OSDN Git Service

Merge tag 'dmaengine-5.1-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[uclinux-h8/linux.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @slave_config        Slave configuration
339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
340  * @event_id0:          aka dma request line
341  * @event_id1:          for channels that use 2 events
342  * @word_size:          peripheral access size
343  * @pc_from_device:     script address for those device_2_memory
344  * @pc_to_device:       script address for those memory_2_device
345  * @device_to_device:   script address for those device_2_device
346  * @pc_to_pc:           script address for those memory_2_memory
347  * @flags:              loop mode or not
348  * @per_address:        peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:       peripheral source address in p_2_p case
351  * @event_mask:         event mask used in p_2_p script
352  * @watermark_level:    value for gReg[7], some script will extend it from
353  *                      basic watermark such as p_2_p
354  * @shp_addr:           value for gReg[6]
355  * @per_addr:           value for gReg[2]
356  * @status:             status of dma channel
357  * @data:               specific sdma interface structure
358  * @bd_pool:            dma_pool for bd
359  */
360 struct sdma_channel {
361         struct virt_dma_chan            vc;
362         struct sdma_desc                *desc;
363         struct sdma_engine              *sdma;
364         unsigned int                    channel;
365         enum dma_transfer_direction             direction;
366         struct dma_slave_config         slave_config;
367         enum sdma_peripheral_type       peripheral_type;
368         unsigned int                    event_id0;
369         unsigned int                    event_id1;
370         enum dma_slave_buswidth         word_size;
371         unsigned int                    pc_from_device, pc_to_device;
372         unsigned int                    device_to_device;
373         unsigned int                    pc_to_pc;
374         unsigned long                   flags;
375         dma_addr_t                      per_address, per_address2;
376         unsigned long                   event_mask[2];
377         unsigned long                   watermark_level;
378         u32                             shp_addr, per_addr;
379         enum dma_status                 status;
380         bool                            context_loaded;
381         struct imx_dma_data             data;
382         struct work_struct              terminate_worker;
383 };
384
385 #define IMX_DMA_SG_LOOP         BIT(0)
386
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
391
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
393
394 /**
395  * struct sdma_firmware_header - Layout of the firmware image
396  *
397  * @magic:              "SDMA"
398  * @version_major:      increased whenever layout of struct
399  *                      sdma_script_start_addrs changes.
400  * @version_minor:      firmware minor version (for binary compatible changes)
401  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
402  * @num_script_addrs:   Number of script addresses in this image
403  * @ram_code_start:     offset of SDMA ram image in this firmware image
404  * @ram_code_size:      size of SDMA ram image
405  * @script_addrs:       Stores the start address of the SDMA scripts
406  *                      (in SDMA memory space)
407  */
408 struct sdma_firmware_header {
409         u32     magic;
410         u32     version_major;
411         u32     version_minor;
412         u32     script_addrs_start;
413         u32     num_script_addrs;
414         u32     ram_code_start;
415         u32     ram_code_size;
416 };
417
418 struct sdma_driver_data {
419         int chnenbl0;
420         int num_events;
421         struct sdma_script_start_addrs  *script_addrs;
422 };
423
424 struct sdma_engine {
425         struct device                   *dev;
426         struct device_dma_parameters    dma_parms;
427         struct sdma_channel             channel[MAX_DMA_CHANNELS];
428         struct sdma_channel_control     *channel_control;
429         void __iomem                    *regs;
430         struct sdma_context_data        *context;
431         dma_addr_t                      context_phys;
432         struct dma_device               dma_device;
433         struct clk                      *clk_ipg;
434         struct clk                      *clk_ahb;
435         spinlock_t                      channel_0_lock;
436         u32                             script_number;
437         struct sdma_script_start_addrs  *script_addrs;
438         const struct sdma_driver_data   *drvdata;
439         u32                             spba_start_addr;
440         u32                             spba_end_addr;
441         unsigned int                    irq;
442         dma_addr_t                      bd0_phys;
443         struct sdma_buffer_descriptor   *bd0;
444         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
445         bool                            clk_ratio;
446 };
447
448 static int sdma_config_write(struct dma_chan *chan,
449                        struct dma_slave_config *dmaengine_cfg,
450                        enum dma_transfer_direction direction);
451
452 static struct sdma_driver_data sdma_imx31 = {
453         .chnenbl0 = SDMA_CHNENBL0_IMX31,
454         .num_events = 32,
455 };
456
457 static struct sdma_script_start_addrs sdma_script_imx25 = {
458         .ap_2_ap_addr = 729,
459         .uart_2_mcu_addr = 904,
460         .per_2_app_addr = 1255,
461         .mcu_2_app_addr = 834,
462         .uartsh_2_mcu_addr = 1120,
463         .per_2_shp_addr = 1329,
464         .mcu_2_shp_addr = 1048,
465         .ata_2_mcu_addr = 1560,
466         .mcu_2_ata_addr = 1479,
467         .app_2_per_addr = 1189,
468         .app_2_mcu_addr = 770,
469         .shp_2_per_addr = 1407,
470         .shp_2_mcu_addr = 979,
471 };
472
473 static struct sdma_driver_data sdma_imx25 = {
474         .chnenbl0 = SDMA_CHNENBL0_IMX35,
475         .num_events = 48,
476         .script_addrs = &sdma_script_imx25,
477 };
478
479 static struct sdma_driver_data sdma_imx35 = {
480         .chnenbl0 = SDMA_CHNENBL0_IMX35,
481         .num_events = 48,
482 };
483
484 static struct sdma_script_start_addrs sdma_script_imx51 = {
485         .ap_2_ap_addr = 642,
486         .uart_2_mcu_addr = 817,
487         .mcu_2_app_addr = 747,
488         .mcu_2_shp_addr = 961,
489         .ata_2_mcu_addr = 1473,
490         .mcu_2_ata_addr = 1392,
491         .app_2_per_addr = 1033,
492         .app_2_mcu_addr = 683,
493         .shp_2_per_addr = 1251,
494         .shp_2_mcu_addr = 892,
495 };
496
497 static struct sdma_driver_data sdma_imx51 = {
498         .chnenbl0 = SDMA_CHNENBL0_IMX35,
499         .num_events = 48,
500         .script_addrs = &sdma_script_imx51,
501 };
502
503 static struct sdma_script_start_addrs sdma_script_imx53 = {
504         .ap_2_ap_addr = 642,
505         .app_2_mcu_addr = 683,
506         .mcu_2_app_addr = 747,
507         .uart_2_mcu_addr = 817,
508         .shp_2_mcu_addr = 891,
509         .mcu_2_shp_addr = 960,
510         .uartsh_2_mcu_addr = 1032,
511         .spdif_2_mcu_addr = 1100,
512         .mcu_2_spdif_addr = 1134,
513         .firi_2_mcu_addr = 1193,
514         .mcu_2_firi_addr = 1290,
515 };
516
517 static struct sdma_driver_data sdma_imx53 = {
518         .chnenbl0 = SDMA_CHNENBL0_IMX35,
519         .num_events = 48,
520         .script_addrs = &sdma_script_imx53,
521 };
522
523 static struct sdma_script_start_addrs sdma_script_imx6q = {
524         .ap_2_ap_addr = 642,
525         .uart_2_mcu_addr = 817,
526         .mcu_2_app_addr = 747,
527         .per_2_per_addr = 6331,
528         .uartsh_2_mcu_addr = 1032,
529         .mcu_2_shp_addr = 960,
530         .app_2_mcu_addr = 683,
531         .shp_2_mcu_addr = 891,
532         .spdif_2_mcu_addr = 1100,
533         .mcu_2_spdif_addr = 1134,
534 };
535
536 static struct sdma_driver_data sdma_imx6q = {
537         .chnenbl0 = SDMA_CHNENBL0_IMX35,
