)
3816                 r = -EINVAL;
3817         return r;
3818 }
3819
3820 /*
3821  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3822  * stopped by the hypervisor.  This function will be called from the host only.
3823  * EINVAL is returned when the host attempts to set the flag for a guest that
3824  * does not support pv clocks.
3825  */
3826 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3827 {
3828         if (!vcpu->arch.pv_time_enabled)
3829                 return -EINVAL;
3830         vcpu->arch.pvclock_set_guest_stopped_request = true;
3831         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3832         return 0;
3833 }
3834
3835 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3836                                      struct kvm_enable_cap *cap)
3837 {
3838         int r;
3839         uint16_t vmcs_version;
3840         void __user *user_ptr;
3841
3842         if (cap->flags)
3843                 return -EINVAL;
3844
3845         switch (cap->cap) {
3846         case KVM_CAP_HYPERV_SYNIC2:
3847                 if (cap->args[0])
3848                         return -EINVAL;
3849                 /* fall through */
3850
3851         case KVM_CAP_HYPERV_SYNIC:
3852                 if (!irqchip_in_kernel(vcpu->kvm))
3853                         return -EINVAL;
3854                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3855                                              KVM_CAP_HYPERV_SYNIC2);
3856         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3857                 if (!kvm_x86_ops->nested_enable_evmcs)
3858                         return -ENOTTY;
3859                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3860                 if (!r) {
3861                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3862                         if (copy_to_user(user_ptr, &vmcs_version,
3863                                          sizeof(vmcs_version)))
3864                                 r = -EFAULT;
3865                 }
3866                 return r;
3867
3868         default:
3869                 return -EINVAL;
3870         }
3871 }
3872
3873 long kvm_arch_vcpu_ioctl(struct file *filp,
3874                          unsigned int ioctl, unsigned long arg)
3875 {
3876         struct kvm_vcpu *vcpu = filp->private_data;
3877         void __user *argp = (void __user *)arg;
3878         int r;
3879         union {
3880                 struct kvm_lapic_state *lapic;
3881                 struct kvm_xsave *xsave;
3882                 struct kvm_xcrs *xcrs;
3883                 void *buffer;
3884         } u;
3885
3886         vcpu_load(vcpu);
3887
3888         u.buffer = NULL;
3889         switch (ioctl) {
3890         case KVM_GET_LAPIC: {
3891                 r = -EINVAL;
3892                 if (!lapic_in_kernel(vcpu))
3893                         goto out;
3894                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3895                                 GFP_KERNEL_ACCOUNT);
3896
3897                 r = -ENOMEM;
3898                 if (!u.lapic)
3899                         goto out;
3900                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3901                 if (r)
3902                         goto out;
3903                 r = -EFAULT;
3904                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3905                         goto out;
3906                 r = 0;
3907                 break;
3908         }
3909         case KVM_SET_LAPIC: {
3910                 r = -EINVAL;
3911                 if (!lapic_in_kernel(vcpu))
3912                         goto out;
3913                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3914                 if (IS_ERR(u.lapic)) {
3915                         r = PTR_ERR(u.lapic);
3916                         goto out_nofree;
3917                 }
3918
3919                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3920                 break;
3921         }
3922         case KVM_INTERRUPT: {
3923                 struct kvm_interrupt irq;
3924
3925                 r = -EFAULT;
3926                 if (copy_from_user(&irq, argp, sizeof(irq)))
3927                         goto out;
3928                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3929                 break;
3930         }
3931         case KVM_NMI: {
3932                 r = kvm_vcpu_ioctl_nmi(vcpu);
3933                 break;
3934         }
3935         case KVM_SMI: {
3936                 r = kvm_vcpu_ioctl_smi(vcpu);
3937                 break;
3938         }
3939         case KVM_SET_CPUID: {
3940                 struct kvm_cpuid __user *cpuid_arg = argp;
3941                 struct kvm_cpuid cpuid;
3942
3943                 r = -EFAULT;
3944                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3945                         goto out;
3946                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3947                 break;
3948         }
3949         case KVM_SET_CPUID2: {
3950                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3951                 struct kvm_cpuid2 cpuid;
3952
3953                 r = -EFAULT;
3954                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3955                         goto out;
3956                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3957                                               cpuid_arg->entries);
3958                 break;
3959         }
3960         case KVM_GET_CPUID2: {
3961                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3962                 struct kvm_cpuid2 cpuid;
3963
3964                 r = -EFAULT;
3965                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3966                         goto out;
3967                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3968                                               cpuid_arg->entries);
3969                 if (r)
3970                         goto out;
3971                 r = -EFAULT;
3972                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3973                         goto out;
3974                 r = 0;
3975                 break;
3976         }
3977         case KVM_GET_MSRS: {
3978                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3979                 r = msr_io(vcpu, argp, do_get_msr, 1);
3980                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3981                 break;
3982         }
3983         case KVM_SET_MSRS: {
3984                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3985                 r = msr_io(vcpu, argp, do_set_msr, 0);
3986                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3987                 break;
3988         }
3989         case KVM_TPR_ACCESS_REPORTING: {
3990                 struct kvm_tpr_access_ctl tac;
3991
3992                 r = -EFAULT;
3993                 if (copy_from_user(&tac, argp, sizeof(tac)))
3994                         goto out;
3995                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3996                 if (r)
3997                         goto out;
3998                 r = -EFAULT;
3999                 if (copy_to_user(argp, &tac, sizeof(tac)))
4000                         goto out;
4001                 r = 0;
4002                 break;
4003         };
4004         case KVM_SET_VAPIC_ADDR: {
4005                 struct kvm_vapic_addr va;
4006                 int idx;
4007
4008                 r = -EINVAL;
4009                 if (!lapic_in_kernel(vcpu))
4010                         goto out;
4011                 r = -EFAULT;
4012                 if (copy_from_user(&va, argp, sizeof(va)))
4013                         goto out;
4014                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4015                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4016                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4017                 break;
4018         }
4019         case KVM_X86_SETUP_MCE: {
4020                 u64 mcg_cap;
4021
4022                 r = -EFAULT;
4023                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4024                         goto out;
4025                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4026                 break;
4027         }
4028         case KVM_X86_SET_MCE: {
4029                 struct kvm_x86_mce mce;
4030
4031                 r = -EFAULT;
4032                 if (copy_from_user(&mce, argp, sizeof(mce)))
4033                         goto out;
4034                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4035                 break;
4036         }
4037         case KVM_GET_VCPU_EVENTS: {
4038                 struct kvm_vcpu_events events;
4039
4040                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4041
4042                 r = -EFAULT;
4043                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4044                         break;
4045                 r = 0;
4046                 break;
4047         }
4048         case KVM_SET_VCPU_EVENTS: {
4049                 struct kvm_vcpu_events events;
4050
4051                 r = -EFAULT;
4052                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4053                         break;
4054
4055                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4056                 break;
4057         }
4058         case KVM_GET_DEBUGREGS: {
4059                 struct kvm_debugregs dbgregs;
4060
4061                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4062
4063                 r = -EFAULT;
4064                 if (copy_to_user(argp, &dbgregs,
4065                                  sizeof(struct kvm_debugregs)))
4066                         break;
4067                 r = 0;
4068                 break;
4069         }
4070         case KVM_SET_DEBUGREGS: {
4071                 struct kvm_debugregs dbgregs;
4072
4073                 r = -EFAULT;
4074                 if (copy_from_user(&dbgregs, argp,
4075                                    sizeof(struct kvm_debugregs)))
4076                         break;
4077
4078                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4079                 break;
4080         }
4081         case KVM_GET_XSAVE: {
4082                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4083                 r = -ENOMEM;
4084                 if (!u.xsave)
4085                         break;
4086
4087                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4088
4089                 r = -EFAULT;
4090                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4091                         break;
4092                 r = 0;
4093                 break;
4094         }
4095         case KVM_SET_XSAVE: {
4096                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4097                 if (IS_ERR(u.xsave)) {
4098                         r = PTR_ERR(u.xsave);
4099                         goto out_nofree;
4100                 }
4101
4102                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4103                 break;
4104         }
4105         case KVM_GET_XCRS: {
4106                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4107                 r = -ENOMEM;
4108                 if (!u.xcrs)
4109                         break;
4110
4111                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4112
4113                 r = -EFAULT;
4114                 if (copy_to_user(argp, u.xcrs,
4115                                  sizeof(struct kvm_xcrs)))
4116                         break;
4117                 r = 0;
4118                 break;
4119         }
4120         case KVM_SET_XCRS: {
4121                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4122                 if (IS_ERR(u.xcrs)) {
4123                         r = PTR_ERR(u.xcrs);
4124                         goto out_nofree;
4125                 }
4126
4127                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4128                 break;
4129         }
4130         case KVM_SET_TSC_KHZ: {
4131                 u32 user_tsc_khz;
4132
4133                 r = -EINVAL;
4134                 user_tsc_khz = (u32)arg;
4135
4136                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4137                         goto out;
4138
4139                 if (user_tsc_khz == 0)
4140                         user_tsc_khz = tsc_khz;
4141
4142                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4143                         r = 0;
4144
4145                 goto out;
4146         }
4147         case KVM_GET_TSC_KHZ: {
4148                 r = vcpu->arch.virtual_tsc_khz;
4149                 goto out;
4150         }
4151         case KVM_KVMCLOCK_CTRL: {
4152                 r = kvm_set_guest_paused(vcpu);
4153                 goto out;
4154         }
4155         case KVM_ENABLE_CAP: {
4156                 struct kvm_enable_cap cap;
4157
4158                 r = -EFAULT;
4159                 if (copy_from_user(&cap, argp, sizeof(cap)))
4160                         goto out;
4161                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4162                 break;
4163         }
4164         case KVM_GET_NESTED_STATE: {
4165                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4166                 u32 user_data_size;
4167
4168                 r = -EINVAL;
4169                 if (!kvm_x86_ops->get_nested_state)
4170                         break;
4171
4172                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4173                 r = -EFAULT;
4174                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4175                         break;
4176
4177                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4178                                                   user_data_size);
4179                 if (r < 0)
4180                         break;
4181
4182                 if (r > user_data_size) {
4183                         if (put_user(r, &user_kvm_nested_state->size))
4184                                 r = -EFAULT;
4185                         else
4186                                 r = -E2BIG;
4187                         break;
4188                 }
4189
4190                 r = 0;
4191                 break;
4192         }
4193         case KVM_SET_NESTED_STATE: {
4194                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4195                 struct kvm_nested_state kvm_state;
4196
4197                 r = -EINVAL;
4198                 if (!kvm_x86_ops->set_nested_state)
4199                         break;
4200
4201                 r = -EFAULT;
4202                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4203                         break;
4204
4205                 r = -EINVAL;
4206                 if (kvm_state.size < sizeof(kvm_state))
4207                         break;
4208
4209                 if (kvm_state.flags &
4210                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4211                       | KVM_STATE_NESTED_EVMCS))
4212                         break;
4213
4214                 /* nested_run_pending implies guest_mode.  */
4215                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4216                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4217                         break;
4218
4219                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4220                 break;
4221         }
4222         case KVM_GET_SUPPORTED_HV_CPUID: {
4223                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4224                 struct kvm_cpuid2 cpuid;
4225
4226                 r = -EFAULT;
4227                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4228                         goto out;
4229
4230                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4231                                                 cpuid_arg->entries);
4232                 if (r)
4233                         goto out;
4234
4235                 r = -EFAULT;
4236                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4237                         goto out;
4238                 r = 0;
4239                 break;
4240         }
4241         default:
4242                 r = -EINVAL;
4243         }
4244 out:
4245         kfree(u.buffer);
4246 out_nofree:
4247         vcpu_put(vcpu);
4248         return r;
4249 }
4250
4251 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4252 {
4253         return VM_FAULT_SIGBUS;
4254 }
4255
4256 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4257 {
4258         int ret;
4259
4260         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4261                 return -EINVAL;
4262         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4263         return ret;
4264 }
4265
4266 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4267                                               u64 ident_addr)
4268 {
4269         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4270 }
4271
4272 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4273                                           u32 kvm_nr_mmu_pages)
4274 {
4275         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4276                 return -EINVAL;
4277
4278         mutex_lock(&kvm->slots_lock);
4279
4280         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4281         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4282
4283         mutex_unlock(&kvm->slots_lock);
4284         return 0;
4285 }
4286
4287 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4288 {
4289         return kvm->arch.n_max_mmu_pages;
4290 }
4291
4292 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4293 {
4294         struct kvm_pic *pic = kvm->arch.vpic;
4295         int r;
4296
4297         r = 0;
4298         switch (chip->chip_id) {
4299         case KVM_IRQCHIP_PIC_MASTER:
4300                 memcpy(&chip->chip.pic, &pic->pics[0],
4301                         sizeof(struct kvm_pic_state));
4302                 break;
4303         case KVM_IRQCHIP_PIC_SLAVE:
4304                 memcpy(&chip->chip.pic, &pic->pics[1],
4305                         sizeof(struct kvm_pic_state));
4306                 break;
4307         case KVM_IRQCHIP_IOAPIC:
4308                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4309                 break;
4310         default:
4311                 r = -EINVAL;
4312                 break;
4313         }
4314         return r;
4315 }
4316
4317 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4318 {
4319         struct kvm_pic *pic = kvm->arch.vpic;
4320         int r;
4321
4322         r = 0;
4323         switch (chip->chip_id) {
4324         case KVM_IRQCHIP_PIC_MASTER:
4325                 spin_lock(&pic->lock);
4326                 memcpy(&pic->pics[0], &chip->chip.pic,
4327                         sizeof(struct kvm_pic_state));
4328                 spin_unlock(&pic->lock);
4329                 break;
4330         case KVM_IRQCHIP_PIC_SLAVE:
4331                 spin_lock(&pic->lock);
4332                 memcpy(&pic->pics[1], &chip->chip.pic,
4333                         sizeof(struct kvm_pic_state));
4334                 spin_unlock(&pic->lock);
4335                 break;
4336         case KVM_IRQCHIP_IOAPIC:
4337                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4338                 break;
4339         default:
4340                 r = -EINVAL;
4341                 break;
4342         }
4343         kvm_pic_update_irq(pic);
4344         return r;
4345 }
4346
4347 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4348 {
4349         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4350
4351         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4352
4353         mutex_lock(&kps->lock);
4354         memcpy(ps, &kps->channels, sizeof(*ps));
4355         mutex_unlock(&kps->lock);
4356         return 0;
4357 }
4358
4359 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4360 {
4361         int i;
4362         struct kvm_pit *pit = kvm->arch.vpit;
4363
4364         mutex_lock(&pit->pit_state.lock);
4365         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4366         for (i = 0; i < 3; i++)
4367                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4368         mutex_unlock(&pit->pit_state.lock);
4369         return 0;
4370 }
4371
4372 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4373 {
4374         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4375         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4376                 sizeof(ps->channels));
4377         ps->flags = kvm->arch.vpit->pit_state.flags;
4378         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4379         memset(&ps->reserved, 0, sizeof(ps->reserved));
4380         return 0;
4381 }
4382
4383 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4384 {
4385         int start = 0;
4386         int i;
4387         u32 prev_legacy, cur_legacy;
4388         struct kvm_pit *pit = kvm->arch.vpit;
4389
4390         mutex_lock(&pit->pit_state.lock);
4391         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4392         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4393         if (!prev_legacy && cur_legacy)
4394                 start = 1;
4395         memcpy(&pit->pit_state.channels, &ps->channels,
4396                sizeof(pit->pit_state.channels));
4397         pit->pit_state.flags = ps->flags;
4398         for (i = 0; i < 3; i++)
4399                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4400                                    start && i == 0);
4401         mutex_unlock(&pit->pit_state.lock);
4402         return 0;
4403 }
4404
4405 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4406                                  struct kvm_reinject_control *control)
4407 {
4408         struct kvm_pit *pit = kvm->arch.vpit;
4409
4410         if (!pit)
4411                 return -ENXIO;
4412
4413         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4414          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4415          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4416          */
4417         mutex_lock(&pit->pit_state.lock);
4418         kvm_pit_set_reinject(pit, control->pit_reinject);
4419         mutex_unlock(&pit->pit_state.lock);
4420
4421         return 0;
4422 }
4423
4424 /**
4425  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4426  * @kvm: kvm instance
4427  * @log: slot id and address to which we copy the log
4428  *
4429  * Steps 1-4 below provide general overview of dirty page logging. See
4430  * kvm_get_dirty_log_protect() function description for additional details.
4431  *
4432  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4433  * always flush the TLB (step 4) even if previous step failed  and the dirty
4434  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4435  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4436  * writes will be marked dirty for next log read.
4437  *
4438  *   1. Take a snapshot of the bit and clear it if needed.
4439  *   2. Write protect the corresponding page.
4440  *   3. Copy the snapshot to the userspace.
4441  *   4. Flush TLB's if needed.
4442  */
4443 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4444 {
4445         bool flush = false;
4446         int r;
4447
4448         mutex_lock(&kvm->slots_lock);
4449
4450         /*
4451          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4452          */
4453         if (kvm_x86_ops->flush_log_dirty)
4454                 kvm_x86_ops->flush_log_dirty(kvm);
4455
4456         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4457
4458         /*
4459          * All the TLBs can be flushed out of mmu lock, see the comments in
4460          * kvm_mmu_slot_remove_write_access().
4461          */
4462         lockdep_assert_held(&kvm->slots_lock);
4463         if (flush)
4464                 kvm_flush_remote_tlbs(kvm);
4465
4466         mutex_unlock(&kvm->slots_lock);
4467         return r;
4468 }
4469
4470 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4471 {
4472         bool flush = false;
4473         int r;
4474
4475         mutex_lock(&kvm->slots_lock);
4476
4477         /*
4478          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4479          */
4480         if (kvm_x86_ops->flush_log_dirty)
4481                 kvm_x86_ops->flush_log_dirty(kvm);
4482
4483         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4484
4485         /*
4486          * All the TLBs can be flushed out of mmu lock, see the comments in
4487          * kvm_mmu_slot_remove_write_access().
4488          */
4489         lockdep_assert_held(&kvm->slots_lock);
4490         if (flush)
4491                 kvm_flush_remote_tlbs(kvm);
4492
4493         mutex_unlock(&kvm->slots_lock);
4494         return r;
4495 }
4496
4497 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4498                         bool line_status)
4499 {
4500         if (!irqchip_in_kernel(kvm))
4501                 return -ENXIO;
4502
4503         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4504                                         irq_event->irq, irq_event->level,
4505                                         line_status);
4506         return 0;
4507 }
4508
4509 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4510                             struct kvm_enable_cap *cap)
4511 {
4512         int r;
4513
4514         if (cap->flags)
4515                 return -EINVAL;
4516
4517         switch (cap->cap) {
4518         case KVM_CAP_DISABLE_QUIRKS:
4519                 kvm->arch.disabled_quirks = cap->args[0];
4520                 r = 0;
4521                 break;
4522         case KVM_CAP_SPLIT_IRQCHIP: {
4523                 mutex_lock(&kvm->lock);
4524                 r = -EINVAL;
4525                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4526                         goto split_irqchip_unlock;
4527                 r = -EEXIST;
4528                 if (irqchip_in_kernel(kvm))
4529                         goto split_irqchip_unlock;
4530                 if (kvm->created_vcpus)
4531                         goto split_irqchip_unlock;
4532                 r = kvm_setup_empty_irq_routing(kvm);
4533                 if (r)
4534                         goto split_irqchip_unlock;
4535                 /* Pairs with irqchip_in_kernel. */
4536                 smp_wmb();
4537                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4538                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4539                 r = 0;
4540 split_irqchip_unlock:
4541                 mutex_unlock(&kvm->lock);
4542                 break;
4543         }
4544         case KVM_CAP_X2APIC_API:
4545                 r = -EINVAL;
4546                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4547                         break;
4548
4549                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4550                         kvm->arch.x2apic_format = true;
4551                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4552                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4553
4554                 r = 0;
4555                 break;
4556         case KVM_CAP_X86_DISABLE_EXITS:
4557                 r = -EINVAL;
4558                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4559                         break;
4560
4561                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4562                         kvm_can_mwait_in_guest())
4563                         kvm->arch.mwait_in_guest = true;
4564                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4565                         kvm->arch.hlt_in_guest = true;
4566                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4567                         kvm->arch.pause_in_guest = true;
4568                 r = 0;
4569                 break;
4570         case KVM_CAP_MSR_PLATFORM_INFO:
4571                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4572                 r = 0;
4573                 break;
4574         case KVM_CAP_EXCEPTION_PAYLOAD:
4575                 kvm->arch.exception_payload_enabled = cap->args[0];
4576                 r = 0;
4577                 break;
4578         default:
4579                 r = -EINVAL;
4580                 break;
4581         }
4582         return r;
4583 }
4584
4585 long kvm_arch_vm_ioctl(struct file *filp,
4586                        unsigned int ioctl, unsigned long arg)
4587 {
4588         struct kvm *kvm = filp->private_data;
4589         void __user *argp = (void __user *)arg;
4590         int r = -ENOTTY;
4591         /*
4592          * This union makes it completely explicit to gcc-3.x
4593          * that these two variables' stack usage should be
4594          * combined, not added together.
