OSDN Git Service

Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_crtc *crtc,
90                           struct drm_atomic_state *state,
91                           bool force_restore);
92 static int intel_framebuffer_init(struct drm_device *dev,
93                                   struct intel_framebuffer *ifb,
94                                   struct drm_mode_fb_cmd2 *mode_cmd,
95                                   struct drm_i915_gem_object *obj);
96 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
97 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
98 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
99                                          struct intel_link_m_n *m_n,
100                                          struct intel_link_m_n *m2_n2);
101 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
102 static void haswell_set_pipeconf(struct drm_crtc *crtc);
103 static void intel_set_pipe_csc(struct drm_crtc *crtc);
104 static void vlv_prepare_pll(struct intel_crtc *crtc,
105                             const struct intel_crtc_state *pipe_config);
106 static void chv_prepare_pll(struct intel_crtc *crtc,
107                             const struct intel_crtc_state *pipe_config);
108 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
109 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
110 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
111         struct intel_crtc_state *crtc_state);
112 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
113                            int num_connectors);
114 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
115 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
116
117 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
118 {
119         if (!connector->mst_port)
120                 return connector->encoder;
121         else
122                 return &connector->mst_port->mst_encoders[pipe]->base;
123 }
124
125 typedef struct {
126         int     min, max;
127 } intel_range_t;
128
129 typedef struct {
130         int     dot_limit;
131         int     p2_slow, p2_fast;
132 } intel_p2_t;
133
134 typedef struct intel_limit intel_limit_t;
135 struct intel_limit {
136         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
137         intel_p2_t          p2;
138 };
139
140 int
141 intel_pch_rawclk(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         WARN_ON(!HAS_PCH_SPLIT(dev));
146
147         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
148 }
149
150 static inline u32 /* units of 100MHz */
151 intel_fdi_link_freq(struct drm_device *dev)
152 {
153         if (IS_GEN5(dev)) {
154                 struct drm_i915_private *dev_priv = dev->dev_private;
155                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
156         } else
157                 return 27;
158 }
159
160 static const intel_limit_t intel_limits_i8xx_dac = {
161         .dot = { .min = 25000, .max = 350000 },
162         .vco = { .min = 908000, .max = 1512000 },
163         .n = { .min = 2, .max = 16 },
164         .m = { .min = 96, .max = 140 },
165         .m1 = { .min = 18, .max = 26 },
166         .m2 = { .min = 6, .max = 16 },
167         .p = { .min = 4, .max = 128 },
168         .p1 = { .min = 2, .max = 33 },
169         .p2 = { .dot_limit = 165000,
170                 .p2_slow = 4, .p2_fast = 2 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_dvo = {
174         .dot = { .min = 25000, .max = 350000 },
175         .vco = { .min = 908000, .max = 1512000 },
176         .n = { .min = 2, .max = 16 },
177         .m = { .min = 96, .max = 140 },
178         .m1 = { .min = 18, .max = 26 },
179         .m2 = { .min = 6, .max = 16 },
180         .p = { .min = 4, .max = 128 },
181         .p1 = { .min = 2, .max = 33 },
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 4, .p2_fast = 4 },
184 };
185
186 static const intel_limit_t intel_limits_i8xx_lvds = {
187         .dot = { .min = 25000, .max = 350000 },
188         .vco = { .min = 908000, .max = 1512000 },
189         .n = { .min = 2, .max = 16 },
190         .m = { .min = 96, .max = 140 },
191         .m1 = { .min = 18, .max = 26 },
192         .m2 = { .min = 6, .max = 16 },
193         .p = { .min = 4, .max = 128 },
194         .p1 = { .min = 1, .max = 6 },
195         .p2 = { .dot_limit = 165000,
196                 .p2_slow = 14, .p2_fast = 7 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_sdvo = {
200         .dot = { .min = 20000, .max = 400000 },
201         .vco = { .min = 1400000, .max = 2800000 },
202         .n = { .min = 1, .max = 6 },
203         .m = { .min = 70, .max = 120 },
204         .m1 = { .min = 8, .max = 18 },
205         .m2 = { .min = 3, .max = 7 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8 },
208         .p2 = { .dot_limit = 200000,
209                 .p2_slow = 10, .p2_fast = 5 },
210 };
211
212 static const intel_limit_t intel_limits_i9xx_lvds = {
213         .dot = { .min = 20000, .max = 400000 },
214         .vco = { .min = 1400000, .max = 2800000 },
215         .n = { .min = 1, .max = 6 },
216         .m = { .min = 70, .max = 120 },
217         .m1 = { .min = 8, .max = 18 },
218         .m2 = { .min = 3, .max = 7 },
219         .p = { .min = 7, .max = 98 },
220         .p1 = { .min = 1, .max = 8 },
221         .p2 = { .dot_limit = 112000,
222                 .p2_slow = 14, .p2_fast = 7 },
223 };
224
225
226 static const intel_limit_t intel_limits_g4x_sdvo = {
227         .dot = { .min = 25000, .max = 270000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 10, .max = 30 },
234         .p1 = { .min = 1, .max = 3},
235         .p2 = { .dot_limit = 270000,
236                 .p2_slow = 10,
237                 .p2_fast = 10
238         },
239 };
240
241 static const intel_limit_t intel_limits_g4x_hdmi = {
242         .dot = { .min = 22000, .max = 400000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 4 },
245         .m = { .min = 104, .max = 138 },
246         .m1 = { .min = 16, .max = 23 },
247         .m2 = { .min = 5, .max = 11 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8},
250         .p2 = { .dot_limit = 165000,
251                 .p2_slow = 10, .p2_fast = 5 },
252 };
253
254 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
255         .dot = { .min = 20000, .max = 115000 },
256         .vco = { .min = 1750000, .max = 3500000 },
257         .n = { .min = 1, .max = 3 },
258         .m = { .min = 104, .max = 138 },
259         .m1 = { .min = 17, .max = 23 },
260         .m2 = { .min = 5, .max = 11 },
261         .p = { .min = 28, .max = 112 },
262         .p1 = { .min = 2, .max = 8 },
263         .p2 = { .dot_limit = 0,
264                 .p2_slow = 14, .p2_fast = 14
265         },
266 };
267
268 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
269         .dot = { .min = 80000, .max = 224000 },
270         .vco = { .min = 1750000, .max = 3500000 },
271         .n = { .min = 1, .max = 3 },
272         .m = { .min = 104, .max = 138 },
273         .m1 = { .min = 17, .max = 23 },
274         .m2 = { .min = 5, .max = 11 },
275         .p = { .min = 14, .max = 42 },
276         .p1 = { .min = 2, .max = 6 },
277         .p2 = { .dot_limit = 0,
278                 .p2_slow = 7, .p2_fast = 7
279         },
280 };
281
282 static const intel_limit_t intel_limits_pineview_sdvo = {
283         .dot = { .min = 20000, .max = 400000},
284         .vco = { .min = 1700000, .max = 3500000 },
285         /* Pineview's Ncounter is a ring counter */
286         .n = { .min = 3, .max = 6 },
287         .m = { .min = 2, .max = 256 },
288         /* Pineview only has one combined m divider, which we treat as m2. */
289         .m1 = { .min = 0, .max = 0 },
290         .m2 = { .min = 0, .max = 254 },
291         .p = { .min = 5, .max = 80 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 200000,
294                 .p2_slow = 10, .p2_fast = 5 },
295 };
296
297 static const intel_limit_t intel_limits_pineview_lvds = {
298         .dot = { .min = 20000, .max = 400000 },
299         .vco = { .min = 1700000, .max = 3500000 },
300         .n = { .min = 3, .max = 6 },
301         .m = { .min = 2, .max = 256 },
302         .m1 = { .min = 0, .max = 0 },
303         .m2 = { .min = 0, .max = 254 },
304         .p = { .min = 7, .max = 112 },
305         .p1 = { .min = 1, .max = 8 },
306         .p2 = { .dot_limit = 112000,
307                 .p2_slow = 14, .p2_fast = 14 },
308 };
309
310 /* Ironlake / Sandybridge
311  *
312  * We calculate clock using (register_value + 2) for N/M1/M2, so here
313  * the range value for them is (actual_value - 2).
314  */
315 static const intel_limit_t intel_limits_ironlake_dac = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 5 },
319         .m = { .min = 79, .max = 127 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 5, .max = 80 },
323         .p1 = { .min = 1, .max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 10, .p2_fast = 5 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_single_lvds = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 118 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 28, .max = 112 },
336         .p1 = { .min = 2, .max = 8 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 14, .p2_fast = 14 },
339 };
340
341 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
342         .dot = { .min = 25000, .max = 350000 },
343         .vco = { .min = 1760000, .max = 3510000 },
344         .n = { .min = 1, .max = 3 },
345         .m = { .min = 79, .max = 127 },
346         .m1 = { .min = 12, .max = 22 },
347         .m2 = { .min = 5, .max = 9 },
348         .p = { .min = 14, .max = 56 },
349         .p1 = { .min = 2, .max = 8 },
350         .p2 = { .dot_limit = 225000,
351                 .p2_slow = 7, .p2_fast = 7 },
352 };
353
354 /* LVDS 100mhz refclk limits. */
355 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000 },
358         .n = { .min = 1, .max = 2 },
359         .m = { .min = 79, .max = 126 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 28, .max = 112 },
363         .p1 = { .min = 2, .max = 8 },
364         .p2 = { .dot_limit = 225000,
365                 .p2_slow = 14, .p2_fast = 14 },
366 };
367
368 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
369         .dot = { .min = 25000, .max = 350000 },
370         .vco = { .min = 1760000, .max = 3510000 },
371         .n = { .min = 1, .max = 3 },
372         .m = { .min = 79, .max = 126 },
373         .m1 = { .min = 12, .max = 22 },
374         .m2 = { .min = 5, .max = 9 },
375         .p = { .min = 14, .max = 42 },
376         .p1 = { .min = 2, .max = 6 },
377         .p2 = { .dot_limit = 225000,
378                 .p2_slow = 7, .p2_fast = 7 },
379 };
380
381 static const intel_limit_t intel_limits_vlv = {
382          /*
383           * These are the data rate limits (measured in fast clocks)
384           * since those are the strictest limits we have. The fast
385           * clock and actual rate limits are more relaxed, so checking
386           * them would make no difference.
387           */
388         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
389         .vco = { .min = 4000000, .max = 6000000 },
390         .n = { .min = 1, .max = 7 },
391         .m1 = { .min = 2, .max = 3 },
392         .m2 = { .min = 11, .max = 156 },
393         .p1 = { .min = 2, .max = 3 },
394         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
395 };
396
397 static const intel_limit_t intel_limits_chv = {
398         /*
399          * These are the data rate limits (measured in fast clocks)
400          * since those are the strictest limits we have.  The fast
401          * clock and actual rate limits are more relaxed, so checking
402          * them would make no difference.
403          */
404         .dot = { .min = 25000 * 5, .max = 540000 * 5},
405         .vco = { .min = 4800000, .max = 6480000 },
406         .n = { .min = 1, .max = 1 },
407         .m1 = { .min = 2, .max = 2 },
408         .m2 = { .min = 24 << 22, .max = 175 << 22 },
409         .p1 = { .min = 2, .max = 4 },
410         .p2 = { .p2_slow = 1, .p2_fast = 14 },
411 };
412
413 static const intel_limit_t intel_limits_bxt = {
414         /* FIXME: find real dot limits */
415         .dot = { .min = 0, .max = INT_MAX },
416         .vco = { .min = 4800000, .max = 6480000 },
417         .n = { .min = 1, .max = 1 },
418         .m1 = { .min = 2, .max = 2 },
419         /* FIXME: find real m2 limits */
420         .m2 = { .min = 2 << 22, .max = 255 << 22 },
421         .p1 = { .min = 2, .max = 4 },
422         .p2 = { .p2_slow = 1, .p2_fast = 20 },
423 };
424
425 static void vlv_clock(int refclk, intel_clock_t *clock)
426 {
427         clock->m = clock->m1 * clock->m2;
428         clock->p = clock->p1 * clock->p2;
429         if (WARN_ON(clock->n == 0 || clock->p == 0))
430                 return;
431         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
432         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
433 }
434
435 /**
436  * Returns whether any output on the specified pipe is of the specified type
437  */
438 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
439 {
440         struct drm_device *dev = crtc->base.dev;
441         struct intel_encoder *encoder;
442
443         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
444                 if (encoder->type == type)
445                         return true;
446
447         return false;
448 }
449
450 /**
451  * Returns whether any output on the specified pipe will have the specified
452  * type after a staged modeset is complete, i.e., the same as
453  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
454  * encoder->crtc.
455  */
456 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
457                                       int type)
458 {
459         struct drm_atomic_state *state = crtc_state->base.state;
460         struct drm_connector *connector;
461         struct drm_connector_state *connector_state;
462         struct intel_encoder *encoder;
463         int i, num_connectors = 0;
464
465         for_each_connector_in_state(state, connector, connector_state, i) {
466                 if (connector_state->crtc != crtc_state->base.crtc)
467                         continue;
468
469                 num_connectors++;
470
471                 encoder = to_intel_encoder(connector_state->best_encoder);
472                 if (encoder->type == type)
473                         return true;
474         }
475
476         WARN_ON(num_connectors == 0);
477
478         return false;
479 }
480
481 static const intel_limit_t *
482 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
483 {
484         struct drm_device *dev = crtc_state->base.crtc->dev;
485         const intel_limit_t *limit;
486
487         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
488                 if (intel_is_dual_link_lvds(dev)) {
489                         if (refclk == 100000)
490                                 limit = &intel_limits_ironlake_dual_lvds_100m;
491                         else
492                                 limit = &intel_limits_ironlake_dual_lvds;
493                 } else {
494                         if (refclk == 100000)
495                                 limit = &intel_limits_ironlake_single_lvds_100m;
496                         else
497                                 limit = &intel_limits_ironlake_single_lvds;
498                 }
499         } else
500                 limit = &intel_limits_ironlake_dac;
501
502         return limit;
503 }
504
505 static const intel_limit_t *
506 intel_g4x_limit(struct intel_crtc_state *crtc_state)
507 {
508         struct drm_device *dev = crtc_state->base.crtc->dev;
509         const intel_limit_t *limit;
510
511         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
512                 if (intel_is_dual_link_lvds(dev))
513                         limit = &intel_limits_g4x_dual_channel_lvds;
514                 else
515                         limit = &intel_limits_g4x_single_channel_lvds;
516         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
517                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
518                 limit = &intel_limits_g4x_hdmi;
519         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
520                 limit = &intel_limits_g4x_sdvo;
521         } else /* The option is for other outputs */
522                 limit = &intel_limits_i9xx_sdvo;
523
524         return limit;
525 }
526
527 static const intel_limit_t *
528 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
529 {
530         struct drm_device *dev = crtc_state->base.crtc->dev;
531         const intel_limit_t *limit;
532
533         if (IS_BROXTON(dev))
534                 limit = &intel_limits_bxt;
535         else if (HAS_PCH_SPLIT(dev))
536                 limit = intel_ironlake_limit(crtc_state, refclk);
537         else if (IS_G4X(dev)) {
538                 limit = intel_g4x_limit(crtc_state);
539         } else if (IS_PINEVIEW(dev)) {
540                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
541                         limit = &intel_limits_pineview_lvds;
542                 else
543                         limit = &intel_limits_pineview_sdvo;
544         } else if (IS_CHERRYVIEW(dev)) {
545                 limit = &intel_limits_chv;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 limit = &intel_limits_vlv;
548         } else if (!IS_GEN2(dev)) {
549                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
550                         limit = &intel_limits_i9xx_lvds;
551                 else
552                         limit = &intel_limits_i9xx_sdvo;
553         } else {
554                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i8xx_lvds;
556                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
557                         limit = &intel_limits_i8xx_dvo;
558                 else
559                         limit = &intel_limits_i8xx_dac;
560         }
561         return limit;
562 }
563
564 /* m1 is reserved as 0 in Pineview, n is a ring counter */
565 static void pineview_clock(int refclk, intel_clock_t *clock)
566 {
567         clock->m = clock->m2 + 2;
568         clock->p = clock->p1 * clock->p2;
569         if (WARN_ON(clock->n == 0 || clock->p == 0))
570                 return;
571         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
572         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
573 }
574
575 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
576 {
577         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
578 }
579
580 static void i9xx_clock(int refclk, intel_clock_t *clock)
581 {
582         clock->m = i9xx_dpll_compute_m(clock);
583         clock->p = clock->p1 * clock->p2;
584         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
585                 return;
586         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
587         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
588 }
589
590 static void chv_clock(int refclk, intel_clock_t *clock)
591 {
592         clock->m = clock->m1 * clock->m2;
593         clock->p = clock->p1 * clock->p2;
594         if (WARN_ON(clock->n == 0 || clock->p == 0))
595                 return;
596         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
597                         clock->n << 22);
598         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
599 }
600
601 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
602 /**
603  * Returns whether the given set of divisors are valid for a given refclk with
604  * the given connectors.
605  */
606
607 static bool intel_PLL_is_valid(struct drm_device *dev,
608                                const intel_limit_t *limit,
609                                const intel_clock_t *clock)
610 {
611         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
612                 INTELPllInvalid("n out of range\n");
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
616                 INTELPllInvalid("m2 out of range\n");
617         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
618                 INTELPllInvalid("m1 out of range\n");
619
620         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
621                 if (clock->m1 <= clock->m2)
622                         INTELPllInvalid("m1 <= m2\n");
623
624         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
625                 if (clock->p < limit->p.min || limit->p.max < clock->p)
626                         INTELPllInvalid("p out of range\n");
627                 if (clock->m < limit->m.min || limit->m.max < clock->m)
628                         INTELPllInvalid("m out of range\n");
629         }
630
631         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
632                 INTELPllInvalid("vco out of range\n");
633         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
634          * connector, etc., rather than just a single range.
635          */
636         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
637                 INTELPllInvalid("dot out of range\n");
638
639         return true;
640 }
641
642 static bool
643 i9xx_find_best_dpll(const intel_limit_t *limit,
644                     struct intel_crtc_state *crtc_state,
645                     int target, int refclk, intel_clock_t *match_clock,
646                     intel_clock_t *best_clock)
647 {
648         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
649         struct drm_device *dev = crtc->base.dev;
650         intel_clock_t clock;
651         int err = target;
652
653         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
654                 /*
655                  * For LVDS just rely on its current settings for dual-channel.
656                  * We haven't figured out how to reliably set up different
657                  * single/dual channel state, if we even can.