538         .num_events = 48,
539         .script_addrs = &sdma_script_imx6q,
540 };
541
542 static struct sdma_script_start_addrs sdma_script_imx7d = {
543         .ap_2_ap_addr = 644,
544         .uart_2_mcu_addr = 819,
545         .mcu_2_app_addr = 749,
546         .uartsh_2_mcu_addr = 1034,
547         .mcu_2_shp_addr = 962,
548         .app_2_mcu_addr = 685,
549         .shp_2_mcu_addr = 893,
550         .spdif_2_mcu_addr = 1102,
551         .mcu_2_spdif_addr = 1136,
552 };
553
554 static struct sdma_driver_data sdma_imx7d = {
555         .chnenbl0 = SDMA_CHNENBL0_IMX35,
556         .num_events = 48,
557         .script_addrs = &sdma_script_imx7d,
558 };
559
560 static const struct platform_device_id sdma_devtypes[] = {
561         {
562                 .name = "imx25-sdma",
563                 .driver_data = (unsigned long)&sdma_imx25,
564         }, {
565                 .name = "imx31-sdma",
566                 .driver_data = (unsigned long)&sdma_imx31,
567         }, {
568                 .name = "imx35-sdma",
569                 .driver_data = (unsigned long)&sdma_imx35,
570         }, {
571                 .name = "imx51-sdma",
572                 .driver_data = (unsigned long)&sdma_imx51,
573         }, {
574                 .name = "imx53-sdma",
575                 .driver_data = (unsigned long)&sdma_imx53,
576         }, {
577                 .name = "imx6q-sdma",
578                 .driver_data = (unsigned long)&sdma_imx6q,
579         }, {
580                 .name = "imx7d-sdma",
581                 .driver_data = (unsigned long)&sdma_imx7d,
582         }, {
583                 /* sentinel */
584         }
585 };
586 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
587
588 static const struct of_device_id sdma_dt_ids[] = {
589         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
590         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
591         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
592         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
593         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
594         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
595         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
596         { /* sentinel */ }
597 };
598 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
599
600 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
601 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
602 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
603 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
604
605 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
606 {
607         u32 chnenbl0 = sdma->drvdata->chnenbl0;
608         return chnenbl0 + event * 4;
609 }
610
611 static int sdma_config_ownership(struct sdma_channel *sdmac,
612                 bool event_override, bool mcu_override, bool dsp_override)
613 {
614         struct sdma_engine *sdma = sdmac->sdma;
615         int channel = sdmac->channel;
616         unsigned long evt, mcu, dsp;
617
618         if (event_override && mcu_override && dsp_override)
619                 return -EINVAL;
620
621         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
622         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
623         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
624
625         if (dsp_override)
626                 __clear_bit(channel, &dsp);
627         else
628                 __set_bit(channel, &dsp);
629
630         if (event_override)
631                 __clear_bit(channel, &evt);
632         else
633                 __set_bit(channel, &evt);
634
635         if (mcu_override)
636                 __clear_bit(channel, &mcu);
637         else
638                 __set_bit(channel, &mcu);
639
640         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
641         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
642         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
643
644         return 0;
645 }
646
647 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
648 {
649         writel(BIT(channel), sdma->regs + SDMA_H_START);
650 }
651
652 /*
653  * sdma_run_channel0 - run a channel and wait till it's done
654  */
655 static int sdma_run_channel0(struct sdma_engine *sdma)
656 {
657         int ret;
658         u32 reg;
659
660         sdma_enable_channel(sdma, 0);
661
662         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
663                                                 reg, !(reg & 1), 1, 500);
664         if (ret)
665                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
666
667         /* Set bits of CONFIG register with dynamic context switching */
668         reg = readl(sdma->regs + SDMA_H_CONFIG);
669         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
670                 reg |= SDMA_H_CONFIG_CSM;
671                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
672         }
673
674         return ret;
675 }
676
677 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
678                 u32 address)
679 {
680         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
681         void *buf_virt;
682         dma_addr_t buf_phys;
683         int ret;
684         unsigned long flags;
685
686         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
687         if (!buf_virt) {
688                 return -ENOMEM;
689         }
690
691         spin_lock_irqsave(&sdma->channel_0_lock, flags);
692
693         bd0->mode.command = C0_SETPM;
694         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
695         bd0->mode.count = size / 2;
696         bd0->buffer_addr = buf_phys;
697         bd0->ext_buffer_addr = address;
698
699         memcpy(buf_virt, buf, size);
700
701         ret = sdma_run_channel0(sdma);
702
703         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
704
705         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
706
707         return ret;
708 }
709
710 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
711 {
712         struct sdma_engine *sdma = sdmac->sdma;
713         int channel = sdmac->channel;
714         unsigned long val;
715         u32 chnenbl = chnenbl_ofs(sdma, event);
716
717         val = readl_relaxed(sdma->regs + chnenbl);
718         __set_bit(channel, &val);
719         writel_relaxed(val, sdma->regs + chnenbl);
720 }
721
722 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
723 {
724         struct sdma_engine *sdma = sdmac->sdma;
725         int channel = sdmac->channel;
726         u32 chnenbl = chnenbl_ofs(sdma, event);
727         unsigned long val;
728
729         val = readl_relaxed(sdma->regs + chnenbl);
730         __clear_bit(channel, &val);
731         writel_relaxed(val, sdma->regs + chnenbl);
732 }
733
734 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
735 {
736         return container_of(t, struct sdma_desc, vd.tx);
737 }
738
739 static void sdma_start_desc(struct sdma_channel *sdmac)
740 {
741         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
742         struct sdma_desc *desc;
743         struct sdma_engine *sdma = sdmac->sdma;
744         int channel = sdmac->channel;
745
746         if (!vd) {
747                 sdmac->desc = NULL;
748                 return;
749         }
750         sdmac->desc = desc = to_sdma_desc(&vd->tx);
751         /*
752          * Do not delete the node in desc_issued list in cyclic mode, otherwise
753          * the desc allocated will never be freed in vchan_dma_desc_free_list
754          */
755         if (!(sdmac->flags & IMX_DMA_SG_LOOP))
756                 list_del(&vd->node);
757
758         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
759         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
760         sdma_enable_channel(sdma, sdmac->channel);
761 }
762
763 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
764 {
765         struct sdma_buffer_descriptor *bd;
766         int error = 0;
767         enum dma_status old_status = sdmac->status;
768
769         /*
770          * loop mode. Iterate over descriptors, re-setup them and
771          * call callback function.