4595          */
4596         union {
4597                 struct kvm_pit_state ps;
4598                 struct kvm_pit_state2 ps2;
4599                 struct kvm_pit_config pit_config;
4600         } u;
4601
4602         switch (ioctl) {
4603         case KVM_SET_TSS_ADDR:
4604                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4605                 break;
4606         case KVM_SET_IDENTITY_MAP_ADDR: {
4607                 u64 ident_addr;
4608
4609                 mutex_lock(&kvm->lock);
4610                 r = -EINVAL;
4611                 if (kvm->created_vcpus)
4612                         goto set_identity_unlock;
4613                 r = -EFAULT;
4614                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4615                         goto set_identity_unlock;
4616                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4617 set_identity_unlock:
4618                 mutex_unlock(&kvm->lock);
4619                 break;
4620         }
4621         case KVM_SET_NR_MMU_PAGES:
4622                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4623                 break;
4624         case KVM_GET_NR_MMU_PAGES:
4625                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4626                 break;
4627         case KVM_CREATE_IRQCHIP: {
4628                 mutex_lock(&kvm->lock);
4629
4630                 r = -EEXIST;
4631                 if (irqchip_in_kernel(kvm))
4632                         goto create_irqchip_unlock;
4633
4634                 r = -EINVAL;
4635                 if (kvm->created_vcpus)
4636                         goto create_irqchip_unlock;
4637
4638                 r = kvm_pic_init(kvm);
4639                 if (r)
4640                         goto create_irqchip_unlock;
4641
4642                 r = kvm_ioapic_init(kvm);
4643                 if (r) {
4644                         kvm_pic_destroy(kvm);
4645                         goto create_irqchip_unlock;
4646                 }
4647
4648                 r = kvm_setup_default_irq_routing(kvm);
4649                 if (r) {
4650                         kvm_ioapic_destroy(kvm);
4651                         kvm_pic_destroy(kvm);
4652                         goto create_irqchip_unlock;
4653                 }
4654                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4655                 smp_wmb();
4656                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4657         create_irqchip_unlock:
4658                 mutex_unlock(&kvm->lock);
4659                 break;
4660         }
4661         case KVM_CREATE_PIT:
4662                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4663                 goto create_pit;
4664         case KVM_CREATE_PIT2:
4665                 r = -EFAULT;
4666                 if (copy_from_user(&u.pit_config, argp,
4667                                    sizeof(struct kvm_pit_config)))
4668                         goto out;
4669         create_pit:
4670                 mutex_lock(&kvm->lock);
4671                 r = -EEXIST;
4672                 if (kvm->arch.vpit)
4673                         goto create_pit_unlock;
4674                 r = -ENOMEM;
4675                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4676                 if (kvm->arch.vpit)
4677                         r = 0;
4678         create_pit_unlock:
4679                 mutex_unlock(&kvm->lock);
4680                 break;
4681         case KVM_GET_IRQCHIP: {
4682                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4683                 struct kvm_irqchip *chip;
4684
4685                 chip = memdup_user(argp, sizeof(*chip));
4686                 if (IS_ERR(chip)) {
4687                         r = PTR_ERR(chip);
4688                         goto out;
4689                 }
4690
4691                 r = -ENXIO;
4692                 if (!irqchip_kernel(kvm))
4693                         goto get_irqchip_out;
4694                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4695                 if (r)
4696                         goto get_irqchip_out;
4697                 r = -EFAULT;
4698                 if (copy_to_user(argp, chip, sizeof(*chip)))
4699                         goto get_irqchip_out;
4700                 r = 0;
4701         get_irqchip_out:
4702                 kfree(chip);
4703                 break;
4704         }
4705         case KVM_SET_IRQCHIP: {
4706                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4707                 struct kvm_irqchip *chip;
4708
4709                 chip = memdup_user(argp, sizeof(*chip));
4710                 if (IS_ERR(chip)) {
4711                         r = PTR_ERR(chip);
4712                         goto out;
4713                 }
4714
4715                 r = -ENXIO;
4716                 if (!irqchip_kernel(kvm))
4717                         goto set_irqchip_out;
4718                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4719                 if (r)
4720                         goto set_irqchip_out;
4721                 r = 0;
4722         set_irqchip_out:
4723                 kfree(chip);
4724                 break;
4725         }
4726         case KVM_GET_PIT: {
4727                 r = -EFAULT;
4728                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4729                         goto out;
4730                 r = -ENXIO;
4731                 if (!kvm->arch.vpit)
4732                         goto out;
4733                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4734                 if (r)
4735                         goto out;
4736                 r = -EFAULT;
4737                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4738                         goto out;
4739                 r = 0;
4740                 break;
4741         }
4742         case KVM_SET_PIT: {
4743                 r = -EFAULT;
4744                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4745                         goto out;
4746                 r = -ENXIO;
4747                 if (!kvm->arch.vpit)
4748                         goto out;
4749                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4750                 break;
4751         }
4752         case KVM_GET_PIT2: {
4753                 r = -ENXIO;
4754                 if (!kvm->arch.vpit)
4755                         goto out;
4756                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4757                 if (r)
4758                         goto out;
4759                 r = -EFAULT;
4760                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4761                         goto out;
4762                 r = 0;
4763                 break;
4764         }
4765         case KVM_SET_PIT2: {
4766                 r = -EFAULT;
4767                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4768                         goto out;
4769                 r = -ENXIO;
4770                 if (!kvm->arch.vpit)
4771                         goto out;
4772                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4773                 break;
4774         }
4775         case KVM_REINJECT_CONTROL: {
4776                 struct kvm_reinject_control control;
4777                 r =  -EFAULT;
4778                 if (copy_from_user(&control, argp, sizeof(control)))
4779                         goto out;
4780                 r = kvm_vm_ioctl_reinject(kvm, &control);
4781                 break;
4782         }
4783         case KVM_SET_BOOT_CPU_ID:
4784                 r = 0;
4785                 mutex_lock(&kvm->lock);
4786                 if (kvm->created_vcpus)
4787                         r = -EBUSY;
4788                 else
4789                         kvm->arch.bsp_vcpu_id = arg;
4790                 mutex_unlock(&kvm->lock);
4791                 break;
4792         case KVM_XEN_HVM_CONFIG: {
4793                 struct kvm_xen_hvm_config xhc;
4794                 r = -EFAULT;
4795                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4796                         goto out;
4797                 r = -EINVAL;
4798                 if (xhc.flags)
4799                         goto out;
4800                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4801                 r = 0;
4802                 break;
4803         }
4804         case KVM_SET_CLOCK: {
4805                 struct kvm_clock_data user_ns;
4806                 u64 now_ns;
4807
4808                 r = -EFAULT;
4809                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4810                         goto out;
4811
4812                 r = -EINVAL;
4813                 if (user_ns.flags)
4814                         goto out;
4815
4816                 r = 0;
4817                 /*
4818                  * TODO: userspace has to take care of races with VCPU_RUN, so
4819                  * kvm_gen_update_masterclock() can be cut down to locked
4820                  * pvclock_update_vm_gtod_copy().
4821                  */
4822                 kvm_gen_update_masterclock(kvm);
4823                 now_ns = get_kvmclock_ns(kvm);
4824                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4825                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4826                 break;
4827         }
4828         case KVM_GET_CLOCK: {
4829                 struct kvm_clock_data user_ns;
4830                 u64 now_ns;
4831
4832                 now_ns = get_kvmclock_ns(kvm);
4833                 user_ns.clock = now_ns;
4834                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4835                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4836
4837                 r = -EFAULT;
4838                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4839                         goto out;
4840                 r = 0;
4841                 break;
4842         }
4843         case KVM_MEMORY_ENCRYPT_OP: {
4844                 r = -ENOTTY;
4845                 if (kvm_x86_ops->mem_enc_op)
4846                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4847                 break;
4848         }
4849         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4850                 struct kvm_enc_region region;
4851
4852                 r = -EFAULT;
4853                 if (copy_from_user(&region, argp, sizeof(region)))
4854                         goto out;
4855
4856                 r = -ENOTTY;
4857                 if (kvm_x86_ops->mem_enc_reg_region)
4858                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4859                 break;
4860         }
4861         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4862                 struct kvm_enc_region region;
4863
4864                 r = -EFAULT;
4865                 if (copy_from_user(&region, argp, sizeof(region)))
4866                         goto out;
4867
4868                 r = -ENOTTY;
4869                 if (kvm_x86_ops->mem_enc_unreg_region)
4870                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4871                 break;
4872         }
4873         case KVM_HYPERV_EVENTFD: {
4874                 struct kvm_hyperv_eventfd hvevfd;
4875
4876                 r = -EFAULT;
4877                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4878                         goto out;
4879                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4880                 break;
4881         }
4882         default:
4883                 r = -ENOTTY;
4884         }
4885 out:
4886         return r;
4887 }
4888
4889 static void kvm_init_msr_list(void)
4890 {
4891         u32 dummy[2];
4892         unsigned i, j;
4893
4894         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4895                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4896                         continue;
4897
4898                 /*
4899                  * Even MSRs that are valid in the host may not be exposed
4900                  * to the guests in some cases.
4901                  */
4902                 switch (msrs_to_save[i]) {
4903                 case MSR_IA32_BNDCFGS:
4904                         if (!kvm_mpx_supported())
4905                                 continue;
4906                         break;
4907                 case MSR_TSC_AUX:
4908                         if (!kvm_x86_ops->rdtscp_supported())
4909                                 continue;
4910                         break;
4911                 case MSR_IA32_RTIT_CTL:
4912                 case MSR_IA32_RTIT_STATUS:
4913                         if (!kvm_x86_ops->pt_supported())
4914                                 continue;
4915                         break;
4916                 case MSR_IA32_RTIT_CR3_MATCH:
4917                         if (!kvm_x86_ops->pt_supported() ||
4918                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4919                                 continue;
4920                         break;
4921                 case MSR_IA32_RTIT_OUTPUT_BASE:
4922                 case MSR_IA32_RTIT_OUTPUT_MASK:
4923                         if (!kvm_x86_ops->pt_supported() ||
4924                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4925                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4926                                 continue;
4927                         break;
4928                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4929                         if (!kvm_x86_ops->pt_supported() ||
4930                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4931                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4932                                 continue;
4933                         break;
4934                 }
4935                 default:
4936                         break;
4937                 }
4938
4939                 if (j < i)
4940                         msrs_to_save[j] = msrs_to_save[i];
4941                 j++;
4942         }
4943         num_msrs_to_save = j;
4944
4945         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4946                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4947                         continue;
4948
4949                 if (j < i)
4950                         emulated_msrs[j] = emulated_msrs[i];
4951                 j++;
4952         }
4953         num_emulated_msrs = j;
4954
4955         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4956                 struct kvm_msr_entry msr;
4957
4958                 msr.index = msr_based_features[i];
4959                 if (kvm_get_msr_feature(&msr))
4960                         continue;
4961
4962                 if (j < i)
4963                         msr_based_features[j] = msr_based_features[i];
4964                 j++;
4965         }
4966         num_msr_based_features = j;
4967 }
4968
4969 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4970                            const void *v)
4971 {
4972         int handled = 0;
4973         int n;
4974
4975         do {
4976                 n = min(len, 8);
4977                 if (!(lapic_in_kernel(vcpu) &&
4978                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4979                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4980                         break;
4981                 handled += n;
4982                 addr += n;
4983                 len -= n;
4984                 v += n;
4985         } while (len);
4986
4987         return handled;
4988 }
4989
4990 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4991 {
4992         int handled = 0;
4993         int n;
4994
4995         do {
4996                 n = min(len, 8);
4997                 if (!(lapic_in_kernel(vcpu) &&
4998                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4999                                          addr, n, v))
5000                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5001                         break;
5002                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5003                 handled += n;
5004                 addr += n;
5005                 len -= n;
5006                 v += n;
5007         } while (len);
5008
5009         return handled;
5010 }
5011
5012 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5013                         struct kvm_segment *var, int seg)
5014 {
5015         kvm_x86_ops->set_segment(vcpu, var, seg);
5016 }
5017
5018 void kvm_get_segment(struct kvm_vcpu *vcpu,
5019                      struct kvm_segment *var, int seg)
5020 {
5021         kvm_x86_ops->get_segment(vcpu, var, seg);
5022 }
5023
5024 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5025                            struct x86_exception *exception)
5026 {
5027         gpa_t t_gpa;
5028
5029         BUG_ON(!mmu_is_nested(vcpu));
5030
5031         /* NPT walks are always user-walks */
5032         access |= PFERR_USER_MASK;
5033         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5034
5035         return t_gpa;
5036 }
5037
5038 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5039                               struct x86_exception *exception)
5040 {
5041         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5042         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5043 }
5044
5045  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5046                                 struct x86_exception *exception)
5047 {
5048         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5049         access |= PFERR_FETCH_MASK;
5050         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5051 }
5052
5053 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5054                                struct x86_exception *exception)
5055 {
5056         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5057         access |= PFERR_WRITE_MASK;
5058         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5059 }
5060
5061 /* uses this to access any guest's mapped memory without checking CPL */
5062 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5063                                 struct x86_exception *exception)
5064 {
5065         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5066 }
5067
5068 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5069                                       struct kvm_vcpu *vcpu, u32 access,
5070                                       struct x86_exception *exception)
5071 {
5072         void *data = val;
5073         int r = X86EMUL_CONTINUE;
5074
5075         while (bytes) {
5076                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5077                                                             exception);
5078                 unsigned offset = addr & (PAGE_SIZE-1);
5079                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5080                 int ret;
5081
5082                 if (gpa == UNMAPPED_GVA)
5083                         return X86EMUL_PROPAGATE_FAULT;
5084                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5085                                                offset, toread);
5086                 if (ret < 0) {
5087                         r = X86EMUL_IO_NEEDED;
5088                         goto out;
5089                 }
5090
5091                 bytes -= toread;
5092                 data += toread;
5093                 addr += toread;
5094         }
5095 out:
5096         return r;
5097 }
5098
5099 /* used for instruction fetching */
5100 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5101                                 gva_t addr, void *val, unsigned int bytes,
5102                                 struct x86_exception *exception)
5103 {
5104         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5105         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5106         unsigned offset;
5107         int ret;
5108
5109         /* Inline kvm_read_guest_virt_helper for speed.  */
5110         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5111                                                     exception);
5112         if (unlikely(gpa == UNMAPPED_GVA))
5113                 return X86EMUL_PROPAGATE_FAULT;
5114
5115         offset = addr & (PAGE_SIZE-1);
5116         if (WARN_ON(offset + bytes > PAGE_SIZE))
5117                 bytes = (unsigned)PAGE_SIZE - offset;
5118         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5119                                        offset, bytes);
5120         if (unlikely(ret < 0))
5121                 return X86EMUL_IO_NEEDED;
5122
5123         return X86EMUL_CONTINUE;
5124 }
5125
5126 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5127                                gva_t addr, void *val, unsigned int bytes,
5128                                struct x86_exception *exception)
5129 {
5130         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5131
5132         /*
5133          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5134          * is returned, but our callers are not ready for that and they blindly
5135          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5136          * uninitialized kernel stack memory into cr2 and error code.
5137          */
5138         memset(exception, 0, sizeof(*exception));
5139         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5140                                           exception);
5141 }
5142 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5143
5144 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5145                              gva_t addr, void *val, unsigned int bytes,
5146                              struct x86_exception *exception, bool system)
5147 {
5148         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5149         u32 access = 0;
5150
5151         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5152                 access |= PFERR_USER_MASK;
5153
5154         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5155 }
5156
5157 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5158                 unsigned long addr, void *val, unsigned int bytes)
5159 {
5160         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5161         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5162
5163         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5164 }
5165
5166 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5167                                       struct kvm_vcpu *vcpu, u32 access,
5168                                       struct x86_exception *exception)
5169 {
5170         void *data = val;
5171         int r = X86EMUL_CONTINUE;
5172
5173         while (bytes) {
5174                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5175                                                              access,
5176                                                              exception);
5177                 unsigned offset = addr & (PAGE_SIZE-1);
5178                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5179                 int ret;
5180
5181                 if (gpa == UNMAPPED_GVA)
5182                         return X86EMUL_PROPAGATE_FAULT;
5183                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5184                 if (ret < 0) {
5185                         r = X86EMUL_IO_NEEDED;
5186                         goto out;
5187                 }
5188
5189                 bytes -= towrite;
5190                 data += towrite;
5191                 addr += towrite;
5192         }
5193 out:
5194         return r;
5195 }
5196
5197 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5198                               unsigned int bytes, struct x86_exception *exception,
5199                               bool system)
5200 {
5201         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5202         u32 access = PFERR_WRITE_MASK;
5203
5204         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5205                 access |= PFERR_USER_MASK;
5206
5207         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5208                                            access, exception);
5209 }
5210
5211 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5212                                 unsigned int bytes, struct x86_exception *exception)
5213 {
5214         /* kvm_write_guest_virt_system can pull in tons of pages. */
5215         vcpu->arch.l1tf_flush_l1d = true;
5216
5217         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5218                                            PFERR_WRITE_MASK, exception);
5219 }
5220 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5221
5222 int handle_ud(struct kvm_vcpu *vcpu)
5223 {
5224         int emul_type = EMULTYPE_TRAP_UD;
5225         enum emulation_result er;
5226         char sig[5]; /* ud2; .ascii "kvm" */
5227         struct x86_exception e;
5228
5229         if (force_emulation_prefix &&
5230             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5231                                 sig, sizeof(sig), &e) == 0 &&
5232             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5233                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5234                 emul_type = 0;
5235         }
5236
5237         er = kvm_emulate_instruction(vcpu, emul_type);
5238         if (er == EMULATE_USER_EXIT)
5239                 return 0;
5240         if (er != EMULATE_DONE)
5241                 kvm_queue_exception(vcpu, UD_VECTOR);
5242         return 1;
5243 }
5244 EXPORT_SYMBOL_GPL(handle_ud);
5245
5246 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5247                             gpa_t gpa, bool write)
5248 {
5249         /* For APIC access vmexit */
5250         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5251                 return 1;
5252
5253         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5254                 trace_vcpu_match_mmio(gva, gpa, write, true);
5255                 return 1;
5256         }
5257
5258         return 0;
5259 }
5260
5261 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5262                                 gpa_t *gpa, struct x86_exception *exception,
5263                                 bool write)
5264 {
5265         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5266                 | (write ? PFERR_WRITE_MASK : 0);
5267
5268         /*
5269          * currently PKRU is only applied to ept enabled guest so
5270          * there is no pkey in EPT page table for L1 guest or EPT
5271          * shadow page table for L2 guest.