658                  */
659                 if (intel_is_dual_link_lvds(dev))
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset(best_clock, 0, sizeof(*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673              clock.m1++) {
674                 for (clock.m2 = limit->m2.min;
675                      clock.m2 <= limit->m2.max; clock.m2++) {
676                         if (clock.m2 >= clock.m1)
677                                 break;
678                         for (clock.n = limit->n.min;
679                              clock.n <= limit->n.max; clock.n++) {
680                                 for (clock.p1 = limit->p1.min;
681                                         clock.p1 <= limit->p1.max; clock.p1++) {
682                                         int this_err;
683
684                                         i9xx_clock(refclk, &clock);
685                                         if (!intel_PLL_is_valid(dev, limit,
686                                                                 &clock))
687                                                 continue;
688                                         if (match_clock &&
689                                             clock.p != match_clock->p)
690                                                 continue;
691
692                                         this_err = abs(clock.dot - target);
693                                         if (this_err < err) {
694                                                 *best_clock = clock;
695                                                 err = this_err;
696                                         }
697                                 }
698                         }
699                 }
700         }
701
702         return (err != target);
703 }
704
705 static bool
706 pnv_find_best_dpll(const intel_limit_t *limit,
707                    struct intel_crtc_state *crtc_state,
708                    int target, int refclk, intel_clock_t *match_clock,
709                    intel_clock_t *best_clock)
710 {
711         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
712         struct drm_device *dev = crtc->base.dev;
713         intel_clock_t clock;
714         int err = target;
715
716         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
717                 /*
718                  * For LVDS just rely on its current settings for dual-channel.
719                  * We haven't figured out how to reliably set up different
720                  * single/dual channel state, if we even can.
721                  */
722                 if (intel_is_dual_link_lvds(dev))
723                         clock.p2 = limit->p2.p2_fast;
724                 else
725                         clock.p2 = limit->p2.p2_slow;
726         } else {
727                 if (target < limit->p2.dot_limit)
728                         clock.p2 = limit->p2.p2_slow;
729                 else
730                         clock.p2 = limit->p2.p2_fast;
731         }
732
733         memset(best_clock, 0, sizeof(*best_clock));
734
735         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
736              clock.m1++) {
737                 for (clock.m2 = limit->m2.min;
738                      clock.m2 <= limit->m2.max; clock.m2++) {
739                         for (clock.n = limit->n.min;
740                              clock.n <= limit->n.max; clock.n++) {
741                                 for (clock.p1 = limit->p1.min;
742                                         clock.p1 <= limit->p1.max; clock.p1++) {
743                                         int this_err;
744
745                                         pineview_clock(refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err) {
755                                                 *best_clock = clock;
756                                                 err = this_err;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return (err != target);
764 }
765
766 static bool
767 g4x_find_best_dpll(const intel_limit_t *limit,
768                    struct intel_crtc_state *crtc_state,
769                    int target, int refclk, intel_clock_t *match_clock,
770                    intel_clock_t *best_clock)
771 {
772         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
773         struct drm_device *dev = crtc->base.dev;
774         intel_clock_t clock;
775         int max_n;
776         bool found;
777         /* approximately equals target * 0.00585 */
778         int err_most = (target >> 8) + (target >> 9);
779         found = false;
780
781         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
782                 if (intel_is_dual_link_lvds(dev))
783                         clock.p2 = limit->p2.p2_fast;
784                 else
785                         clock.p2 = limit->p2.p2_slow;
786         } else {
787                 if (target < limit->p2.dot_limit)
788                         clock.p2 = limit->p2.p2_slow;
789                 else
790                         clock.p2 = limit->p2.p2_fast;
791         }
792
793         memset(best_clock, 0, sizeof(*best_clock));
794         max_n = limit->n.max;
795         /* based on hardware requirement, prefer smaller n to precision */
796         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
797                 /* based on hardware requirement, prefere larger m1,m2 */
798                 for (clock.m1 = limit->m1.max;
799                      clock.m1 >= limit->m1.min; clock.m1--) {
800                         for (clock.m2 = limit->m2.max;
801                              clock.m2 >= limit->m2.min; clock.m2--) {
802                                 for (clock.p1 = limit->p1.max;
803                                      clock.p1 >= limit->p1.min; clock.p1--) {
804                                         int this_err;
805
806                                         i9xx_clock(refclk, &clock);
807                                         if (!intel_PLL_is_valid(dev, limit,
808                                                                 &clock))
809                                                 continue;
810
811                                         this_err = abs(clock.dot - target);
812                                         if (this_err < err_most) {
813                                                 *best_clock = clock;
814                                                 err_most = this_err;
815                                                 max_n = clock.n;
816                                                 found = true;
817                                         }
818                                 }
819                         }
820                 }
821         }
822         return found;
823 }
824
825 /*
826  * Check if the calculated PLL configuration is more optimal compared to the
827  * best configuration and error found so far. Return the calculated error.
828  */
829 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
830                                const intel_clock_t *calculated_clock,
831                                const intel_clock_t *best_clock,
832                                unsigned int best_error_ppm,
833                                unsigned int *error_ppm)
834 {
835         /*
836          * For CHV ignore the error and consider only the P value.
837          * Prefer a bigger P value based on HW requirements.
838          */
839         if (IS_CHERRYVIEW(dev)) {
840                 *error_ppm = 0;
841
842                 return calculated_clock->p > best_clock->p;
843         }
844
845         if (WARN_ON_ONCE(!target_freq))
846                 return false;
847
848         *error_ppm = div_u64(1000000ULL *
849                                 abs(target_freq - calculated_clock->dot),
850                              target_freq);
851         /*
852          * Prefer a better P value over a better (smaller) error if the error
853          * is small. Ensure this preference for future configurations too by
854          * setting the error to 0.
855          */
856         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
857                 *error_ppm = 0;
858
859                 return true;
860         }
861
862         return *error_ppm + 10 < best_error_ppm;
863 }
864
865 static bool
866 vlv_find_best_dpll(const intel_limit_t *limit,
867                    struct intel_crtc_state *crtc_state,
868                    int target, int refclk, intel_clock_t *match_clock,
869                    intel_clock_t *best_clock)
870 {
871         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
872         struct drm_device *dev = crtc->base.dev;
873         intel_clock_t clock;
874         unsigned int bestppm = 1000000;
875         /* min update 19.2 MHz */
876         int max_n = min(limit->n.max, refclk / 19200);
877         bool found = false;
878
879         target *= 5; /* fast clock */
880
881         memset(best_clock, 0, sizeof(*best_clock));
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
885                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
886                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
887                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
888                                 clock.p = clock.p1 * clock.p2;
889                                 /* based on hardware requirement, prefer bigger m1,m2 values */
890                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
891                                         unsigned int ppm;
892
893                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
894                                                                      refclk * clock.m1);
895
896                                         vlv_clock(refclk, &clock);
897
898                                         if (!intel_PLL_is_valid(dev, limit,
899                                                                 &clock))
900                                                 continue;
901
902                                         if (!vlv_PLL_is_optimal(dev, target,
903                                                                 &clock,
904                                                                 best_clock,
905                                                                 bestppm, &ppm))
906                                                 continue;
907
908                                         *best_clock = clock;
909                                         bestppm = ppm;
910                                         found = true;
911                                 }
912                         }
913                 }
914         }
915
916         return found;
917 }
918
919 static bool
920 chv_find_best_dpll(const intel_limit_t *limit,
921                    struct intel_crtc_state *crtc_state,
922                    int target, int refclk, intel_clock_t *match_clock,
923                    intel_clock_t *best_clock)
924 {
925         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
926         struct drm_device *dev = crtc->base.dev;
927         unsigned int best_error_ppm;
928         intel_clock_t clock;
929         uint64_t m2;
930         int found = false;
931
932         memset(best_clock, 0, sizeof(*best_clock));
933         best_error_ppm = 1000000;
934
935         /*
936          * Based on hardware doc, the n always set to 1, and m1 always
937          * set to 2.  If requires to support 200Mhz refclk, we need to
938          * revisit this because n may not 1 anymore.
939          */
940         clock.n = 1, clock.m1 = 2;
941         target *= 5;    /* fast clock */
942
943         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
944                 for (clock.p2 = limit->p2.p2_fast;
945                                 clock.p2 >= limit->p2.p2_slow;
946                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
947                         unsigned int error_ppm;
948
949                         clock.p = clock.p1 * clock.p2;
950
951                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
952                                         clock.n) << 22, refclk * clock.m1);
953
954                         if (m2 > INT_MAX/clock.m1)
955                                 continue;
956
957                         clock.m2 = m2;
958
959                         chv_clock(refclk, &clock);
960
961                         if (!intel_PLL_is_valid(dev, limit, &clock))
962                                 continue;
963
964                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
965                                                 best_error_ppm, &error_ppm))
966                                 continue;
967
968                         *best_clock = clock;
969                         best_error_ppm = error_ppm;
970                         found = true;
971                 }
972         }
973
974         return found;
975 }
976
977 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
978                         intel_clock_t *best_clock)
979 {
980         int refclk = i9xx_get_refclk(crtc_state, 0);
981
982         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
983                                   target_clock, refclk, NULL, best_clock);
984 }
985
986 bool intel_crtc_active(struct drm_crtc *crtc)
987 {
988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
989
990         /* Be paranoid as we can arrive here with only partial
991          * state retrieved from the hardware during setup.
992          *
993          * We can ditch the adjusted_mode.crtc_clock check as soon
994          * as Haswell has gained clock readout/fastboot support.
995          *
996          * We can ditch the crtc->primary->fb check as soon as we can
997          * properly reconstruct framebuffers.
998          *
999          * FIXME: The intel_crtc->active here should be switched to
1000          * crtc->state->active once we have proper CRTC states wired up
1001          * for atomic.
1002          */
1003         return intel_crtc->active && crtc->primary->state->fb &&
1004                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1005 }
1006
1007 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1008                                              enum pipe pipe)
1009 {
1010         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1012
1013         return intel_crtc->config->cpu_transcoder;
1014 }
1015
1016 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         u32 reg = PIPEDSL(pipe);
1020         u32 line1, line2;
1021         u32 line_mask;
1022
1023         if (IS_GEN2(dev))
1024                 line_mask = DSL_LINEMASK_GEN2;
1025         else
1026                 line_mask = DSL_LINEMASK_GEN3;
1027
1028         line1 = I915_READ(reg) & line_mask;
1029         mdelay(5);
1030         line2 = I915_READ(reg) & line_mask;
1031
1032         return line1 == line2;
1033 }
1034
1035 /*
1036  * intel_wait_for_pipe_off - wait for pipe to turn off
1037  * @crtc: crtc whose pipe to wait for
1038  *
1039  * After disabling a pipe, we can't wait for vblank in the usual way,
1040  * spinning on the vblank interrupt status bit, since we won't actually
1041  * see an interrupt when the pipe is disabled.
1042  *
1043  * On Gen4 and above:
1044  *   wait for the pipe register state bit to turn off
1045  *
1046  * Otherwise:
1047  *   wait for the display line value to settle (it usually
1048  *   ends up stopping at the start of the next frame).
1049  *
1050  */
1051 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1052 {
1053         struct drm_device *dev = crtc->base.dev;
1054         struct drm_i915_private *dev_priv = dev->dev_private;
1055         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1056         enum pipe pipe = crtc->pipe;
1057
1058         if (INTEL_INFO(dev)->gen >= 4) {
1059                 int reg = PIPECONF(cpu_transcoder);
1060
1061                 /* Wait for the Pipe State to go off */
1062                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1063                              100))
1064                         WARN(1, "pipe_off wait timed out\n");
1065         } else {
1066                 /* Wait for the display line to settle */
1067                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1068                         WARN(1, "pipe_off wait timed out\n");
1069         }
1070 }
1071
1072 /*
1073  * ibx_digital_port_connected - is the specified port connected?
1074  * @dev_priv: i915 private structure
1075  * @port: the port to test
1076  *
1077  * Returns true if @port is connected, false otherwise.
1078  */
1079 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1080                                 struct intel_digital_port *port)
1081 {
1082         u32 bit;
1083
1084         if (HAS_PCH_IBX(dev_priv->dev)) {
1085                 switch (port->port) {
1086                 case PORT_B:
1087                         bit = SDE_PORTB_HOTPLUG;
1088                         break;
1089                 case PORT_C:
1090                         bit = SDE_PORTC_HOTPLUG;
1091                         break;
1092                 case PORT_D:
1093                         bit = SDE_PORTD_HOTPLUG;
1094                         break;
1095                 default:
1096                         return true;
1097                 }
1098         } else {
1099                 switch (port->port) {
1100                 case PORT_B:
1101                         bit = SDE_PORTB_HOTPLUG_CPT;
1102                         break;
1103                 case PORT_C:
1104                         bit = SDE_PORTC_HOTPLUG_CPT;
1105                         break;
1106                 case PORT_D:
1107                         bit = SDE_PORTD_HOTPLUG_CPT;
1108                         break;
1109                 default:
1110                         return true;
1111                 }
1112         }
1113
1114         return I915_READ(SDEISR) & bit;
1115 }
1116
1117 static const char *state_string(bool enabled)
1118 {
1119         return enabled ? "on" : "off";
1120 }
1121
1122 /* Only for pre-ILK configs */
1123 void assert_pll(struct drm_i915_private *dev_priv,
1124                 enum pipe pipe, bool state)
1125 {
1126         int reg;
1127         u32 val;
1128         bool cur_state;
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         cur_state = !!(val & DPLL_VCO_ENABLE);
1133         I915_STATE_WARN(cur_state != state,
1134              "PLL state assertion failure (expected %s, current %s)\n",
1135              state_string(state), state_string(cur_state));
1136 }
1137
1138 /* XXX: the dsi pll is shared between MIPI DSI ports */
1139 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1140 {
1141         u32 val;
1142         bool cur_state;
1143
1144         mutex_lock(&dev_priv->sb_lock);
1145         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1146         mutex_unlock(&dev_priv->sb_lock);
1147
1148         cur_state = val & DSI_PLL_VCO_EN;
1149         I915_STATE_WARN(cur_state != state,
1150              "DSI PLL state assertion failure (expected %s, current %s)\n",
1151              state_string(state), state_string(cur_state));
1152 }
1153 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1154 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1155
1156 struct intel_shared_dpll *
1157 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1158 {
1159         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1160
1161         if (crtc->config->shared_dpll < 0)
1162                 return NULL;
1163
1164         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1165 }
1166
1167 /* For ILK+ */
1168 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1169                         struct intel_shared_dpll *pll,
1170                         bool state)
1171 {
1172         bool cur_state;
1173         struct intel_dpll_hw_state hw_state;
1174
1175         if (WARN (!pll,
1176                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1177                 return;
1178
1179         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1180         I915_STATE_WARN(cur_state != state,
1181              "%s assertion failure (expected %s, current %s)\n",
1182              pll->name, state_string(state), state_string(cur_state));
1183 }
1184
1185 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         int reg;
1189         u32 val;
1190         bool cur_state;
1191         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192                                                                       pipe);
1193
1194         if (HAS_DDI(dev_priv->dev)) {
1195                 /* DDI does not have a specific FDI_TX register */
1196                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1197                 val = I915_READ(reg);
1198                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1199         } else {
1200                 reg = FDI_TX_CTL(pipe);
1201                 val = I915_READ(reg);
1202                 cur_state = !!(val & FDI_TX_ENABLE);
1203         }
1204         I915_STATE_WARN(cur_state != state,
1205              "FDI TX state assertion failure (expected %s, current %s)\n",
1206              state_string(state), state_string(cur_state));
1207 }
1208 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1209 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1210
1211 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1212                           enum pipe pipe, bool state)
1213 {
1214         int reg;
1215         u32 val;
1216         bool cur_state;
1217
1218         reg = FDI_RX_CTL(pipe);
1219         val = I915_READ(reg);
1220         cur_state = !!(val & FDI_RX_ENABLE);
1221         I915_STATE_WARN(cur_state != state,
1222              "FDI RX state assertion failure (expected %s, current %s)\n",
1223              state_string(state), state_string(cur_state));
1224 }
1225 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1226 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1227
1228 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1229                                       enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* ILK FDI PLL is always enabled */
1235         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1236                 return;
1237
1238         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1239         if (HAS_DDI(dev_priv->dev))
1240                 return;
1241
1242         reg = FDI_TX_CTL(pipe);
1243         val = I915_READ(reg);
1244         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1245 }
1246
1247 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1248                        enum pipe pipe, bool state)
1249 {
1250         int reg;
1251         u32 val;
1252         bool cur_state;
1253
1254         reg = FDI_RX_CTL(pipe);
1255         val = I915_READ(reg);
1256         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1257         I915_STATE_WARN(cur_state != state,
1258              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1259              state_string(state), state_string(cur_state));
1260 }
1261
1262 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1263                            enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int pp_reg;
1267         u32 val;
1268         enum pipe panel_pipe = PIPE_A;
1269         bool locked = true;
1270
1271         if (WARN_ON(HAS_DDI(dev)))
1272                 return;
1273
1274         if (HAS_PCH_SPLIT(dev)) {
1275                 u32 port_sel;
1276
1277                 pp_reg = PCH_PP_CONTROL;
1278                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1279
1280                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1281                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1282                         panel_pipe = PIPE_B;
1283                 /* XXX: else fix for eDP */
1284         } else if (IS_VALLEYVIEW(dev)) {
1285                 /* presumably write lock depends on pipe, not port select */
1286                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1287                 panel_pipe = pipe;
1288         } else {
1289                 pp_reg = PP_CONTROL;
1290                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1291                         panel_pipe = PIPE_B;
1292         }
1293
1294         val = I915_READ(pp_reg);
1295         if (!(val & PANEL_POWER_ON) ||
1296             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1297                 locked = false;
1298
1299         I915_STATE_WARN(panel_pipe == pipe && locked,
1300              "panel assertion failure, pipe %c regs locked\n",
1301              pipe_name(pipe));
1302 }
1303
1304 static void assert_cursor(struct drm_i915_private *dev_priv,
1305                           enum pipe pipe, bool state)
1306 {
1307         struct drm_device *dev = dev_priv->dev;
1308         bool cur_state;
1309
1310         if (IS_845G(dev) || IS_I865G(dev))
1311                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1312         else
1313                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1314
1315         I915_STATE_WARN(cur_state != state,
1316              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1317              pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1320 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1321
1322 void assert_pipe(struct drm_i915_private *dev_priv,
1323                  enum pipe pipe, bool state)
1324 {
1325         int reg;
1326         u32 val;
1327         bool cur_state;
1328         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1329                                                                       pipe);
1330