772          */
773         while (sdmac->desc) {
774                 struct sdma_desc *desc = sdmac->desc;
775
776                 bd = &desc->bd[desc->buf_tail];
777
778                 if (bd->mode.status & BD_DONE)
779                         break;
780
781                 if (bd->mode.status & BD_RROR) {
782                         bd->mode.status &= ~BD_RROR;
783                         sdmac->status = DMA_ERROR;
784                         error = -EIO;
785                 }
786
787                /*
788                 * We use bd->mode.count to calculate the residue, since contains
789                 * the number of bytes present in the current buffer descriptor.
790                 */
791
792                 desc->chn_real_count = bd->mode.count;
793                 bd->mode.status |= BD_DONE;
794                 bd->mode.count = desc->period_len;
795                 desc->buf_ptail = desc->buf_tail;
796                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
797
798                 /*
799                  * The callback is called from the interrupt context in order
800                  * to reduce latency and to avoid the risk of altering the
801                  * SDMA transaction status by the time the client tasklet is
802                  * executed.
803                  */
804                 spin_unlock(&sdmac->vc.lock);
805                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
806                 spin_lock(&sdmac->vc.lock);
807
808                 if (error)
809                         sdmac->status = old_status;
810         }
811 }
812
813 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
814 {
815         struct sdma_channel *sdmac = (struct sdma_channel *) data;
816         struct sdma_buffer_descriptor *bd;
817         int i, error = 0;
818
819         sdmac->desc->chn_real_count = 0;
820         /*
821          * non loop mode. Iterate over all descriptors, collect
822          * errors and call callback function
823          */
824         for (i = 0; i < sdmac->desc->num_bd; i++) {
825                 bd = &sdmac->desc->bd[i];
826
827                  if (bd->mode.status & (BD_DONE | BD_RROR))
828                         error = -EIO;
829                  sdmac->desc->chn_real_count += bd->mode.count;
830         }
831
832         if (error)
833                 sdmac->status = DMA_ERROR;
834         else
835                 sdmac->status = DMA_COMPLETE;
836 }
837
838 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
839 {
840         struct sdma_engine *sdma = dev_id;
841         unsigned long stat;
842
843         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
844         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
845         /* channel 0 is special and not handled here, see run_channel0() */
846         stat &= ~1;
847
848         while (stat) {
849                 int channel = fls(stat) - 1;
850                 struct sdma_channel *sdmac = &sdma->channel[channel];
851                 struct sdma_desc *desc;
852
853                 spin_lock(&sdmac->vc.lock);
854                 desc = sdmac->desc;
855                 if (desc) {
856                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
857                                 sdma_update_channel_loop(sdmac);
858                         } else {
859                                 mxc_sdma_handle_channel_normal(sdmac);
860                                 vchan_cookie_complete(&desc->vd);
861                                 sdma_start_desc(sdmac);
862                         }
863                 }
864
865                 spin_unlock(&sdmac->vc.lock);
866                 __clear_bit(channel, &stat);
867         }
868
869         return IRQ_HANDLED;
870 }
871
872 /*
873  * sets the pc of SDMA script according to the peripheral type
874  */
875 static void sdma_get_pc(struct sdma_channel *sdmac,
876                 enum sdma_peripheral_type peripheral_type)
877 {
878         struct sdma_engine *sdma = sdmac->sdma;
879         int per_2_emi = 0, emi_2_per = 0;
880         /*
881          * These are needed once we start to support transfers between
882          * two peripherals or memory-to-memory transfers
883          */
884         int per_2_per = 0, emi_2_emi = 0;
885
886         sdmac->pc_from_device = 0;
887         sdmac->pc_to_device = 0;
888         sdmac->device_to_device = 0;
889         sdmac->pc_to_pc = 0;
890
891         switch (peripheral_type) {
892         case IMX_DMATYPE_MEMORY:
893                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
894                 break;
895         case IMX_DMATYPE_DSP:
896                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
897                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
898                 break;
899         case IMX_DMATYPE_FIRI:
900                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
901                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
902                 break;
903         case IMX_DMATYPE_UART:
904                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
905                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
906                 break;
907         case IMX_DMATYPE_UART_SP:
908                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
909                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
910                 break;
911         case IMX_DMATYPE_ATA:
912                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
913                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
914                 break;
915         case IMX_DMATYPE_CSPI:
916         case IMX_DMATYPE_EXT:
917         case IMX_DMATYPE_SSI:
918         case IMX_DMATYPE_SAI:
919                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
920                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
921                 break;
922         case IMX_DMATYPE_SSI_DUAL:
923                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
924                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
925                 break;
926         case IMX_DMATYPE_SSI_SP:
927         case IMX_DMATYPE_MMC:
928         case IMX_DMATYPE_SDHC:
929         case IMX_DMATYPE_CSPI_SP:
930         case IMX_DMATYPE_ESAI:
931         case IMX_DMATYPE_MSHC_SP:
932                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
933                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
934                 break;
935         case IMX_DMATYPE_ASRC:
936                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
937                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
938                 per_2_per = sdma->script_addrs->per_2_per_addr;
939                 break;
940         case IMX_DMATYPE_ASRC_SP:
941                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
942                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
943                 per_2_per = sdma->script_addrs->per_2_per_addr;
944                 break;
945         case IMX_DMATYPE_MSHC:
946                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
947                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
948                 break;
949         case IMX_DMATYPE_CCM:
950                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
951                 break;
952         case IMX_DMATYPE_SPDIF:
953                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
954                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
955                 break;
956         case IMX_DMATYPE_IPU_MEMORY:
957                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
958                 break;
959         default:
960                 break;
961         }
962
963         sdmac->pc_from_device = per_2_emi;
964         sdmac->pc_to_device = emi_2_per;
965         sdmac->device_to_device = per_2_per;
966         sdmac->pc_to_pc = emi_2_emi;
967 }
968
969 static int sdma_load_context(struct sdma_channel *sdmac)
970 {
971         struct sdma_engine *sdma = sdmac->sdma;
972         int channel = sdmac->channel;
973         int load_address;
974         struct sdma_context_data *context = sdma->context;
975         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
976         int ret;
977         unsigned long flags;
978
979         if (sdmac->context_loaded)
980                 return 0;
981
982         if (sdmac->direction == DMA_DEV_TO_MEM)
983                 load_address = sdmac->pc_from_device;
984         else if (sdmac->direction == DMA_DEV_TO_DEV)
985                 load_address = sdmac->device_to_device;
986         else if (sdmac->direction == DMA_MEM_TO_MEM)
987                 load_address = sdmac->pc_to_pc;
988         else
989                 load_address = sdmac->pc_to_device;
990
991         if (load_address < 0)
992                 return load_address;
993
994         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
995         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
996         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
997         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
998         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
999         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1000
1001         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1002
1003         memset(context, 0, sizeof(*context));
1004         context->channel_state.pc = load_address;
1005
1006         /* Send by context the event mask,base address for peripheral
1007          * and watermark level
1008          */
1009         context->gReg[0] = sdmac->event_mask[1];
1010         context->gReg[1] = sdmac->event_mask[0];
1011         context->gReg[2] = sdmac->per_addr;
1012         context->gReg[6] = sdmac->shp_addr;
1013         context->gReg[7] = sdmac->watermark_level;
1014
1015         bd0->mode.command = C0_SETDM;
1016         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
1017         bd0->mode.count = sizeof(*context) / 4;
1018         bd0->buffer_addr = sdma->context_phys;
1019         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1020         ret = sdma_run_channel0(sdma);
1021
1022         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1023
1024         sdmac->context_loaded = true;
1025
1026         return ret;
1027 }
1028
1029 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1030 {
1031         return container_of(chan, struct sdma_channel, vc.chan);
1032 }
1033
1034 static int sdma_disable_channel(struct dma_chan *chan)
1035 {
1036         struct sdma_channel *sdmac = to_sdma_chan(chan);
1037         struct sdma_engine *sdma = sdmac->sdma;
1038         int channel = sdmac->channel;
1039
1040         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1041         sdmac->status = DMA_ERROR;
1042
1043         return 0;
1044 }
1045 static void sdma_channel_terminate_work(struct work_struct *work)
1046 {
1047         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1048                                                   terminate_worker);
1049         unsigned long flags;
1050         LIST_HEAD(head);
1051
1052         /*
1053          * According to NXP R&D team a delay of one BD SDMA cost time
1054          * (maximum is 1ms) should be added after disable of the channel
1055          * bit, to ensure SDMA core has really been stopped after SDMA
1056          * clients call .device_terminate_all.