5272          */
5273         if (vcpu_match_mmio_gva(vcpu, gva)
5274             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5275                                  vcpu->arch.access, 0, access)) {
5276                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5277                                         (gva & (PAGE_SIZE - 1));
5278                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5279                 return 1;
5280         }
5281
5282         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5283
5284         if (*gpa == UNMAPPED_GVA)
5285                 return -1;
5286
5287         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5288 }
5289
5290 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5291                         const void *val, int bytes)
5292 {
5293         int ret;
5294
5295         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5296         if (ret < 0)
5297                 return 0;
5298         kvm_page_track_write(vcpu, gpa, val, bytes);
5299         return 1;
5300 }
5301
5302 struct read_write_emulator_ops {
5303         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5304                                   int bytes);
5305         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5306                                   void *val, int bytes);
5307         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5308                                int bytes, void *val);
5309         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5310                                     void *val, int bytes);
5311         bool write;
5312 };
5313
5314 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5315 {
5316         if (vcpu->mmio_read_completed) {
5317                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5318                                vcpu->mmio_fragments[0].gpa, val);
5319                 vcpu->mmio_read_completed = 0;
5320                 return 1;
5321         }
5322
5323         return 0;
5324 }
5325
5326 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5327                         void *val, int bytes)
5328 {
5329         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5330 }
5331
5332 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5333                          void *val, int bytes)
5334 {
5335         return emulator_write_phys(vcpu, gpa, val, bytes);
5336 }
5337
5338 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5339 {
5340         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5341         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5342 }
5343
5344 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5345                           void *val, int bytes)
5346 {
5347         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5348         return X86EMUL_IO_NEEDED;
5349 }
5350
5351 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5352                            void *val, int bytes)
5353 {
5354         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5355
5356         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5357         return X86EMUL_CONTINUE;
5358 }
5359
5360 static const struct read_write_emulator_ops read_emultor = {
5361         .read_write_prepare = read_prepare,
5362         .read_write_emulate = read_emulate,
5363         .read_write_mmio = vcpu_mmio_read,
5364         .read_write_exit_mmio = read_exit_mmio,
5365 };
5366
5367 static const struct read_write_emulator_ops write_emultor = {
5368         .read_write_emulate = write_emulate,
5369         .read_write_mmio = write_mmio,
5370         .read_write_exit_mmio = write_exit_mmio,
5371         .write = true,
5372 };
5373
5374 static int emulator_read_write_onepage(unsigned long addr, void *val,
5375                                        unsigned int bytes,
5376                                        struct x86_exception *exception,
5377                                        struct kvm_vcpu *vcpu,
5378                                        const struct read_write_emulator_ops *ops)
5379 {
5380         gpa_t gpa;
5381         int handled, ret;
5382         bool write = ops->write;
5383         struct kvm_mmio_fragment *frag;
5384         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5385
5386         /*
5387          * If the exit was due to a NPF we may already have a GPA.
5388          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5389          * Note, this cannot be used on string operations since string
5390          * operation using rep will only have the initial GPA from the NPF
5391          * occurred.
5392          */
5393         if (vcpu->arch.gpa_available &&
5394             emulator_can_use_gpa(ctxt) &&
5395             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5396                 gpa = vcpu->arch.gpa_val;
5397                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5398         } else {
5399                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5400                 if (ret < 0)
5401                         return X86EMUL_PROPAGATE_FAULT;
5402         }
5403
5404         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5405                 return X86EMUL_CONTINUE;
5406
5407         /*
5408          * Is this MMIO handled locally?
5409          */
5410         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5411         if (handled == bytes)
5412                 return X86EMUL_CONTINUE;
5413
5414         gpa += handled;
5415         bytes -= handled;
5416         val += handled;
5417
5418         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5419         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5420         frag->gpa = gpa;
5421         frag->data = val;
5422         frag->len = bytes;
5423         return X86EMUL_CONTINUE;
5424 }
5425
5426 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5427                         unsigned long addr,
5428                         void *val, unsigned int bytes,
5429                         struct x86_exception *exception,
5430                         const struct read_write_emulator_ops *ops)
5431 {
5432         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5433         gpa_t gpa;
5434         int rc;
5435
5436         if (ops->read_write_prepare &&
5437                   ops->read_write_prepare(vcpu, val, bytes))
5438                 return X86EMUL_CONTINUE;
5439
5440         vcpu->mmio_nr_fragments = 0;
5441
5442         /* Crossing a page boundary? */
5443         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5444                 int now;
5445
5446                 now = -addr & ~PAGE_MASK;
5447                 rc = emulator_read_write_onepage(addr, val, now, exception,
5448                                                  vcpu, ops);
5449
5450                 if (rc != X86EMUL_CONTINUE)
5451                         return rc;
5452                 addr += now;
5453                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5454                         addr = (u32)addr;
5455                 val += now;
5456                 bytes -= now;
5457         }
5458
5459         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5460                                          vcpu, ops);
5461         if (rc != X86EMUL_CONTINUE)
5462                 return rc;
5463
5464         if (!vcpu->mmio_nr_fragments)
5465                 return rc;
5466
5467         gpa = vcpu->mmio_fragments[0].gpa;
5468
5469         vcpu->mmio_needed = 1;
5470         vcpu->mmio_cur_fragment = 0;
5471
5472         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5473         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5474         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5475         vcpu->run->mmio.phys_addr = gpa;
5476
5477         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5478 }
5479
5480 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5481                                   unsigned long addr,
5482                                   void *val,
5483                                   unsigned int bytes,
5484                                   struct x86_exception *exception)
5485 {
5486         return emulator_read_write(ctxt, addr, val, bytes,
5487                                    exception, &read_emultor);
5488 }
5489
5490 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5491                             unsigned long addr,
5492                             const void *val,
5493                             unsigned int bytes,
5494                             struct x86_exception *exception)
5495 {
5496         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5497                                    exception, &write_emultor);
5498 }
5499
5500 #define CMPXCHG_TYPE(t, ptr, old, new) \
5501         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5502
5503 #ifdef CONFIG_X86_64
5504 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5505 #else
5506 #  define CMPXCHG64(ptr, old, new) \
5507         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5508 #endif
5509
5510 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5511                                      unsigned long addr,
5512                                      const void *old,
5513                                      const void *new,
5514                                      unsigned int bytes,
5515                                      struct x86_exception *exception)
5516 {
5517         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5518         gpa_t gpa;
5519         struct page *page;
5520         char *kaddr;
5521         bool exchanged;
5522
5523         /* guests cmpxchg8b have to be emulated atomically */
5524         if (bytes > 8 || (bytes & (bytes - 1)))
5525                 goto emul_write;
5526
5527         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5528
5529         if (gpa == UNMAPPED_GVA ||
5530             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5531                 goto emul_write;
5532
5533         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5534                 goto emul_write;
5535
5536         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5537         if (is_error_page(page))
5538                 goto emul_write;
5539
5540         kaddr = kmap_atomic(page);
5541         kaddr += offset_in_page(gpa);
5542         switch (bytes) {
5543         case 1:
5544                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5545                 break;
5546         case 2:
5547                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5548                 break;
5549         case 4:
5550                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5551                 break;
5552         case 8:
5553                 exchanged = CMPXCHG64(kaddr, old, new);
5554                 break;
5555         default:
5556                 BUG();
5557         }
5558         kunmap_atomic(kaddr);
5559         kvm_release_page_dirty(page);
5560
5561         if (!exchanged)
5562                 return X86EMUL_CMPXCHG_FAILED;
5563
5564         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5565         kvm_page_track_write(vcpu, gpa, new, bytes);
5566
5567         return X86EMUL_CONTINUE;
5568
5569 emul_write:
5570         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5571
5572         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5573 }
5574
5575 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5576 {
5577         int r = 0, i;
5578
5579         for (i = 0; i < vcpu->arch.pio.count; i++) {
5580                 if (vcpu->arch.pio.in)
5581                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5582                                             vcpu->arch.pio.size, pd);
5583                 else
5584                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5585                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5586                                              pd);
5587                 if (r)
5588                         break;
5589                 pd += vcpu->arch.pio.size;
5590         }
5591         return r;
5592 }
5593
5594 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5595                                unsigned short port, void *val,
5596                                unsigned int count, bool in)
5597 {
5598         vcpu->arch.pio.port = port;
5599         vcpu->arch.pio.in = in;
5600         vcpu->arch.pio.count  = count;
5601         vcpu->arch.pio.size = size;
5602
5603         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5604                 vcpu->arch.pio.count = 0;
5605                 return 1;
5606         }
5607
5608         vcpu->run->exit_reason = KVM_EXIT_IO;
5609         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5610         vcpu->run->io.size = size;
5611         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5612         vcpu->run->io.count = count;
5613         vcpu->run->io.port = port;
5614
5615         return 0;
5616 }
5617
5618 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5619                                     int size, unsigned short port, void *val,
5620                                     unsigned int count)
5621 {
5622         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5623         int ret;
5624
5625         if (vcpu->arch.pio.count)
5626                 goto data_avail;
5627
5628         memset(vcpu->arch.pio_data, 0, size * count);
5629
5630         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5631         if (ret) {
5632 data_avail:
5633                 memcpy(val, vcpu->arch.pio_data, size * count);
5634                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5635                 vcpu->arch.pio.count = 0;
5636                 return 1;
5637         }
5638
5639         return 0;
5640 }
5641
5642 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5643                                      int size, unsigned short port,
5644                                      const void *val, unsigned int count)
5645 {
5646         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5647
5648         memcpy(vcpu->arch.pio_data, val, size * count);
5649         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5650         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5651 }
5652
5653 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5654 {
5655         return kvm_x86_ops->get_segment_base(vcpu, seg);
5656 }
5657
5658 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5659 {
5660         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5661 }
5662
5663 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5664 {
5665         if (!need_emulate_wbinvd(vcpu))
5666                 return X86EMUL_CONTINUE;
5667
5668         if (kvm_x86_ops->has_wbinvd_exit()) {
5669                 int cpu = get_cpu();
5670
5671                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5672                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5673                                 wbinvd_ipi, NULL, 1);
5674                 put_cpu();
5675                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5676         } else
5677                 wbinvd();
5678         return X86EMUL_CONTINUE;
5679 }
5680
5681 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5682 {
5683         kvm_emulate_wbinvd_noskip(vcpu);
5684         return kvm_skip_emulated_instruction(vcpu);
5685 }
5686 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5687
5688
5689
5690 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5691 {
5692         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5693 }
5694
5695 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5696                            unsigned long *dest)
5697 {
5698         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5699 }
5700
5701 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5702                            unsigned long value)
5703 {
5704
5705         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5706 }
5707
5708 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5709 {
5710         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5711 }
5712
5713 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5714 {
5715         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5716         unsigned long value;
5717
5718         switch (cr) {
5719         case 0:
5720                 value = kvm_read_cr0(vcpu);
5721                 break;
5722         case 2:
5723                 value = vcpu->arch.cr2;
5724                 break;
5725         case 3:
5726                 value = kvm_read_cr3(vcpu);
5727                 break;
5728         case 4:
5729                 value = kvm_read_cr4(vcpu);
5730                 break;
5731         case 8:
5732                 value = kvm_get_cr8(vcpu);
5733                 break;
5734         default:
5735                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5736                 return 0;
5737         }
5738
5739         return value;
5740 }
5741
5742 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5743 {
5744         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5745         int res = 0;
5746
5747         switch (cr) {
5748         case 0:
5749                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5750                 break;
5751         case 2:
5752                 vcpu->arch.cr2 = val;
5753                 break;
5754         case 3:
5755                 res = kvm_set_cr3(vcpu, val);
5756                 break;
5757         case 4:
5758                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5759                 break;
5760         case 8:
5761                 res = kvm_set_cr8(vcpu, val);
5762                 break;
5763         default:
5764                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5765                 res = -1;
5766         }
5767
5768         return res;
5769 }
5770
5771 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5772 {
5773         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5774 }
5775
5776 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5777 {
5778         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5779 }
5780
5781 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5782 {
5783         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5784 }
5785
5786 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5787 {
5788         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5789 }
5790
5791 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5792 {
5793         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5794 }
5795
5796 static unsigned long emulator_get_cached_segment_base(
5797         struct x86_emulate_ctxt *ctxt, int seg)
5798 {
5799         return get_segment_base(emul_to_vcpu(ctxt), seg);
5800 }
5801
5802 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5803                                  struct desc_struct *desc, u32 *base3,
5804                                  int seg)
5805 {
5806         struct kvm_segment var;
5807
5808         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5809         *selector = var.selector;
5810
5811         if (var.unusable) {
5812                 memset(desc, 0, sizeof(*desc));
5813                 if (base3)
5814                         *base3 = 0;
5815                 return false;
5816         }
5817
5818         if (var.g)
5819                 var.limit >>= 12;
5820         set_desc_limit(desc, var.limit);
5821         set_desc_base(desc, (unsigned long)var.base);
5822 #ifdef CONFIG_X86_64
5823         if (base3)
5824                 *base3 = var.base >> 32;
5825 #endif
5826         desc->type = var.type;
5827         desc->s = var.s;
5828         desc->dpl = var.dpl;
5829         desc->p = var.present;
5830         desc->avl = var.avl;
5831         desc->l = var.l;
5832         desc->d = var.db;
5833         desc->g = var.g;
5834
5835         return true;
5836 }
5837
5838 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5839                                  struct desc_struct *desc, u32 base3,
5840                                  int seg)
5841 {
5842         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5843         struct kvm_segment var;
5844
5845         var.selector = selector;
5846         var.base = get_desc_base(desc);
5847 #ifdef CONFIG_X86_64
5848         var.base |= ((u64)base3) << 32;
5849 #endif
5850         var.limit = get_desc_limit(desc);
5851         if (desc->g)
5852                 var.limit = (var.limit << 12) | 0xfff;
5853         var.type = desc->type;
5854         var.dpl = desc->dpl;
5855         var.db = desc->d;
5856         var.s = desc->s;
5857         var.l = desc->l;
5858         var.g = desc->g;
5859         var.avl = desc->avl;
5860         var.present = desc->p;
5861         var.unusable = !var.present;
5862         var.padding = 0;
5863
5864         kvm_set_segment(vcpu, &var, seg);
5865         return;
5866 }
5867
5868 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5869                             u32 msr_index, u64 *pdata)
5870 {
5871         struct msr_data msr;
5872         int r;
5873
5874         msr.index = msr_index;
5875         msr.host_initiated = false;
5876         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5877         if (r)
5878                 return r;
5879
5880         *pdata = msr.data;
5881         return 0;
5882 }
5883
5884 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5885                             u32 msr_index, u64 data)
5886 {
5887         struct msr_data msr;
5888
5889         msr.data = data;
5890         msr.index = msr_index;
5891         msr.host_initiated = false;
5892         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5893 }
5894
5895 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5896 {
5897         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5898
5899         return vcpu->arch.smbase;
5900 }
5901
5902 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5903 {
5904         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5905
5906         vcpu->arch.smbase = smbase;
5907 }
5908
5909 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5910                               u32 pmc)
5911 {
5912         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5913 }
5914
5915 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5916                              u32 pmc, u64 *pdata)
5917 {
5918         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5919 }
5920
5921 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5922 {
5923         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5924 }
5925
5926 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5927                               struct x86_instruction_info *info,
5928                               enum x86_intercept_stage stage)
5929 {
5930         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5931 }
5932
5933 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5934                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5935 {
5936         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5937 }
5938
5939 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5940 {
5941         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5942 }
5943
5944 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5945 {
5946         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5947 }
5948
5949 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5950 {
5951         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5952 }
5953
5954 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5955 {
5956         return emul_to_vcpu(ctxt)->arch.hflags;
5957 }
5958
5959 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5960 {
5961         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5962 }
5963
5964 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5965 {
5966         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5967 }
5968
5969 static const struct x86_emulate_ops emulate_ops = {
5970         .read_gpr            = emulator_read_gpr,
5971         .write_gpr           = emulator_write_gpr,
5972         .read_std            = emulator_read_std,
5973         .write_std           = emulator_write_std,
5974         .read_phys           = kvm_read_guest_phys_system,
5975         .fetch               = kvm_fetch_guest_virt,
5976         .read_emulated       = emulator_read_emulated,
5977         .write_emulated      = emulator_write_emulated,
5978         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5979         .invlpg              = emulator_invlpg,
5980         .pio_in_emulated     = emulator_pio_in_emulated,
5981         .pio_out_emulated    = emulator_pio_out_emulated,
5982         .get_segment         = emulator_get_segment,
5983         .set_segment         = emulator_set_segment,
5984         .get_cached_segment_base = emulator_get_cached_segment_base,
5985         .get_gdt             = emulator_get_gdt,
5986         .get_idt             = emulator_get_idt,
5987         .set_gdt             = emulator_set_gdt,
5988         .set_idt             = emulator_set_idt,
5989         .get_cr              = emulator_get_cr,
5990         .set_cr              = emulator_set_cr,
5991         .cpl                 = emulator_get_cpl,
5992         .get_dr              = emulator_get_dr,
5993         .set_dr              = emulator_set_dr,
5994         .get_smbase          = emulator_get_smbase,
5995         .set_smbase          = emulator_set_smbase,
5996         .set_msr             = emulator_set_msr,
5997         .get_msr             = emulator_get_msr,
5998         .check_pmc           = emulator_check_pmc,
5999         .read_pmc            = emulator_read_pmc,
6000         .halt                = emulator_halt,
6001         .wbinvd              = emulator_wbinvd,
6002         .fix_hypercall       = emulator_fix_hypercall,
6003         .intercept           = emulator_intercept,
6004         .get_cpuid           = emulator_get_cpuid,
6005         .set_nmi_mask        = emulator_set_nmi_mask,
6006         .get_hflags          = emulator_get_hflags,
6007         .set_hflags          = emulator_set_hflags,
6008         .pre_leave_smm       = emulator_pre_leave_smm,
6009 };
6010
6011 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6012 {
6013         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6014         /*
6015          * an sti; sti; sequence only disable interrupts for the first
6016          * instruction. So, if the last instruction, be it emulated or
6017          * not, left the system with the INT_STI flag enabled, it
6018          * means that the last instruction is an sti. We should not
6019          * leave the flag on in this case. The same goes for mov ss
6020          */
6021         if (int_shadow & mask)
6022                 mask = 0;
6023         if (unlikely(int_shadow || mask)) {
6024                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6025                 if (!mask)
6026                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6027         }
6028 }
6029
6030 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6031 {
6032         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6033         if (ctxt->exception.vector == PF_VECTOR)
6034                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6035
6036         if (ctxt->exception.error_code_valid)
6037                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6038                                       ctxt->exception.error_code);
6039         else
6040                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6041         return false;
6042 }
6043
6044 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6045 {
6046         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6047         int cs_db, cs_l;
6048
6049         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6050
6051         ctxt->eflags = kvm_get_rflags(vcpu);
6052         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6053
6054         ctxt->eip = kvm_rip_read(vcpu);
6055         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6056                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6057                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6058                      cs_db                              ? X86EMUL_MODE_PROT32 :
6059                                                           X86EMUL_MODE_PROT16;
6060         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6061         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6062         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6063
6064         init_decode_cache(ctxt);
6065         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6066 }
6067
6068 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6069 {
6070         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6071         int ret;
6072
6073         init_emulate_ctxt(vcpu);
6074
6075         ctxt->op_bytes = 2;
6076         ctxt->ad_bytes = 2;
6077         ctxt->_eip = ctxt->eip + inc_eip;
6078         ret = emulate_int_real(ctxt, irq);
6079
6080         if (ret != X86EMUL_CONTINUE)
6081                 return EMULATE_FAIL;
6082
6083         ctxt->eip = ctxt->_eip;
6084         kvm_rip_write(vcpu, ctxt->eip);
6085         kvm_set_rflags(vcpu, ctxt->eflags);
6086
6087         return EMULATE_DONE;
6088 }
6089 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6090
6091 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6092 {
6093         int r = EMULATE_DONE;
6094
6095         ++vcpu->stat.insn_emulation_fail;
6096         trace_kvm_emulate_insn_failed(vcpu);
6097
6098         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6099                 return EMULATE_FAIL;
6100
6101         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6102                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6103                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6104                 vcpu->run->internal.ndata = 0;
6105                 r = EMULATE_USER_EXIT;
6106         }
6107
6108         kvm_queue_exception(vcpu, UD_VECTOR);
6109
6110         return r;
6111 }
6112
6113 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6114                                   bool write_fault_to_shadow_pgtable,
6115                                   int emulation_type)
6116 {
6117         gpa_t gpa = cr2;
6118         kvm_pfn_t pfn;
6119
6120         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6121                 return false;
6122
6123         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6124                 return false;
6125
6126         if (!vcpu->arch.mmu->direct_map) {
6127                 /*
6128                  * Write permission should be allowed since only
6129                  * write access need to be emulated.
6130                  */
6131                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6132
6133                 /*
6134                  * If the mapping is invalid in guest, let cpu retry
6135                  * it to generate fault.
6136                  */
6137                 if (gpa == UNMAPPED_GVA)
6138                         return true;
6139         }
6140
6141         /*
6142          * Do not retry the unhandleable instruction if it faults on the
6143          * readonly host memory, otherwise it will goto a infinite loop:
6144          * retry instruction -> write #PF -> emulation fail -> retry
6145          * instruction -> ...
6146          */
6147         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6148
6149         /*
6150          * If the instruction failed on the error pfn, it can not be fixed,
6151          * report the error to userspace.
6152          */
6153         if (is_error_noslot_pfn(pfn))
6154                 return false;
6155
6156         kvm_release_pfn_clean(pfn);
6157
6158         /* The instructions are well-emulated on direct mmu. */
6159         if (vcpu->arch.mmu->direct_map) {
6160                 unsigned int indirect_shadow_pages;
6161
6162                 spin_lock(&vcpu->kvm->mmu_lock);
6163                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6164                 spin_unlock(&vcpu->kvm->mmu_lock);
6165
6166                 if (indirect_shadow_pages)
6167                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6168
6169                 return true;
6170         }
6171
6172         /*
6173          * if emulation was due to access to shadowed page table
6174          * and it failed try to unshadow page and re-enter the
6175          * guest to let CPU execute the instruction.