1331         /* if we need the pipe quirk it must be always on */
1332         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1333             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1334                 state = true;
1335
1336         if (!intel_display_power_is_enabled(dev_priv,
1337                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1338                 cur_state = false;
1339         } else {
1340                 reg = PIPECONF(cpu_transcoder);
1341                 val = I915_READ(reg);
1342                 cur_state = !!(val & PIPECONF_ENABLE);
1343         }
1344
1345         I915_STATE_WARN(cur_state != state,
1346              "pipe %c assertion failure (expected %s, current %s)\n",
1347              pipe_name(pipe), state_string(state), state_string(cur_state));
1348 }
1349
1350 static void assert_plane(struct drm_i915_private *dev_priv,
1351                          enum plane plane, bool state)
1352 {
1353         int reg;
1354         u32 val;
1355         bool cur_state;
1356
1357         reg = DSPCNTR(plane);
1358         val = I915_READ(reg);
1359         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1360         I915_STATE_WARN(cur_state != state,
1361              "plane %c assertion failure (expected %s, current %s)\n",
1362              plane_name(plane), state_string(state), state_string(cur_state));
1363 }
1364
1365 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1366 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1367
1368 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1369                                    enum pipe pipe)
1370 {
1371         struct drm_device *dev = dev_priv->dev;
1372         int reg, i;
1373         u32 val;
1374         int cur_pipe;
1375
1376         /* Primary planes are fixed to pipes on gen4+ */
1377         if (INTEL_INFO(dev)->gen >= 4) {
1378                 reg = DSPCNTR(pipe);
1379                 val = I915_READ(reg);
1380                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1381                      "plane %c assertion failure, should be disabled but not\n",
1382                      plane_name(pipe));
1383                 return;
1384         }
1385
1386         /* Need to check both planes against the pipe */
1387         for_each_pipe(dev_priv, i) {
1388                 reg = DSPCNTR(i);
1389                 val = I915_READ(reg);
1390                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1391                         DISPPLANE_SEL_PIPE_SHIFT;
1392                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1393                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1394                      plane_name(i), pipe_name(pipe));
1395         }
1396 }
1397
1398 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1399                                     enum pipe pipe)
1400 {
1401         struct drm_device *dev = dev_priv->dev;
1402         int reg, sprite;
1403         u32 val;
1404
1405         if (INTEL_INFO(dev)->gen >= 9) {
1406                 for_each_sprite(dev_priv, pipe, sprite) {
1407                         val = I915_READ(PLANE_CTL(pipe, sprite));
1408                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1409                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1410                              sprite, pipe_name(pipe));
1411                 }
1412         } else if (IS_VALLEYVIEW(dev)) {
1413                 for_each_sprite(dev_priv, pipe, sprite) {
1414                         reg = SPCNTR(pipe, sprite);
1415                         val = I915_READ(reg);
1416                         I915_STATE_WARN(val & SP_ENABLE,
1417                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418                              sprite_name(pipe, sprite), pipe_name(pipe));
1419                 }
1420         } else if (INTEL_INFO(dev)->gen >= 7) {
1421                 reg = SPRCTL(pipe);
1422                 val = I915_READ(reg);
1423                 I915_STATE_WARN(val & SPRITE_ENABLE,
1424                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                      plane_name(pipe), pipe_name(pipe));
1426         } else if (INTEL_INFO(dev)->gen >= 5) {
1427                 reg = DVSCNTR(pipe);
1428                 val = I915_READ(reg);
1429                 I915_STATE_WARN(val & DVS_ENABLE,
1430                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1431                      plane_name(pipe), pipe_name(pipe));
1432         }
1433 }
1434
1435 static void assert_vblank_disabled(struct drm_crtc *crtc)
1436 {
1437         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1438                 drm_crtc_vblank_put(crtc);
1439 }
1440
1441 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1442 {
1443         u32 val;
1444         bool enabled;
1445
1446         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1447
1448         val = I915_READ(PCH_DREF_CONTROL);
1449         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1450                             DREF_SUPERSPREAD_SOURCE_MASK));
1451         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1452 }
1453
1454 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1455                                            enum pipe pipe)
1456 {
1457         int reg;
1458         u32 val;
1459         bool enabled;
1460
1461         reg = PCH_TRANSCONF(pipe);
1462         val = I915_READ(reg);
1463         enabled = !!(val & TRANS_ENABLE);
1464         I915_STATE_WARN(enabled,
1465              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1466              pipe_name(pipe));
1467 }
1468
1469 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1470                             enum pipe pipe, u32 port_sel, u32 val)
1471 {
1472         if ((val & DP_PORT_EN) == 0)
1473                 return false;
1474
1475         if (HAS_PCH_CPT(dev_priv->dev)) {
1476                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1477                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1478                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1479                         return false;
1480         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1481                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1482                         return false;
1483         } else {
1484                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1485                         return false;
1486         }
1487         return true;
1488 }
1489
1490 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1491                               enum pipe pipe, u32 val)
1492 {
1493         if ((val & SDVO_ENABLE) == 0)
1494                 return false;
1495
1496         if (HAS_PCH_CPT(dev_priv->dev)) {
1497                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1498                         return false;
1499         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1500                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1501                         return false;
1502         } else {
1503                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1504                         return false;
1505         }
1506         return true;
1507 }
1508
1509 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1510                               enum pipe pipe, u32 val)
1511 {
1512         if ((val & LVDS_PORT_EN) == 0)
1513                 return false;
1514
1515         if (HAS_PCH_CPT(dev_priv->dev)) {
1516                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1517                         return false;
1518         } else {
1519                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1520                         return false;
1521         }
1522         return true;
1523 }
1524
1525 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1526                               enum pipe pipe, u32 val)
1527 {
1528         if ((val & ADPA_DAC_ENABLE) == 0)
1529                 return false;
1530         if (HAS_PCH_CPT(dev_priv->dev)) {
1531                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1532                         return false;
1533         } else {
1534                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1535                         return false;
1536         }
1537         return true;
1538 }
1539
1540 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1541                                    enum pipe pipe, int reg, u32 port_sel)
1542 {
1543         u32 val = I915_READ(reg);
1544         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1545              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1546              reg, pipe_name(pipe));
1547
1548         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1549              && (val & DP_PIPEB_SELECT),
1550              "IBX PCH dp port still using transcoder B\n");
1551 }
1552
1553 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1554                                      enum pipe pipe, int reg)
1555 {
1556         u32 val = I915_READ(reg);
1557         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1558              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1559              reg, pipe_name(pipe));
1560
1561         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1562              && (val & SDVO_PIPE_B_SELECT),
1563              "IBX PCH hdmi port still using transcoder B\n");
1564 }
1565
1566 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1567                                       enum pipe pipe)
1568 {
1569         int reg;
1570         u32 val;
1571
1572         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1573         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1574         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1575
1576         reg = PCH_ADPA;
1577         val = I915_READ(reg);
1578         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1579              "PCH VGA enabled on transcoder %c, should be disabled\n",
1580              pipe_name(pipe));
1581
1582         reg = PCH_LVDS;
1583         val = I915_READ(reg);
1584         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1585              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1586              pipe_name(pipe));
1587
1588         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1591 }
1592
1593 static void intel_init_dpio(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         if (!IS_VALLEYVIEW(dev))
1598                 return;
1599
1600         /*
1601          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1602          * CHV x1 PHY (DP/HDMI D)
1603          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1604          */
1605         if (IS_CHERRYVIEW(dev)) {
1606                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1607                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1608         } else {
1609                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1610         }
1611 }
1612
1613 static void vlv_enable_pll(struct intel_crtc *crtc,
1614                            const struct intel_crtc_state *pipe_config)
1615 {
1616         struct drm_device *dev = crtc->base.dev;
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         int reg = DPLL(crtc->pipe);
1619         u32 dpll = pipe_config->dpll_hw_state.dpll;
1620
1621         assert_pipe_disabled(dev_priv, crtc->pipe);
1622
1623         /* No really, not for ILK+ */
1624         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1625
1626         /* PLL is protected by panel, make sure we can write it */
1627         if (IS_MOBILE(dev_priv->dev))
1628                 assert_panel_unlocked(dev_priv, crtc->pipe);
1629
1630         I915_WRITE(reg, dpll);
1631         POSTING_READ(reg);
1632         udelay(150);
1633
1634         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1635                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1636
1637         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1638         POSTING_READ(DPLL_MD(crtc->pipe));
1639
1640         /* We do this three times for luck */
1641         I915_WRITE(reg, dpll);
1642         POSTING_READ(reg);
1643         udelay(150); /* wait for warmup */
1644         I915_WRITE(reg, dpll);
1645         POSTING_READ(reg);
1646         udelay(150); /* wait for warmup */
1647         I915_WRITE(reg, dpll);
1648         POSTING_READ(reg);
1649         udelay(150); /* wait for warmup */
1650 }
1651
1652 static void chv_enable_pll(struct intel_crtc *crtc,
1653                            const struct intel_crtc_state *pipe_config)
1654 {
1655         struct drm_device *dev = crtc->base.dev;
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         int pipe = crtc->pipe;
1658         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1659         u32 tmp;
1660
1661         assert_pipe_disabled(dev_priv, crtc->pipe);
1662
1663         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1664
1665         mutex_lock(&dev_priv->sb_lock);
1666
1667         /* Enable back the 10bit clock to display controller */
1668         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1669         tmp |= DPIO_DCLKP_EN;
1670         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1671
1672         mutex_unlock(&dev_priv->sb_lock);
1673
1674         /*
1675          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1676          */
1677         udelay(1);
1678
1679         /* Enable PLL */
1680         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1681
1682         /* Check PLL is locked */
1683         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1684                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1685
1686         /* not sure when this should be written */
1687         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1688         POSTING_READ(DPLL_MD(pipe));
1689 }
1690
1691 static int intel_num_dvo_pipes(struct drm_device *dev)
1692 {
1693         struct intel_crtc *crtc;
1694         int count = 0;
1695
1696         for_each_intel_crtc(dev, crtc)
1697                 count += crtc->active &&
1698                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1699
1700         return count;
1701 }
1702
1703 static void i9xx_enable_pll(struct intel_crtc *crtc)
1704 {
1705         struct drm_device *dev = crtc->base.dev;
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707         int reg = DPLL(crtc->pipe);
1708         u32 dpll = crtc->config->dpll_hw_state.dpll;
1709
1710         assert_pipe_disabled(dev_priv, crtc->pipe);
1711
1712         /* No really, not for ILK+ */
1713         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1714
1715         /* PLL is protected by panel, make sure we can write it */
1716         if (IS_MOBILE(dev) && !IS_I830(dev))
1717                 assert_panel_unlocked(dev_priv, crtc->pipe);
1718
1719         /* Enable DVO 2x clock on both PLLs if necessary */
1720         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1721                 /*
1722                  * It appears to be important that we don't enable this
1723                  * for the current pipe before otherwise configuring the
1724                  * PLL. No idea how this should be handled if multiple
1725                  * DVO outputs are enabled simultaneosly.
1726                  */
1727                 dpll |= DPLL_DVO_2X_MODE;
1728                 I915_WRITE(DPLL(!crtc->pipe),
1729                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1730         }
1731
1732         /* Wait for the clocks to stabilize. */
1733         POSTING_READ(reg);
1734         udelay(150);
1735
1736         if (INTEL_INFO(dev)->gen >= 4) {
1737                 I915_WRITE(DPLL_MD(crtc->pipe),
1738                            crtc->config->dpll_hw_state.dpll_md);
1739         } else {
1740                 /* The pixel multiplier can only be updated once the
1741                  * DPLL is enabled and the clocks are stable.
1742                  *
1743                  * So write it again.
1744                  */
1745                 I915_WRITE(reg, dpll);
1746         }
1747
1748         /* We do this three times for luck */
1749         I915_WRITE(reg, dpll);
1750         POSTING_READ(reg);
1751         udelay(150); /* wait for warmup */
1752         I915_WRITE(reg, dpll);
1753         POSTING_READ(reg);
1754         udelay(150); /* wait for warmup */
1755         I915_WRITE(reg, dpll);
1756         POSTING_READ(reg);
1757         udelay(150); /* wait for warmup */
1758 }
1759
1760 /**
1761  * i9xx_disable_pll - disable a PLL
1762  * @dev_priv: i915 private structure
1763  * @pipe: pipe PLL to disable
1764  *
1765  * Disable the PLL for @pipe, making sure the pipe is off first.
1766  *
1767  * Note!  This is for pre-ILK only.
1768  */
1769 static void i9xx_disable_pll(struct intel_crtc *crtc)
1770 {
1771         struct drm_device *dev = crtc->base.dev;
1772         struct drm_i915_private *dev_priv = dev->dev_private;
1773         enum pipe pipe = crtc->pipe;
1774
1775         /* Disable DVO 2x clock on both PLLs if necessary */
1776         if (IS_I830(dev) &&
1777             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1778             intel_num_dvo_pipes(dev) == 1) {
1779                 I915_WRITE(DPLL(PIPE_B),
1780                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1781                 I915_WRITE(DPLL(PIPE_A),
1782                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1783         }
1784
1785         /* Don't disable pipe or pipe PLLs if needed */
1786         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1787             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1788                 return;
1789
1790         /* Make sure the pipe isn't still relying on us */
1791         assert_pipe_disabled(dev_priv, pipe);
1792
1793         I915_WRITE(DPLL(pipe), 0);
1794         POSTING_READ(DPLL(pipe));
1795 }
1796
1797 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1798 {
1799         u32 val = 0;
1800
1801         /* Make sure the pipe isn't still relying on us */
1802         assert_pipe_disabled(dev_priv, pipe);
1803
1804         /*
1805          * Leave integrated clock source and reference clock enabled for pipe B.
1806          * The latter is needed for VGA hotplug / manual detection.
1807          */
1808         if (pipe == PIPE_B)
1809                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1810         I915_WRITE(DPLL(pipe), val);
1811         POSTING_READ(DPLL(pipe));
1812
1813 }
1814
1815 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816 {
1817         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1818         u32 val;
1819
1820         /* Make sure the pipe isn't still relying on us */
1821         assert_pipe_disabled(dev_priv, pipe);
1822
1823         /* Set PLL en = 0 */
1824         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1825         if (pipe != PIPE_A)
1826                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827         I915_WRITE(DPLL(pipe), val);
1828         POSTING_READ(DPLL(pipe));
1829
1830         mutex_lock(&dev_priv->sb_lock);
1831
1832         /* Disable 10bit clock to display controller */
1833         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1834         val &= ~DPIO_DCLKP_EN;
1835         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1836
1837         /* disable left/right clock distribution */
1838         if (pipe != PIPE_B) {
1839                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1840                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1841                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1842         } else {
1843                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1844                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1845                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1846         }
1847
1848         mutex_unlock(&dev_priv->sb_lock);
1849 }
1850
1851 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1852                          struct intel_digital_port *dport,
1853                          unsigned int expected_mask)
1854 {
1855         u32 port_mask;
1856         int dpll_reg;
1857
1858         switch (dport->port) {
1859         case PORT_B:
1860                 port_mask = DPLL_PORTB_READY_MASK;
1861                 dpll_reg = DPLL(0);
1862                 break;
1863         case PORT_C:
1864                 port_mask = DPLL_PORTC_READY_MASK;
1865                 dpll_reg = DPLL(0);
1866                 expected_mask <<= 4;
1867                 break;
1868         case PORT_D:
1869                 port_mask = DPLL_PORTD_READY_MASK;
1870                 dpll_reg = DPIO_PHY_STATUS;
1871                 break;
1872         default:
1873                 BUG();
1874         }
1875
1876         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1877                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1878                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1879 }
1880
1881 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1882 {
1883         struct drm_device *dev = crtc->base.dev;
1884         struct drm_i915_private *dev_priv = dev->dev_private;
1885         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1886
1887         if (WARN_ON(pll == NULL))
1888                 return;
1889
1890         WARN_ON(!pll->config.crtc_mask);
1891         if (pll->active == 0) {
1892                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1893                 WARN_ON(pll->on);
1894                 assert_shared_dpll_disabled(dev_priv, pll);
1895
1896                 pll->mode_set(dev_priv, pll);
1897         }
1898 }
1899
1900 /**
1901  * intel_enable_shared_dpll - enable PCH PLL
1902  * @dev_priv: i915 private structure
1903  * @pipe: pipe PLL to enable
1904  *
1905  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1906  * drives the transcoder clock.
1907  */
1908 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1909 {
1910         struct drm_device *dev = crtc->base.dev;
1911         struct drm_i915_private *dev_priv = dev->dev_private;
1912         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1913
1914         if (WARN_ON(pll == NULL))
1915                 return;
1916
1917         if (WARN_ON(pll->config.crtc_mask == 0))
1918                 return;
1919
1920         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1921                       pll->name, pll->active, pll->on,
1922                       crtc->base.base.id);
1923
1924         if (pll->active++) {
1925                 WARN_ON(!pll->on);
1926                 assert_shared_dpll_enabled(dev_priv, pll);
1927                 return;
1928         }
1929         WARN_ON(pll->on);
1930
1931         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1932
1933         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1934         pll->enable(dev_priv, pll);
1935         pll->on = true;
1936 }
1937
1938 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1939 {
1940         struct drm_device *dev = crtc->base.dev;
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1943
1944         /* PCH only available on ILK+ */
1945         BUG_ON(INTEL_INFO(dev)->gen < 5);
1946         if (WARN_ON(pll == NULL))
1947                return;
1948
1949         if (WARN_ON(pll->config.crtc_mask == 0))
1950                 return;
1951
1952         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1953                       pll->name, pll->active, pll->on,
1954                       crtc->base.base.id);
1955
1956         if (WARN_ON(pll->active == 0)) {
1957                 assert_shared_dpll_disabled(dev_priv, pll);
1958                 return;
1959         }
1960
1961         assert_shared_dpll_enabled(dev_priv, pll);
1962         WARN_ON(!pll->on);
1963         if (--pll->active)
1964                 return;
1965
1966         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1967         pll->disable(dev_priv, pll);
1968         pll->on = false;
1969
1970         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1971 }
1972
1973 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1974                                            enum pipe pipe)
1975 {
1976         struct drm_device *dev = dev_priv->dev;
1977         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1979         uint32_t reg, val, pipeconf_val;
1980
1981         /* PCH only available on ILK+ */
1982         BUG_ON(!HAS_PCH_SPLIT(dev));
1983
1984         /* Make sure PCH DPLL is enabled */
1985         assert_shared_dpll_enabled(dev_priv,
1986                                    intel_crtc_to_shared_dpll(intel_crtc));
1987
1988         /* FDI must be feeding us bits for PCH ports */
1989         assert_fdi_tx_enabled(dev_priv, pipe);
1990         assert_fdi_rx_enabled(dev_priv, pipe);
1991
1992         if (HAS_PCH_CPT(dev)) {
1993                 /* Workaround: Set the timing override bit before enabling the
1994                  * pch transcoder. */
1995                 reg = TRANS_CHICKEN2(pipe);
1996                 val = I915_READ(reg);
1997                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1998                 I915_WRITE(reg, val);
1999         }
2000
2001         reg = PCH_TRANSCONF(pipe);
2002         val = I915_READ(reg);
2003         pipeconf_val = I915_READ(PIPECONF(pipe));
2004
2005         if (HAS_PCH_IBX(dev_priv->dev)) {
2006                 /*
2007                  * make the BPC in transcoder be consistent with
2008                  * that in pipeconf reg.