1057          */
1058         usleep_range(1000, 2000);
1059
1060         spin_lock_irqsave(&sdmac->vc.lock, flags);
1061         vchan_get_all_descriptors(&sdmac->vc, &head);
1062         sdmac->desc = NULL;
1063         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1064         vchan_dma_desc_free_list(&sdmac->vc, &head);
1065         sdmac->context_loaded = false;
1066 }
1067
1068 static int sdma_disable_channel_async(struct dma_chan *chan)
1069 {
1070         struct sdma_channel *sdmac = to_sdma_chan(chan);
1071
1072         sdma_disable_channel(chan);
1073
1074         if (sdmac->desc)
1075                 schedule_work(&sdmac->terminate_worker);
1076
1077         return 0;
1078 }
1079
1080 static void sdma_channel_synchronize(struct dma_chan *chan)
1081 {
1082         struct sdma_channel *sdmac = to_sdma_chan(chan);
1083
1084         vchan_synchronize(&sdmac->vc);
1085
1086         flush_work(&sdmac->terminate_worker);
1087 }
1088
1089 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1090 {
1091         struct sdma_engine *sdma = sdmac->sdma;
1092
1093         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1094         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1095
1096         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1097         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1098
1099         if (sdmac->event_id0 > 31)
1100                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1101
1102         if (sdmac->event_id1 > 31)
1103                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1104
1105         /*
1106          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1107          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1108          * r0(event_mask[1]) and r1(event_mask[0]).
1109          */
1110         if (lwml > hwml) {
1111                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1112                                                 SDMA_WATERMARK_LEVEL_HWML);
1113                 sdmac->watermark_level |= hwml;
1114                 sdmac->watermark_level |= lwml << 16;
1115                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1116         }
1117
1118         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1119                         sdmac->per_address2 <= sdma->spba_end_addr)
1120                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1121
1122         if (sdmac->per_address >= sdma->spba_start_addr &&
1123                         sdmac->per_address <= sdma->spba_end_addr)
1124                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1125
1126         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1127 }
1128
1129 static int sdma_config_channel(struct dma_chan *chan)
1130 {
1131         struct sdma_channel *sdmac = to_sdma_chan(chan);
1132         int ret;
1133
1134         sdma_disable_channel(chan);
1135
1136         sdmac->event_mask[0] = 0;
1137         sdmac->event_mask[1] = 0;
1138         sdmac->shp_addr = 0;
1139         sdmac->per_addr = 0;
1140
1141         switch (sdmac->peripheral_type) {
1142         case IMX_DMATYPE_DSP:
1143                 sdma_config_ownership(sdmac, false, true, true);
1144                 break;
1145         case IMX_DMATYPE_MEMORY:
1146                 sdma_config_ownership(sdmac, false, true, false);
1147                 break;
1148         default:
1149                 sdma_config_ownership(sdmac, true, true, false);
1150                 break;
1151         }
1152
1153         sdma_get_pc(sdmac, sdmac->peripheral_type);
1154
1155         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1156                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1157                 /* Handle multiple event channels differently */
1158                 if (sdmac->event_id1) {
1159                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1160                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1161                                 sdma_set_watermarklevel_for_p2p(sdmac);
1162                 } else
1163                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1164
1165                 /* Address */
1166                 sdmac->shp_addr = sdmac->per_address;
1167                 sdmac->per_addr = sdmac->per_address2;
1168         } else {
1169                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1170         }
1171
1172         ret = sdma_load_context(sdmac);
1173
1174         return ret;
1175 }
1176
1177 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1178                 unsigned int priority)
1179 {
1180         struct sdma_engine *sdma = sdmac->sdma;
1181         int channel = sdmac->channel;
1182
1183         if (priority < MXC_SDMA_MIN_PRIORITY
1184             || priority > MXC_SDMA_MAX_PRIORITY) {
1185                 return -EINVAL;
1186         }
1187
1188         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1189
1190         return 0;
1191 }
1192
1193 static int sdma_request_channel0(struct sdma_engine *sdma)
1194 {
1195         int ret = -EBUSY;
1196
1197         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1198                                         GFP_NOWAIT);
1199         if (!sdma->bd0) {
1200                 ret = -ENOMEM;
1201                 goto out;
1202         }
1203
1204         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1205         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1206
1207         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1208         return 0;
1209 out:
1210
1211         return ret;
1212 }
1213
1214
1215 static int sdma_alloc_bd(struct sdma_desc *desc)
1216 {
1217         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1218         int ret = 0;
1219
1220         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1221                                        &desc->bd_phys, GFP_NOWAIT);
1222         if (!desc->bd) {
1223                 ret = -ENOMEM;
1224                 goto out;
1225         }
1226 out:
1227         return ret;
1228 }
1229
1230 static void sdma_free_bd(struct sdma_desc *desc)
1231 {
1232         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1233
1234         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1235                           desc->bd_phys);
1236 }
1237
1238 static void sdma_desc_free(struct virt_dma_desc *vd)
1239 {
1240         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1241
1242         sdma_free_bd(desc);
1243         kfree(desc);
1244 }
1245
1246 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1247 {
1248         struct sdma_channel *sdmac = to_sdma_chan(chan);
1249         struct imx_dma_data *data = chan->private;
1250         struct imx_dma_data mem_data;
1251         int prio, ret;
1252
1253         /*
1254          * MEMCPY may never setup chan->private by filter function such as
1255          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1256          * Please note in any other slave case, you have to setup chan->private
1257          * with 'struct imx_dma_data' in your own filter function if you want to
1258          * request dma channel by dma_request_channel() rather than
1259          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1260          * to warn you to correct your filter function.