6176          */
6177         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6178
6179         /*
6180          * If the access faults on its page table, it can not
6181          * be fixed by unprotecting shadow page and it should
6182          * be reported to userspace.
6183          */
6184         return !write_fault_to_shadow_pgtable;
6185 }
6186
6187 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6188                               unsigned long cr2,  int emulation_type)
6189 {
6190         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6191         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6192
6193         last_retry_eip = vcpu->arch.last_retry_eip;
6194         last_retry_addr = vcpu->arch.last_retry_addr;
6195
6196         /*
6197          * If the emulation is caused by #PF and it is non-page_table
6198          * writing instruction, it means the VM-EXIT is caused by shadow
6199          * page protected, we can zap the shadow page and retry this
6200          * instruction directly.
6201          *
6202          * Note: if the guest uses a non-page-table modifying instruction
6203          * on the PDE that points to the instruction, then we will unmap
6204          * the instruction and go to an infinite loop. So, we cache the
6205          * last retried eip and the last fault address, if we meet the eip
6206          * and the address again, we can break out of the potential infinite
6207          * loop.
6208          */
6209         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6210
6211         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6212                 return false;
6213
6214         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6215                 return false;
6216
6217         if (x86_page_table_writing_insn(ctxt))
6218                 return false;
6219
6220         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6221                 return false;
6222
6223         vcpu->arch.last_retry_eip = ctxt->eip;
6224         vcpu->arch.last_retry_addr = cr2;
6225
6226         if (!vcpu->arch.mmu->direct_map)
6227                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6228
6229         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6230
6231         return true;
6232 }
6233
6234 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6235 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6236
6237 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6238 {
6239         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6240                 /* This is a good place to trace that we are exiting SMM.  */
6241                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6242
6243                 /* Process a latched INIT or SMI, if any.  */
6244                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6245         }
6246
6247         kvm_mmu_reset_context(vcpu);
6248 }
6249
6250 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6251 {
6252         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6253
6254         vcpu->arch.hflags = emul_flags;
6255
6256         if (changed & HF_SMM_MASK)
6257                 kvm_smm_changed(vcpu);
6258 }
6259
6260 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6261                                 unsigned long *db)
6262 {
6263         u32 dr6 = 0;
6264         int i;
6265         u32 enable, rwlen;
6266
6267         enable = dr7;
6268         rwlen = dr7 >> 16;
6269         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6270                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6271                         dr6 |= (1 << i);
6272         return dr6;
6273 }
6274
6275 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6276 {
6277         struct kvm_run *kvm_run = vcpu->run;
6278
6279         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6280                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6281                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6282                 kvm_run->debug.arch.exception = DB_VECTOR;
6283                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6284                 *r = EMULATE_USER_EXIT;
6285         } else {
6286                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6287         }
6288 }
6289
6290 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6291 {
6292         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6293         int r = EMULATE_DONE;
6294
6295         kvm_x86_ops->skip_emulated_instruction(vcpu);
6296
6297         /*
6298          * rflags is the old, "raw" value of the flags.  The new value has
6299          * not been saved yet.
6300          *
6301          * This is correct even for TF set by the guest, because "the
6302          * processor will not generate this exception after the instruction
6303          * that sets the TF flag".
6304          */
6305         if (unlikely(rflags & X86_EFLAGS_TF))
6306                 kvm_vcpu_do_singlestep(vcpu, &r);
6307         return r == EMULATE_DONE;
6308 }
6309 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6310
6311 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6312 {
6313         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6314             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6315                 struct kvm_run *kvm_run = vcpu->run;
6316                 unsigned long eip = kvm_get_linear_rip(vcpu);
6317                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6318                                            vcpu->arch.guest_debug_dr7,
6319                                            vcpu->arch.eff_db);
6320
6321                 if (dr6 != 0) {
6322                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6323                         kvm_run->debug.arch.pc = eip;
6324                         kvm_run->debug.arch.exception = DB_VECTOR;
6325                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6326                         *r = EMULATE_USER_EXIT;
6327                         return true;
6328                 }
6329         }
6330
6331         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6332             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6333                 unsigned long eip = kvm_get_linear_rip(vcpu);
6334                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6335                                            vcpu->arch.dr7,
6336                                            vcpu->arch.db);
6337
6338                 if (dr6 != 0) {
6339                         vcpu->arch.dr6 &= ~15;
6340                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6341                         kvm_queue_exception(vcpu, DB_VECTOR);
6342                         *r = EMULATE_DONE;
6343                         return true;
6344                 }
6345         }
6346
6347         return false;
6348 }
6349
6350 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6351 {
6352         switch (ctxt->opcode_len) {
6353         case 1:
6354                 switch (ctxt->b) {
6355                 case 0xe4:      /* IN */
6356                 case 0xe5:
6357                 case 0xec:
6358                 case 0xed:
6359                 case 0xe6:      /* OUT */
6360                 case 0xe7:
6361                 case 0xee:
6362                 case 0xef:
6363                 case 0x6c:      /* INS */
6364                 case 0x6d:
6365                 case 0x6e:      /* OUTS */
6366                 case 0x6f:
6367                         return true;
6368                 }
6369                 break;
6370         case 2:
6371                 switch (ctxt->b) {
6372                 case 0x33:      /* RDPMC */
6373                         return true;
6374                 }
6375                 break;
6376         }
6377
6378         return false;
6379 }
6380
6381 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6382                             unsigned long cr2,
6383                             int emulation_type,
6384                             void *insn,
6385                             int insn_len)
6386 {
6387         int r;
6388         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6389         bool writeback = true;
6390         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6391
6392         vcpu->arch.l1tf_flush_l1d = true;
6393
6394         /*
6395          * Clear write_fault_to_shadow_pgtable here to ensure it is
6396          * never reused.
6397          */
6398         vcpu->arch.write_fault_to_shadow_pgtable = false;
6399         kvm_clear_exception_queue(vcpu);
6400
6401         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6402                 init_emulate_ctxt(vcpu);
6403
6404                 /*
6405                  * We will reenter on the same instruction since
6406                  * we do not set complete_userspace_io.  This does not
6407                  * handle watchpoints yet, those would be handled in
6408                  * the emulate_ops.
6409                  */
6410                 if (!(emulation_type & EMULTYPE_SKIP) &&
6411                     kvm_vcpu_check_breakpoint(vcpu, &r))
6412                         return r;
6413
6414                 ctxt->interruptibility = 0;
6415                 ctxt->have_exception = false;
6416                 ctxt->exception.vector = -1;
6417                 ctxt->perm_ok = false;
6418
6419                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6420
6421                 r = x86_decode_insn(ctxt, insn, insn_len);
6422
6423                 trace_kvm_emulate_insn_start(vcpu);
6424                 ++vcpu->stat.insn_emulation;
6425                 if (r != EMULATION_OK)  {
6426                         if (emulation_type & EMULTYPE_TRAP_UD)
6427                                 return EMULATE_FAIL;
6428                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6429                                                 emulation_type))
6430                                 return EMULATE_DONE;
6431                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6432                                 return EMULATE_DONE;
6433                         if (emulation_type & EMULTYPE_SKIP)
6434                                 return EMULATE_FAIL;
6435                         return handle_emulation_failure(vcpu, emulation_type);
6436                 }
6437         }
6438
6439         if ((emulation_type & EMULTYPE_VMWARE) &&
6440             !is_vmware_backdoor_opcode(ctxt))
6441                 return EMULATE_FAIL;
6442
6443         if (emulation_type & EMULTYPE_SKIP) {
6444                 kvm_rip_write(vcpu, ctxt->_eip);
6445                 if (ctxt->eflags & X86_EFLAGS_RF)
6446                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6447                 return EMULATE_DONE;
6448         }
6449
6450         if (retry_instruction(ctxt, cr2, emulation_type))
6451                 return EMULATE_DONE;
6452
6453         /* this is needed for vmware backdoor interface to work since it
6454            changes registers values  during IO operation */
6455         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6456                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6457                 emulator_invalidate_register_cache(ctxt);
6458         }
6459
6460 restart:
6461         /* Save the faulting GPA (cr2) in the address field */
6462         ctxt->exception.address = cr2;
6463
6464         r = x86_emulate_insn(ctxt);
6465
6466         if (r == EMULATION_INTERCEPTED)
6467                 return EMULATE_DONE;
6468
6469         if (r == EMULATION_FAILED) {
6470                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6471                                         emulation_type))
6472                         return EMULATE_DONE;
6473
6474                 return handle_emulation_failure(vcpu, emulation_type);
6475         }
6476
6477         if (ctxt->have_exception) {
6478                 r = EMULATE_DONE;
6479                 if (inject_emulated_exception(vcpu))
6480                         return r;
6481         } else if (vcpu->arch.pio.count) {
6482                 if (!vcpu->arch.pio.in) {
6483                         /* FIXME: return into emulator if single-stepping.  */
6484                         vcpu->arch.pio.count = 0;
6485                 } else {
6486                         writeback = false;
6487                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6488                 }
6489                 r = EMULATE_USER_EXIT;
6490         } else if (vcpu->mmio_needed) {
6491                 if (!vcpu->mmio_is_write)
6492                         writeback = false;
6493                 r = EMULATE_USER_EXIT;
6494                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6495         } else if (r == EMULATION_RESTART)
6496                 goto restart;
6497         else
6498                 r = EMULATE_DONE;
6499
6500         if (writeback) {
6501                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6502                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6503                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6504                 kvm_rip_write(vcpu, ctxt->eip);
6505                 if (r == EMULATE_DONE && ctxt->tf)
6506                         kvm_vcpu_do_singlestep(vcpu, &r);
6507                 if (!ctxt->have_exception ||
6508                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6509                         __kvm_set_rflags(vcpu, ctxt->eflags);
6510
6511                 /*
6512                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6513                  * do nothing, and it will be requested again as soon as
6514                  * the shadow expires.  But we still need to check here,
6515                  * because POPF has no interrupt shadow.
6516                  */
6517                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6518                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6519         } else
6520                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6521
6522         return r;
6523 }
6524
6525 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6526 {
6527         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6528 }
6529 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6530
6531 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6532                                         void *insn, int insn_len)
6533 {
6534         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6535 }
6536 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6537
6538 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6539                             unsigned short port)
6540 {
6541         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6542         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6543                                             size, port, &val, 1);
6544         /* do not return to emulator after return from userspace */
6545         vcpu->arch.pio.count = 0;
6546         return ret;
6547 }
6548
6549 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6550 {
6551         unsigned long val;
6552
6553         /* We should only ever be called with arch.pio.count equal to 1 */
6554         BUG_ON(vcpu->arch.pio.count != 1);
6555
6556         /* For size less than 4 we merge, else we zero extend */
6557         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6558                                         : 0;
6559
6560         /*
6561          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6562          * the copy and tracing
6563          */
6564         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6565                                  vcpu->arch.pio.port, &val, 1);
6566         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6567
6568         return 1;
6569 }
6570
6571 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6572                            unsigned short port)
6573 {
6574         unsigned long val;
6575         int ret;
6576
6577         /* For size less than 4 we merge, else we zero extend */
6578         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6579
6580         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6581                                        &val, 1);
6582         if (ret) {
6583                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6584                 return ret;
6585         }
6586
6587         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6588
6589         return 0;
6590 }
6591
6592 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6593 {
6594         int ret = kvm_skip_emulated_instruction(vcpu);
6595
6596         /*
6597          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6598          * KVM_EXIT_DEBUG here.
6599          */
6600         if (in)
6601                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6602         else
6603                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6604 }
6605 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6606
6607 static int kvmclock_cpu_down_prep(unsigned int cpu)
6608 {
6609         __this_cpu_write(cpu_tsc_khz, 0);
6610         return 0;
6611 }
6612
6613 static void tsc_khz_changed(void *data)
6614 {
6615         struct cpufreq_freqs *freq = data;
6616         unsigned long khz = 0;
6617
6618         if (data)
6619                 khz = freq->new;
6620         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6621                 khz = cpufreq_quick_get(raw_smp_processor_id());
6622         if (!khz)
6623                 khz = tsc_khz;
6624         __this_cpu_write(cpu_tsc_khz, khz);
6625 }
6626
6627 #ifdef CONFIG_X86_64
6628 static void kvm_hyperv_tsc_notifier(void)
6629 {
6630         struct kvm *kvm;
6631         struct kvm_vcpu *vcpu;
6632         int cpu;
6633
6634         spin_lock(&kvm_lock);
6635         list_for_each_entry(kvm, &vm_list, vm_list)
6636                 kvm_make_mclock_inprogress_request(kvm);
6637
6638         hyperv_stop_tsc_emulation();
6639
6640         /* TSC frequency always matches when on Hyper-V */
6641         for_each_present_cpu(cpu)
6642                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6643         kvm_max_guest_tsc_khz = tsc_khz;
6644
6645         list_for_each_entry(kvm, &vm_list, vm_list) {
6646                 struct kvm_arch *ka = &kvm->arch;
6647
6648                 spin_lock(&ka->pvclock_gtod_sync_lock);
6649
6650                 pvclock_update_vm_gtod_copy(kvm);
6651
6652                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6653                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6654
6655                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6656                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6657
6658                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6659         }
6660         spin_unlock(&kvm_lock);
6661 }
6662 #endif
6663
6664 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6665                                      void *data)
6666 {
6667         struct cpufreq_freqs *freq = data;
6668         struct kvm *kvm;
6669         struct kvm_vcpu *vcpu;
6670         int i, send_ipi = 0;
6671
6672         /*
6673          * We allow guests to temporarily run on slowing clocks,
6674          * provided we notify them after, or to run on accelerating
6675          * clocks, provided we notify them before.  Thus time never
6676          * goes backwards.
6677          *
6678          * However, we have a problem.  We can't atomically update
6679          * the frequency of a given CPU from this function; it is
6680          * merely a notifier, which can be called from any CPU.
6681          * Changing the TSC frequency at arbitrary points in time
6682          * requires a recomputation of local variables related to
6683          * the TSC for each VCPU.  We must flag these local variables
6684          * to be updated and be sure the update takes place with the
6685          * new frequency before any guests proceed.
6686          *
6687          * Unfortunately, the combination of hotplug CPU and frequency
6688          * change creates an intractable locking scenario; the order
6689          * of when these callouts happen is undefined with respect to
6690          * CPU hotplug, and they can race with each other.  As such,
6691          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6692          * undefined; you can actually have a CPU frequency change take
6693          * place in between the computation of X and the setting of the
6694          * variable.  To protect against this problem, all updates of
6695          * the per_cpu tsc_khz variable are done in an interrupt
6696          * protected IPI, and all callers wishing to update the value
6697          * must wait for a synchronous IPI to complete (which is trivial
6698          * if the caller is on the CPU already).  This establishes the
6699          * necessary total order on variable updates.
6700          *
6701          * Note that because a guest time update may take place
6702          * anytime after the setting of the VCPU's request bit, the
6703          * correct TSC value must be set before the request.  However,
6704          * to ensure the update actually makes it to any guest which
6705          * starts running in hardware virtualization between the set
6706          * and the acquisition of the spinlock, we must also ping the
6707          * CPU after setting the request bit.
6708          *
6709          */
6710
6711         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6712                 return 0;
6713         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6714                 return 0;
6715
6716         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6717
6718         spin_lock(&kvm_lock);
6719         list_for_each_entry(kvm, &vm_list, vm_list) {
6720                 kvm_for_each_vcpu(i, vcpu, kvm) {
6721                         if (vcpu->cpu != freq->cpu)
6722                                 continue;
6723                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6724                         if (vcpu->cpu != smp_processor_id())
6725                                 send_ipi = 1;
6726                 }
6727         }
6728         spin_unlock(&kvm_lock);
6729
6730         if (freq->old < freq->new && send_ipi) {
6731                 /*
6732                  * We upscale the frequency.  Must make the guest
6733                  * doesn't see old kvmclock values while running with
6734                  * the new frequency, otherwise we risk the guest sees
6735                  * time go backwards.
6736                  *
6737                  * In case we update the frequency for another cpu
6738                  * (which might be in guest context) send an interrupt
6739                  * to kick the cpu out of guest context.  Next time
6740                  * guest context is entered kvmclock will be updated,
6741                  * so the guest will not see stale values.
6742                  */
6743                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6744         }
6745         return 0;
6746 }
6747
6748 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6749         .notifier_call  = kvmclock_cpufreq_notifier
6750 };
6751
6752 static int kvmclock_cpu_online(unsigned int cpu)
6753 {
6754         tsc_khz_changed(NULL);
6755         return 0;
6756 }
6757
6758 static void kvm_timer_init(void)
6759 {
6760         max_tsc_khz = tsc_khz;
6761
6762         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6763 #ifdef CONFIG_CPU_FREQ
6764                 struct cpufreq_policy policy;
6765                 int cpu;
6766
6767                 memset(&policy, 0, sizeof(policy));
6768                 cpu = get_cpu();
6769                 cpufreq_get_policy(&policy, cpu);
6770                 if (policy.cpuinfo.max_freq)
6771                         max_tsc_khz = policy.cpuinfo.max_freq;
6772                 put_cpu();
6773 #endif
6774                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6775                                           CPUFREQ_TRANSITION_NOTIFIER);
6776         }
6777         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6778
6779         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6780                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6781 }
6782
6783 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6784 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6785
6786 int kvm_is_in_guest(void)
6787 {
6788         return __this_cpu_read(current_vcpu) != NULL;
6789 }
6790
6791 static int kvm_is_user_mode(void)
6792 {
6793         int user_mode = 3;
6794
6795         if (__this_cpu_read(current_vcpu))
6796                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6797
6798         return user_mode != 0;
6799 }
6800
6801 static unsigned long kvm_get_guest_ip(void)
6802 {
6803         unsigned long ip = 0;
6804
6805         if (__this_cpu_read(current_vcpu))
6806                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6807
6808         return ip;
6809 }
6810
6811 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6812         .is_in_guest            = kvm_is_in_guest,
6813         .is_user_mode           = kvm_is_user_mode,
6814         .get_guest_ip           = kvm_get_guest_ip,
6815 };
6816
6817 static void kvm_set_mmio_spte_mask(void)
6818 {
6819         u64 mask;
6820         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6821
6822         /*
6823          * Set the reserved bits and the present bit of an paging-structure
6824          * entry to generate page fault with PFER.RSV = 1.
6825          */
6826
6827         /*
6828          * Mask the uppermost physical address bit, which would be reserved as
6829          * long as the supported physical address width is less than 52.
6830          */
6831         mask = 1ull << 51;
6832
6833         /* Set the present bit. */
6834         mask |= 1ull;
6835
6836         /*
6837          * If reserved bit is not supported, clear the present bit to disable
6838          * mmio page fault.
6839          */
6840         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6841                 mask &= ~1ull;
6842
6843         kvm_mmu_set_mmio_spte_mask(mask, mask);
6844 }
6845
6846 #ifdef CONFIG_X86_64
6847 static void pvclock_gtod_update_fn(struct work_struct *work)
6848 {
6849         struct kvm *kvm;
6850
6851         struct kvm_vcpu *vcpu;
6852         int i;
6853
6854         spin_lock(&kvm_lock);
6855         list_for_each_entry(kvm, &vm_list, vm_list)
6856                 kvm_for_each_vcpu(i, vcpu, kvm)
6857                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6858         atomic_set(&kvm_guest_has_master_clock, 0);
6859         spin_unlock(&kvm_lock);
6860 }
6861
6862 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6863
6864 /*
6865  * Notification about pvclock gtod data update.
6866  */
6867 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6868                                void *priv)
6869 {
6870         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6871         struct timekeeper *tk = priv;
6872
6873         update_pvclock_gtod(tk);
6874
6875         /* disable master clock if host does not trust, or does not
6876          * use, TSC based clocksource.