2009                  */
2010                 val &= ~PIPECONF_BPC_MASK;
2011                 val |= pipeconf_val & PIPECONF_BPC_MASK;
2012         }
2013
2014         val &= ~TRANS_INTERLACE_MASK;
2015         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2016                 if (HAS_PCH_IBX(dev_priv->dev) &&
2017                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2018                         val |= TRANS_LEGACY_INTERLACED_ILK;
2019                 else
2020                         val |= TRANS_INTERLACED;
2021         else
2022                 val |= TRANS_PROGRESSIVE;
2023
2024         I915_WRITE(reg, val | TRANS_ENABLE);
2025         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2026                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2027 }
2028
2029 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2030                                       enum transcoder cpu_transcoder)
2031 {
2032         u32 val, pipeconf_val;
2033
2034         /* PCH only available on ILK+ */
2035         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2036
2037         /* FDI must be feeding us bits for PCH ports */
2038         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2039         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2040
2041         /* Workaround: set timing override bit. */
2042         val = I915_READ(_TRANSA_CHICKEN2);
2043         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2044         I915_WRITE(_TRANSA_CHICKEN2, val);
2045
2046         val = TRANS_ENABLE;
2047         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2048
2049         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050             PIPECONF_INTERLACED_ILK)
2051                 val |= TRANS_INTERLACED;
2052         else
2053                 val |= TRANS_PROGRESSIVE;
2054
2055         I915_WRITE(LPT_TRANSCONF, val);
2056         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2057                 DRM_ERROR("Failed to enable PCH transcoder\n");
2058 }
2059
2060 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061                                             enum pipe pipe)
2062 {
2063         struct drm_device *dev = dev_priv->dev;
2064         uint32_t reg, val;
2065
2066         /* FDI relies on the transcoder */
2067         assert_fdi_tx_disabled(dev_priv, pipe);
2068         assert_fdi_rx_disabled(dev_priv, pipe);
2069
2070         /* Ports must be off as well */
2071         assert_pch_ports_disabled(dev_priv, pipe);
2072
2073         reg = PCH_TRANSCONF(pipe);
2074         val = I915_READ(reg);
2075         val &= ~TRANS_ENABLE;
2076         I915_WRITE(reg, val);
2077         /* wait for PCH transcoder off, transcoder state */
2078         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2079                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2080
2081         if (!HAS_PCH_IBX(dev)) {
2082                 /* Workaround: Clear the timing override chicken bit again. */
2083                 reg = TRANS_CHICKEN2(pipe);
2084                 val = I915_READ(reg);
2085                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086                 I915_WRITE(reg, val);
2087         }
2088 }
2089
2090 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2091 {
2092         u32 val;
2093
2094         val = I915_READ(LPT_TRANSCONF);
2095         val &= ~TRANS_ENABLE;
2096         I915_WRITE(LPT_TRANSCONF, val);
2097         /* wait for PCH transcoder off, transcoder state */
2098         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2099                 DRM_ERROR("Failed to disable PCH transcoder\n");
2100
2101         /* Workaround: clear timing override bit. */
2102         val = I915_READ(_TRANSA_CHICKEN2);
2103         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2104         I915_WRITE(_TRANSA_CHICKEN2, val);
2105 }
2106
2107 /**
2108  * intel_enable_pipe - enable a pipe, asserting requirements
2109  * @crtc: crtc responsible for the pipe
2110  *
2111  * Enable @crtc's pipe, making sure that various hardware specific requirements
2112  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2113  */
2114 static void intel_enable_pipe(struct intel_crtc *crtc)
2115 {
2116         struct drm_device *dev = crtc->base.dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         enum pipe pipe = crtc->pipe;
2119         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120                                                                       pipe);
2121         enum pipe pch_transcoder;
2122         int reg;
2123         u32 val;
2124
2125         assert_planes_disabled(dev_priv, pipe);
2126         assert_cursor_disabled(dev_priv, pipe);
2127         assert_sprites_disabled(dev_priv, pipe);
2128
2129         if (HAS_PCH_LPT(dev_priv->dev))
2130                 pch_transcoder = TRANSCODER_A;
2131         else
2132                 pch_transcoder = pipe;
2133
2134         /*
2135          * A pipe without a PLL won't actually be able to drive bits from
2136          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2137          * need the check.
2138          */
2139         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2140                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2141                         assert_dsi_pll_enabled(dev_priv);
2142                 else
2143                         assert_pll_enabled(dev_priv, pipe);
2144         else {
2145                 if (crtc->config->has_pch_encoder) {
2146                         /* if driving the PCH, we need FDI enabled */
2147                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2148                         assert_fdi_tx_pll_enabled(dev_priv,
2149                                                   (enum pipe) cpu_transcoder);
2150                 }
2151                 /* FIXME: assert CPU port conditions for SNB+ */
2152         }
2153
2154         reg = PIPECONF(cpu_transcoder);
2155         val = I915_READ(reg);
2156         if (val & PIPECONF_ENABLE) {
2157                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2159                 return;
2160         }
2161
2162         I915_WRITE(reg, val | PIPECONF_ENABLE);
2163         POSTING_READ(reg);
2164 }
2165
2166 /**
2167  * intel_disable_pipe - disable a pipe, asserting requirements
2168  * @crtc: crtc whose pipes is to be disabled
2169  *
2170  * Disable the pipe of @crtc, making sure that various hardware
2171  * specific requirements are met, if applicable, e.g. plane
2172  * disabled, panel fitter off, etc.
2173  *
2174  * Will wait until the pipe has shut down before returning.
2175  */
2176 static void intel_disable_pipe(struct intel_crtc *crtc)
2177 {
2178         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2179         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2180         enum pipe pipe = crtc->pipe;
2181         int reg;
2182         u32 val;
2183
2184         /*
2185          * Make sure planes won't keep trying to pump pixels to us,
2186          * or we might hang the display.
2187          */
2188         assert_planes_disabled(dev_priv, pipe);
2189         assert_cursor_disabled(dev_priv, pipe);
2190         assert_sprites_disabled(dev_priv, pipe);
2191
2192         reg = PIPECONF(cpu_transcoder);
2193         val = I915_READ(reg);
2194         if ((val & PIPECONF_ENABLE) == 0)
2195                 return;
2196
2197         /*
2198          * Double wide has implications for planes
2199          * so best keep it disabled when not needed.
2200          */
2201         if (crtc->config->double_wide)
2202                 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204         /* Don't disable pipe or pipe PLLs if needed */
2205         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207                 val &= ~PIPECONF_ENABLE;
2208
2209         I915_WRITE(reg, val);
2210         if ((val & PIPECONF_ENABLE) == 0)
2211                 intel_wait_for_pipe_off(crtc);
2212 }
2213
2214 /**
2215  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2216  * @plane:  plane to be enabled
2217  * @crtc: crtc for the plane
2218  *
2219  * Enable @plane on @crtc, making sure that the pipe is running first.
2220  */
2221 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2222                                           struct drm_crtc *crtc)
2223 {
2224         struct drm_device *dev = plane->dev;
2225         struct drm_i915_private *dev_priv = dev->dev_private;
2226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2227
2228         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2229         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2230         to_intel_plane_state(plane->state)->visible = true;
2231
2232         dev_priv->display.update_primary_plane(crtc, plane->fb,
2233                                                crtc->x, crtc->y);
2234 }
2235
2236 static bool need_vtd_wa(struct drm_device *dev)
2237 {
2238 #ifdef CONFIG_INTEL_IOMMU
2239         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2240                 return true;
2241 #endif
2242         return false;
2243 }
2244
2245 unsigned int
2246 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2247                   uint64_t fb_format_modifier)
2248 {
2249         unsigned int tile_height;
2250         uint32_t pixel_bytes;
2251
2252         switch (fb_format_modifier) {
2253         case DRM_FORMAT_MOD_NONE:
2254                 tile_height = 1;
2255                 break;
2256         case I915_FORMAT_MOD_X_TILED:
2257                 tile_height = IS_GEN2(dev) ? 16 : 8;
2258                 break;
2259         case I915_FORMAT_MOD_Y_TILED:
2260                 tile_height = 32;
2261                 break;
2262         case I915_FORMAT_MOD_Yf_TILED:
2263                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2264                 switch (pixel_bytes) {
2265                 default:
2266                 case 1:
2267                         tile_height = 64;
2268                         break;
2269                 case 2:
2270                 case 4:
2271                         tile_height = 32;
2272                         break;
2273                 case 8:
2274                         tile_height = 16;
2275                         break;
2276                 case 16:
2277                         WARN_ONCE(1,
2278                                   "128-bit pixels are not supported for display!");
2279                         tile_height = 16;
2280                         break;
2281                 }
2282                 break;
2283         default:
2284                 MISSING_CASE(fb_format_modifier);
2285                 tile_height = 1;
2286                 break;
2287         }
2288
2289         return tile_height;
2290 }
2291
2292 unsigned int
2293 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2294                       uint32_t pixel_format, uint64_t fb_format_modifier)
2295 {
2296         return ALIGN(height, intel_tile_height(dev, pixel_format,
2297                                                fb_format_modifier));
2298 }
2299
2300 static int
2301 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2302                         const struct drm_plane_state *plane_state)
2303 {
2304         struct intel_rotation_info *info = &view->rotation_info;
2305
2306         *view = i915_ggtt_view_normal;
2307
2308         if (!plane_state)
2309                 return 0;
2310
2311         if (!intel_rotation_90_or_270(plane_state->rotation))
2312                 return 0;
2313
2314         *view = i915_ggtt_view_rotated;
2315
2316         info->height = fb->height;
2317         info->pixel_format = fb->pixel_format;
2318         info->pitch = fb->pitches[0];
2319         info->fb_modifier = fb->modifier[0];
2320
2321         return 0;
2322 }
2323
2324 int
2325 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326                            struct drm_framebuffer *fb,
2327                            const struct drm_plane_state *plane_state,
2328                            struct intel_engine_cs *pipelined)
2329 {
2330         struct drm_device *dev = fb->dev;
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2333         struct i915_ggtt_view view;
2334         u32 alignment;
2335         int ret;
2336
2337         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
2339         switch (fb->modifier[0]) {
2340         case DRM_FORMAT_MOD_NONE:
2341                 if (INTEL_INFO(dev)->gen >= 9)
2342                         alignment = 256 * 1024;
2343                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2344                         alignment = 128 * 1024;
2345                 else if (INTEL_INFO(dev)->gen >= 4)
2346                         alignment = 4 * 1024;
2347                 else
2348                         alignment = 64 * 1024;
2349                 break;
2350         case I915_FORMAT_MOD_X_TILED:
2351                 if (INTEL_INFO(dev)->gen >= 9)
2352                         alignment = 256 * 1024;
2353                 else {
2354                         /* pin() will align the object as required by fence */
2355                         alignment = 0;
2356                 }
2357                 break;
2358         case I915_FORMAT_MOD_Y_TILED:
2359         case I915_FORMAT_MOD_Yf_TILED:
2360                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361                           "Y tiling bo slipped through, driver bug!\n"))
2362                         return -EINVAL;
2363                 alignment = 1 * 1024 * 1024;
2364                 break;
2365         default:
2366                 MISSING_CASE(fb->modifier[0]);
2367                 return -EINVAL;
2368         }
2369
2370         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371         if (ret)
2372                 return ret;
2373
2374         /* Note that the w/a also requires 64 PTE of padding following the
2375          * bo. We currently fill all unused PTE with the shadow page and so
2376          * we should always have valid PTE following the scanout preventing
2377          * the VT-d warning.
2378          */
2379         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380                 alignment = 256 * 1024;
2381
2382         /*
2383          * Global gtt pte registers are special registers which actually forward
2384          * writes to a chunk of system memory. Which means that there is no risk
2385          * that the register values disappear as soon as we call
2386          * intel_runtime_pm_put(), so it is correct to wrap only the
2387          * pin/unpin/fence and not more.
2388          */
2389         intel_runtime_pm_get(dev_priv);
2390
2391         dev_priv->mm.interruptible = false;
2392         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393                                                    &view);
2394         if (ret)
2395                 goto err_interruptible;
2396
2397         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398          * fence, whereas 965+ only requires a fence if using
2399          * framebuffer compression.  For simplicity, we always install
2400          * a fence as the cost is not that onerous.
2401          */
2402         ret = i915_gem_object_get_fence(obj);
2403         if (ret)
2404                 goto err_unpin;
2405
2406         i915_gem_object_pin_fence(obj);
2407
2408         dev_priv->mm.interruptible = true;
2409         intel_runtime_pm_put(dev_priv);
2410         return 0;
2411
2412 err_unpin:
2413         i915_gem_object_unpin_from_display_plane(obj, &view);
2414 err_interruptible:
2415         dev_priv->mm.interruptible = true;
2416         intel_runtime_pm_put(dev_priv);
2417         return ret;
2418 }
2419
2420 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421                                const struct drm_plane_state *plane_state)
2422 {
2423         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2424         struct i915_ggtt_view view;
2425         int ret;
2426
2427         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
2429         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430         WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
2432         i915_gem_object_unpin_fence(obj);
2433         i915_gem_object_unpin_from_display_plane(obj, &view);
2434 }
2435
2436 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437  * is assumed to be a power-of-two. */
2438 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439                                              unsigned int tiling_mode,
2440                                              unsigned int cpp,
2441                                              unsigned int pitch)
2442 {
2443         if (tiling_mode != I915_TILING_NONE) {
2444                 unsigned int tile_rows, tiles;
2445
2446                 tile_rows = *y / 8;
2447                 *y %= 8;
2448
2449                 tiles = *x / (512/cpp);
2450                 *x %= 512/cpp;
2451
2452                 return tile_rows * pitch * 8 + tiles * 4096;
2453         } else {
2454                 unsigned int offset;
2455
2456                 offset = *y * pitch + *x * cpp;
2457                 *y = 0;
2458                 *x = (offset & 4095) / cpp;
2459                 return offset & -4096;
2460         }
2461 }
2462
2463 static int i9xx_format_to_fourcc(int format)
2464 {
2465         switch (format) {
2466         case DISPPLANE_8BPP:
2467                 return DRM_FORMAT_C8;
2468         case DISPPLANE_BGRX555:
2469                 return DRM_FORMAT_XRGB1555;
2470         case DISPPLANE_BGRX565:
2471                 return DRM_FORMAT_RGB565;
2472         default:
2473         case DISPPLANE_BGRX888:
2474                 return DRM_FORMAT_XRGB8888;
2475         case DISPPLANE_RGBX888:
2476                 return DRM_FORMAT_XBGR8888;
2477         case DISPPLANE_BGRX101010:
2478                 return DRM_FORMAT_XRGB2101010;
2479         case DISPPLANE_RGBX101010:
2480                 return DRM_FORMAT_XBGR2101010;
2481         }
2482 }
2483
2484 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485 {
2486         switch (format) {
2487         case PLANE_CTL_FORMAT_RGB_565:
2488                 return DRM_FORMAT_RGB565;
2489         default:
2490         case PLANE_CTL_FORMAT_XRGB_8888:
2491                 if (rgb_order) {
2492                         if (alpha)
2493                                 return DRM_FORMAT_ABGR8888;
2494                         else
2495                                 return DRM_FORMAT_XBGR8888;
2496                 } else {
2497                         if (alpha)
2498                                 return DRM_FORMAT_ARGB8888;
2499                         else
2500                                 return DRM_FORMAT_XRGB8888;
2501                 }
2502         case PLANE_CTL_FORMAT_XRGB_2101010:
2503                 if (rgb_order)
2504                         return DRM_FORMAT_XBGR2101010;
2505                 else
2506                         return DRM_FORMAT_XRGB2101010;
2507         }
2508 }
2509
2510 static bool
2511 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2512                               struct intel_initial_plane_config *plane_config)
2513 {
2514         struct drm_device *dev = crtc->base.dev;
2515         struct drm_i915_gem_object *obj = NULL;
2516         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2517         struct drm_framebuffer *fb = &plane_config->fb->base;
2518         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520                                     PAGE_SIZE);
2521
2522         size_aligned -= base_aligned;
2523
2524         if (plane_config->size == 0)
2525                 return false;
2526
2527         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528                                                              base_aligned,
2529                                                              base_aligned,
2530                                                              size_aligned);
2531         if (!obj)
2532                 return false;
2533
2534         obj->tiling_mode = plane_config->tiling;
2535         if (obj->tiling_mode == I915_TILING_X)
2536                 obj->stride = fb->pitches[0];
2537
2538         mode_cmd.pixel_format = fb->pixel_format;
2539         mode_cmd.width = fb->width;
2540         mode_cmd.height = fb->height;
2541         mode_cmd.pitches[0] = fb->pitches[0];
2542         mode_cmd.modifier[0] = fb->modifier[0];
2543         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2544
2545         mutex_lock(&dev->struct_mutex);
2546         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2547                                    &mode_cmd, obj)) {
2548                 DRM_DEBUG_KMS("intel fb init failed\n");
2549                 goto out_unref_obj;
2550         }
2551         mutex_unlock(&dev->struct_mutex);
2552
2553         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2554         return true;
2555
2556 out_unref_obj:
2557         drm_gem_object_unreference(&obj->base);
2558         mutex_unlock(&dev->struct_mutex);
2559         return false;
2560 }
2561
2562 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2563 static void
2564 update_state_fb(struct drm_plane *plane)
2565 {
2566         if (plane->fb == plane->state->fb)
2567                 return;
2568
2569         if (plane->state->fb)
2570                 drm_framebuffer_unreference(plane->state->fb);
2571         plane->state->fb = plane->fb;
2572         if (plane->state->fb)
2573                 drm_framebuffer_reference(plane->state->fb);
2574 }
2575
2576 static void
2577 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2578                              struct intel_initial_plane_config *plane_config)
2579 {
2580         struct drm_device *dev = intel_crtc->base.dev;
2581         struct drm_i915_private *dev_priv = dev->dev_private;
2582         struct drm_crtc *c;
2583         struct intel_crtc *i;
2584         struct drm_i915_gem_object *obj;
2585         struct drm_plane *primary = intel_crtc->base.primary;
2586         struct drm_framebuffer *fb;
2587
2588         if (!plane_config->fb)
2589                 return;
2590
2591         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2592                 fb = &plane_config->fb->base;
2593                 goto valid_fb;
2594         }
2595
2596         kfree(plane_config->fb);
2597
2598         /*
2599          * Failed to alloc the obj, check to see if we should share
2600          * an fb with another CRTC instead
2601          */
2602         for_each_crtc(dev, c) {
2603                 i = to_intel_crtc(c);
2604
2605                 if (c == &intel_crtc->base)
2606                         continue;
2607
2608                 if (!i->active)
2609                         continue;
2610
2611                 fb = c->primary->fb;
2612                 if (!fb)
2613                         continue;
2614
2615                 obj = intel_fb_obj(fb);
2616                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2617                         drm_framebuffer_reference(fb);
2618                         goto valid_fb;
2619                 }
2620         }
2621
2622         return;
2623
2624 valid_fb:
2625         obj = intel_fb_obj(fb);
2626         if (obj->tiling_mode != I915_TILING_NONE)
2627                 dev_priv->preserve_bios_swizzle = true;
2628
2629         primary->fb = fb;
2630         primary->state->crtc = &intel_crtc->base;
2631         primary->crtc = &intel_crtc->base;
2632         update_state_fb(primary);
2633         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2634 }
2635
2636 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2637                                       struct drm_framebuffer *fb,
2638                                       int x, int y)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         struct drm_plane *primary = crtc->primary;
2644         bool visible = to_intel_plane_state(primary->state)->visible;
2645         struct drm_i915_gem_object *obj;
2646         int plane = intel_crtc->plane;
2647         unsigned long linear_offset;
2648         u32 dspcntr;
2649         u32 reg = DSPCNTR(plane);
2650         int pixel_size;
2651
2652         if (!visible || !fb) {
2653                 I915_WRITE(reg, 0);
2654                 if (INTEL_INFO(dev)->gen >= 4)
2655                         I915_WRITE(DSPSURF(plane), 0);
2656                 else
2657                         I915_WRITE(DSPADDR(plane), 0);
2658                 POSTING_READ(reg);
2659                 return;
2660         }
2661
2662         obj = intel_fb_obj(fb);
2663         if (WARN_ON(obj == NULL))
2664                 return;
2665
2666         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2667
2668         dspcntr = DISPPLANE_GAMMA_ENABLE;
2669
2670         dspcntr |= DISPLAY_PLANE_ENABLE;
2671
2672         if (INTEL_INFO(dev)->gen < 4) {
2673                 if (intel_crtc->pipe == PIPE_B)
2674                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2675
2676                 /* pipesrc and dspsize control the size that is scaled from,
2677                  * which should always be the user's requested size.