1261          */
1262         if (!data) {
1263                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1264                 mem_data.priority = 2;
1265                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1266                 mem_data.dma_request = 0;
1267                 mem_data.dma_request2 = 0;
1268                 data = &mem_data;
1269
1270                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1271         }
1272
1273         switch (data->priority) {
1274         case DMA_PRIO_HIGH:
1275                 prio = 3;
1276                 break;
1277         case DMA_PRIO_MEDIUM:
1278                 prio = 2;
1279                 break;
1280         case DMA_PRIO_LOW:
1281         default:
1282                 prio = 1;
1283                 break;
1284         }
1285
1286         sdmac->peripheral_type = data->peripheral_type;
1287         sdmac->event_id0 = data->dma_request;
1288         sdmac->event_id1 = data->dma_request2;
1289
1290         ret = clk_enable(sdmac->sdma->clk_ipg);
1291         if (ret)
1292                 return ret;
1293         ret = clk_enable(sdmac->sdma->clk_ahb);
1294         if (ret)
1295                 goto disable_clk_ipg;
1296
1297         ret = sdma_set_channel_priority(sdmac, prio);
1298         if (ret)
1299                 goto disable_clk_ahb;
1300
1301         return 0;
1302
1303 disable_clk_ahb:
1304         clk_disable(sdmac->sdma->clk_ahb);
1305 disable_clk_ipg:
1306         clk_disable(sdmac->sdma->clk_ipg);
1307         return ret;
1308 }
1309
1310 static void sdma_free_chan_resources(struct dma_chan *chan)
1311 {
1312         struct sdma_channel *sdmac = to_sdma_chan(chan);
1313         struct sdma_engine *sdma = sdmac->sdma;
1314
1315         sdma_disable_channel_async(chan);
1316
1317         sdma_channel_synchronize(chan);
1318
1319         if (sdmac->event_id0)
1320                 sdma_event_disable(sdmac, sdmac->event_id0);
1321         if (sdmac->event_id1)
1322                 sdma_event_disable(sdmac, sdmac->event_id1);
1323
1324         sdmac->event_id0 = 0;
1325         sdmac->event_id1 = 0;
1326
1327         sdma_set_channel_priority(sdmac, 0);
1328
1329         clk_disable(sdma->clk_ipg);
1330         clk_disable(sdma->clk_ahb);
1331 }
1332
1333 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1334                                 enum dma_transfer_direction direction, u32 bds)
1335 {
1336         struct sdma_desc *desc;
1337
1338         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1339         if (!desc)
1340                 goto err_out;
1341
1342         sdmac->status = DMA_IN_PROGRESS;
1343         sdmac->direction = direction;
1344         sdmac->flags = 0;
1345
1346         desc->chn_count = 0;
1347         desc->chn_real_count = 0;
1348         desc->buf_tail = 0;
1349         desc->buf_ptail = 0;
1350         desc->sdmac = sdmac;
1351         desc->num_bd = bds;
1352
1353         if (sdma_alloc_bd(desc))
1354                 goto err_desc_out;
1355
1356         /* No slave_config called in MEMCPY case, so do here */
1357         if (direction == DMA_MEM_TO_MEM)
1358                 sdma_config_ownership(sdmac, false, true, false);
1359
1360         if (sdma_load_context(sdmac))
1361                 goto err_desc_out;
1362
1363         return desc;
1364
1365 err_desc_out:
1366         kfree(desc);
1367 err_out:
1368         return NULL;
1369 }
1370
1371 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1372                 struct dma_chan *chan, dma_addr_t dma_dst,
1373                 dma_addr_t dma_src, size_t len, unsigned long flags)
1374 {
1375         struct sdma_channel *sdmac = to_sdma_chan(chan);
1376         struct sdma_engine *sdma = sdmac->sdma;
1377         int channel = sdmac->channel;
1378         size_t count;
1379         int i = 0, param;
1380         struct sdma_buffer_descriptor *bd;
1381         struct sdma_desc *desc;
1382
1383         if (!chan || !len)
1384                 return NULL;
1385
1386         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1387                 &dma_src, &dma_dst, len, channel);
1388
1389         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1390                                         len / SDMA_BD_MAX_CNT + 1);
1391         if (!desc)
1392                 return NULL;
1393
1394         do {
1395                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1396                 bd = &desc->bd[i];
1397                 bd->buffer_addr = dma_src;
1398                 bd->ext_buffer_addr = dma_dst;
1399                 bd->mode.count = count;
1400                 desc->chn_count += count;
1401                 bd->mode.command = 0;
1402
1403                 dma_src += count;
1404                 dma_dst += count;
1405                 len -= count;
1406                 i++;
1407
1408                 param = BD_DONE | BD_EXTD | BD_CONT;
1409                 /* last bd */
1410                 if (!len) {
1411                         param |= BD_INTR;
1412                         param |= BD_LAST;
1413                         param &= ~BD_CONT;
1414                 }
1415
1416                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1417                                 i, count, bd->buffer_addr,
1418                                 param & BD_WRAP ? "wrap" : "",
1419                                 param & BD_INTR ? " intr" : "");
1420
1421                 bd->mode.status = param;
1422         } while (len);
1423
1424         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1425 }
1426
1427 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1428                 struct dma_chan *chan, struct scatterlist *sgl,
1429                 unsigned int sg_len, enum dma_transfer_direction direction,
1430                 unsigned long flags, void *context)
1431 {
1432         struct sdma_channel *sdmac = to_sdma_chan(chan);
1433         struct sdma_engine *sdma = sdmac->sdma;
1434         int i, count;
1435         int channel = sdmac->channel;
1436         struct scatterlist *sg;
1437         struct sdma_desc *desc;
1438
1439         sdma_config_write(chan, &sdmac->slave_config, direction);
1440
1441         desc = sdma_transfer_init(sdmac, direction, sg_len);
1442         if (!desc)
1443                 goto err_out;
1444
1445         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1446                         sg_len, channel);
1447
1448         for_each_sg(sgl, sg, sg_len, i) {
1449                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1450                 int param;
1451
1452                 bd->buffer_addr = sg->dma_address;
1453
1454                 count = sg_dma_len(sg);
1455
1456                 if (count > SDMA_BD_MAX_CNT) {
1457                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1458                                         channel, count, SDMA_BD_MAX_CNT);
1459                         goto err_bd_out;
1460                 }
1461
1462                 bd->mode.count = count;
1463                 desc->chn_count += count;
1464
1465                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1466                         goto err_bd_out;
1467
1468                 switch (sdmac->word_size) {
1469                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1470                         bd->mode.command = 0;
1471                         if (count & 3 || sg->dma_address & 3)
1472                                 goto err_bd_out;
1473                         break;
1474                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1475                         bd->mode.command = 2;
1476                         if (count & 1 || sg->dma_address & 1)
1477                                 goto err_bd_out;
1478                         break;
1479                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1480                         bd->mode.command = 1;
1481                         break;
1482                 default:
1483                         goto err_bd_out;
1484                 }
1485
1486                 param = BD_DONE | BD_EXTD | BD_CONT;
1487
1488                 if (i + 1 == sg_len) {
1489                         param |= BD_INTR;
1490                         param |= BD_LAST;
1491                         param &= ~BD_CONT;
1492                 }
1493
1494                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1495                                 i, count, (u64)sg->dma_address,
1496                                 param & BD_WRAP ? "wrap" : "",
1497                                 param & BD_INTR ? " intr" : "");
1498
1499                 bd->mode.status = param;
1500         }
1501
1502         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1503 err_bd_out:
1504         sdma_free_bd(desc);