6877          */
6878         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6879             atomic_read(&kvm_guest_has_master_clock) != 0)
6880                 queue_work(system_long_wq, &pvclock_gtod_work);
6881
6882         return 0;
6883 }
6884
6885 static struct notifier_block pvclock_gtod_notifier = {
6886         .notifier_call = pvclock_gtod_notify,
6887 };
6888 #endif
6889
6890 int kvm_arch_init(void *opaque)
6891 {
6892         int r;
6893         struct kvm_x86_ops *ops = opaque;
6894
6895         if (kvm_x86_ops) {
6896                 printk(KERN_ERR "kvm: already loaded the other module\n");
6897                 r = -EEXIST;
6898                 goto out;
6899         }
6900
6901         if (!ops->cpu_has_kvm_support()) {
6902                 printk(KERN_ERR "kvm: no hardware support\n");
6903                 r = -EOPNOTSUPP;
6904                 goto out;
6905         }
6906         if (ops->disabled_by_bios()) {
6907                 printk(KERN_ERR "kvm: disabled by bios\n");
6908                 r = -EOPNOTSUPP;
6909                 goto out;
6910         }
6911
6912         /*
6913          * KVM explicitly assumes that the guest has an FPU and
6914          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6915          * vCPU's FPU state as a fxregs_state struct.
6916          */
6917         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6918                 printk(KERN_ERR "kvm: inadequate fpu\n");
6919                 r = -EOPNOTSUPP;
6920                 goto out;
6921         }
6922
6923         r = -ENOMEM;
6924         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6925                                           __alignof__(struct fpu), SLAB_ACCOUNT,
6926                                           NULL);
6927         if (!x86_fpu_cache) {
6928                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6929                 goto out;
6930         }
6931
6932         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6933         if (!shared_msrs) {
6934                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6935                 goto out_free_x86_fpu_cache;
6936         }
6937
6938         r = kvm_mmu_module_init();
6939         if (r)
6940                 goto out_free_percpu;
6941
6942         kvm_set_mmio_spte_mask();
6943
6944         kvm_x86_ops = ops;
6945
6946         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6947                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6948                         PT_PRESENT_MASK, 0, sme_me_mask);
6949         kvm_timer_init();
6950
6951         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6952
6953         if (boot_cpu_has(X86_FEATURE_XSAVE))
6954                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6955
6956         kvm_lapic_init();
6957 #ifdef CONFIG_X86_64
6958         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6959
6960         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6961                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6962 #endif
6963
6964         return 0;
6965
6966 out_free_percpu:
6967         free_percpu(shared_msrs);
6968 out_free_x86_fpu_cache:
6969         kmem_cache_destroy(x86_fpu_cache);
6970 out:
6971         return r;
6972 }
6973
6974 void kvm_arch_exit(void)
6975 {
6976 #ifdef CONFIG_X86_64
6977         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6978                 clear_hv_tscchange_cb();
6979 #endif
6980         kvm_lapic_exit();
6981         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6982
6983         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6984                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6985                                             CPUFREQ_TRANSITION_NOTIFIER);
6986         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6987 #ifdef CONFIG_X86_64
6988         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6989 #endif
6990         kvm_x86_ops = NULL;
6991         kvm_mmu_module_exit();
6992         free_percpu(shared_msrs);
6993         kmem_cache_destroy(x86_fpu_cache);
6994 }
6995
6996 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6997 {
6998         ++vcpu->stat.halt_exits;
6999         if (lapic_in_kernel(vcpu)) {
7000                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7001                 return 1;
7002         } else {
7003                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7004                 return 0;
7005         }
7006 }
7007 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7008
7009 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7010 {
7011         int ret = kvm_skip_emulated_instruction(vcpu);
7012         /*
7013          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7014          * KVM_EXIT_DEBUG here.
7015          */
7016         return kvm_vcpu_halt(vcpu) && ret;
7017 }
7018 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7019
7020 #ifdef CONFIG_X86_64
7021 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7022                                 unsigned long clock_type)
7023 {
7024         struct kvm_clock_pairing clock_pairing;
7025         struct timespec64 ts;
7026         u64 cycle;
7027         int ret;
7028
7029         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7030                 return -KVM_EOPNOTSUPP;
7031
7032         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7033                 return -KVM_EOPNOTSUPP;
7034
7035         clock_pairing.sec = ts.tv_sec;
7036         clock_pairing.nsec = ts.tv_nsec;
7037         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7038         clock_pairing.flags = 0;
7039         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7040
7041         ret = 0;
7042         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7043                             sizeof(struct kvm_clock_pairing)))
7044                 ret = -KVM_EFAULT;
7045
7046         return ret;
7047 }
7048 #endif
7049
7050 /*
7051  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7052  *
7053  * @apicid - apicid of vcpu to be kicked.
7054  */
7055 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7056 {
7057         struct kvm_lapic_irq lapic_irq;
7058
7059         lapic_irq.shorthand = 0;
7060         lapic_irq.dest_mode = 0;
7061         lapic_irq.level = 0;
7062         lapic_irq.dest_id = apicid;
7063         lapic_irq.msi_redir_hint = false;
7064
7065         lapic_irq.delivery_mode = APIC_DM_REMRD;
7066         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7067 }
7068
7069 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7070 {
7071         if (!lapic_in_kernel(vcpu)) {
7072                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7073                 return;
7074         }
7075         if (!vcpu->arch.apicv_active)
7076                 return;
7077
7078         vcpu->arch.apicv_active = false;
7079         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7080 }
7081
7082 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7083 {
7084         unsigned long nr, a0, a1, a2, a3, ret;
7085         int op_64_bit;
7086
7087         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7088                 return kvm_hv_hypercall(vcpu);
7089
7090         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7091         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7092         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7093         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7094         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7095
7096         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7097
7098         op_64_bit = is_64_bit_mode(vcpu);
7099         if (!op_64_bit) {
7100                 nr &= 0xFFFFFFFF;
7101                 a0 &= 0xFFFFFFFF;
7102                 a1 &= 0xFFFFFFFF;
7103                 a2 &= 0xFFFFFFFF;
7104                 a3 &= 0xFFFFFFFF;
7105         }
7106
7107         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7108                 ret = -KVM_EPERM;
7109                 goto out;
7110         }
7111
7112         switch (nr) {
7113         case KVM_HC_VAPIC_POLL_IRQ:
7114                 ret = 0;
7115                 break;
7116         case KVM_HC_KICK_CPU:
7117                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7118                 ret = 0;
7119                 break;
7120 #ifdef CONFIG_X86_64
7121         case KVM_HC_CLOCK_PAIRING:
7122                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7123                 break;
7124 #endif
7125         case KVM_HC_SEND_IPI:
7126                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7127                 break;
7128         default:
7129                 ret = -KVM_ENOSYS;
7130                 break;
7131         }
7132 out:
7133         if (!op_64_bit)
7134                 ret = (u32)ret;
7135         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7136
7137         ++vcpu->stat.hypercalls;
7138         return kvm_skip_emulated_instruction(vcpu);
7139 }
7140 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7141
7142 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7143 {
7144         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7145         char instruction[3];
7146         unsigned long rip = kvm_rip_read(vcpu);
7147
7148         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7149
7150         return emulator_write_emulated(ctxt, rip, instruction, 3,
7151                 &ctxt->exception);
7152 }
7153
7154 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7155 {
7156         return vcpu->run->request_interrupt_window &&
7157                 likely(!pic_in_kernel(vcpu->kvm));
7158 }
7159
7160 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7161 {
7162         struct kvm_run *kvm_run = vcpu->run;
7163
7164         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7165         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7166         kvm_run->cr8 = kvm_get_cr8(vcpu);
7167         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7168         kvm_run->ready_for_interrupt_injection =
7169                 pic_in_kernel(vcpu->kvm) ||
7170                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7171 }
7172
7173 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7174 {
7175         int max_irr, tpr;
7176
7177         if (!kvm_x86_ops->update_cr8_intercept)
7178                 return;
7179
7180         if (!lapic_in_kernel(vcpu))
7181                 return;
7182
7183         if (vcpu->arch.apicv_active)
7184                 return;
7185
7186         if (!vcpu->arch.apic->vapic_addr)
7187                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7188         else
7189                 max_irr = -1;
7190
7191         if (max_irr != -1)
7192                 max_irr >>= 4;
7193
7194         tpr = kvm_lapic_get_cr8(vcpu);
7195
7196         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7197 }
7198
7199 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7200 {
7201         int r;
7202
7203         /* try to reinject previous events if any */
7204
7205         if (vcpu->arch.exception.injected)
7206                 kvm_x86_ops->queue_exception(vcpu);
7207         /*
7208          * Do not inject an NMI or interrupt if there is a pending
7209          * exception.  Exceptions and interrupts are recognized at
7210          * instruction boundaries, i.e. the start of an instruction.
7211          * Trap-like exceptions, e.g. #DB, have higher priority than
7212          * NMIs and interrupts, i.e. traps are recognized before an
7213          * NMI/interrupt that's pending on the same instruction.
7214          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7215          * priority, but are only generated (pended) during instruction
7216          * execution, i.e. a pending fault-like exception means the
7217          * fault occurred on the *previous* instruction and must be
7218          * serviced prior to recognizing any new events in order to
7219          * fully complete the previous instruction.
7220          */
7221         else if (!vcpu->arch.exception.pending) {
7222                 if (vcpu->arch.nmi_injected)
7223                         kvm_x86_ops->set_nmi(vcpu);
7224                 else if (vcpu->arch.interrupt.injected)
7225                         kvm_x86_ops->set_irq(vcpu);
7226         }
7227
7228         /*
7229          * Call check_nested_events() even if we reinjected a previous event
7230          * in order for caller to determine if it should require immediate-exit
7231          * from L2 to L1 due to pending L1 events which require exit
7232          * from L2 to L1.
7233          */
7234         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7235                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7236                 if (r != 0)
7237                         return r;
7238         }
7239
7240         /* try to inject new event if pending */
7241         if (vcpu->arch.exception.pending) {
7242                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7243                                         vcpu->arch.exception.has_error_code,
7244                                         vcpu->arch.exception.error_code);
7245
7246                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7247                 vcpu->arch.exception.pending = false;
7248                 vcpu->arch.exception.injected = true;
7249
7250                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7251                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7252                                              X86_EFLAGS_RF);
7253
7254                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7255                         /*
7256                          * This code assumes that nSVM doesn't use
7257                          * check_nested_events(). If it does, the
7258                          * DR6/DR7 changes should happen before L1
7259                          * gets a #VMEXIT for an intercepted #DB in
7260                          * L2.  (Under VMX, on the other hand, the
7261                          * DR6/DR7 changes should not happen in the
7262                          * event of a VM-exit to L1 for an intercepted
7263                          * #DB in L2.)
7264                          */
7265                         kvm_deliver_exception_payload(vcpu);
7266                         if (vcpu->arch.dr7 & DR7_GD) {
7267                                 vcpu->arch.dr7 &= ~DR7_GD;
7268                                 kvm_update_dr7(vcpu);
7269                         }
7270                 }
7271
7272                 kvm_x86_ops->queue_exception(vcpu);
7273         }
7274
7275         /* Don't consider new event if we re-injected an event */
7276         if (kvm_event_needs_reinjection(vcpu))
7277                 return 0;
7278
7279         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7280             kvm_x86_ops->smi_allowed(vcpu)) {
7281                 vcpu->arch.smi_pending = false;
7282                 ++vcpu->arch.smi_count;
7283                 enter_smm(vcpu);
7284         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7285                 --vcpu->arch.nmi_pending;
7286                 vcpu->arch.nmi_injected = true;
7287                 kvm_x86_ops->set_nmi(vcpu);
7288         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7289                 /*
7290                  * Because interrupts can be injected asynchronously, we are
7291                  * calling check_nested_events again here to avoid a race condition.
7292                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7293                  * proposal and current concerns.  Perhaps we should be setting
7294                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7295                  */
7296                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7297                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7298                         if (r != 0)
7299                                 return r;
7300                 }
7301                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7302                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7303                                             false);
7304                         kvm_x86_ops->set_irq(vcpu);
7305                 }
7306         }
7307
7308         return 0;
7309 }
7310
7311 static void process_nmi(struct kvm_vcpu *vcpu)
7312 {
7313         unsigned limit = 2;
7314
7315         /*
7316          * x86 is limited to one NMI running, and one NMI pending after it.
7317          * If an NMI is already in progress, limit further NMIs to just one.
7318          * Otherwise, allow two (and we'll inject the first one immediately).
7319          */
7320         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7321                 limit = 1;
7322
7323         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7324         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7325         kvm_make_request(KVM_REQ_EVENT, vcpu);
7326 }
7327
7328 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7329 {
7330         u32 flags = 0;
7331         flags |= seg->g       << 23;
7332         flags |= seg->db      << 22;
7333         flags |= seg->l       << 21;
7334         flags |= seg->avl     << 20;
7335         flags |= seg->present << 15;
7336         flags |= seg->dpl     << 13;
7337         flags |= seg->s       << 12;
7338         flags |= seg->type    << 8;
7339         return flags;
7340 }
7341
7342 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7343 {
7344         struct kvm_segment seg;
7345         int offset;
7346
7347         kvm_get_segment(vcpu, &seg, n);
7348         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7349
7350         if (n < 3)
7351                 offset = 0x7f84 + n * 12;
7352         else
7353                 offset = 0x7f2c + (n - 3) * 12;
7354
7355         put_smstate(u32, buf, offset + 8, seg.base);
7356         put_smstate(u32, buf, offset + 4, seg.limit);
7357         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7358 }
7359
7360 #ifdef CONFIG_X86_64
7361 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7362 {
7363         struct kvm_segment seg;
7364         int offset;
7365         u16 flags;
7366
7367         kvm_get_segment(vcpu, &seg, n);
7368         offset = 0x7e00 + n * 16;
7369
7370         flags = enter_smm_get_segment_flags(&seg) >> 8;
7371         put_smstate(u16, buf, offset, seg.selector);
7372         put_smstate(u16, buf, offset + 2, flags);
7373         put_smstate(u32, buf, offset + 4, seg.limit);
7374         put_smstate(u64, buf, offset + 8, seg.base);
7375 }
7376 #endif
7377
7378 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7379 {
7380         struct desc_ptr dt;
7381         struct kvm_segment seg;
7382         unsigned long val;
7383         int i;
7384
7385         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7386         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7387         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7388         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7389
7390         for (i = 0; i < 8; i++)
7391                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7392
7393         kvm_get_dr(vcpu, 6, &val);
7394         put_smstate(u32, buf, 0x7fcc, (u32)val);
7395         kvm_get_dr(vcpu, 7, &val);
7396         put_smstate(u32, buf, 0x7fc8, (u32)val);
7397
7398         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7399         put_smstate(u32, buf, 0x7fc4, seg.selector);
7400         put_smstate(u32, buf, 0x7f64, seg.base);
7401         put_smstate(u32, buf, 0x7f60, seg.limit);
7402         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7403
7404         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7405         put_smstate(u32, buf, 0x7fc0, seg.selector);
7406         put_smstate(u32, buf, 0x7f80, seg.base);
7407         put_smstate(u32, buf, 0x7f7c, seg.limit);
7408         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7409
7410         kvm_x86_ops->get_gdt(vcpu, &dt);
7411         put_smstate(u32, buf, 0x7f74, dt.address);
7412         put_smstate(u32, buf, 0x7f70, dt.size);
7413
7414         kvm_x86_ops->get_idt(vcpu, &dt);
7415         put_smstate(u32, buf, 0x7f58, dt.address);
7416         put_smstate(u32, buf, 0x7f54, dt.size);
7417
7418         for (i = 0; i < 6; i++)
7419                 enter_smm_save_seg_32(vcpu, buf, i);
7420
7421         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7422
7423         /* revision id */
7424         put_smstate(u32, buf, 0x7efc, 0x00020000);
7425         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7426 }
7427
7428 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7429 {
7430 #ifdef CONFIG_X86_64
7431         struct desc_ptr dt;
7432         struct kvm_segment seg;
7433         unsigned long val;
7434         int i;
7435
7436         for (i = 0; i < 16; i++)
7437                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7438
7439         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7440         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7441
7442         kvm_get_dr(vcpu, 6, &val);
7443         put_smstate(u64, buf, 0x7f68, val);
7444         kvm_get_dr(vcpu, 7, &val);
7445         put_smstate(u64, buf, 0x7f60, val);
7446
7447         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7448         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7449         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7450
7451         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7452
7453         /* revision id */
7454         put_smstate(u32, buf, 0x7efc, 0x00020064);
7455
7456         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7457
7458         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7459         put_smstate(u16, buf, 0x7e90, seg.selector);
7460         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7461         put_smstate(u32, buf, 0x7e94, seg.limit);
7462         put_smstate(u64, buf, 0x7e98, seg.base);
7463
7464         kvm_x86_ops->get_idt(vcpu, &dt);
7465         put_smstate(u32, buf, 0x7e84, dt.size);
7466         put_smstate(u64, buf, 0x7e88, dt.address);
7467
7468         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7469         put_smstate(u16, buf, 0x7e70, seg.selector);
7470         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7471         put_smstate(u32, buf, 0x7e74, seg.limit);
7472         put_smstate(u64, buf, 0x7e78, seg.base);
7473
7474         kvm_x86_ops->get_gdt(vcpu, &dt);
7475         put_smstate(u32, buf, 0x7e64, dt.size);
7476         put_smstate(u64, buf, 0x7e68, dt.address);
7477
7478         for (i = 0; i < 6; i++)
7479                 enter_smm_save_seg_64(vcpu, buf, i);
7480 #else
7481         WARN_ON_ONCE(1);
7482 #endif
7483 }
7484
7485 static void enter_smm(struct kvm_vcpu *vcpu)
7486 {
7487         struct kvm_segment cs, ds;
7488         struct desc_ptr dt;
7489         char buf[512];
7490         u32 cr0;
7491
7492         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7493         memset(buf, 0, 512);
7494         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7495                 enter_smm_save_state_64(vcpu, buf);
7496         else
7497                 enter_smm_save_state_32(vcpu, buf);
7498
7499         /*
7500          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7501          * vCPU state (e.g. leave guest mode) after we've saved the state into
7502          * the SMM state-save area.
7503          */
7504         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7505
7506         vcpu->arch.hflags |= HF_SMM_MASK;
7507         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7508
7509         if (kvm_x86_ops->get_nmi_mask(vcpu))
7510                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7511         else
7512                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7513
7514         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7515         kvm_rip_write(vcpu, 0x8000);
7516
7517         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7518         kvm_x86_ops->set_cr0(vcpu, cr0);
7519         vcpu->arch.cr0 = cr0;
7520
7521         kvm_x86_ops->set_cr4(vcpu, 0);
7522
7523         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7524         dt.address = dt.size = 0;
7525         kvm_x86_ops->set_idt(vcpu, &dt);
7526
7527         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7528
7529         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7530         cs.base = vcpu->arch.smbase;
7531
7532         ds.selector = 0;
7533         ds.base = 0;
7534
7535         cs.limit    = ds.limit = 0xffffffff;
7536         cs.type     = ds.type = 0x3;
7537         cs.dpl      = ds.dpl = 0;
7538         cs.db       = ds.db = 0;
7539         cs.s        = ds.s = 1;
7540         cs.l        = ds.l = 0;
7541         cs.g        = ds.g = 1;
7542         cs.avl      = ds.avl = 0;
7543         cs.present  = ds.present = 1;
7544         cs.unusable = ds.unusable = 0;
7545         cs.padding  = ds.padding = 0;
7546
7547         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7548         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7549         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7550         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7551         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7552         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7553
7554         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7555                 kvm_x86_ops->set_efer(vcpu, 0);
7556
7557         kvm_update_cpuid(vcpu);
7558         kvm_mmu_reset_context(vcpu);
7559 }
7560
7561 static void process_smi(struct kvm_vcpu *vcpu)
7562 {
7563         vcpu->arch.smi_pending = true;
7564         kvm_make_request(KVM_REQ_EVENT, vcpu);
7565 }
7566
7567 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7568 {
7569         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7570 }
7571
7572 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7573 {
7574         if (!kvm_apic_present(vcpu))
7575                 return;
7576
7577         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7578
7579         if (irqchip_split(vcpu->kvm))
7580                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7581         else {
7582                 if (vcpu->arch.apicv_active)
7583                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7584                 if (ioapic_in_kernel(vcpu->kvm))
7585                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7586         }
7587
7588         if (is_guest_mode(vcpu))
7589                 vcpu->arch.load_eoi_exitmap_pending = true;
7590         else
7591                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7592 }
7593
7594 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7595 {
7596         u64 eoi_exit_bitmap[4];
7597
7598         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7599                 return;
7600
7601         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7602                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7603         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7604 }
7605
7606 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7607                 unsigned long start, unsigned long end,
7608                 bool blockable)
7609 {
7610         unsigned long apic_address;
7611
7612         /*
7613          * The physical address of apic access page is stored in the VMCS.
7614          * Update it when it becomes invalid.