2678                  */
2679                 I915_WRITE(DSPSIZE(plane),
2680                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2681                            (intel_crtc->config->pipe_src_w - 1));
2682                 I915_WRITE(DSPPOS(plane), 0);
2683         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2684                 I915_WRITE(PRIMSIZE(plane),
2685                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2686                            (intel_crtc->config->pipe_src_w - 1));
2687                 I915_WRITE(PRIMPOS(plane), 0);
2688                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2689         }
2690
2691         switch (fb->pixel_format) {
2692         case DRM_FORMAT_C8:
2693                 dspcntr |= DISPPLANE_8BPP;
2694                 break;
2695         case DRM_FORMAT_XRGB1555:
2696                 dspcntr |= DISPPLANE_BGRX555;
2697                 break;
2698         case DRM_FORMAT_RGB565:
2699                 dspcntr |= DISPPLANE_BGRX565;
2700                 break;
2701         case DRM_FORMAT_XRGB8888:
2702                 dspcntr |= DISPPLANE_BGRX888;
2703                 break;
2704         case DRM_FORMAT_XBGR8888:
2705                 dspcntr |= DISPPLANE_RGBX888;
2706                 break;
2707         case DRM_FORMAT_XRGB2101010:
2708                 dspcntr |= DISPPLANE_BGRX101010;
2709                 break;
2710         case DRM_FORMAT_XBGR2101010:
2711                 dspcntr |= DISPPLANE_RGBX101010;
2712                 break;
2713         default:
2714                 BUG();
2715         }
2716
2717         if (INTEL_INFO(dev)->gen >= 4 &&
2718             obj->tiling_mode != I915_TILING_NONE)
2719                 dspcntr |= DISPPLANE_TILED;
2720
2721         if (IS_G4X(dev))
2722                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2723
2724         linear_offset = y * fb->pitches[0] + x * pixel_size;
2725
2726         if (INTEL_INFO(dev)->gen >= 4) {
2727                 intel_crtc->dspaddr_offset =
2728                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2729                                                        pixel_size,
2730                                                        fb->pitches[0]);
2731                 linear_offset -= intel_crtc->dspaddr_offset;
2732         } else {
2733                 intel_crtc->dspaddr_offset = linear_offset;
2734         }
2735
2736         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2737                 dspcntr |= DISPPLANE_ROTATE_180;
2738
2739                 x += (intel_crtc->config->pipe_src_w - 1);
2740                 y += (intel_crtc->config->pipe_src_h - 1);
2741
2742                 /* Finding the last pixel of the last line of the display
2743                 data and adding to linear_offset*/
2744                 linear_offset +=
2745                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2746                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2747         }
2748
2749         I915_WRITE(reg, dspcntr);
2750
2751         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2752         if (INTEL_INFO(dev)->gen >= 4) {
2753                 I915_WRITE(DSPSURF(plane),
2754                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2755                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2756                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2757         } else
2758                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2759         POSTING_READ(reg);
2760 }
2761
2762 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2763                                           struct drm_framebuffer *fb,
2764                                           int x, int y)
2765 {
2766         struct drm_device *dev = crtc->dev;
2767         struct drm_i915_private *dev_priv = dev->dev_private;
2768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769         struct drm_plane *primary = crtc->primary;
2770         bool visible = to_intel_plane_state(primary->state)->visible;
2771         struct drm_i915_gem_object *obj;
2772         int plane = intel_crtc->plane;
2773         unsigned long linear_offset;
2774         u32 dspcntr;
2775         u32 reg = DSPCNTR(plane);
2776         int pixel_size;
2777
2778         if (!visible || !fb) {
2779                 I915_WRITE(reg, 0);
2780                 I915_WRITE(DSPSURF(plane), 0);
2781                 POSTING_READ(reg);
2782                 return;
2783         }
2784
2785         obj = intel_fb_obj(fb);
2786         if (WARN_ON(obj == NULL))
2787                 return;
2788
2789         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2790
2791         dspcntr = DISPPLANE_GAMMA_ENABLE;
2792
2793         dspcntr |= DISPLAY_PLANE_ENABLE;
2794
2795         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2796                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2797
2798         switch (fb->pixel_format) {
2799         case DRM_FORMAT_C8:
2800                 dspcntr |= DISPPLANE_8BPP;
2801                 break;
2802         case DRM_FORMAT_RGB565:
2803                 dspcntr |= DISPPLANE_BGRX565;
2804                 break;
2805         case DRM_FORMAT_XRGB8888:
2806                 dspcntr |= DISPPLANE_BGRX888;
2807                 break;
2808         case DRM_FORMAT_XBGR8888:
2809                 dspcntr |= DISPPLANE_RGBX888;
2810                 break;
2811         case DRM_FORMAT_XRGB2101010:
2812                 dspcntr |= DISPPLANE_BGRX101010;
2813                 break;
2814         case DRM_FORMAT_XBGR2101010:
2815                 dspcntr |= DISPPLANE_RGBX101010;
2816                 break;
2817         default:
2818                 BUG();
2819         }
2820
2821         if (obj->tiling_mode != I915_TILING_NONE)
2822                 dspcntr |= DISPPLANE_TILED;
2823
2824         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2825                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2826
2827         linear_offset = y * fb->pitches[0] + x * pixel_size;
2828         intel_crtc->dspaddr_offset =
2829                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2830                                                pixel_size,
2831                                                fb->pitches[0]);
2832         linear_offset -= intel_crtc->dspaddr_offset;
2833         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2834                 dspcntr |= DISPPLANE_ROTATE_180;
2835
2836                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2837                         x += (intel_crtc->config->pipe_src_w - 1);
2838                         y += (intel_crtc->config->pipe_src_h - 1);
2839
2840                         /* Finding the last pixel of the last line of the display
2841                         data and adding to linear_offset*/
2842                         linear_offset +=
2843                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2844                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2845                 }
2846         }
2847
2848         I915_WRITE(reg, dspcntr);
2849
2850         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2851         I915_WRITE(DSPSURF(plane),
2852                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2853         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2854                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2855         } else {
2856                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2857                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2858         }
2859         POSTING_READ(reg);
2860 }
2861
2862 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2863                               uint32_t pixel_format)
2864 {
2865         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2866
2867         /*
2868          * The stride is either expressed as a multiple of 64 bytes
2869          * chunks for linear buffers or in number of tiles for tiled
2870          * buffers.
2871          */
2872         switch (fb_modifier) {
2873         case DRM_FORMAT_MOD_NONE:
2874                 return 64;
2875         case I915_FORMAT_MOD_X_TILED:
2876                 if (INTEL_INFO(dev)->gen == 2)
2877                         return 128;
2878                 return 512;
2879         case I915_FORMAT_MOD_Y_TILED:
2880                 /* No need to check for old gens and Y tiling since this is
2881                  * about the display engine and those will be blocked before
2882                  * we get here.
2883                  */
2884                 return 128;
2885         case I915_FORMAT_MOD_Yf_TILED:
2886                 if (bits_per_pixel == 8)
2887                         return 64;
2888                 else
2889                         return 128;
2890         default:
2891                 MISSING_CASE(fb_modifier);
2892                 return 64;
2893         }
2894 }
2895
2896 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2897                                      struct drm_i915_gem_object *obj)
2898 {
2899         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2900
2901         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2902                 view = &i915_ggtt_view_rotated;
2903
2904         return i915_gem_obj_ggtt_offset_view(obj, view);
2905 }
2906
2907 /*
2908  * This function detaches (aka. unbinds) unused scalers in hardware
2909  */
2910 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911 {
2912         struct drm_device *dev;
2913         struct drm_i915_private *dev_priv;
2914         struct intel_crtc_scaler_state *scaler_state;
2915         int i;
2916
2917         if (!intel_crtc || !intel_crtc->config)
2918                 return;
2919
2920         dev = intel_crtc->base.dev;
2921         dev_priv = dev->dev_private;
2922         scaler_state = &intel_crtc->config->scaler_state;
2923
2924         /* loop through and disable scalers that aren't in use */
2925         for (i = 0; i < intel_crtc->num_scalers; i++) {
2926                 if (!scaler_state->scalers[i].in_use) {
2927                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2928                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2929                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2930                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2931                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2932                 }
2933         }
2934 }
2935
2936 u32 skl_plane_ctl_format(uint32_t pixel_format)
2937 {
2938         switch (pixel_format) {
2939         case DRM_FORMAT_C8:
2940                 return PLANE_CTL_FORMAT_INDEXED;
2941         case DRM_FORMAT_RGB565:
2942                 return PLANE_CTL_FORMAT_RGB_565;
2943         case DRM_FORMAT_XBGR8888:
2944                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2945         case DRM_FORMAT_XRGB8888:
2946                 return PLANE_CTL_FORMAT_XRGB_8888;
2947         /*
2948          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2949          * to be already pre-multiplied. We need to add a knob (or a different
2950          * DRM_FORMAT) for user-space to configure that.
2951          */
2952         case DRM_FORMAT_ABGR8888:
2953                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2954                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955         case DRM_FORMAT_ARGB8888:
2956                 return PLANE_CTL_FORMAT_XRGB_8888 |
2957                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2958         case DRM_FORMAT_XRGB2101010:
2959                 return PLANE_CTL_FORMAT_XRGB_2101010;
2960         case DRM_FORMAT_XBGR2101010:
2961                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2962         case DRM_FORMAT_YUYV:
2963                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2964         case DRM_FORMAT_YVYU:
2965                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2966         case DRM_FORMAT_UYVY:
2967                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2968         case DRM_FORMAT_VYUY:
2969                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2970         default:
2971                 MISSING_CASE(pixel_format);
2972         }
2973
2974         return 0;
2975 }
2976
2977 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2978 {
2979         switch (fb_modifier) {
2980         case DRM_FORMAT_MOD_NONE:
2981                 break;
2982         case I915_FORMAT_MOD_X_TILED:
2983                 return PLANE_CTL_TILED_X;
2984         case I915_FORMAT_MOD_Y_TILED:
2985                 return PLANE_CTL_TILED_Y;
2986         case I915_FORMAT_MOD_Yf_TILED:
2987                 return PLANE_CTL_TILED_YF;
2988         default:
2989                 MISSING_CASE(fb_modifier);
2990         }
2991
2992         return 0;
2993 }
2994
2995 u32 skl_plane_ctl_rotation(unsigned int rotation)
2996 {
2997         switch (rotation) {
2998         case BIT(DRM_ROTATE_0):
2999                 break;
3000         /*
3001          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3002          * while i915 HW rotation is clockwise, thats why this swapping.
3003          */
3004         case BIT(DRM_ROTATE_90):
3005                 return PLANE_CTL_ROTATE_270;
3006         case BIT(DRM_ROTATE_180):
3007                 return PLANE_CTL_ROTATE_180;
3008         case BIT(DRM_ROTATE_270):
3009                 return PLANE_CTL_ROTATE_90;
3010         default:
3011                 MISSING_CASE(rotation);
3012         }
3013
3014         return 0;
3015 }
3016
3017 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3018                                          struct drm_framebuffer *fb,
3019                                          int x, int y)
3020 {
3021         struct drm_device *dev = crtc->dev;
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3024         struct drm_plane *plane = crtc->primary;
3025         bool visible = to_intel_plane_state(plane->state)->visible;
3026         struct drm_i915_gem_object *obj;
3027         int pipe = intel_crtc->pipe;
3028         u32 plane_ctl, stride_div, stride;
3029         u32 tile_height, plane_offset, plane_size;
3030         unsigned int rotation;
3031         int x_offset, y_offset;
3032         unsigned long surf_addr;
3033         struct intel_crtc_state *crtc_state = intel_crtc->config;
3034         struct intel_plane_state *plane_state;
3035         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3036         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3037         int scaler_id = -1;
3038
3039         plane_state = to_intel_plane_state(plane->state);
3040
3041         if (!visible || !fb) {
3042                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3043                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3044                 POSTING_READ(PLANE_CTL(pipe, 0));
3045                 return;
3046         }
3047
3048         plane_ctl = PLANE_CTL_ENABLE |
3049                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3050                     PLANE_CTL_PIPE_CSC_ENABLE;
3051
3052         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3053         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3054         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3055
3056         rotation = plane->state->rotation;
3057         plane_ctl |= skl_plane_ctl_rotation(rotation);
3058
3059         obj = intel_fb_obj(fb);
3060         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3061                                                fb->pixel_format);
3062         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3063
3064         /*
3065          * FIXME: intel_plane_state->src, dst aren't set when transitional
3066          * update_plane helpers are called from legacy paths.
3067          * Once full atomic crtc is available, below check can be avoided.
3068          */
3069         if (drm_rect_width(&plane_state->src)) {
3070                 scaler_id = plane_state->scaler_id;
3071                 src_x = plane_state->src.x1 >> 16;
3072                 src_y = plane_state->src.y1 >> 16;
3073                 src_w = drm_rect_width(&plane_state->src) >> 16;
3074                 src_h = drm_rect_height(&plane_state->src) >> 16;
3075                 dst_x = plane_state->dst.x1;
3076                 dst_y = plane_state->dst.y1;
3077                 dst_w = drm_rect_width(&plane_state->dst);
3078                 dst_h = drm_rect_height(&plane_state->dst);
3079
3080                 WARN_ON(x != src_x || y != src_y);
3081         } else {
3082                 src_w = intel_crtc->config->pipe_src_w;
3083                 src_h = intel_crtc->config->pipe_src_h;
3084         }
3085
3086         if (intel_rotation_90_or_270(rotation)) {
3087                 /* stride = Surface height in tiles */
3088                 tile_height = intel_tile_height(dev, fb->pixel_format,
3089                                                 fb->modifier[0]);
3090                 stride = DIV_ROUND_UP(fb->height, tile_height);
3091                 x_offset = stride * tile_height - y - src_h;
3092                 y_offset = x;
3093                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3094         } else {
3095                 stride = fb->pitches[0] / stride_div;
3096                 x_offset = x;
3097                 y_offset = y;
3098                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3099         }
3100         plane_offset = y_offset << 16 | x_offset;
3101
3102         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3103         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3104         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3105         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3106
3107         if (scaler_id >= 0) {
3108                 uint32_t ps_ctrl = 0;
3109
3110                 WARN_ON(!dst_w || !dst_h);
3111                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3112                         crtc_state->scaler_state.scalers[scaler_id].mode;
3113                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3114                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3115                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3116                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3117                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3118         } else {
3119                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3120         }
3121
3122         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3123
3124         POSTING_READ(PLANE_SURF(pipe, 0));
3125 }
3126
3127 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3128 static int
3129 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3130                            int x, int y, enum mode_set_atomic state)
3131 {
3132         struct drm_device *dev = crtc->dev;
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134
3135         if (dev_priv->display.disable_fbc)
3136                 dev_priv->display.disable_fbc(dev);
3137
3138         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3139
3140         return 0;
3141 }
3142
3143 static void intel_complete_page_flips(struct drm_device *dev)
3144 {
3145         struct drm_crtc *crtc;
3146
3147         for_each_crtc(dev, crtc) {
3148                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149                 enum plane plane = intel_crtc->plane;
3150
3151                 intel_prepare_page_flip(dev, plane);
3152                 intel_finish_page_flip_plane(dev, plane);
3153         }
3154 }
3155
3156 static void intel_update_primary_planes(struct drm_device *dev)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159         struct drm_crtc *crtc;
3160
3161         for_each_crtc(dev, crtc) {
3162                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163
3164                 drm_modeset_lock(&crtc->mutex, NULL);
3165                 /*
3166                  * FIXME: Once we have proper support for primary planes (and
3167                  * disabling them without disabling the entire crtc) allow again
3168                  * a NULL crtc->primary->fb.
3169                  */
3170                 if (intel_crtc->active && crtc->primary->fb)
3171                         dev_priv->display.update_primary_plane(crtc,
3172                                                                crtc->primary->fb,
3173                                                                crtc->x,
3174                                                                crtc->y);
3175                 drm_modeset_unlock(&crtc->mutex);
3176         }
3177 }
3178
3179 void intel_crtc_reset(struct intel_crtc *crtc)
3180 {
3181         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3182
3183         if (!crtc->active)
3184                 return;
3185
3186         intel_crtc_disable_planes(&crtc->base);
3187         dev_priv->display.crtc_disable(&crtc->base);
3188         dev_priv->display.crtc_enable(&crtc->base);
3189         intel_crtc_enable_planes(&crtc->base);
3190 }
3191
3192 void intel_prepare_reset(struct drm_device *dev)
3193 {
3194         struct drm_i915_private *dev_priv = to_i915(dev);
3195         struct intel_crtc *crtc;
3196
3197         /* no reset support for gen2 */
3198         if (IS_GEN2(dev))
3199                 return;
3200
3201         /* reset doesn't touch the display */
3202         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3203                 return;
3204
3205         drm_modeset_lock_all(dev);
3206
3207         /*
3208          * Disabling the crtcs gracefully seems nicer. Also the
3209          * g33 docs say we should at least disable all the planes.