1505         kfree(desc);
1506 err_out:
1507         sdmac->status = DMA_ERROR;
1508         return NULL;
1509 }
1510
1511 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1512                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1513                 size_t period_len, enum dma_transfer_direction direction,
1514                 unsigned long flags)
1515 {
1516         struct sdma_channel *sdmac = to_sdma_chan(chan);
1517         struct sdma_engine *sdma = sdmac->sdma;
1518         int num_periods = buf_len / period_len;
1519         int channel = sdmac->channel;
1520         int i = 0, buf = 0;
1521         struct sdma_desc *desc;
1522
1523         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1524
1525         sdma_config_write(chan, &sdmac->slave_config, direction);
1526
1527         desc = sdma_transfer_init(sdmac, direction, num_periods);
1528         if (!desc)
1529                 goto err_out;
1530
1531         desc->period_len = period_len;
1532
1533         sdmac->flags |= IMX_DMA_SG_LOOP;
1534
1535         if (period_len > SDMA_BD_MAX_CNT) {
1536                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1537                                 channel, period_len, SDMA_BD_MAX_CNT);
1538                 goto err_bd_out;
1539         }
1540
1541         while (buf < buf_len) {
1542                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1543                 int param;
1544
1545                 bd->buffer_addr = dma_addr;
1546
1547                 bd->mode.count = period_len;
1548
1549                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1550                         goto err_bd_out;
1551                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1552                         bd->mode.command = 0;
1553                 else
1554                         bd->mode.command = sdmac->word_size;
1555
1556                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1557                 if (i + 1 == num_periods)
1558                         param |= BD_WRAP;
1559
1560                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1561                                 i, period_len, (u64)dma_addr,
1562                                 param & BD_WRAP ? "wrap" : "",
1563                                 param & BD_INTR ? " intr" : "");
1564
1565                 bd->mode.status = param;
1566
1567                 dma_addr += period_len;
1568                 buf += period_len;
1569
1570                 i++;
1571         }
1572
1573         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1574 err_bd_out:
1575         sdma_free_bd(desc);
1576         kfree(desc);
1577 err_out:
1578         sdmac->status = DMA_ERROR;
1579         return NULL;
1580 }
1581
1582 static int sdma_config_write(struct dma_chan *chan,
1583                        struct dma_slave_config *dmaengine_cfg,
1584                        enum dma_transfer_direction direction)
1585 {
1586         struct sdma_channel *sdmac = to_sdma_chan(chan);
1587
1588         if (direction == DMA_DEV_TO_MEM) {
1589                 sdmac->per_address = dmaengine_cfg->src_addr;
1590                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1591                         dmaengine_cfg->src_addr_width;
1592                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1593         } else if (direction == DMA_DEV_TO_DEV) {
1594                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1595                 sdmac->per_address = dmaengine_cfg->dst_addr;
1596                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1597                         SDMA_WATERMARK_LEVEL_LWML;
1598                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1599                         SDMA_WATERMARK_LEVEL_HWML;
1600                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1601         } else {
1602                 sdmac->per_address = dmaengine_cfg->dst_addr;
1603                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1604                         dmaengine_cfg->dst_addr_width;
1605                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1606         }
1607         sdmac->direction = direction;
1608         return sdma_config_channel(chan);
1609 }
1610
1611 static int sdma_config(struct dma_chan *chan,
1612                        struct dma_slave_config *dmaengine_cfg)
1613 {
1614         struct sdma_channel *sdmac = to_sdma_chan(chan);
1615
1616         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1617
1618         /* Set ENBLn earlier to make sure dma request triggered after that */
1619         if (sdmac->event_id0) {
1620                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1621                         return -EINVAL;
1622                 sdma_event_enable(sdmac, sdmac->event_id0);
1623         }
1624
1625         if (sdmac->event_id1) {
1626                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1627                         return -EINVAL;
1628                 sdma_event_enable(sdmac, sdmac->event_id1);
1629         }
1630
1631         return 0;
1632 }
1633
1634 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1635                                       dma_cookie_t cookie,
1636                                       struct dma_tx_state *txstate)
1637 {
1638         struct sdma_channel *sdmac = to_sdma_chan(chan);
1639         struct sdma_desc *desc;
1640         u32 residue;
1641         struct virt_dma_desc *vd;
1642         enum dma_status ret;
1643         unsigned long flags;
1644
1645         ret = dma_cookie_status(chan, cookie, txstate);
1646         if (ret == DMA_COMPLETE || !txstate)
1647                 return ret;
1648
1649         spin_lock_irqsave(&sdmac->vc.lock, flags);
1650         vd = vchan_find_desc(&sdmac->vc, cookie);
1651         if (vd) {
1652                 desc = to_sdma_desc(&vd->tx);
1653                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1654                         residue = (desc->num_bd - desc->buf_ptail) *
1655                                 desc->period_len - desc->chn_real_count;
1656                 else
1657                         residue = desc->chn_count - desc->chn_real_count;
1658         } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1659                 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1660         } else {
1661                 residue = 0;
1662         }
1663         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1664
1665         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1666                          residue);
1667
1668         return sdmac->status;
1669 }
1670
1671 static void sdma_issue_pending(struct dma_chan *chan)
1672 {
1673         struct sdma_channel *sdmac = to_sdma_chan(chan);
1674         unsigned long flags;
1675
1676         spin_lock_irqsave(&sdmac->vc.lock, flags);
1677         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1678                 sdma_start_desc(sdmac);
1679         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1680 }
1681
1682 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1683 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1684 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1685 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1686
1687 static void sdma_add_scripts(struct sdma_engine *sdma,
1688                 const struct sdma_script_start_addrs *addr)
1689 {
1690         s32 *addr_arr = (u32 *)addr;
1691         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1692         int i;
1693
1694         /* use the default firmware in ROM if missing external firmware */
1695         if (!sdma->script_number)
1696                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1697
1698         for (i = 0; i < sdma->script_number; i++)
1699                 if (addr_arr[i] > 0)
1700                         saddr_arr[i] = addr_arr[i];
1701 }
1702
1703 static void sdma_load_firmware(const struct firmware *fw, void *context)
1704 {
1705         struct sdma_engine *sdma = context;
1706         const struct sdma_firmware_header *header;
1707         const struct sdma_script_start_addrs *addr;
1708         unsigned short *ram_code;
1709
1710         if (!fw) {
1711                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1712                 /* In this case we just use the ROM firmware. */
1713                 return;
1714         }
1715
1716         if (fw->size < sizeof(*header))
1717                 goto err_firmware;
1718
1719         header = (struct sdma_firmware_header *)fw->data;
1720
1721         if (header->magic != SDMA_FIRMWARE_MAGIC)
1722                 goto err_firmware;
1723         if (header->ram_code_start + header->ram_code_size > fw->size)