7615          */
7616         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7617         if (start <= apic_address && apic_address < end)
7618                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7619
7620         return 0;
7621 }
7622
7623 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7624 {
7625         struct page *page = NULL;
7626
7627         if (!lapic_in_kernel(vcpu))
7628                 return;
7629
7630         if (!kvm_x86_ops->set_apic_access_page_addr)
7631                 return;
7632
7633         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7634         if (is_error_page(page))
7635                 return;
7636         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7637
7638         /*
7639          * Do not pin apic access page in memory, the MMU notifier
7640          * will call us again if it is migrated or swapped out.
7641          */
7642         put_page(page);
7643 }
7644 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7645
7646 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7647 {
7648         smp_send_reschedule(vcpu->cpu);
7649 }
7650 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7651
7652 /*
7653  * Returns 1 to let vcpu_run() continue the guest execution loop without
7654  * exiting to the userspace.  Otherwise, the value will be returned to the
7655  * userspace.
7656  */
7657 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7658 {
7659         int r;
7660         bool req_int_win =
7661                 dm_request_for_irq_injection(vcpu) &&
7662                 kvm_cpu_accept_dm_intr(vcpu);
7663
7664         bool req_immediate_exit = false;
7665
7666         if (kvm_request_pending(vcpu)) {
7667                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7668                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7669                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7670                         kvm_mmu_unload(vcpu);
7671                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7672                         __kvm_migrate_timers(vcpu);
7673                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7674                         kvm_gen_update_masterclock(vcpu->kvm);
7675                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7676                         kvm_gen_kvmclock_update(vcpu);
7677                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7678                         r = kvm_guest_time_update(vcpu);
7679                         if (unlikely(r))
7680                                 goto out;
7681                 }
7682                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7683                         kvm_mmu_sync_roots(vcpu);
7684                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7685                         kvm_mmu_load_cr3(vcpu);
7686                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7687                         kvm_vcpu_flush_tlb(vcpu, true);
7688                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7689                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7690                         r = 0;
7691                         goto out;
7692                 }
7693                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7694                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7695                         vcpu->mmio_needed = 0;
7696                         r = 0;
7697                         goto out;
7698                 }
7699                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7700                         /* Page is swapped out. Do synthetic halt */
7701                         vcpu->arch.apf.halted = true;
7702                         r = 1;
7703                         goto out;
7704                 }
7705                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7706                         record_steal_time(vcpu);
7707                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7708                         process_smi(vcpu);
7709                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7710                         process_nmi(vcpu);
7711                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7712                         kvm_pmu_handle_event(vcpu);
7713                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7714                         kvm_pmu_deliver_pmi(vcpu);
7715                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7716                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7717                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7718                                      vcpu->arch.ioapic_handled_vectors)) {
7719                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7720                                 vcpu->run->eoi.vector =
7721                                                 vcpu->arch.pending_ioapic_eoi;
7722                                 r = 0;
7723                                 goto out;
7724                         }
7725                 }
7726                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7727                         vcpu_scan_ioapic(vcpu);
7728                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7729                         vcpu_load_eoi_exitmap(vcpu);
7730                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7731                         kvm_vcpu_reload_apic_access_page(vcpu);
7732                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7733                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7734                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7735                         r = 0;
7736                         goto out;
7737                 }
7738                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7739                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7740                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7741                         r = 0;
7742                         goto out;
7743                 }
7744                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7745                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7746                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7747                         r = 0;
7748                         goto out;
7749                 }
7750
7751                 /*
7752                  * KVM_REQ_HV_STIMER has to be processed after
7753                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7754                  * depend on the guest clock being up-to-date
7755                  */
7756                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7757                         kvm_hv_process_stimers(vcpu);
7758         }
7759
7760         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7761                 ++vcpu->stat.req_event;
7762                 kvm_apic_accept_events(vcpu);
7763                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7764                         r = 1;
7765                         goto out;
7766                 }
7767
7768                 if (inject_pending_event(vcpu, req_int_win) != 0)
7769                         req_immediate_exit = true;
7770                 else {
7771                         /* Enable SMI/NMI/IRQ window open exits if needed.
7772                          *
7773                          * SMIs have three cases:
7774                          * 1) They can be nested, and then there is nothing to
7775                          *    do here because RSM will cause a vmexit anyway.
7776                          * 2) There is an ISA-specific reason why SMI cannot be
7777                          *    injected, and the moment when this changes can be
7778                          *    intercepted.
7779                          * 3) Or the SMI can be pending because
7780                          *    inject_pending_event has completed the injection
7781                          *    of an IRQ or NMI from the previous vmexit, and
7782                          *    then we request an immediate exit to inject the
7783                          *    SMI.
7784                          */
7785                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7786                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7787                                         req_immediate_exit = true;
7788                         if (vcpu->arch.nmi_pending)
7789                                 kvm_x86_ops->enable_nmi_window(vcpu);
7790                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7791                                 kvm_x86_ops->enable_irq_window(vcpu);
7792                         WARN_ON(vcpu->arch.exception.pending);
7793                 }
7794
7795                 if (kvm_lapic_enabled(vcpu)) {
7796                         update_cr8_intercept(vcpu);
7797                         kvm_lapic_sync_to_vapic(vcpu);
7798                 }
7799         }
7800
7801         r = kvm_mmu_reload(vcpu);
7802         if (unlikely(r)) {
7803                 goto cancel_injection;
7804         }
7805
7806         preempt_disable();
7807
7808         kvm_x86_ops->prepare_guest_switch(vcpu);
7809
7810         /*
7811          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7812          * IPI are then delayed after guest entry, which ensures that they
7813          * result in virtual interrupt delivery.
7814          */
7815         local_irq_disable();
7816         vcpu->mode = IN_GUEST_MODE;
7817
7818         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7819
7820         /*
7821          * 1) We should set ->mode before checking ->requests.  Please see
7822          * the comment in kvm_vcpu_exiting_guest_mode().
7823          *
7824          * 2) For APICv, we should set ->mode before checking PID.ON. This
7825          * pairs with the memory barrier implicit in pi_test_and_set_on
7826          * (see vmx_deliver_posted_interrupt).
7827          *
7828          * 3) This also orders the write to mode from any reads to the page
7829          * tables done while the VCPU is running.  Please see the comment
7830          * in kvm_flush_remote_tlbs.
7831          */
7832         smp_mb__after_srcu_read_unlock();
7833
7834         /*
7835          * This handles the case where a posted interrupt was
7836          * notified with kvm_vcpu_kick.
7837          */
7838         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7839                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7840
7841         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7842             || need_resched() || signal_pending(current)) {
7843                 vcpu->mode = OUTSIDE_GUEST_MODE;
7844                 smp_wmb();
7845                 local_irq_enable();
7846                 preempt_enable();
7847                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7848                 r = 1;
7849                 goto cancel_injection;
7850         }
7851
7852         kvm_load_guest_xcr0(vcpu);
7853
7854         if (req_immediate_exit) {
7855                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7856                 kvm_x86_ops->request_immediate_exit(vcpu);
7857         }
7858
7859         trace_kvm_entry(vcpu->vcpu_id);
7860         if (lapic_timer_advance_ns)
7861                 wait_lapic_expire(vcpu);
7862         guest_enter_irqoff();
7863
7864         if (unlikely(vcpu->arch.switch_db_regs)) {
7865                 set_debugreg(0, 7);
7866                 set_debugreg(vcpu->arch.eff_db[0], 0);
7867                 set_debugreg(vcpu->arch.eff_db[1], 1);
7868                 set_debugreg(vcpu->arch.eff_db[2], 2);
7869                 set_debugreg(vcpu->arch.eff_db[3], 3);
7870                 set_debugreg(vcpu->arch.dr6, 6);
7871                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7872         }
7873
7874         kvm_x86_ops->run(vcpu);
7875
7876         /*
7877          * Do this here before restoring debug registers on the host.  And
7878          * since we do this before handling the vmexit, a DR access vmexit
7879          * can (a) read the correct value of the debug registers, (b) set
7880          * KVM_DEBUGREG_WONT_EXIT again.
7881          */
7882         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7883                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7884                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7885                 kvm_update_dr0123(vcpu);
7886                 kvm_update_dr6(vcpu);
7887                 kvm_update_dr7(vcpu);
7888                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7889         }
7890
7891         /*
7892          * If the guest has used debug registers, at least dr7
7893          * will be disabled while returning to the host.
7894          * If we don't have active breakpoints in the host, we don't
7895          * care about the messed up debug address registers. But if
7896          * we have some of them active, restore the old state.
7897          */
7898         if (hw_breakpoint_active())
7899                 hw_breakpoint_restore();
7900
7901         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7902
7903         vcpu->mode = OUTSIDE_GUEST_MODE;
7904         smp_wmb();
7905
7906         kvm_put_guest_xcr0(vcpu);
7907
7908         kvm_before_interrupt(vcpu);
7909         kvm_x86_ops->handle_external_intr(vcpu);
7910         kvm_after_interrupt(vcpu);
7911
7912         ++vcpu->stat.exits;
7913
7914         guest_exit_irqoff();
7915
7916         local_irq_enable();
7917         preempt_enable();
7918
7919         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7920
7921         /*
7922          * Profile KVM exit RIPs:
7923          */
7924         if (unlikely(prof_on == KVM_PROFILING)) {
7925                 unsigned long rip = kvm_rip_read(vcpu);
7926                 profile_hit(KVM_PROFILING, (void *)rip);
7927         }
7928
7929         if (unlikely(vcpu->arch.tsc_always_catchup))
7930                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7931
7932         if (vcpu->arch.apic_attention)
7933                 kvm_lapic_sync_from_vapic(vcpu);
7934
7935         vcpu->arch.gpa_available = false;
7936         r = kvm_x86_ops->handle_exit(vcpu);
7937         return r;
7938
7939 cancel_injection:
7940         kvm_x86_ops->cancel_injection(vcpu);
7941         if (unlikely(vcpu->arch.apic_attention))
7942                 kvm_lapic_sync_from_vapic(vcpu);
7943 out:
7944         return r;
7945 }
7946
7947 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7948 {
7949         if (!kvm_arch_vcpu_runnable(vcpu) &&
7950             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7951                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7952                 kvm_vcpu_block(vcpu);
7953                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7954
7955                 if (kvm_x86_ops->post_block)
7956                         kvm_x86_ops->post_block(vcpu);
7957
7958                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7959                         return 1;
7960         }
7961
7962         kvm_apic_accept_events(vcpu);
7963         switch(vcpu->arch.mp_state) {
7964         case KVM_MP_STATE_HALTED:
7965                 vcpu->arch.pv.pv_unhalted = false;
7966                 vcpu->arch.mp_state =
7967                         KVM_MP_STATE_RUNNABLE;
7968                 /* fall through */
7969         case KVM_MP_STATE_RUNNABLE:
7970                 vcpu->arch.apf.halted = false;
7971                 break;
7972         case KVM_MP_STATE_INIT_RECEIVED:
7973                 break;
7974         default:
7975                 return -EINTR;
7976                 break;
7977         }
7978         return 1;
7979 }
7980
7981 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7982 {
7983         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7984                 kvm_x86_ops->check_nested_events(vcpu, false);
7985
7986         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7987                 !vcpu->arch.apf.halted);
7988 }
7989
7990 static int vcpu_run(struct kvm_vcpu *vcpu)
7991 {
7992         int r;
7993         struct kvm *kvm = vcpu->kvm;
7994
7995         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7996         vcpu->arch.l1tf_flush_l1d = true;
7997
7998         for (;;) {
7999                 if (kvm_vcpu_running(vcpu)) {
8000                         r = vcpu_enter_guest(vcpu);
8001                 } else {
8002                         r = vcpu_block(kvm, vcpu);
8003                 }
8004
8005                 if (r <= 0)
8006                         break;
8007
8008                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8009                 if (kvm_cpu_has_pending_timer(vcpu))
8010                         kvm_inject_pending_timer_irqs(vcpu);
8011
8012                 if (dm_request_for_irq_injection(vcpu) &&
8013                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8014                         r = 0;
8015                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8016                         ++vcpu->stat.request_irq_exits;
8017                         break;
8018                 }
8019
8020                 kvm_check_async_pf_completion(vcpu);
8021
8022                 if (signal_pending(current)) {
8023                         r = -EINTR;
8024                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8025                         ++vcpu->stat.signal_exits;
8026                         break;
8027                 }
8028                 if (need_resched()) {
8029                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8030                         cond_resched();
8031                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8032                 }
8033         }
8034
8035         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8036
8037         return r;
8038 }
8039
8040 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8041 {
8042         int r;
8043         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8044         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8045         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8046         if (r != EMULATE_DONE)
8047                 return 0;
8048         return 1;
8049 }
8050
8051 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8052 {
8053         BUG_ON(!vcpu->arch.pio.count);
8054
8055         return complete_emulated_io(vcpu);
8056 }
8057
8058 /*
8059  * Implements the following, as a state machine:
8060  *
8061  * read:
8062  *   for each fragment
8063  *     for each mmio piece in the fragment
8064  *       write gpa, len
8065  *       exit
8066  *       copy data
8067  *   execute insn
8068  *
8069  * write:
8070  *   for each fragment
8071  *     for each mmio piece in the fragment
8072  *       write gpa, len
8073  *       copy data
8074  *       exit
8075  */
8076 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8077 {
8078         struct kvm_run *run = vcpu->run;
8079         struct kvm_mmio_fragment *frag;
8080         unsigned len;
8081
8082         BUG_ON(!vcpu->mmio_needed);
8083
8084         /* Complete previous fragment */
8085         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8086         len = min(8u, frag->len);
8087         if (!vcpu->mmio_is_write)
8088                 memcpy(frag->data, run->mmio.data, len);
8089
8090         if (frag->len <= 8) {
8091                 /* Switch to the next fragment. */
8092                 frag++;
8093                 vcpu->mmio_cur_fragment++;
8094         } else {
8095                 /* Go forward to the next mmio piece. */
8096                 frag->data += len;
8097                 frag->gpa += len;
8098                 frag->len -= len;
8099         }
8100
8101         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8102                 vcpu->mmio_needed = 0;
8103
8104                 /* FIXME: return into emulator if single-stepping.  */
8105                 if (vcpu->mmio_is_write)
8106                         return 1;
8107                 vcpu->mmio_read_completed = 1;
8108                 return complete_emulated_io(vcpu);
8109         }
8110
8111         run->exit_reason = KVM_EXIT_MMIO;
8112         run->mmio.phys_addr = frag->gpa;
8113         if (vcpu->mmio_is_write)
8114                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8115         run->mmio.len = min(8u, frag->len);
8116         run->mmio.is_write = vcpu->mmio_is_write;
8117         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8118         return 0;
8119 }
8120
8121 /* Swap (qemu) user FPU context for the guest FPU context. */
8122 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8123 {
8124         preempt_disable();
8125         copy_fpregs_to_fpstate(&current->thread.fpu);
8126         /* PKRU is separately restored in kvm_x86_ops->run.  */
8127         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8128                                 ~XFEATURE_MASK_PKRU);
8129         preempt_enable();
8130         trace_kvm_fpu(1);
8131 }
8132
8133 /* When vcpu_run ends, restore user space FPU context. */
8134 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8135 {
8136         preempt_disable();
8137         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8138         copy_kernel_to_fpregs(&current->thread.fpu.state);
8139         preempt_enable();
8140         ++vcpu->stat.fpu_reload;
8141         trace_kvm_fpu(0);
8142 }
8143
8144 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8145 {
8146         int r;
8147
8148         vcpu_load(vcpu);
8149         kvm_sigset_activate(vcpu);
8150         kvm_load_guest_fpu(vcpu);
8151
8152         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8153                 if (kvm_run->immediate_exit) {
8154                         r = -EINTR;
8155                         goto out;
8156                 }
8157                 kvm_vcpu_block(vcpu);
8158                 kvm_apic_accept_events(vcpu);
8159                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8160                 r = -EAGAIN;
8161                 if (signal_pending(current)) {
8162                         r = -EINTR;
8163                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8164                         ++vcpu->stat.signal_exits;
8165                 }
8166                 goto out;
8167         }
8168
8169         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8170                 r = -EINVAL;
8171                 goto out;
8172         }
8173
8174         if (vcpu->run->kvm_dirty_regs) {
8175                 r = sync_regs(vcpu);
8176                 if (r != 0)
8177                         goto out;
8178         }
8179
8180         /* re-sync apic's tpr */
8181         if (!lapic_in_kernel(vcpu)) {
8182                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8183                         r = -EINVAL;
8184                         goto out;
8185                 }
8186         }
8187
8188         if (unlikely(vcpu->arch.complete_userspace_io)) {
8189                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8190                 vcpu->arch.complete_userspace_io = NULL;
8191                 r = cui(vcpu);
8192                 if (r <= 0)
8193                         goto out;
8194         } else
8195                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8196
8197         if (kvm_run->immediate_exit)
8198                 r = -EINTR;
8199         else
8200                 r = vcpu_run(vcpu);
8201
8202 out:
8203         kvm_put_guest_fpu(vcpu);
8204         if (vcpu->run->kvm_valid_regs)
8205                 store_regs(vcpu);
8206         post_kvm_run_save(vcpu);
8207         kvm_sigset_deactivate(vcpu);
8208
8209         vcpu_put(vcpu);
8210         return r;
8211 }
8212
8213 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8214 {
8215         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8216                 /*
8217                  * We are here if userspace calls get_regs() in the middle of
8218                  * instruction emulation. Registers state needs to be copied
8219                  * back from emulation context to vcpu. Userspace shouldn't do
8220                  * that usually, but some bad designed PV devices (vmware
8221                  * backdoor interface) need this to work
8222                  */
8223                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8224                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8225         }
8226         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8227         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8228         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8229         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8230         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8231         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8232         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8233         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8234 #ifdef CONFIG_X86_64
8235         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8236         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8237         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8238         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8239         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8240         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8241         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8242         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8243 #endif
8244
8245         regs->rip = kvm_rip_read(vcpu);
8246         regs->rflags = kvm_get_rflags(vcpu);
8247 }
8248
8249 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8250 {
8251         vcpu_load(vcpu);
8252         __get_regs(vcpu, regs);
8253         vcpu_put(vcpu);
8254         return 0;
8255 }
8256
8257 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8258 {
8259         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8260         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8261
8262         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8263         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8264         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8265         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8266         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8267         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8268         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8269         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8270 #ifdef CONFIG_X86_64
8271         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8272         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8273         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8274         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8275         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8276         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8277         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8278         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8279 #endif
8280
8281         kvm_rip_write(vcpu, regs->rip);
8282         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8283
8284         vcpu->arch.exception.pending = false;
8285
8286         kvm_make_request(KVM_REQ_EVENT, vcpu);
8287 }
8288
8289 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8290 {
8291         vcpu_load(vcpu);
8292         __set_regs(vcpu, regs);
8293         vcpu_put(vcpu);
8294         return 0;
8295 }
8296
8297 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8298 {
8299         struct kvm_segment cs;
8300
8301         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8302         *db = cs.db;
8303         *l = cs.l;
8304 }
8305 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8306
8307 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8308 {
8309         struct desc_ptr dt;
8310
8311         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8312         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8313         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8314         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8315         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8316         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8317
8318         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8319         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8320
8321         kvm_x86_ops->get_idt(vcpu, &dt);
8322         sregs->idt.limit = dt.size;
8323         sregs->idt.base = dt.address;
8324         kvm_x86_ops->get_gdt(vcpu, &dt);
8325         sregs->gdt.limit = dt.size;
8326         sregs->gdt.base = dt.address;
8327
8328         sregs->cr0 = kvm_read_cr0(vcpu);
8329         sregs->cr2 = vcpu->arch.cr2;
8330         sregs->cr3 = kvm_read_cr3(vcpu);
8331         sregs->cr4 = kvm_read_cr4(vcpu);
8332         sregs->cr8 = kvm_get_cr8(vcpu);
8333         sregs->efer = vcpu->arch.efer;
8334         sregs->apic_base = kvm_get_apic_base(vcpu);
8335
8336         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8337
8338         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8339                 set_bit(vcpu->arch.interrupt.nr,
8340                         (unsigned long *)sregs->interrupt_bitmap);
8341 }
8342
8343 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8344                                   struct kvm_sregs *sregs)
8345 {
8346         vcpu_load(vcpu);
8347         __get_sregs(vcpu, sregs);
8348         vcpu_put(vcpu);
8349         return 0;
8350 }
8351
8352 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8353                                     struct kvm_mp_state *mp_state)
8354 {
8355         vcpu_load(vcpu);
8356
8357         kvm_apic_accept_events(vcpu);
8358         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8359                                         vcpu->arch.pv.pv_unhalted)
8360                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8361         else
8362                 mp_state->mp_state = vcpu->arch.mp_state;
8363
8364         vcpu_put(vcpu);
8365         return 0;
8366 }
8367
8368 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8369                                     struct kvm_mp_state *mp_state)
8370 {
8371         int ret = -EINVAL;
8372
8373         vcpu_load(vcpu);
8374
8375         if (!lapic_in_kernel(vcpu) &&
8376             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8377                 goto out;
8378
8379         /* INITs are latched while in SMM */
8380         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8381             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8382              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8383                 goto out;
8384
8385         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8386                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8387                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8388         } else
8389                 vcpu->arch.mp_state = mp_state->mp_state;
8390         kvm_make_request(KVM_REQ_EVENT, vcpu);
8391
8392         ret = 0;
8393 out:
8394         vcpu_put(vcpu);
8395         return ret;
8396 }
8397
8398 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8399                     int reason, bool has_error_code, u32 error_code)
8400 {
8401         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8402         int ret;
8403
8404         init_emulate_ctxt(vcpu);
8405
8406         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8407                                    has_error_code, error_code);
8408
8409         if (ret)
8410                 return EMULATE_FAIL;
8411
8412         kvm_rip_write(vcpu, ctxt->eip);
8413         kvm_set_rflags(vcpu, ctxt->eflags);
8414         kvm_make_request(KVM_REQ_EVENT, vcpu);
8415         return EMULATE_DONE;
8416 }
8417 EXPORT_SYMBOL_GPL(kvm_task_switch);
8418
8419 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8420 {
8421         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8422                         (sregs->cr4 & X86_CR4_OSXSAVE))
8423                 return  -EINVAL;
8424
8425         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8426                 /*
8427                  * When EFER.LME and CR0.PG are set, the processor is in
8428                  * 64-bit mode (though maybe in a 32-bit code segment).