3210          */
3211         for_each_intel_crtc(dev, crtc) {
3212                 if (!crtc->active)
3213                         continue;
3214
3215                 intel_crtc_disable_planes(&crtc->base);
3216                 dev_priv->display.crtc_disable(&crtc->base);
3217         }
3218 }
3219
3220 void intel_finish_reset(struct drm_device *dev)
3221 {
3222         struct drm_i915_private *dev_priv = to_i915(dev);
3223
3224         /*
3225          * Flips in the rings will be nuked by the reset,
3226          * so complete all pending flips so that user space
3227          * will get its events and not get stuck.
3228          */
3229         intel_complete_page_flips(dev);
3230
3231         /* no reset support for gen2 */
3232         if (IS_GEN2(dev))
3233                 return;
3234
3235         /* reset doesn't touch the display */
3236         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3237                 /*
3238                  * Flips in the rings have been nuked by the reset,
3239                  * so update the base address of all primary
3240                  * planes to the the last fb to make sure we're
3241                  * showing the correct fb after a reset.
3242                  */
3243                 intel_update_primary_planes(dev);
3244                 return;
3245         }
3246
3247         /*
3248          * The display has been reset as well,
3249          * so need a full re-initialization.
3250          */
3251         intel_runtime_pm_disable_interrupts(dev_priv);
3252         intel_runtime_pm_enable_interrupts(dev_priv);
3253
3254         intel_modeset_init_hw(dev);
3255
3256         spin_lock_irq(&dev_priv->irq_lock);
3257         if (dev_priv->display.hpd_irq_setup)
3258                 dev_priv->display.hpd_irq_setup(dev);
3259         spin_unlock_irq(&dev_priv->irq_lock);
3260
3261         intel_modeset_setup_hw_state(dev, true);
3262
3263         intel_hpd_init(dev_priv);
3264
3265         drm_modeset_unlock_all(dev);
3266 }
3267
3268 static void
3269 intel_finish_fb(struct drm_framebuffer *old_fb)
3270 {
3271         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3272         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3273         bool was_interruptible = dev_priv->mm.interruptible;
3274         int ret;
3275
3276         /* Big Hammer, we also need to ensure that any pending
3277          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3278          * current scanout is retired before unpinning the old
3279          * framebuffer. Note that we rely on userspace rendering
3280          * into the buffer attached to the pipe they are waiting
3281          * on. If not, userspace generates a GPU hang with IPEHR
3282          * point to the MI_WAIT_FOR_EVENT.
3283          *
3284          * This should only fail upon a hung GPU, in which case we
3285          * can safely continue.
3286          */
3287         dev_priv->mm.interruptible = false;
3288         ret = i915_gem_object_wait_rendering(obj, true);
3289         dev_priv->mm.interruptible = was_interruptible;
3290
3291         WARN_ON(ret);
3292 }
3293
3294 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3295 {
3296         struct drm_device *dev = crtc->dev;
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3299         bool pending;
3300
3301         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3302             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3303                 return false;
3304
3305         spin_lock_irq(&dev->event_lock);
3306         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3307         spin_unlock_irq(&dev->event_lock);
3308
3309         return pending;
3310 }
3311
3312 static void intel_update_pipe_size(struct intel_crtc *crtc)
3313 {
3314         struct drm_device *dev = crtc->base.dev;
3315         struct drm_i915_private *dev_priv = dev->dev_private;
3316         const struct drm_display_mode *adjusted_mode;
3317
3318         if (!i915.fastboot)
3319                 return;
3320
3321         /*
3322          * Update pipe size and adjust fitter if needed: the reason for this is
3323          * that in compute_mode_changes we check the native mode (not the pfit
3324          * mode) to see if we can flip rather than do a full mode set. In the
3325          * fastboot case, we'll flip, but if we don't update the pipesrc and
3326          * pfit state, we'll end up with a big fb scanned out into the wrong
3327          * sized surface.
3328          *
3329          * To fix this properly, we need to hoist the checks up into
3330          * compute_mode_changes (or above), check the actual pfit state and
3331          * whether the platform allows pfit disable with pipe active, and only
3332          * then update the pipesrc and pfit state, even on the flip path.
3333          */
3334
3335         adjusted_mode = &crtc->config->base.adjusted_mode;
3336
3337         I915_WRITE(PIPESRC(crtc->pipe),
3338                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3339                    (adjusted_mode->crtc_vdisplay - 1));
3340         if (!crtc->config->pch_pfit.enabled &&
3341             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3342              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3343                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3344                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3345                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3346         }
3347         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3348         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3349 }
3350
3351 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3352 {
3353         struct drm_device *dev = crtc->dev;
3354         struct drm_i915_private *dev_priv = dev->dev_private;
3355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356         int pipe = intel_crtc->pipe;
3357         u32 reg, temp;
3358
3359         /* enable normal train */
3360         reg = FDI_TX_CTL(pipe);
3361         temp = I915_READ(reg);
3362         if (IS_IVYBRIDGE(dev)) {
3363                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3364                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3365         } else {
3366                 temp &= ~FDI_LINK_TRAIN_NONE;
3367                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3368         }
3369         I915_WRITE(reg, temp);
3370
3371         reg = FDI_RX_CTL(pipe);
3372         temp = I915_READ(reg);
3373         if (HAS_PCH_CPT(dev)) {
3374                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3375                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3376         } else {
3377                 temp &= ~FDI_LINK_TRAIN_NONE;
3378                 temp |= FDI_LINK_TRAIN_NONE;
3379         }
3380         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3381
3382         /* wait one idle pattern time */
3383         POSTING_READ(reg);
3384         udelay(1000);
3385
3386         /* IVB wants error correction enabled */
3387         if (IS_IVYBRIDGE(dev))
3388                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3389                            FDI_FE_ERRC_ENABLE);
3390 }
3391
3392 /* The FDI link training functions for ILK/Ibexpeak. */
3393 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3394 {
3395         struct drm_device *dev = crtc->dev;
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398         int pipe = intel_crtc->pipe;
3399         u32 reg, temp, tries;
3400
3401         /* FDI needs bits from pipe first */
3402         assert_pipe_enabled(dev_priv, pipe);
3403
3404         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3405            for train result */
3406         reg = FDI_RX_IMR(pipe);
3407         temp = I915_READ(reg);
3408         temp &= ~FDI_RX_SYMBOL_LOCK;
3409         temp &= ~FDI_RX_BIT_LOCK;
3410         I915_WRITE(reg, temp);
3411         I915_READ(reg);
3412         udelay(150);
3413
3414         /* enable CPU FDI TX and PCH FDI RX */
3415         reg = FDI_TX_CTL(pipe);
3416         temp = I915_READ(reg);
3417         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3418         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3419         temp &= ~FDI_LINK_TRAIN_NONE;
3420         temp |= FDI_LINK_TRAIN_PATTERN_1;
3421         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3422
3423         reg = FDI_RX_CTL(pipe);
3424         temp = I915_READ(reg);
3425         temp &= ~FDI_LINK_TRAIN_NONE;
3426         temp |= FDI_LINK_TRAIN_PATTERN_1;
3427         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3428
3429         POSTING_READ(reg);
3430         udelay(150);
3431
3432         /* Ironlake workaround, enable clock pointer after FDI enable*/
3433         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3434         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3435                    FDI_RX_PHASE_SYNC_POINTER_EN);
3436
3437         reg = FDI_RX_IIR(pipe);
3438         for (tries = 0; tries < 5; tries++) {
3439                 temp = I915_READ(reg);
3440                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3441
3442                 if ((temp & FDI_RX_BIT_LOCK)) {
3443                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3444                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3445                         break;
3446                 }
3447         }
3448         if (tries == 5)
3449                 DRM_ERROR("FDI train 1 fail!\n");
3450
3451         /* Train 2 */
3452         reg = FDI_TX_CTL(pipe);
3453         temp = I915_READ(reg);
3454         temp &= ~FDI_LINK_TRAIN_NONE;
3455         temp |= FDI_LINK_TRAIN_PATTERN_2;
3456         I915_WRITE(reg, temp);
3457
3458         reg = FDI_RX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         temp &= ~FDI_LINK_TRAIN_NONE;
3461         temp |= FDI_LINK_TRAIN_PATTERN_2;
3462         I915_WRITE(reg, temp);
3463
3464         POSTING_READ(reg);
3465         udelay(150);
3466
3467         reg = FDI_RX_IIR(pipe);
3468         for (tries = 0; tries < 5; tries++) {
3469                 temp = I915_READ(reg);
3470                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472                 if (temp & FDI_RX_SYMBOL_LOCK) {
3473                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3474                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3475                         break;
3476                 }
3477         }
3478         if (tries == 5)
3479                 DRM_ERROR("FDI train 2 fail!\n");
3480
3481         DRM_DEBUG_KMS("FDI train done\n");
3482
3483 }
3484
3485 static const int snb_b_fdi_train_param[] = {
3486         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3487         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3488         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3489         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3490 };
3491
3492 /* The FDI link training functions for SNB/Cougarpoint. */
3493 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3494 {
3495         struct drm_device *dev = crtc->dev;
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498         int pipe = intel_crtc->pipe;
3499         u32 reg, temp, i, retry;
3500
3501         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3502            for train result */
3503         reg = FDI_RX_IMR(pipe);
3504         temp = I915_READ(reg);
3505         temp &= ~FDI_RX_SYMBOL_LOCK;
3506         temp &= ~FDI_RX_BIT_LOCK;
3507         I915_WRITE(reg, temp);
3508
3509         POSTING_READ(reg);
3510         udelay(150);
3511
3512         /* enable CPU FDI TX and PCH FDI RX */
3513         reg = FDI_TX_CTL(pipe);
3514         temp = I915_READ(reg);
3515         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3516         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3517         temp &= ~FDI_LINK_TRAIN_NONE;
3518         temp |= FDI_LINK_TRAIN_PATTERN_1;
3519         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520         /* SNB-B */
3521         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3522         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3523
3524         I915_WRITE(FDI_RX_MISC(pipe),
3525                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3526
3527         reg = FDI_RX_CTL(pipe);
3528         temp = I915_READ(reg);
3529         if (HAS_PCH_CPT(dev)) {
3530                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3531                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3532         } else {
3533                 temp &= ~FDI_LINK_TRAIN_NONE;
3534                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3535         }
3536         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3537
3538         POSTING_READ(reg);
3539         udelay(150);
3540
3541         for (i = 0; i < 4; i++) {
3542                 reg = FDI_TX_CTL(pipe);
3543                 temp = I915_READ(reg);
3544                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3545                 temp |= snb_b_fdi_train_param[i];
3546                 I915_WRITE(reg, temp);
3547
3548                 POSTING_READ(reg);
3549                 udelay(500);
3550
3551                 for (retry = 0; retry < 5; retry++) {
3552                         reg = FDI_RX_IIR(pipe);
3553                         temp = I915_READ(reg);
3554                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3555                         if (temp & FDI_RX_BIT_LOCK) {
3556                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3557                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3558                                 break;
3559                         }
3560                         udelay(50);
3561                 }
3562                 if (retry < 5)
3563                         break;
3564         }
3565         if (i == 4)
3566                 DRM_ERROR("FDI train 1 fail!\n");
3567
3568         /* Train 2 */
3569         reg = FDI_TX_CTL(pipe);
3570         temp = I915_READ(reg);
3571         temp &= ~FDI_LINK_TRAIN_NONE;
3572         temp |= FDI_LINK_TRAIN_PATTERN_2;
3573         if (IS_GEN6(dev)) {
3574                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575                 /* SNB-B */
3576                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3577         }
3578         I915_WRITE(reg, temp);
3579
3580         reg = FDI_RX_CTL(pipe);
3581         temp = I915_READ(reg);
3582         if (HAS_PCH_CPT(dev)) {
3583                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3585         } else {
3586                 temp &= ~FDI_LINK_TRAIN_NONE;
3587                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3588         }
3589         I915_WRITE(reg, temp);
3590
3591         POSTING_READ(reg);
3592         udelay(150);
3593
3594         for (i = 0; i < 4; i++) {
3595                 reg = FDI_TX_CTL(pipe);
3596                 temp = I915_READ(reg);
3597                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                 temp |= snb_b_fdi_train_param[i];
3599                 I915_WRITE(reg, temp);
3600
3601                 POSTING_READ(reg);
3602                 udelay(500);
3603
3604                 for (retry = 0; retry < 5; retry++) {
3605                         reg = FDI_RX_IIR(pipe);
3606                         temp = I915_READ(reg);
3607                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3608                         if (temp & FDI_RX_SYMBOL_LOCK) {
3609                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3610                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3611                                 break;
3612                         }
3613                         udelay(50);
3614                 }
3615                 if (retry < 5)
3616                         break;
3617         }
3618         if (i == 4)
3619                 DRM_ERROR("FDI train 2 fail!\n");
3620
3621         DRM_DEBUG_KMS("FDI train done.\n");
3622 }
3623
3624 /* Manual link training for Ivy Bridge A0 parts */
3625 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3626 {
3627         struct drm_device *dev = crtc->dev;
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630         int pipe = intel_crtc->pipe;
3631         u32 reg, temp, i, j;
3632
3633         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634            for train result */
3635         reg = FDI_RX_IMR(pipe);
3636         temp = I915_READ(reg);
3637         temp &= ~FDI_RX_SYMBOL_LOCK;
3638         temp &= ~FDI_RX_BIT_LOCK;
3639         I915_WRITE(reg, temp);
3640
3641         POSTING_READ(reg);
3642         udelay(150);
3643
3644         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645                       I915_READ(FDI_RX_IIR(pipe)));
3646
3647         /* Try each vswing and preemphasis setting twice before moving on */
3648         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649                 /* disable first in case we need to retry */
3650                 reg = FDI_TX_CTL(pipe);
3651                 temp = I915_READ(reg);
3652                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653                 temp &= ~FDI_TX_ENABLE;
3654                 I915_WRITE(reg, temp);
3655
3656                 reg = FDI_RX_CTL(pipe);
3657                 temp = I915_READ(reg);
3658                 temp &= ~FDI_LINK_TRAIN_AUTO;
3659                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660                 temp &= ~FDI_RX_ENABLE;
3661                 I915_WRITE(reg, temp);
3662
3663                 /* enable CPU FDI TX and PCH FDI RX */
3664                 reg = FDI_TX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670                 temp |= snb_b_fdi_train_param[j/2];
3671                 temp |= FDI_COMPOSITE_SYNC;
3672                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674                 I915_WRITE(FDI_RX_MISC(pipe),
3675                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677                 reg = FDI_RX_CTL(pipe);
3678                 temp = I915_READ(reg);
3679                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680                 temp |= FDI_COMPOSITE_SYNC;
3681                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683                 POSTING_READ(reg);
3684                 udelay(1); /* should be 0.5us */
3685
3686                 for (i = 0; i < 4; i++) {
3687                         reg = FDI_RX_IIR(pipe);
3688                         temp = I915_READ(reg);
3689                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691                         if (temp & FDI_RX_BIT_LOCK ||
3692                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695                                               i);
3696                                 break;
3697                         }
3698                         udelay(1); /* should be 0.5us */
3699                 }
3700                 if (i == 4) {
3701                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702                         continue;
3703                 }
3704
3705                 /* Train 2 */
3706                 reg = FDI_TX_CTL(pipe);
3707                 temp = I915_READ(reg);
3708                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710                 I915_WRITE(reg, temp);
3711
3712                 reg = FDI_RX_CTL(pipe);
3713                 temp = I915_READ(reg);
3714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716                 I915_WRITE(reg, temp);
3717
3718                 POSTING_READ(reg);
3719                 udelay(2); /* should be 1.5us */
3720
3721                 for (i = 0; i < 4; i++) {
3722                         reg = FDI_RX_IIR(pipe);
3723                         temp = I915_READ(reg);
3724                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726                         if (temp & FDI_RX_SYMBOL_LOCK ||
3727                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730                                               i);
3731                                 goto train_done;
3732                         }
3733                         udelay(2); /* should be 1.5us */
3734                 }
3735                 if (i == 4)
3736                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737         }
3738
3739 train_done:
3740         DRM_DEBUG_KMS("FDI train done.\n");
3741 }
3742
3743 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_device *dev = intel_crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         int pipe = intel_crtc->pipe;
3748         u32 reg, temp;
3749
3750
3751         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752         reg = FDI_RX_CTL(pipe);
3753         temp = I915_READ(reg);
3754         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759         POSTING_READ(reg);
3760         udelay(200);
3761
3762         /* Switch from Rawclk to PCDclk */
3763         temp = I915_READ(reg);
3764         I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766         POSTING_READ(reg);
3767         udelay(200);
3768
3769         /* Enable CPU FDI TX PLL, always on for Ironlake */
3770         reg = FDI_TX_CTL(pipe);
3771         temp = I915_READ(reg);
3772         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775                 POSTING_READ(reg);
3776                 udelay(100);
3777         }
3778 }
3779
3780 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781 {
3782         struct drm_device *dev = intel_crtc->base.dev;
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784         int pipe = intel_crtc->pipe;
3785         u32 reg, temp;
3786
3787         /* Switch from PCDclk to Rawclk */
3788         reg = FDI_RX_CTL(pipe);
3789         temp = I915_READ(reg);
3790         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3791
3792         /* Disable CPU FDI TX PLL */
3793         reg = FDI_TX_CTL(pipe);
3794         temp = I915_READ(reg);
3795         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3796
3797         POSTING_READ(reg);
3798         udelay(100);
3799
3800         reg = FDI_RX_CTL(pipe);
3801         temp = I915_READ(reg);
3802         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3803
3804         /* Wait for the clocks to turn off. */
3805         POSTING_READ(reg);
3806         udelay(100);
3807 }
3808
3809 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3810 {
3811         struct drm_device *dev = crtc->dev;
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814         int pipe = intel_crtc->pipe;
3815         u32 reg, temp;
3816
3817         /* disable CPU FDI tx and PCH FDI rx */
3818         reg = FDI_TX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3821         POSTING_READ(reg);
3822
3823         reg = FDI_RX_CTL(pipe);
3824         temp = I915_READ(reg);
3825         temp &= ~(0x7 << 16);
3826         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3827         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3828
3829         POSTING_READ(reg);
3830         udelay(100);
3831
3832         /* Ironlake workaround, disable clock pointer after downing FDI */
3833         if (HAS_PCH_IBX(dev))
3834                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3835
3836         /* still set train pattern 1 */
3837         reg = FDI_TX_CTL(pipe);
3838         temp = I915_READ(reg);
3839         temp &= ~FDI_LINK_TRAIN_NONE;
3840         temp |= FDI_LINK_TRAIN_PATTERN_1;
3841         I915_WRITE(reg, temp);
3842
3843         reg = FDI_RX_CTL(pipe);
3844         temp = I915_READ(reg);
3845         if (HAS_PCH_CPT(dev)) {
3846                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3847                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3848         } else {
3849                 temp &= ~FDI_LINK_TRAIN_NONE;
3850                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3851         }
3852         /* BPC in FDI rx is consistent with that in PIPECONF */
3853         temp &= ~(0x07 << 16);
3854         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3855         I915_WRITE(reg, temp);
3856
3857         POSTING_READ(reg);
3858         udelay(100);
3859 }
3860
3861 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3862 {
3863         struct intel_crtc *crtc;
3864
3865         /* Note that we don't need to be called with mode_config.lock here
3866          * as our list of CRTC objects is static for the lifetime of the
3867          * device and so cannot disappear as we iterate. Similarly, we can
3868          * happily treat the predicates as racy, atomic checks as userspace
3869          * cannot claim and pin a new fb without at least acquring the
3870          * struct_mutex and so serialising with us.