1724                 goto err_firmware;
1725         switch (header->version_major) {
1726         case 1:
1727                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1728                 break;
1729         case 2:
1730                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1731                 break;
1732         case 3:
1733                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1734                 break;
1735         case 4:
1736                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1737                 break;
1738         default:
1739                 dev_err(sdma->dev, "unknown firmware version\n");
1740                 goto err_firmware;
1741         }
1742
1743         addr = (void *)header + header->script_addrs_start;
1744         ram_code = (void *)header + header->ram_code_start;
1745
1746         clk_enable(sdma->clk_ipg);
1747         clk_enable(sdma->clk_ahb);
1748         /* download the RAM image for SDMA */
1749         sdma_load_script(sdma, ram_code,
1750                         header->ram_code_size,
1751                         addr->ram_code_start_addr);
1752         clk_disable(sdma->clk_ipg);
1753         clk_disable(sdma->clk_ahb);
1754
1755         sdma_add_scripts(sdma, addr);
1756
1757         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1758                         header->version_major,
1759                         header->version_minor);
1760
1761 err_firmware:
1762         release_firmware(fw);
1763 }
1764
1765 #define EVENT_REMAP_CELLS 3
1766
1767 static int sdma_event_remap(struct sdma_engine *sdma)
1768 {
1769         struct device_node *np = sdma->dev->of_node;
1770         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1771         struct property *event_remap;
1772         struct regmap *gpr;
1773         char propname[] = "fsl,sdma-event-remap";
1774         u32 reg, val, shift, num_map, i;
1775         int ret = 0;
1776
1777         if (IS_ERR(np) || IS_ERR(gpr_np))
1778                 goto out;
1779
1780         event_remap = of_find_property(np, propname, NULL);
1781         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1782         if (!num_map) {
1783                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1784                 goto out;
1785         } else if (num_map % EVENT_REMAP_CELLS) {
1786                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1787                                 propname, EVENT_REMAP_CELLS);
1788                 ret = -EINVAL;
1789                 goto out;
1790         }
1791
1792         gpr = syscon_node_to_regmap(gpr_np);
1793         if (IS_ERR(gpr)) {
1794                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1795                 ret = PTR_ERR(gpr);
1796                 goto out;
1797         }
1798
1799         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1800                 ret = of_property_read_u32_index(np, propname, i, &reg);
1801                 if (ret) {
1802                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1803                                         propname, i);
1804                         goto out;
1805                 }
1806
1807                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1808                 if (ret) {
1809                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1810                                         propname, i + 1);
1811                         goto out;
1812                 }
1813
1814                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1815                 if (ret) {
1816                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1817                                         propname, i + 2);
1818                         goto out;
1819                 }
1820
1821                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1822         }
1823
1824 out:
1825         if (!IS_ERR(gpr_np))
1826                 of_node_put(gpr_np);
1827
1828         return ret;
1829 }
1830
1831 static int sdma_get_firmware(struct sdma_engine *sdma,
1832                 const char *fw_name)
1833 {
1834         int ret;
1835
1836         ret = request_firmware_nowait(THIS_MODULE,
1837                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1838                         GFP_KERNEL, sdma, sdma_load_firmware);
1839
1840         return ret;
1841 }
1842
1843 static int sdma_init(struct sdma_engine *sdma)
1844 {
1845         int i, ret;
1846         dma_addr_t ccb_phys;
1847
1848         ret = clk_enable(sdma->clk_ipg);
1849         if (ret)
1850                 return ret;
1851         ret = clk_enable(sdma->clk_ahb);
1852         if (ret)
1853                 goto disable_clk_ipg;
1854
1855         if (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))
1856                 sdma->clk_ratio = 1;
1857
1858         /* Be sure SDMA has not started yet */
1859         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1860
1861         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1862                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1863                         sizeof(struct sdma_context_data),
1864                         &ccb_phys, GFP_KERNEL);
1865
1866         if (!sdma->channel_control) {
1867                 ret = -ENOMEM;
1868                 goto err_dma_alloc;
1869         }
1870
1871         sdma->context = (void *)sdma->channel_control +
1872                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1873         sdma->context_phys = ccb_phys +
1874                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1875
1876         /* Zero-out the CCB structures array just allocated */
1877         memset(sdma->channel_control, 0,
1878                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1879
1880         /* disable all channels */
1881         for (i = 0; i < sdma->drvdata->num_events; i++)
1882                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1883
1884         /* All channels have priority 0 */
1885         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1886                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1887
1888         ret = sdma_request_channel0(sdma);
1889         if (ret)
1890                 goto err_dma_alloc;
1891
1892         sdma_config_ownership(&sdma->channel[0], false, true, false);
1893
1894         /* Set Command Channel (Channel Zero) */
1895         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1896
1897         /* Set bits of CONFIG register but with static context switching */
1898         if (sdma->clk_ratio)
1899                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1900         else
1901                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1902
1903         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1904
1905         /* Initializes channel's priorities */
1906         sdma_set_channel_priority(&sdma->channel[0], 7);
1907
1908         clk_disable(sdma->clk_ipg);
1909         clk_disable(sdma->clk_ahb);
1910
1911         return 0;
1912
1913 err_dma_alloc:
1914         clk_disable(sdma->clk_ahb);
1915 disable_clk_ipg:
1916         clk_disable(sdma->clk_ipg);
1917         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1918         return ret;
1919 }
1920
1921 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1922 {
1923         struct sdma_channel *sdmac = to_sdma_chan(chan);
1924         struct sdma_engine *sdma = sdmac->sdma;
1925         struct imx_dma_data *data = fn_param;
1926
1927         if (!imx_dma_is_general_purpose(chan))
1928                 return false;
1929
1930         /* return false if it's not the right device */
1931         if (sdma->dev->of_node != data->of_node)
1932                 return false;
1933
1934         sdmac->data = *data;
1935         chan->private = &sdmac->data;
1936
1937         return true;
1938 }
1939
1940 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1941                                    struct of_dma *ofdma)
1942 {
1943         struct sdma_engine *sdma = ofdma->of_dma_data;
1944         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1945         struct imx_dma_data data;
1946
1947         if (dma_spec->args_count != 3)
1948                 return NULL;
1949
1950         data.dma_request = dma_spec->args[0];
1951         data.peripheral_type = dma_spec->args[1];
1952         data.priority = dma_spec->args[2];
1953         /*
1954          * init dma_request2 to zero, which is not used by the dts.
1955          * For P2P, dma_request2 is init from dma_request_channel(),
1956          * chan->private will point to the imx_dma_data, and in
1957          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1958          * be set to sdmac->event_id1.