8429                  * CR4.PAE and EFER.LMA must be set.
8430                  */
8431                 if (!(sregs->cr4 & X86_CR4_PAE)
8432                     || !(sregs->efer & EFER_LMA))
8433                         return -EINVAL;
8434         } else {
8435                 /*
8436                  * Not in 64-bit mode: EFER.LMA is clear and the code
8437                  * segment cannot be 64-bit.
8438                  */
8439                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8440                         return -EINVAL;
8441         }
8442
8443         return 0;
8444 }
8445
8446 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8447 {
8448         struct msr_data apic_base_msr;
8449         int mmu_reset_needed = 0;
8450         int cpuid_update_needed = 0;
8451         int pending_vec, max_bits, idx;
8452         struct desc_ptr dt;
8453         int ret = -EINVAL;
8454
8455         if (kvm_valid_sregs(vcpu, sregs))
8456                 goto out;
8457
8458         apic_base_msr.data = sregs->apic_base;
8459         apic_base_msr.host_initiated = true;
8460         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8461                 goto out;
8462
8463         dt.size = sregs->idt.limit;
8464         dt.address = sregs->idt.base;
8465         kvm_x86_ops->set_idt(vcpu, &dt);
8466         dt.size = sregs->gdt.limit;
8467         dt.address = sregs->gdt.base;
8468         kvm_x86_ops->set_gdt(vcpu, &dt);
8469
8470         vcpu->arch.cr2 = sregs->cr2;
8471         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8472         vcpu->arch.cr3 = sregs->cr3;
8473         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8474
8475         kvm_set_cr8(vcpu, sregs->cr8);
8476
8477         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8478         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8479
8480         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8481         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8482         vcpu->arch.cr0 = sregs->cr0;
8483
8484         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8485         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8486                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8487         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8488         if (cpuid_update_needed)
8489                 kvm_update_cpuid(vcpu);
8490
8491         idx = srcu_read_lock(&vcpu->kvm->srcu);
8492         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8493                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8494                 mmu_reset_needed = 1;
8495         }
8496         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8497
8498         if (mmu_reset_needed)
8499                 kvm_mmu_reset_context(vcpu);
8500
8501         max_bits = KVM_NR_INTERRUPTS;
8502         pending_vec = find_first_bit(
8503                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8504         if (pending_vec < max_bits) {
8505                 kvm_queue_interrupt(vcpu, pending_vec, false);
8506                 pr_debug("Set back pending irq %d\n", pending_vec);
8507         }
8508
8509         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8510         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8511         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8512         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8513         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8514         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8515
8516         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8517         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8518
8519         update_cr8_intercept(vcpu);
8520
8521         /* Older userspace won't unhalt the vcpu on reset. */
8522         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8523             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8524             !is_protmode(vcpu))
8525                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8526
8527         kvm_make_request(KVM_REQ_EVENT, vcpu);
8528
8529         ret = 0;
8530 out:
8531         return ret;
8532 }
8533
8534 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8535                                   struct kvm_sregs *sregs)
8536 {
8537         int ret;
8538
8539         vcpu_load(vcpu);
8540         ret = __set_sregs(vcpu, sregs);
8541         vcpu_put(vcpu);
8542         return ret;
8543 }
8544
8545 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8546                                         struct kvm_guest_debug *dbg)
8547 {
8548         unsigned long rflags;
8549         int i, r;
8550
8551         vcpu_load(vcpu);
8552
8553         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8554                 r = -EBUSY;
8555                 if (vcpu->arch.exception.pending)
8556                         goto out;
8557                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8558                         kvm_queue_exception(vcpu, DB_VECTOR);
8559                 else
8560                         kvm_queue_exception(vcpu, BP_VECTOR);
8561         }
8562
8563         /*
8564          * Read rflags as long as potentially injected trace flags are still
8565          * filtered out.
8566          */
8567         rflags = kvm_get_rflags(vcpu);
8568
8569         vcpu->guest_debug = dbg->control;
8570         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8571                 vcpu->guest_debug = 0;
8572
8573         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8574                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8575                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8576                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8577         } else {
8578                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8579                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8580         }
8581         kvm_update_dr7(vcpu);
8582
8583         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8584                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8585                         get_segment_base(vcpu, VCPU_SREG_CS);
8586
8587         /*
8588          * Trigger an rflags update that will inject or remove the trace
8589          * flags.
8590          */
8591         kvm_set_rflags(vcpu, rflags);
8592
8593         kvm_x86_ops->update_bp_intercept(vcpu);
8594
8595         r = 0;
8596
8597 out:
8598         vcpu_put(vcpu);
8599         return r;
8600 }
8601
8602 /*
8603  * Translate a guest virtual address to a guest physical address.
8604  */
8605 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8606                                     struct kvm_translation *tr)
8607 {
8608         unsigned long vaddr = tr->linear_address;
8609         gpa_t gpa;
8610         int idx;
8611
8612         vcpu_load(vcpu);
8613
8614         idx = srcu_read_lock(&vcpu->kvm->srcu);
8615         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8616         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8617         tr->physical_address = gpa;
8618         tr->valid = gpa != UNMAPPED_GVA;
8619         tr->writeable = 1;
8620         tr->usermode = 0;
8621
8622         vcpu_put(vcpu);
8623         return 0;
8624 }
8625
8626 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8627 {
8628         struct fxregs_state *fxsave;
8629
8630         vcpu_load(vcpu);
8631
8632         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8633         memcpy(fpu->fpr, fxsave->st_space, 128);
8634         fpu->fcw = fxsave->cwd;
8635         fpu->fsw = fxsave->swd;
8636         fpu->ftwx = fxsave->twd;
8637         fpu->last_opcode = fxsave->fop;
8638         fpu->last_ip = fxsave->rip;
8639         fpu->last_dp = fxsave->rdp;
8640         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8641
8642         vcpu_put(vcpu);
8643         return 0;
8644 }
8645
8646 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8647 {
8648         struct fxregs_state *fxsave;
8649
8650         vcpu_load(vcpu);
8651
8652         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8653
8654         memcpy(fxsave->st_space, fpu->fpr, 128);
8655         fxsave->cwd = fpu->fcw;
8656         fxsave->swd = fpu->fsw;
8657         fxsave->twd = fpu->ftwx;
8658         fxsave->fop = fpu->last_opcode;
8659         fxsave->rip = fpu->last_ip;
8660         fxsave->rdp = fpu->last_dp;
8661         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8662
8663         vcpu_put(vcpu);
8664         return 0;
8665 }
8666
8667 static void store_regs(struct kvm_vcpu *vcpu)
8668 {
8669         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8670
8671         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8672                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8673
8674         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8675                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8676
8677         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8678                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8679                                 vcpu, &vcpu->run->s.regs.events);
8680 }
8681
8682 static int sync_regs(struct kvm_vcpu *vcpu)
8683 {
8684         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8685                 return -EINVAL;
8686
8687         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8688                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8689                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8690         }
8691         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8692                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8693                         return -EINVAL;
8694                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8695         }
8696         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8697                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8698                                 vcpu, &vcpu->run->s.regs.events))
8699                         return -EINVAL;
8700                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8701         }
8702
8703         return 0;
8704 }
8705
8706 static void fx_init(struct kvm_vcpu *vcpu)
8707 {
8708         fpstate_init(&vcpu->arch.guest_fpu->state);
8709         if (boot_cpu_has(X86_FEATURE_XSAVES))
8710                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8711                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8712
8713         /*
8714          * Ensure guest xcr0 is valid for loading
8715          */
8716         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8717
8718         vcpu->arch.cr0 |= X86_CR0_ET;
8719 }
8720
8721 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8722 {
8723         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8724
8725         kvmclock_reset(vcpu);
8726
8727         kvm_x86_ops->vcpu_free(vcpu);
8728         free_cpumask_var(wbinvd_dirty_mask);
8729 }
8730
8731 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8732                                                 unsigned int id)
8733 {
8734         struct kvm_vcpu *vcpu;
8735
8736         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8737                 printk_once(KERN_WARNING
8738                 "kvm: SMP vm created on host with unstable TSC; "
8739                 "guest TSC will not be reliable\n");
8740
8741         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8742
8743         return vcpu;
8744 }
8745
8746 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8747 {
8748         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8749         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8750         kvm_vcpu_mtrr_init(vcpu);
8751         vcpu_load(vcpu);
8752         kvm_vcpu_reset(vcpu, false);
8753         kvm_init_mmu(vcpu, false);
8754         vcpu_put(vcpu);
8755         return 0;
8756 }
8757
8758 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8759 {
8760         struct msr_data msr;
8761         struct kvm *kvm = vcpu->kvm;
8762
8763         kvm_hv_vcpu_postcreate(vcpu);
8764
8765         if (mutex_lock_killable(&vcpu->mutex))
8766                 return;
8767         vcpu_load(vcpu);
8768         msr.data = 0x0;
8769         msr.index = MSR_IA32_TSC;
8770         msr.host_initiated = true;
8771         kvm_write_tsc(vcpu, &msr);
8772         vcpu_put(vcpu);
8773         mutex_unlock(&vcpu->mutex);
8774
8775         if (!kvmclock_periodic_sync)
8776                 return;
8777
8778         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8779                                         KVMCLOCK_SYNC_PERIOD);
8780 }
8781
8782 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8783 {
8784         vcpu->arch.apf.msr_val = 0;
8785
8786         vcpu_load(vcpu);
8787         kvm_mmu_unload(vcpu);
8788         vcpu_put(vcpu);
8789
8790         kvm_x86_ops->vcpu_free(vcpu);
8791 }
8792
8793 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8794 {
8795         kvm_lapic_reset(vcpu, init_event);
8796
8797         vcpu->arch.hflags = 0;
8798
8799         vcpu->arch.smi_pending = 0;
8800         vcpu->arch.smi_count = 0;
8801         atomic_set(&vcpu->arch.nmi_queued, 0);
8802         vcpu->arch.nmi_pending = 0;
8803         vcpu->arch.nmi_injected = false;
8804         kvm_clear_interrupt_queue(vcpu);
8805         kvm_clear_exception_queue(vcpu);
8806         vcpu->arch.exception.pending = false;
8807
8808         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8809         kvm_update_dr0123(vcpu);
8810         vcpu->arch.dr6 = DR6_INIT;
8811         kvm_update_dr6(vcpu);
8812         vcpu->arch.dr7 = DR7_FIXED_1;
8813         kvm_update_dr7(vcpu);
8814
8815         vcpu->arch.cr2 = 0;
8816
8817         kvm_make_request(KVM_REQ_EVENT, vcpu);
8818         vcpu->arch.apf.msr_val = 0;
8819         vcpu->arch.st.msr_val = 0;
8820
8821         kvmclock_reset(vcpu);
8822
8823         kvm_clear_async_pf_completion_queue(vcpu);
8824         kvm_async_pf_hash_reset(vcpu);
8825         vcpu->arch.apf.halted = false;
8826
8827         if (kvm_mpx_supported()) {
8828                 void *mpx_state_buffer;
8829
8830                 /*
8831                  * To avoid have the INIT path from kvm_apic_has_events() that be
8832                  * called with loaded FPU and does not let userspace fix the state.
8833                  */
8834                 if (init_event)
8835                         kvm_put_guest_fpu(vcpu);
8836                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8837                                         XFEATURE_MASK_BNDREGS);
8838                 if (mpx_state_buffer)
8839                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8840                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8841                                         XFEATURE_MASK_BNDCSR);
8842                 if (mpx_state_buffer)
8843                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8844                 if (init_event)
8845                         kvm_load_guest_fpu(vcpu);
8846         }
8847
8848         if (!init_event) {
8849                 kvm_pmu_reset(vcpu);
8850                 vcpu->arch.smbase = 0x30000;
8851
8852                 vcpu->arch.msr_misc_features_enables = 0;
8853
8854                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8855         }
8856
8857         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8858         vcpu->arch.regs_avail = ~0;
8859         vcpu->arch.regs_dirty = ~0;
8860
8861         vcpu->arch.ia32_xss = 0;
8862
8863         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8864 }
8865
8866 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8867 {
8868         struct kvm_segment cs;
8869
8870         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8871         cs.selector = vector << 8;
8872         cs.base = vector << 12;
8873         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8874         kvm_rip_write(vcpu, 0);
8875 }
8876
8877 int kvm_arch_hardware_enable(void)
8878 {
8879         struct kvm *kvm;
8880         struct kvm_vcpu *vcpu;
8881         int i;
8882         int ret;
8883         u64 local_tsc;
8884         u64 max_tsc = 0;
8885         bool stable, backwards_tsc = false;
8886
8887         kvm_shared_msr_cpu_online();
8888         ret = kvm_x86_ops->hardware_enable();
8889         if (ret != 0)
8890                 return ret;
8891
8892         local_tsc = rdtsc();
8893         stable = !kvm_check_tsc_unstable();
8894         list_for_each_entry(kvm, &vm_list, vm_list) {
8895                 kvm_for_each_vcpu(i, vcpu, kvm) {
8896                         if (!stable && vcpu->cpu == smp_processor_id())
8897                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8898                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8899                                 backwards_tsc = true;
8900                                 if (vcpu->arch.last_host_tsc > max_tsc)
8901                                         max_tsc = vcpu->arch.last_host_tsc;
8902                         }
8903                 }
8904         }
8905
8906         /*
8907          * Sometimes, even reliable TSCs go backwards.  This happens on
8908          * platforms that reset TSC during suspend or hibernate actions, but
8909          * maintain synchronization.  We must compensate.  Fortunately, we can
8910          * detect that condition here, which happens early in CPU bringup,
8911          * before any KVM threads can be running.  Unfortunately, we can't
8912          * bring the TSCs fully up to date with real time, as we aren't yet far
8913          * enough into CPU bringup that we know how much real time has actually
8914          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8915          * variables that haven't been updated yet.
8916          *
8917          * So we simply find the maximum observed TSC above, then record the
8918          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8919          * the adjustment will be applied.  Note that we accumulate
8920          * adjustments, in case multiple suspend cycles happen before some VCPU
8921          * gets a chance to run again.  In the event that no KVM threads get a
8922          * chance to run, we will miss the entire elapsed period, as we'll have
8923          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8924          * loose cycle time.  This isn't too big a deal, since the loss will be
8925          * uniform across all VCPUs (not to mention the scenario is extremely
8926          * unlikely). It is possible that a second hibernate recovery happens
8927          * much faster than a first, causing the observed TSC here to be
8928          * smaller; this would require additional padding adjustment, which is
8929          * why we set last_host_tsc to the local tsc observed here.
8930          *
8931          * N.B. - this code below runs only on platforms with reliable TSC,
8932          * as that is the only way backwards_tsc is set above.  Also note
8933          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8934          * have the same delta_cyc adjustment applied if backwards_tsc
8935          * is detected.  Note further, this adjustment is only done once,
8936          * as we reset last_host_tsc on all VCPUs to stop this from being
8937          * called multiple times (one for each physical CPU bringup).
8938          *
8939          * Platforms with unreliable TSCs don't have to deal with this, they
8940          * will be compensated by the logic in vcpu_load, which sets the TSC to
8941          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8942          * guarantee that they stay in perfect synchronization.
8943          */
8944         if (backwards_tsc) {
8945                 u64 delta_cyc = max_tsc - local_tsc;
8946                 list_for_each_entry(kvm, &vm_list, vm_list) {
8947                         kvm->arch.backwards_tsc_observed = true;
8948                         kvm_for_each_vcpu(i, vcpu, kvm) {
8949                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8950                                 vcpu->arch.last_host_tsc = local_tsc;
8951                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8952                         }
8953
8954                         /*
8955                          * We have to disable TSC offset matching.. if you were
8956                          * booting a VM while issuing an S4 host suspend....
8957                          * you may have some problem.  Solving this issue is
8958                          * left as an exercise to the reader.
8959                          */
8960                         kvm->arch.last_tsc_nsec = 0;
8961                         kvm->arch.last_tsc_write = 0;
8962                 }
8963
8964         }
8965         return 0;
8966 }
8967
8968 void kvm_arch_hardware_disable(void)
8969 {
8970         kvm_x86_ops->hardware_disable();
8971         drop_user_return_notifiers();
8972 }
8973
8974 int kvm_arch_hardware_setup(void)
8975 {
8976         int r;
8977
8978         r = kvm_x86_ops->hardware_setup();
8979         if (r != 0)
8980                 return r;
8981
8982         if (kvm_has_tsc_control) {
8983                 /*
8984                  * Make sure the user can only configure tsc_khz values that
8985                  * fit into a signed integer.
8986                  * A min value is not calculated because it will always
8987                  * be 1 on all machines.