3871          */
3872         for_each_intel_crtc(dev, crtc) {
3873                 if (atomic_read(&crtc->unpin_work_count) == 0)
3874                         continue;
3875
3876                 if (crtc->unpin_work)
3877                         intel_wait_for_vblank(dev, crtc->pipe);
3878
3879                 return true;
3880         }
3881
3882         return false;
3883 }
3884
3885 static void page_flip_completed(struct intel_crtc *intel_crtc)
3886 {
3887         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3888         struct intel_unpin_work *work = intel_crtc->unpin_work;
3889
3890         /* ensure that the unpin work is consistent wrt ->pending. */
3891         smp_rmb();
3892         intel_crtc->unpin_work = NULL;
3893
3894         if (work->event)
3895                 drm_send_vblank_event(intel_crtc->base.dev,
3896                                       intel_crtc->pipe,
3897                                       work->event);
3898
3899         drm_crtc_vblank_put(&intel_crtc->base);
3900
3901         wake_up_all(&dev_priv->pending_flip_queue);
3902         queue_work(dev_priv->wq, &work->work);
3903
3904         trace_i915_flip_complete(intel_crtc->plane,
3905                                  work->pending_flip_obj);
3906 }
3907
3908 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3909 {
3910         struct drm_device *dev = crtc->dev;
3911         struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3914         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3915                                        !intel_crtc_has_pending_flip(crtc),
3916                                        60*HZ) == 0)) {
3917                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918
3919                 spin_lock_irq(&dev->event_lock);
3920                 if (intel_crtc->unpin_work) {
3921                         WARN_ONCE(1, "Removing stuck page flip\n");
3922                         page_flip_completed(intel_crtc);
3923                 }
3924                 spin_unlock_irq(&dev->event_lock);
3925         }
3926
3927         if (crtc->primary->fb) {
3928                 mutex_lock(&dev->struct_mutex);
3929                 intel_finish_fb(crtc->primary->fb);
3930                 mutex_unlock(&dev->struct_mutex);
3931         }
3932 }
3933
3934 /* Program iCLKIP clock to the desired frequency */
3935 static void lpt_program_iclkip(struct drm_crtc *crtc)
3936 {
3937         struct drm_device *dev = crtc->dev;
3938         struct drm_i915_private *dev_priv = dev->dev_private;
3939         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3940         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3941         u32 temp;
3942
3943         mutex_lock(&dev_priv->sb_lock);
3944
3945         /* It is necessary to ungate the pixclk gate prior to programming
3946          * the divisors, and gate it back when it is done.
3947          */
3948         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3949
3950         /* Disable SSCCTL */
3951         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3952                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3953                                 SBI_SSCCTL_DISABLE,
3954                         SBI_ICLK);
3955
3956         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3957         if (clock == 20000) {
3958                 auxdiv = 1;
3959                 divsel = 0x41;
3960                 phaseinc = 0x20;
3961         } else {
3962                 /* The iCLK virtual clock root frequency is in MHz,
3963                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3964                  * divisors, it is necessary to divide one by another, so we
3965                  * convert the virtual clock precision to KHz here for higher
3966                  * precision.
3967                  */
3968                 u32 iclk_virtual_root_freq = 172800 * 1000;
3969                 u32 iclk_pi_range = 64;
3970                 u32 desired_divisor, msb_divisor_value, pi_value;
3971
3972                 desired_divisor = (iclk_virtual_root_freq / clock);
3973                 msb_divisor_value = desired_divisor / iclk_pi_range;
3974                 pi_value = desired_divisor % iclk_pi_range;
3975
3976                 auxdiv = 0;
3977                 divsel = msb_divisor_value - 2;
3978                 phaseinc = pi_value;
3979         }
3980
3981         /* This should not happen with any sane values */
3982         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3983                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3984         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3985                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3986
3987         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3988                         clock,
3989                         auxdiv,
3990                         divsel,
3991                         phasedir,
3992                         phaseinc);
3993
3994         /* Program SSCDIVINTPHASE6 */
3995         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3996         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3997         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3998         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3999         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4000         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4001         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4002         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4003
4004         /* Program SSCAUXDIV */
4005         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4006         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4007         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4008         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4009
4010         /* Enable modulator and associated divider */
4011         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4012         temp &= ~SBI_SSCCTL_DISABLE;
4013         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4014
4015         /* Wait for initialization time */
4016         udelay(24);
4017
4018         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4019
4020         mutex_unlock(&dev_priv->sb_lock);
4021 }
4022
4023 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4024                                                 enum pipe pch_transcoder)
4025 {
4026         struct drm_device *dev = crtc->base.dev;
4027         struct drm_i915_private *dev_priv = dev->dev_private;
4028         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4029
4030         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4031                    I915_READ(HTOTAL(cpu_transcoder)));
4032         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4033                    I915_READ(HBLANK(cpu_transcoder)));
4034         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4035                    I915_READ(HSYNC(cpu_transcoder)));
4036
4037         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4038                    I915_READ(VTOTAL(cpu_transcoder)));
4039         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4040                    I915_READ(VBLANK(cpu_transcoder)));
4041         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4042                    I915_READ(VSYNC(cpu_transcoder)));
4043         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4044                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4045 }
4046
4047 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4048 {
4049         struct drm_i915_private *dev_priv = dev->dev_private;
4050         uint32_t temp;
4051
4052         temp = I915_READ(SOUTH_CHICKEN1);
4053         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4054                 return;
4055
4056         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4057         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4058
4059         temp &= ~FDI_BC_BIFURCATION_SELECT;
4060         if (enable)
4061                 temp |= FDI_BC_BIFURCATION_SELECT;
4062
4063         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4064         I915_WRITE(SOUTH_CHICKEN1, temp);
4065         POSTING_READ(SOUTH_CHICKEN1);
4066 }
4067
4068 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4069 {
4070         struct drm_device *dev = intel_crtc->base.dev;
4071
4072         switch (intel_crtc->pipe) {
4073         case PIPE_A:
4074                 break;
4075         case PIPE_B:
4076                 if (intel_crtc->config->fdi_lanes > 2)
4077                         cpt_set_fdi_bc_bifurcation(dev, false);
4078                 else
4079                         cpt_set_fdi_bc_bifurcation(dev, true);
4080
4081                 break;
4082         case PIPE_C:
4083                 cpt_set_fdi_bc_bifurcation(dev, true);
4084
4085                 break;
4086         default:
4087                 BUG();
4088         }
4089 }
4090
4091 /*
4092  * Enable PCH resources required for PCH ports:
4093  *   - PCH PLLs
4094  *   - FDI training & RX/TX
4095  *   - update transcoder timings
4096  *   - DP transcoding bits
4097  *   - transcoder
4098  */
4099 static void ironlake_pch_enable(struct drm_crtc *crtc)
4100 {
4101         struct drm_device *dev = crtc->dev;
4102         struct drm_i915_private *dev_priv = dev->dev_private;
4103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104         int pipe = intel_crtc->pipe;
4105         u32 reg, temp;
4106
4107         assert_pch_transcoder_disabled(dev_priv, pipe);
4108
4109         if (IS_IVYBRIDGE(dev))
4110                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4111
4112         /* Write the TU size bits before fdi link training, so that error
4113          * detection works. */
4114         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4115                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4116
4117         /* For PCH output, training FDI link */
4118         dev_priv->display.fdi_link_train(crtc);
4119
4120         /* We need to program the right clock selection before writing the pixel
4121          * mutliplier into the DPLL. */
4122         if (HAS_PCH_CPT(dev)) {
4123                 u32 sel;
4124
4125                 temp = I915_READ(PCH_DPLL_SEL);
4126                 temp |= TRANS_DPLL_ENABLE(pipe);
4127                 sel = TRANS_DPLLB_SEL(pipe);
4128                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4129                         temp |= sel;
4130                 else
4131                         temp &= ~sel;
4132                 I915_WRITE(PCH_DPLL_SEL, temp);
4133         }
4134
4135         /* XXX: pch pll's can be enabled any time before we enable the PCH
4136          * transcoder, and we actually should do this to not upset any PCH
4137          * transcoder that already use the clock when we share it.
4138          *
4139          * Note that enable_shared_dpll tries to do the right thing, but
4140          * get_shared_dpll unconditionally resets the pll - we need that to have
4141          * the right LVDS enable sequence. */
4142         intel_enable_shared_dpll(intel_crtc);
4143
4144         /* set transcoder timing, panel must allow it */
4145         assert_panel_unlocked(dev_priv, pipe);
4146         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4147
4148         intel_fdi_normal_train(crtc);
4149
4150         /* For PCH DP, enable TRANS_DP_CTL */
4151         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4152                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4153                 reg = TRANS_DP_CTL(pipe);
4154                 temp = I915_READ(reg);
4155                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4156                           TRANS_DP_SYNC_MASK |
4157                           TRANS_DP_BPC_MASK);
4158                 temp |= TRANS_DP_OUTPUT_ENABLE;
4159                 temp |= bpc << 9; /* same format but at 11:9 */
4160
4161                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4162                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4163                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4164                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4165
4166                 switch (intel_trans_dp_port_sel(crtc)) {
4167                 case PCH_DP_B:
4168                         temp |= TRANS_DP_PORT_SEL_B;
4169                         break;
4170                 case PCH_DP_C:
4171                         temp |= TRANS_DP_PORT_SEL_C;
4172                         break;
4173                 case PCH_DP_D:
4174                         temp |= TRANS_DP_PORT_SEL_D;
4175                         break;
4176                 default:
4177                         BUG();
4178                 }
4179
4180                 I915_WRITE(reg, temp);
4181         }
4182
4183         ironlake_enable_pch_transcoder(dev_priv, pipe);
4184 }
4185
4186 static void lpt_pch_enable(struct drm_crtc *crtc)
4187 {
4188         struct drm_device *dev = crtc->dev;
4189         struct drm_i915_private *dev_priv = dev->dev_private;
4190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4191         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4192
4193         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4194
4195         lpt_program_iclkip(crtc);
4196
4197         /* Set transcoder timing. */
4198         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4199
4200         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4201 }
4202
4203 void intel_put_shared_dpll(struct intel_crtc *crtc)
4204 {
4205         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4206
4207         if (pll == NULL)
4208                 return;
4209
4210         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4211                 WARN(1, "bad %s crtc mask\n", pll->name);
4212                 return;
4213         }
4214
4215         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4216         if (pll->config.crtc_mask == 0) {
4217                 WARN_ON(pll->on);
4218                 WARN_ON(pll->active);
4219         }
4220
4221         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4222 }
4223
4224 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4225                                                 struct intel_crtc_state *crtc_state)
4226 {
4227         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4228         struct intel_shared_dpll *pll;
4229         enum intel_dpll_id i;
4230
4231         if (HAS_PCH_IBX(dev_priv->dev)) {
4232                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4233                 i = (enum intel_dpll_id) crtc->pipe;
4234                 pll = &dev_priv->shared_dplls[i];
4235
4236                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4237                               crtc->base.base.id, pll->name);
4238
4239                 WARN_ON(pll->new_config->crtc_mask);
4240
4241                 goto found;
4242         }
4243
4244         if (IS_BROXTON(dev_priv->dev)) {
4245                 /* PLL is attached to port in bxt */
4246                 struct intel_encoder *encoder;
4247                 struct intel_digital_port *intel_dig_port;
4248
4249                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4250                 if (WARN_ON(!encoder))
4251                         return NULL;
4252
4253                 intel_dig_port = enc_to_dig_port(&encoder->base);
4254                 /* 1:1 mapping between ports and PLLs */
4255                 i = (enum intel_dpll_id)intel_dig_port->port;
4256                 pll = &dev_priv->shared_dplls[i];
4257                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258                         crtc->base.base.id, pll->name);
4259                 WARN_ON(pll->new_config->crtc_mask);
4260
4261                 goto found;
4262         }
4263
4264         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4265                 pll = &dev_priv->shared_dplls[i];
4266
4267                 /* Only want to check enabled timings first */
4268                 if (pll->new_config->crtc_mask == 0)
4269                         continue;
4270
4271                 if (memcmp(&crtc_state->dpll_hw_state,
4272                            &pll->new_config->hw_state,
4273                            sizeof(pll->new_config->hw_state)) == 0) {
4274                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4275                                       crtc->base.base.id, pll->name,
4276                                       pll->new_config->crtc_mask,
4277                                       pll->active);
4278                         goto found;
4279                 }
4280         }
4281
4282         /* Ok no matching timings, maybe there's a free one? */
4283         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4284                 pll = &dev_priv->shared_dplls[i];
4285                 if (pll->new_config->crtc_mask == 0) {
4286                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4287                                       crtc->base.base.id, pll->name);
4288                         goto found;
4289                 }
4290         }
4291
4292         return NULL;
4293
4294 found:
4295         if (pll->new_config->crtc_mask == 0)
4296                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4297
4298         crtc_state->shared_dpll = i;
4299         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4300                          pipe_name(crtc->pipe));
4301
4302         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4303
4304         return pll;
4305 }
4306
4307 /**
4308  * intel_shared_dpll_start_config - start a new PLL staged config
4309  * @dev_priv: DRM device
4310  * @clear_pipes: mask of pipes that will have their PLLs freed
4311  *
4312  * Starts a new PLL staged config, copying the current config but
4313  * releasing the references of pipes specified in clear_pipes.
4314  */
4315 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4316                                           unsigned clear_pipes)
4317 {
4318         struct intel_shared_dpll *pll;
4319         enum intel_dpll_id i;
4320
4321         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4322                 pll = &dev_priv->shared_dplls[i];
4323
4324                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4325                                           GFP_KERNEL);
4326                 if (!pll->new_config)
4327                         goto cleanup;
4328
4329                 pll->new_config->crtc_mask &= ~clear_pipes;
4330         }
4331
4332         return 0;
4333
4334 cleanup:
4335         while (--i >= 0) {
4336                 pll = &dev_priv->shared_dplls[i];
4337                 kfree(pll->new_config);
4338                 pll->new_config = NULL;
4339         }
4340
4341         return -ENOMEM;
4342 }
4343
4344 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4345 {
4346         struct intel_shared_dpll *pll;
4347         enum intel_dpll_id i;
4348
4349         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4350                 pll = &dev_priv->shared_dplls[i];
4351
4352                 WARN_ON(pll->new_config == &pll->config);
4353
4354                 pll->config = *pll->new_config;
4355                 kfree(pll->new_config);
4356                 pll->new_config = NULL;
4357         }
4358 }
4359
4360 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4361 {
4362         struct intel_shared_dpll *pll;
4363         enum intel_dpll_id i;
4364
4365         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4366                 pll = &dev_priv->shared_dplls[i];
4367
4368                 WARN_ON(pll->new_config == &pll->config);
4369
4370                 kfree(pll->new_config);
4371                 pll->new_config = NULL;
4372         }
4373 }
4374
4375 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4376 {
4377         struct drm_i915_private *dev_priv = dev->dev_private;
4378         int dslreg = PIPEDSL(pipe);
4379         u32 temp;
4380
4381         temp = I915_READ(dslreg);
4382         udelay(500);
4383         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4384                 if (wait_for(I915_READ(dslreg) != temp, 5))
4385                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4386         }
4387 }
4388
4389 /**
4390  * skl_update_scaler_users - Stages update to crtc's scaler state
4391  * @intel_crtc: crtc
4392  * @crtc_state: crtc_state
4393  * @plane: plane (NULL indicates crtc is requesting update)
4394  * @plane_state: plane's state
4395  * @force_detach: request unconditional detachment of scaler
4396  *
4397  * This function updates scaler state for requested plane or crtc.
4398  * To request scaler usage update for a plane, caller shall pass plane pointer.
4399  * To request scaler usage update for crtc, caller shall pass plane pointer
4400  * as NULL.
4401  *
4402  * Return
4403  *     0 - scaler_usage updated successfully
4404  *    error - requested scaling cannot be supported or other error condition
4405  */
4406 int
4407 skl_update_scaler_users(
4408         struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4409         struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4410         int force_detach)
4411 {
4412         int need_scaling;
4413         int idx;
4414         int src_w, src_h, dst_w, dst_h;
4415         int *scaler_id;
4416         struct drm_framebuffer *fb;
4417         struct intel_crtc_scaler_state *scaler_state;
4418         unsigned int rotation;
4419
4420         if (!intel_crtc || !crtc_state)
4421                 return 0;
4422
4423         scaler_state = &crtc_state->scaler_state;
4424
4425         idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4426         fb = intel_plane ? plane_state->base.fb : NULL;
4427
4428         if (intel_plane) {
4429                 src_w = drm_rect_width(&plane_state->src) >> 16;
4430                 src_h = drm_rect_height(&plane_state->src) >> 16;
4431                 dst_w = drm_rect_width(&plane_state->dst);
4432                 dst_h = drm_rect_height(&plane_state->dst);
4433                 scaler_id = &plane_state->scaler_id;
4434                 rotation = plane_state->base.rotation;
4435         } else {
4436                 struct drm_display_mode *adjusted_mode =
4437                         &crtc_state->base.adjusted_mode;
4438                 src_w = crtc_state->pipe_src_w;
4439                 src_h = crtc_state->pipe_src_h;
4440                 dst_w = adjusted_mode->hdisplay;
4441                 dst_h = adjusted_mode->vdisplay;
4442                 scaler_id = &scaler_state->scaler_id;
4443                 rotation = DRM_ROTATE_0;
4444         }
4445
4446         need_scaling = intel_rotation_90_or_270(rotation) ?