1959          */
1960         data.dma_request2 = 0;
1961         data.of_node = ofdma->of_node;
1962
1963         return dma_request_channel(mask, sdma_filter_fn, &data);
1964 }
1965
1966 static int sdma_probe(struct platform_device *pdev)
1967 {
1968         const struct of_device_id *of_id =
1969                         of_match_device(sdma_dt_ids, &pdev->dev);
1970         struct device_node *np = pdev->dev.of_node;
1971         struct device_node *spba_bus;
1972         const char *fw_name;
1973         int ret;
1974         int irq;
1975         struct resource *iores;
1976         struct resource spba_res;
1977         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1978         int i;
1979         struct sdma_engine *sdma;
1980         s32 *saddr_arr;
1981         const struct sdma_driver_data *drvdata = NULL;
1982
1983         if (of_id)
1984                 drvdata = of_id->data;
1985         else if (pdev->id_entry)
1986                 drvdata = (void *)pdev->id_entry->driver_data;
1987
1988         if (!drvdata) {
1989                 dev_err(&pdev->dev, "unable to find driver data\n");
1990                 return -EINVAL;
1991         }
1992
1993         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1994         if (ret)
1995                 return ret;
1996
1997         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1998         if (!sdma)
1999                 return -ENOMEM;
2000
2001         spin_lock_init(&sdma->channel_0_lock);
2002
2003         sdma->dev = &pdev->dev;
2004         sdma->drvdata = drvdata;
2005
2006         irq = platform_get_irq(pdev, 0);
2007         if (irq < 0)
2008                 return irq;
2009
2010         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2011         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2012         if (IS_ERR(sdma->regs))
2013                 return PTR_ERR(sdma->regs);
2014
2015         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2016         if (IS_ERR(sdma->clk_ipg))
2017                 return PTR_ERR(sdma->clk_ipg);
2018
2019         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2020         if (IS_ERR(sdma->clk_ahb))
2021                 return PTR_ERR(sdma->clk_ahb);
2022
2023         ret = clk_prepare(sdma->clk_ipg);
2024         if (ret)
2025                 return ret;
2026
2027         ret = clk_prepare(sdma->clk_ahb);
2028         if (ret)
2029                 goto err_clk;
2030
2031         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2032                                sdma);
2033         if (ret)
2034                 goto err_irq;
2035
2036         sdma->irq = irq;
2037
2038         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2039         if (!sdma->script_addrs) {
2040                 ret = -ENOMEM;
2041                 goto err_irq;
2042         }
2043
2044         /* initially no scripts available */
2045         saddr_arr = (s32 *)sdma->script_addrs;
2046         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2047                 saddr_arr[i] = -EINVAL;
2048
2049         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2050         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2051         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2052
2053         INIT_LIST_HEAD(&sdma->dma_device.channels);
2054         /* Initialize channel parameters */
2055         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2056                 struct sdma_channel *sdmac = &sdma->channel[i];
2057
2058                 sdmac->sdma = sdma;
2059
2060                 sdmac->channel = i;
2061                 sdmac->vc.desc_free = sdma_desc_free;
2062                 INIT_WORK(&sdmac->terminate_worker,
2063                                 sdma_channel_terminate_work);
2064                 /*
2065                  * Add the channel to the DMAC list. Do not add channel 0 though
2066                  * because we need it internally in the SDMA driver. This also means
2067                  * that channel 0 in dmaengine counting matches sdma channel 1.
2068                  */
2069                 if (i)
2070                         vchan_init(&sdmac->vc, &sdma->dma_device);
2071         }
2072
2073         ret = sdma_init(sdma);
2074         if (ret)
2075                 goto err_init;
2076
2077         ret = sdma_event_remap(sdma);
2078         if (ret)
2079                 goto err_init;
2080
2081         if (sdma->drvdata->script_addrs)
2082                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2083         if (pdata && pdata->script_addrs)
2084                 sdma_add_scripts(sdma, pdata->script_addrs);
2085
2086         if (pdata) {
2087                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2088                 if (ret)
2089                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2090         } else {
2091                 /*
2092                  * Because that device tree does not encode ROM script address,
2093                  * the RAM script in firmware is mandatory for device tree
2094                  * probe, otherwise it fails.
2095                  */
2096                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2097                                               &fw_name);
2098                 if (ret)
2099                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2100                 else {
2101                         ret = sdma_get_firmware(sdma, fw_name);
2102                         if (ret)
2103                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2104                 }
2105         }
2106
2107         sdma->dma_device.dev = &pdev->dev;
2108
2109         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2110         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2111         sdma->dma_device.device_tx_status = sdma_tx_status;
2112         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2113         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2114         sdma->dma_device.device_config = sdma_config;
2115         sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2116         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2117         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2118         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2119         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2120         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2121         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2122         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2123         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2124         sdma->dma_device.copy_align = 2;
2125         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2126
2127         platform_set_drvdata(pdev, sdma);
2128
2129         ret = dma_async_device_register(&sdma->dma_device);
2130         if (ret) {
2131                 dev_err(&pdev->dev, "unable to register\n");
2132                 goto err_init;
2133         }
2134
2135         if (np) {
2136                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2137                 if (ret) {
2138                         dev_err(&pdev->dev, "failed to register controller\n");
2139                         goto err_register;
2140                 }
2141
2142                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2143                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2144                 if (!ret) {
2145                         sdma->spba_start_addr = spba_res.start;
2146                         sdma->spba_end_addr = spba_res.end;
2147                 }
2148                 of_node_put(spba_bus);
2149         }
2150
2151         return 0;
2152
2153 err_register:
2154         dma_async_device_unregister(&sdma->dma_device);
2155 err_init:
2156         kfree(sdma->script_addrs);
2157 err_irq:
2158         clk_unprepare(sdma->clk_ahb);
2159 err_clk:
2160         clk_unprepare(sdma->clk_ipg);
2161         return ret;
2162 }
2163
2164 static int sdma_remove(struct platform_device *pdev)
2165 {
2166         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2167         int i;
2168
2169         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2170         dma_async_device_unregister(&sdma->dma_device);
2171         kfree(sdma->script_addrs);
2172         clk_unprepare(sdma->clk_ahb);
2173         clk_unprepare(sdma->clk_ipg);
2174         /* Kill the tasklet */
2175         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2176                 struct sdma_channel *sdmac = &sdma->channel[i];
2177
2178                 tasklet_kill(&sdmac->vc.task);
2179                 sdma_free_chan_resources(&sdmac->vc.chan);
2180         }
2181
2182         platform_set_drvdata(pdev, NULL);
2183         return 0;
2184 }
2185
2186 static struct platform_driver sdma_driver = {
2187         .driver         = {
2188                 .name   = "imx-sdma",
2189                 .of_match_table = sdma_dt_ids,
2190         },
2191         .id_table       = sdma_devtypes,
2192         .remove         = sdma_remove,
2193         .probe          = sdma_probe,
2194 };
2195
2196 module_platform_driver(sdma_driver);
2197
2198 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2199 MODULE_DESCRIPTION("i.MX SDMA driver");
2200 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2201 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2202 #endif
2203 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2204 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2205 #endif
2206 MODULE_LICENSE("GPL");