8988                  */
8989                 u64 max = min(0x7fffffffULL,
8990                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8991                 kvm_max_guest_tsc_khz = max;
8992
8993                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8994         }
8995
8996         kvm_init_msr_list();
8997         return 0;
8998 }
8999
9000 void kvm_arch_hardware_unsetup(void)
9001 {
9002         kvm_x86_ops->hardware_unsetup();
9003 }
9004
9005 void kvm_arch_check_processor_compat(void *rtn)
9006 {
9007         kvm_x86_ops->check_processor_compatibility(rtn);
9008 }
9009
9010 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9011 {
9012         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9013 }
9014 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9015
9016 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9017 {
9018         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9019 }
9020
9021 struct static_key kvm_no_apic_vcpu __read_mostly;
9022 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9023
9024 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9025 {
9026         struct page *page;
9027         int r;
9028
9029         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9030         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9031                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9032         else
9033                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9034
9035         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9036         if (!page) {
9037                 r = -ENOMEM;
9038                 goto fail;
9039         }
9040         vcpu->arch.pio_data = page_address(page);
9041
9042         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9043
9044         r = kvm_mmu_create(vcpu);
9045         if (r < 0)
9046                 goto fail_free_pio_data;
9047
9048         if (irqchip_in_kernel(vcpu->kvm)) {
9049                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9050                 r = kvm_create_lapic(vcpu);
9051                 if (r < 0)
9052                         goto fail_mmu_destroy;
9053         } else
9054                 static_key_slow_inc(&kvm_no_apic_vcpu);
9055
9056         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9057                                        GFP_KERNEL_ACCOUNT);
9058         if (!vcpu->arch.mce_banks) {
9059                 r = -ENOMEM;
9060                 goto fail_free_lapic;
9061         }
9062         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9063
9064         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9065                                 GFP_KERNEL_ACCOUNT)) {
9066                 r = -ENOMEM;
9067                 goto fail_free_mce_banks;
9068         }
9069
9070         fx_init(vcpu);
9071
9072         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9073
9074         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9075
9076         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9077
9078         kvm_async_pf_hash_reset(vcpu);
9079         kvm_pmu_init(vcpu);
9080
9081         vcpu->arch.pending_external_vector = -1;
9082         vcpu->arch.preempted_in_kernel = false;
9083
9084         kvm_hv_vcpu_init(vcpu);
9085
9086         return 0;
9087
9088 fail_free_mce_banks:
9089         kfree(vcpu->arch.mce_banks);
9090 fail_free_lapic:
9091         kvm_free_lapic(vcpu);
9092 fail_mmu_destroy:
9093         kvm_mmu_destroy(vcpu);
9094 fail_free_pio_data:
9095         free_page((unsigned long)vcpu->arch.pio_data);
9096 fail:
9097         return r;
9098 }
9099
9100 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9101 {
9102         int idx;
9103
9104         kvm_hv_vcpu_uninit(vcpu);
9105         kvm_pmu_destroy(vcpu);
9106         kfree(vcpu->arch.mce_banks);
9107         kvm_free_lapic(vcpu);
9108         idx = srcu_read_lock(&vcpu->kvm->srcu);
9109         kvm_mmu_destroy(vcpu);
9110         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9111         free_page((unsigned long)vcpu->arch.pio_data);
9112         if (!lapic_in_kernel(vcpu))
9113                 static_key_slow_dec(&kvm_no_apic_vcpu);
9114 }
9115
9116 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9117 {
9118         vcpu->arch.l1tf_flush_l1d = true;
9119         kvm_x86_ops->sched_in(vcpu, cpu);
9120 }
9121
9122 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9123 {
9124         if (type)
9125                 return -EINVAL;
9126
9127         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9128         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9129         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9130         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9131
9132         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9133         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9134         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9135         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9136                 &kvm->arch.irq_sources_bitmap);
9137
9138         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9139         mutex_init(&kvm->arch.apic_map_lock);
9140         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9141
9142         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9143         pvclock_update_vm_gtod_copy(kvm);
9144
9145         kvm->arch.guest_can_read_msr_platform_info = true;
9146
9147         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9148         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9149
9150         kvm_hv_init_vm(kvm);
9151         kvm_page_track_init(kvm);
9152         kvm_mmu_init_vm(kvm);
9153
9154         if (kvm_x86_ops->vm_init)
9155                 return kvm_x86_ops->vm_init(kvm);
9156
9157         return 0;
9158 }
9159
9160 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9161 {
9162         vcpu_load(vcpu);
9163         kvm_mmu_unload(vcpu);
9164         vcpu_put(vcpu);
9165 }
9166
9167 static void kvm_free_vcpus(struct kvm *kvm)
9168 {
9169         unsigned int i;
9170         struct kvm_vcpu *vcpu;
9171
9172         /*
9173          * Unpin any mmu pages first.
9174          */
9175         kvm_for_each_vcpu(i, vcpu, kvm) {
9176                 kvm_clear_async_pf_completion_queue(vcpu);
9177                 kvm_unload_vcpu_mmu(vcpu);
9178         }
9179         kvm_for_each_vcpu(i, vcpu, kvm)
9180                 kvm_arch_vcpu_free(vcpu);
9181
9182         mutex_lock(&kvm->lock);
9183         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9184                 kvm->vcpus[i] = NULL;
9185
9186         atomic_set(&kvm->online_vcpus, 0);
9187         mutex_unlock(&kvm->lock);
9188 }
9189
9190 void kvm_arch_sync_events(struct kvm *kvm)
9191 {
9192         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9193         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9194         kvm_free_pit(kvm);
9195 }
9196
9197 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9198 {
9199         int i, r;
9200         unsigned long hva;
9201         struct kvm_memslots *slots = kvm_memslots(kvm);
9202         struct kvm_memory_slot *slot, old;
9203
9204         /* Called with kvm->slots_lock held.  */
9205         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9206                 return -EINVAL;
9207
9208         slot = id_to_memslot(slots, id);
9209         if (size) {
9210                 if (slot->npages)
9211                         return -EEXIST;
9212
9213                 /*
9214                  * MAP_SHARED to prevent internal slot pages from being moved
9215                  * by fork()/COW.
9216                  */
9217                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9218                               MAP_SHARED | MAP_ANONYMOUS, 0);
9219                 if (IS_ERR((void *)hva))
9220                         return PTR_ERR((void *)hva);
9221         } else {
9222                 if (!slot->npages)
9223                         return 0;
9224
9225                 hva = 0;
9226         }
9227
9228         old = *slot;
9229         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9230                 struct kvm_userspace_memory_region m;
9231
9232                 m.slot = id | (i << 16);
9233                 m.flags = 0;
9234                 m.guest_phys_addr = gpa;
9235                 m.userspace_addr = hva;
9236                 m.memory_size = size;
9237                 r = __kvm_set_memory_region(kvm, &m);
9238                 if (r < 0)
9239                         return r;
9240         }
9241
9242         if (!size)
9243                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9244
9245         return 0;
9246 }
9247 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9248
9249 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9250 {
9251         int r;
9252
9253         mutex_lock(&kvm->slots_lock);
9254         r = __x86_set_memory_region(kvm, id, gpa, size);
9255         mutex_unlock(&kvm->slots_lock);
9256
9257         return r;
9258 }
9259 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9260
9261 void kvm_arch_destroy_vm(struct kvm *kvm)
9262 {
9263         if (current->mm == kvm->mm) {
9264                 /*
9265                  * Free memory regions allocated on behalf of userspace,
9266                  * unless the the memory map has changed due to process exit
9267                  * or fd copying.
9268                  */
9269                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9270                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9271                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9272         }
9273         if (kvm_x86_ops->vm_destroy)
9274                 kvm_x86_ops->vm_destroy(kvm);
9275         kvm_pic_destroy(kvm);
9276         kvm_ioapic_destroy(kvm);
9277         kvm_free_vcpus(kvm);
9278         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9279         kvm_mmu_uninit_vm(kvm);
9280         kvm_page_track_cleanup(kvm);
9281         kvm_hv_destroy_vm(kvm);
9282 }
9283
9284 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9285                            struct kvm_memory_slot *dont)
9286 {
9287         int i;
9288
9289         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9290                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9291                         kvfree(free->arch.rmap[i]);
9292                         free->arch.rmap[i] = NULL;
9293                 }
9294                 if (i == 0)
9295                         continue;
9296
9297                 if (!dont || free->arch.lpage_info[i - 1] !=
9298                              dont->arch.lpage_info[i - 1]) {
9299                         kvfree(free->arch.lpage_info[i - 1]);
9300                         free->arch.lpage_info[i - 1] = NULL;
9301                 }
9302         }
9303
9304         kvm_page_track_free_memslot(free, dont);
9305 }
9306
9307 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9308                             unsigned long npages)
9309 {
9310         int i;
9311
9312         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9313                 struct kvm_lpage_info *linfo;
9314                 unsigned long ugfn;
9315                 int lpages;
9316                 int level = i + 1;
9317
9318                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9319                                       slot->base_gfn, level) + 1;
9320
9321                 slot->arch.rmap[i] =
9322                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9323                                  GFP_KERNEL_ACCOUNT);
9324                 if (!slot->arch.rmap[i])
9325                         goto out_free;
9326                 if (i == 0)
9327                         continue;
9328
9329                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9330                 if (!linfo)
9331                         goto out_free;
9332
9333                 slot->arch.lpage_info[i - 1] = linfo;
9334
9335                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9336                         linfo[0].disallow_lpage = 1;
9337                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9338                         linfo[lpages - 1].disallow_lpage = 1;
9339                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9340                 /*
9341                  * If the gfn and userspace address are not aligned wrt each
9342                  * other, or if explicitly asked to, disable large page
9343                  * support for this slot
9344                  */
9345                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9346                     !kvm_largepages_enabled()) {
9347                         unsigned long j;
9348
9349                         for (j = 0; j < lpages; ++j)
9350                                 linfo[j].disallow_lpage = 1;
9351                 }
9352         }
9353
9354         if (kvm_page_track_create_memslot(slot, npages))
9355                 goto out_free;
9356
9357         return 0;
9358
9359 out_free:
9360         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9361                 kvfree(slot->arch.rmap[i]);
9362                 slot->arch.rmap[i] = NULL;
9363                 if (i == 0)
9364                         continue;
9365
9366                 kvfree(slot->arch.lpage_info[i - 1]);
9367                 slot->arch.lpage_info[i - 1] = NULL;
9368         }
9369         return -ENOMEM;
9370 }
9371
9372 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9373 {
9374         /*
9375          * memslots->generation has been incremented.
9376          * mmio generation may have reached its maximum value.
9377          */
9378         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9379 }
9380
9381 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9382                                 struct kvm_memory_slot *memslot,
9383                                 const struct kvm_userspace_memory_region *mem,
9384                                 enum kvm_mr_change change)
9385 {
9386         return 0;
9387 }
9388
9389 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9390                                      struct kvm_memory_slot *new)
9391 {
9392         /* Still write protect RO slot */
9393         if (new->flags & KVM_MEM_READONLY) {
9394                 kvm_mmu_slot_remove_write_access(kvm, new);
9395                 return;
9396         }
9397
9398         /*
9399          * Call kvm_x86_ops dirty logging hooks when they are valid.
9400          *
9401          * kvm_x86_ops->slot_disable_log_dirty is called when:
9402          *
9403          *  - KVM_MR_CREATE with dirty logging is disabled
9404          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9405          *
9406          * The reason is, in case of PML, we need to set D-bit for any slots
9407          * with dirty logging disabled in order to eliminate unnecessary GPA
9408          * logging in PML buffer (and potential PML buffer full VMEXT). This
9409          * guarantees leaving PML enabled during guest's lifetime won't have
9410          * any additional overhead from PML when guest is running with dirty
9411          * logging disabled for memory slots.
9412          *
9413          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9414          * to dirty logging mode.
9415          *
9416          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9417          *
9418          * In case of write protect:
9419          *
9420          * Write protect all pages for dirty logging.
9421          *
9422          * All the sptes including the large sptes which point to this
9423          * slot are set to readonly. We can not create any new large
9424          * spte on this slot until the end of the logging.
9425          *
9426          * See the comments in fast_page_fault().
9427          */
9428         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9429                 if (kvm_x86_ops->slot_enable_log_dirty)
9430                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9431                 else
9432                         kvm_mmu_slot_remove_write_access(kvm, new);
9433         } else {
9434                 if (kvm_x86_ops->slot_disable_log_dirty)
9435                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9436         }
9437 }
9438
9439 void kvm_arch_commit_memory_region(struct kvm *kvm,
9440                                 const struct kvm_userspace_memory_region *mem,
9441                                 const struct kvm_memory_slot *old,
9442                                 const struct kvm_memory_slot *new,
9443                                 enum kvm_mr_change change)
9444 {
9445         if (!kvm->arch.n_requested_mmu_pages)
9446                 kvm_mmu_change_mmu_pages(kvm,
9447                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9448
9449         /*
9450          * Dirty logging tracks sptes in 4k granularity, meaning that large
9451          * sptes have to be split.  If live migration is successful, the guest
9452          * in the source machine will be destroyed and large sptes will be
9453          * created in the destination. However, if the guest continues to run
9454          * in the source machine (for example if live migration fails), small
9455          * sptes will remain around and cause bad performance.
9456          *
9457          * Scan sptes if dirty logging has been stopped, dropping those
9458          * which can be collapsed into a single large-page spte.  Later
9459          * page faults will create the large-page sptes.
9460          */
9461         if ((change != KVM_MR_DELETE) &&
9462                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9463                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9464                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9465
9466         /*
9467          * Set up write protection and/or dirty logging for the new slot.
9468          *
9469          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9470          * been zapped so no dirty logging staff is needed for old slot. For
9471          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9472          * new and it's also covered when dealing with the new slot.
9473          *
9474          * FIXME: const-ify all uses of struct kvm_memory_slot.
9475          */
9476         if (change != KVM_MR_DELETE)
9477                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9478 }
9479
9480 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9481 {
9482         kvm_mmu_zap_all(kvm);
9483 }
9484
9485 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9486                                    struct kvm_memory_slot *slot)
9487 {
9488         kvm_page_track_flush_slot(kvm, slot);
9489 }
9490
9491 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9492 {
9493         return (is_guest_mode(vcpu) &&
9494                         kvm_x86_ops->guest_apic_has_interrupt &&
9495                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9496 }
9497
9498 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9499 {
9500         if (!list_empty_careful(&vcpu->async_pf.done))
9501                 return true;
9502
9503         if (kvm_apic_has_events(vcpu))
9504                 return true;
9505
9506         if (vcpu->arch.pv.pv_unhalted)
9507                 return true;
9508
9509         if (vcpu->arch.exception.pending)
9510                 return true;
9511
9512         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9513             (vcpu->arch.nmi_pending &&
9514              kvm_x86_ops->nmi_allowed(vcpu)))
9515                 return true;
9516
9517         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9518             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9519                 return true;
9520
9521         if (kvm_arch_interrupt_allowed(vcpu) &&
9522             (kvm_cpu_has_interrupt(vcpu) ||
9523             kvm_guest_apic_has_interrupt(vcpu)))
9524                 return true;
9525
9526         if (kvm_hv_has_stimer_pending(vcpu))
9527                 return true;
9528
9529         return false;
9530 }
9531
9532 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9533 {
9534         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9535 }
9536
9537 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9538 {
9539         return vcpu->arch.preempted_in_kernel;
9540 }
9541
9542 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9543 {
9544         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9545 }
9546
9547 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9548 {
9549         return kvm_x86_ops->interrupt_allowed(vcpu);
9550 }
9551
9552 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9553 {
9554         if (is_64_bit_mode(vcpu))
9555                 return kvm_rip_read(vcpu);
9556         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9557                      kvm_rip_read(vcpu));
9558 }
9559 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9560
9561 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9562 {
9563         return kvm_get_linear_rip(vcpu) == linear_rip;
9564 }
9565 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9566
9567 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9568 {
9569         unsigned long rflags;
9570
9571         rflags = kvm_x86_ops->get_rflags(vcpu);
9572         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9573                 rflags &= ~X86_EFLAGS_TF;
9574         return rflags;
9575 }
9576 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9577
9578 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9579 {
9580         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9581             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9582                 rflags |= X86_EFLAGS_TF;
9583         kvm_x86_ops->set_rflags(vcpu, rflags);
9584 }
9585
9586 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9587 {
9588         __kvm_set_rflags(vcpu, rflags);
9589         kvm_make_request(KVM_REQ_EVENT, vcpu);
9590 }
9591 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9592
9593 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9594 {
9595         int r;
9596
9597         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9598               work->wakeup_all)
9599                 return;
9600
9601         r = kvm_mmu_reload(vcpu);
9602         if (unlikely(r))
9603                 return;
9604
9605         if (!vcpu->arch.mmu->direct_map &&
9606               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9607                 return;
9608
9609         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9610 }
9611
9612 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9613 {
9614         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9615 }
9616
9617 static inline u32 kvm_async_pf_next_probe(u32 key)
9618 {
9619         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9620 }
9621
9622 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9623 {
9624         u32 key = kvm_async_pf_hash_fn(gfn);
9625
9626         while (vcpu->arch.apf.gfns[key] != ~0)
9627                 key = kvm_async_pf_next_probe(key);
9628
9629         vcpu->arch.apf.gfns[key] = gfn;
9630 }
9631
9632 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9633 {
9634         int i;
9635         u32 key = kvm_async_pf_hash_fn(gfn);
9636
9637         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9638                      (vcpu->arch.apf.gfns[key] != gfn &&
9639                       vcpu->arch.apf.gfns[key] != ~0); i++)
9640                 key = kvm_async_pf_next_probe(key);
9641
9642         return key;
9643 }
9644
9645 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9646 {
9647         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9648 }
9649
9650 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9651 {
9652         u32 i, j, k;
9653
9654         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9655         while (true) {
9656                 vcpu->arch.apf.gfns[i] = ~0;
9657                 do {
9658                         j = kvm_async_pf_next_probe(j);
9659                         if (vcpu->arch.apf.gfns[j] == ~0)
9660                                 return;
9661                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9662                         /*
9663                          * k lies cyclically in ]i,j]
9664                          * |    i.k.j |
9665                          * |....j i.k.| or  |.k..j i...|
9666                          */
9667                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9668                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9669                 i = j;
9670         }
9671 }
9672
9673 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9674 {
9675
9676         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9677                                       sizeof(val));
9678 }
9679
9680 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9681 {
9682
9683         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9684                                       sizeof(u32));
9685 }
9686
9687 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9688                                      struct kvm_async_pf *work)
9689 {
9690         struct x86_exception fault;
9691
9692         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9693         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9694
9695         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9696             (vcpu->arch.apf.send_user_only &&
9697              kvm_x86_ops->get_cpl(vcpu) == 0))
9698                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9699         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9700                 fault.vector = PF_VECTOR;
9701                 fault.error_code_valid = true;
9702                 fault.error_code = 0;
9703                 fault.nested_page_fault = false;
9704                 fault.address = work->arch.token;
9705                 fault.async_page_fault = true;
9706                 kvm_inject_page_fault(vcpu, &fault);
9707         }
9708 }
9709
9710 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9711                                  struct kvm_async_pf *work)
9712 {
9713         struct x86_exception fault;
9714         u32 val;
9715
9716         if (work->wakeup_all)
9717                 work->arch.token = ~0; /* broadcast wakeup */
9718         else
9719                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9720         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9721
9722         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9723             !apf_get_user(vcpu, &val)) {
9724                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9725                     vcpu->arch.exception.pending &&
9726                     vcpu->arch.exception.nr == PF_VECTOR &&
9727                     !apf_put_user(vcpu, 0)) {
9728                         vcpu->arch.exception.injected = false;
9729                         vcpu->arch.exception.pending = false;
9730                         vcpu->arch.exception.nr = 0;
9731                         vcpu->arch.exception.has_error_code = false;
9732                         vcpu->arch.exception.error_code = 0;
9733                         vcpu->arch.exception.has_payload = false;
9734                         vcpu->arch.exception.payload = 0;
9735                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9736                         fault.vector = PF_VECTOR;
9737                         fault.error_code_valid = true;
9738                         fault.error_code = 0;
9739                         fault.nested_page_fault = false;
9740                         fault.address = work->arch.token;
9741                         fault.async_page_fault = true;
9742                         kvm_inject_page_fault(vcpu, &fault);
9743                 }
9744         }
9745         vcpu->arch.apf.halted = false;
9746         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9747 }
9748
9749 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9750 {
9751         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9752                 return true;
9753         else
9754                 return kvm_can_do_async_pf(vcpu);
9755 }
9756
9757 void kvm_arch_start_assignment(struct kvm *kvm)
9758 {
9759         atomic_inc(&kvm->arch.assigned_device_count);
9760 }
9761 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9762
9763 void kvm_arch_end_assignment(struct kvm *kvm)
9764 {
9765         atomic_dec(&kvm->arch.assigned_device_count);
9766 }
9767 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9768
9769 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9770 {
9771         return atomic_read(&kvm->arch.assigned_device_count);
9772 }
9773 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9774
9775 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9776 {
9777         atomic_inc(&kvm->arch.noncoherent_dma_count);
9778 }
9779 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9780
9781 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9782 {
9783         atomic_dec(&kvm->arch.noncoherent_dma_count);
9784 }
9785 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9786
9787 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9788 {
9789         return atomic_read(&kvm->arch.noncoherent_dma_count);
9790 }
9791 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9792
9793 bool kvm_arch_has_irq_bypass(void)
9794 {
9795         return kvm_x86_ops->update_pi_irte != NULL;
9796 }
9797
9798 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9799                                       struct irq_bypass_producer *prod)
9800 {
9801         struct kvm_kernel_irqfd *irqfd =
9802                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9803
9804         irqfd->producer = prod;
9805
9806         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9807                                            prod->irq, irqfd->gsi, 1);
9808 }
9809
9810 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9811                                       struct irq_bypass_producer *prod)
9812 {
9813         int ret;
9814         struct kvm_kernel_irqfd *irqfd =
9815                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9816
9817         WARN_ON(irqfd->producer != prod);
9818         irqfd->producer = NULL;
9819
9820         /*
9821          * When producer of consumer is unregistered, we change back to
9822          * remapped mode, so we can re-use the current implementation
9823          * when the irq is masked/disabled or the consumer side (KVM
9824          * int this case doesn't want to receive the interrupts.
9825         */
9826         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9827         if (ret)
9828                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9829                        " fails: %d\n", irqfd->consumer.token, ret);
9830 }
9831
9832 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9833                                    uint32_t guest_irq, bool set)
9834 {
9835         if (!kvm_x86_ops->update_pi_irte)
9836                 return -EINVAL;
9837
9838         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9839 }
9840
9841 bool kvm_vector_hashing_enabled(void)
9842 {
9843         return vector_hashing;
9844 }
9845 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9846
9847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);