4447                 (src_h != dst_w || src_w != dst_h):
4448                 (src_w != dst_w || src_h != dst_h);
4449
4450         /*
4451          * if plane is being disabled or scaler is no more required or force detach
4452          *  - free scaler binded to this plane/crtc
4453          *  - in order to do this, update crtc->scaler_usage
4454          *
4455          * Here scaler state in crtc_state is set free so that
4456          * scaler can be assigned to other user. Actual register
4457          * update to free the scaler is done in plane/panel-fit programming.
4458          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4459          */
4460         if (force_detach || !need_scaling || (intel_plane &&
4461                 (!fb || !plane_state->visible))) {
4462                 if (*scaler_id >= 0) {
4463                         scaler_state->scaler_users &= ~(1 << idx);
4464                         scaler_state->scalers[*scaler_id].in_use = 0;
4465
4466                         DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4467                                 "crtc_state = %p scaler_users = 0x%x\n",
4468                                 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4469                                 intel_plane ? intel_plane->base.base.id :
4470                                 intel_crtc->base.base.id, crtc_state,
4471                                 scaler_state->scaler_users);
4472                         *scaler_id = -1;
4473                 }
4474                 return 0;
4475         }
4476
4477         /* range checks */
4478         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4479                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4480
4481                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4482                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4483                 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4484                         "size is out of scaler range\n",
4485                         intel_plane ? "PLANE" : "CRTC",
4486                         intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4487                         intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4488                 return -EINVAL;
4489         }
4490
4491         /* check colorkey */
4492         if (WARN_ON(intel_plane &&
4493                 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4494                 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4495                         intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4496                 return -EINVAL;
4497         }
4498
4499         /* Check src format */
4500         if (intel_plane) {
4501                 switch (fb->pixel_format) {
4502                 case DRM_FORMAT_RGB565:
4503                 case DRM_FORMAT_XBGR8888:
4504                 case DRM_FORMAT_XRGB8888:
4505                 case DRM_FORMAT_ABGR8888:
4506                 case DRM_FORMAT_ARGB8888:
4507                 case DRM_FORMAT_XRGB2101010:
4508                 case DRM_FORMAT_XBGR2101010:
4509                 case DRM_FORMAT_YUYV:
4510                 case DRM_FORMAT_YVYU:
4511                 case DRM_FORMAT_UYVY:
4512                 case DRM_FORMAT_VYUY:
4513                         break;
4514                 default:
4515                         DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4516                                 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517                         return -EINVAL;
4518                 }
4519         }
4520
4521         /* mark this plane as a scaler user in crtc_state */
4522         scaler_state->scaler_users |= (1 << idx);
4523         DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4524                 "crtc_state = %p scaler_users = 0x%x\n",
4525                 intel_plane ? "PLANE" : "CRTC",
4526                 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4527                 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4528         return 0;
4529 }
4530
4531 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4532 {
4533         struct drm_device *dev = crtc->base.dev;
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         int pipe = crtc->pipe;
4536         struct intel_crtc_scaler_state *scaler_state =
4537                 &crtc->config->scaler_state;
4538
4539         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540
4541         /* To update pfit, first update scaler state */
4542         skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4543         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4544         skl_detach_scalers(crtc);
4545         if (!enable)
4546                 return;
4547
4548         if (crtc->config->pch_pfit.enabled) {
4549                 int id;
4550
4551                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4552                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4553                         return;
4554                 }
4555
4556                 id = scaler_state->scaler_id;
4557                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4558                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4559                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4560                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4561
4562                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4563         }
4564 }
4565
4566 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4567 {
4568         struct drm_device *dev = crtc->base.dev;
4569         struct drm_i915_private *dev_priv = dev->dev_private;
4570         int pipe = crtc->pipe;
4571
4572         if (crtc->config->pch_pfit.enabled) {
4573                 /* Force use of hard-coded filter coefficients
4574                  * as some pre-programmed values are broken,
4575                  * e.g. x201.
4576                  */
4577                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4578                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4579                                                  PF_PIPE_SEL_IVB(pipe));
4580                 else
4581                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4582                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4583                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4584         }
4585 }
4586
4587 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4588 {
4589         struct drm_device *dev = crtc->dev;
4590         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4591         struct drm_plane *plane;
4592         struct intel_plane *intel_plane;
4593
4594         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4595                 intel_plane = to_intel_plane(plane);
4596                 if (intel_plane->pipe == pipe)
4597                         intel_plane_restore(&intel_plane->base);
4598         }
4599 }
4600
4601 void hsw_enable_ips(struct intel_crtc *crtc)
4602 {
4603         struct drm_device *dev = crtc->base.dev;
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605
4606         if (!crtc->config->ips_enabled)
4607                 return;
4608
4609         /* We can only enable IPS after we enable a plane and wait for a vblank */
4610         intel_wait_for_vblank(dev, crtc->pipe);
4611
4612         assert_plane_enabled(dev_priv, crtc->plane);
4613         if (IS_BROADWELL(dev)) {
4614                 mutex_lock(&dev_priv->rps.hw_lock);
4615                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4616                 mutex_unlock(&dev_priv->rps.hw_lock);
4617                 /* Quoting Art Runyan: "its not safe to expect any particular
4618                  * value in IPS_CTL bit 31 after enabling IPS through the
4619                  * mailbox." Moreover, the mailbox may return a bogus state,
4620                  * so we need to just enable it and continue on.
4621                  */
4622         } else {
4623                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4624                 /* The bit only becomes 1 in the next vblank, so this wait here
4625                  * is essentially intel_wait_for_vblank. If we don't have this
4626                  * and don't wait for vblanks until the end of crtc_enable, then
4627                  * the HW state readout code will complain that the expected
4628                  * IPS_CTL value is not the one we read. */
4629                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4630                         DRM_ERROR("Timed out waiting for IPS enable\n");
4631         }
4632 }
4633
4634 void hsw_disable_ips(struct intel_crtc *crtc)
4635 {
4636         struct drm_device *dev = crtc->base.dev;
4637         struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639         if (!crtc->config->ips_enabled)
4640                 return;
4641
4642         assert_plane_enabled(dev_priv, crtc->plane);
4643         if (IS_BROADWELL(dev)) {
4644                 mutex_lock(&dev_priv->rps.hw_lock);
4645                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4646                 mutex_unlock(&dev_priv->rps.hw_lock);
4647                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4648                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4649                         DRM_ERROR("Timed out waiting for IPS disable\n");
4650         } else {
4651                 I915_WRITE(IPS_CTL, 0);
4652                 POSTING_READ(IPS_CTL);
4653         }
4654
4655         /* We need to wait for a vblank before we can disable the plane. */
4656         intel_wait_for_vblank(dev, crtc->pipe);
4657 }
4658
4659 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4660 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4661 {
4662         struct drm_device *dev = crtc->dev;
4663         struct drm_i915_private *dev_priv = dev->dev_private;
4664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4665         enum pipe pipe = intel_crtc->pipe;
4666         int palreg = PALETTE(pipe);
4667         int i;
4668         bool reenable_ips = false;
4669
4670         /* The clocks have to be on to load the palette. */
4671         if (!crtc->state->enable || !intel_crtc->active)
4672                 return;
4673
4674         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4675                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4676                         assert_dsi_pll_enabled(dev_priv);
4677                 else
4678                         assert_pll_enabled(dev_priv, pipe);
4679         }
4680
4681         /* use legacy palette for Ironlake */
4682         if (!HAS_GMCH_DISPLAY(dev))
4683                 palreg = LGC_PALETTE(pipe);
4684
4685         /* Workaround : Do not read or write the pipe palette/gamma data while
4686          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4687          */
4688         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4689             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4690              GAMMA_MODE_MODE_SPLIT)) {
4691                 hsw_disable_ips(intel_crtc);
4692                 reenable_ips = true;
4693         }
4694
4695         for (i = 0; i < 256; i++) {
4696                 I915_WRITE(palreg + 4 * i,
4697                            (intel_crtc->lut_r[i] << 16) |
4698                            (intel_crtc->lut_g[i] << 8) |
4699                            intel_crtc->lut_b[i]);
4700         }
4701
4702         if (reenable_ips)
4703                 hsw_enable_ips(intel_crtc);
4704 }
4705
4706 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4707 {
4708         if (intel_crtc->overlay) {
4709                 struct drm_device *dev = intel_crtc->base.dev;
4710                 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712                 mutex_lock(&dev->struct_mutex);
4713                 dev_priv->mm.interruptible = false;
4714                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4715                 dev_priv->mm.interruptible = true;
4716                 mutex_unlock(&dev->struct_mutex);
4717         }
4718
4719         /* Let userspace switch the overlay on again. In most cases userspace
4720          * has to recompute where to put it anyway.
4721          */
4722 }
4723
4724 /**
4725  * intel_post_enable_primary - Perform operations after enabling primary plane
4726  * @crtc: the CRTC whose primary plane was just enabled
4727  *
4728  * Performs potentially sleeping operations that must be done after the primary
4729  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4730  * called due to an explicit primary plane update, or due to an implicit
4731  * re-enable that is caused when a sprite plane is updated to no longer
4732  * completely hide the primary plane.
4733  */
4734 static void
4735 intel_post_enable_primary(struct drm_crtc *crtc)
4736 {
4737         struct drm_device *dev = crtc->dev;
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740         int pipe = intel_crtc->pipe;
4741
4742         /*
4743          * BDW signals flip done immediately if the plane
4744          * is disabled, even if the plane enable is already
4745          * armed to occur at the next vblank :(
4746          */
4747         if (IS_BROADWELL(dev))
4748                 intel_wait_for_vblank(dev, pipe);
4749
4750         /*
4751          * FIXME IPS should be fine as long as one plane is
4752          * enabled, but in practice it seems to have problems
4753          * when going from primary only to sprite only and vice
4754          * versa.
4755          */
4756         hsw_enable_ips(intel_crtc);
4757
4758         mutex_lock(&dev->struct_mutex);
4759         intel_fbc_update(dev);
4760         mutex_unlock(&dev->struct_mutex);
4761
4762         /*
4763          * Gen2 reports pipe underruns whenever all planes are disabled.
4764          * So don't enable underrun reporting before at least some planes
4765          * are enabled.
4766          * FIXME: Need to fix the logic to work when we turn off all planes
4767          * but leave the pipe running.
4768          */
4769         if (IS_GEN2(dev))
4770                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4771
4772         /* Underruns don't raise interrupts, so check manually. */
4773         if (HAS_GMCH_DISPLAY(dev))
4774                 i9xx_check_fifo_underruns(dev_priv);
4775 }
4776
4777 /**
4778  * intel_pre_disable_primary - Perform operations before disabling primary plane
4779  * @crtc: the CRTC whose primary plane is to be disabled
4780  *
4781  * Performs potentially sleeping operations that must be done before the
4782  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4783  * be called due to an explicit primary plane update, or due to an implicit
4784  * disable that is caused when a sprite plane completely hides the primary
4785  * plane.
4786  */
4787 static void
4788 intel_pre_disable_primary(struct drm_crtc *crtc)
4789 {
4790         struct drm_device *dev = crtc->dev;
4791         struct drm_i915_private *dev_priv = dev->dev_private;
4792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4793         int pipe = intel_crtc->pipe;
4794
4795         /*
4796          * Gen2 reports pipe underruns whenever all planes are disabled.
4797          * So diasble underrun reporting before all the planes get disabled.
4798          * FIXME: Need to fix the logic to work when we turn off all planes
4799          * but leave the pipe running.
4800          */
4801         if (IS_GEN2(dev))
4802                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4803
4804         /*
4805          * Vblank time updates from the shadow to live plane control register
4806          * are blocked if the memory self-refresh mode is active at that
4807          * moment. So to make sure the plane gets truly disabled, disable
4808          * first the self-refresh mode. The self-refresh enable bit in turn
4809          * will be checked/applied by the HW only at the next frame start
4810          * event which is after the vblank start event, so we need to have a
4811          * wait-for-vblank between disabling the plane and the pipe.
4812          */
4813         if (HAS_GMCH_DISPLAY(dev))
4814                 intel_set_memory_cxsr(dev_priv, false);
4815
4816         mutex_lock(&dev->struct_mutex);
4817         if (dev_priv->fbc.crtc == intel_crtc)
4818                 intel_fbc_disable(dev);
4819         mutex_unlock(&dev->struct_mutex);
4820
4821         /*
4822          * FIXME IPS should be fine as long as one plane is
4823          * enabled, but in practice it seems to have problems
4824          * when going from primary only to sprite only and vice
4825          * versa.
4826          */
4827         hsw_disable_ips(intel_crtc);
4828 }
4829
4830 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4831 {
4832         struct drm_device *dev = crtc->dev;
4833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834         int pipe = intel_crtc->pipe;
4835
4836         intel_enable_primary_hw_plane(crtc->primary, crtc);
4837         intel_enable_sprite_planes(crtc);
4838         intel_crtc_update_cursor(crtc, true);
4839
4840         intel_post_enable_primary(crtc);
4841
4842         /*
4843          * FIXME: Once we grow proper nuclear flip support out of this we need
4844          * to compute the mask of flip planes precisely. For the time being
4845          * consider this a flip to a NULL plane.
4846          */
4847         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4848 }
4849
4850 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4851 {
4852         struct drm_device *dev = crtc->dev;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct intel_plane *intel_plane;
4855         int pipe = intel_crtc->pipe;
4856
4857         intel_crtc_wait_for_pending_flips(crtc);
4858
4859         intel_pre_disable_primary(crtc);
4860
4861         intel_crtc_dpms_overlay_disable(intel_crtc);
4862         for_each_intel_plane(dev, intel_plane) {
4863                 if (intel_plane->pipe == pipe) {
4864                         struct drm_crtc *from = intel_plane->base.crtc;
4865
4866                         intel_plane->disable_plane(&intel_plane->base,
4867                                                    from ?: crtc, true);
4868                 }
4869         }
4870
4871         /*
4872          * FIXME: Once we grow proper nuclear flip support out of this we need
4873          * to compute the mask of flip planes precisely. For the time being
4874          * consider this a flip to a NULL plane.
4875          */
4876         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4877 }
4878
4879 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4880 {
4881         struct drm_device *dev = crtc->dev;
4882         struct drm_i915_private *dev_priv = dev->dev_private;
4883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4884         struct intel_encoder *encoder;
4885         int pipe = intel_crtc->pipe;
4886
4887         WARN_ON(!crtc->state->enable);
4888
4889         if (intel_crtc->active)
4890                 return;
4891
4892         if (intel_crtc->config->has_pch_encoder)
4893                 intel_prepare_shared_dpll(intel_crtc);
4894
4895         if (intel_crtc->config->has_dp_encoder)
4896                 intel_dp_set_m_n(intel_crtc, M1_N1);
4897
4898         intel_set_pipe_timings(intel_crtc);
4899
4900         if (intel_crtc->config->has_pch_encoder) {
4901                 intel_cpu_transcoder_set_m_n(intel_crtc,
4902                                      &intel_crtc->config->fdi_m_n, NULL);
4903         }
4904
4905         ironlake_set_pipeconf(crtc);
4906
4907         intel_crtc->active = true;
4908
4909         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4910         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4911
4912         for_each_encoder_on_crtc(dev, crtc, encoder)
4913                 if (encoder->pre_enable)
4914                         encoder->pre_enable(encoder);
4915
4916         if (intel_crtc->config->has_pch_encoder) {
4917                 /* Note: FDI PLL enabling _must_ be done before we enable the
4918                  * cpu pipes, hence this is separate from all the other fdi/pch
4919                  * enabling. */
4920                 ironlake_fdi_pll_enable(intel_crtc);
4921         } else {
4922                 assert_fdi_tx_disabled(dev_priv, pipe);
4923                 assert_fdi_rx_disabled(dev_priv, pipe);
4924         }
4925
4926         ironlake_pfit_enable(intel_crtc);
4927
4928         /*
4929          * On ILK+ LUT must be loaded before the pipe is running but with
4930          * clocks enabled
4931          */
4932         intel_crtc_load_lut(crtc);
4933
4934         intel_update_watermarks(crtc);
4935         intel_enable_pipe(intel_crtc);
4936
4937         if (intel_crtc->config->has_pch_encoder)
4938                 ironlake_pch_enable(crtc);
4939
4940         assert_vblank_disabled(crtc);
4941         drm_crtc_vblank_on(crtc);
4942
4943         for_each_encoder_on_crtc(dev, crtc, encoder)
4944                 encoder->enable(encoder);
4945
4946         if (HAS_PCH_CPT(dev))
4947                 cpt_verify_modeset(dev, intel_crtc->pipe);
4948 }
4949
4950 /* IPS only exists on ULT machines and is tied to pipe A. */
4951 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4952 {
4953         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4954 }
4955
4956 /*
4957  * This implements the workaround described in the "notes" section of the mode
4958  * set sequence documentation. When going from no pipes or single pipe to
4959  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4960  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4961  */
4962 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4963 {
4964         struct drm_device *dev = crtc->base.dev;
4965         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4966
4967         /* We want to get the other_active_crtc only if there's only 1 other
4968          * active crtc. */
4969         for_each_intel_crtc(dev, crtc_it) {
4970                 if (!crtc_it->active || crtc_it == crtc)
4971                         continue;
4972
4973                 if (other_active_crtc)
4974                         return;
4975
4976                 other_active_crtc = crtc_it;
4977         }
4978         if (!other_active_crtc)
4979                 return;
4980
4981         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4982         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4983 }
4984
4985 static void haswell_crtc_enable(struct drm_crtc *crtc)
4986 {
4987         struct drm_device *dev = crtc->dev;
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4990         struct intel_encoder *encoder;
4991         int pipe = intel_crtc->pipe;
4992
4993         WARN_ON(!crtc->state->enable);
4994
4995         if (intel_crtc->active)
4996                 return;
4997
4998         if (intel_crtc_to_shared_dpll(intel_crtc))
4999                 intel_enable_shared_dpll(intel_crtc);
5000
5001         if (intel_crtc->config->has_dp_encoder)
5002                 intel_dp_set_m_n(intel_crtc, M1_N1);
5003
5004         intel_set_pipe_timings(intel_crtc);
5005
5006         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5007                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5008                            intel_crtc->config->pixel_multiplier - 1);
5009         }
5010
5011         if (intel_crtc->config->has_pch_encoder) {
5012                 intel_cpu_transcoder_set_m_n(intel_crtc,
5013                                      &intel_crtc->config->fdi_m_n, NULL);
5014         }
5015
5016         haswell_set_pipeconf(crtc);
5017
5018         intel_set_pipe_csc(crtc);
5019
5020         intel_crtc->active = true;
5021
5022         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5023         for_each_encoder_on_crtc(dev, crtc, encoder)
5024                 if (encoder->pre_enable)
5025                         encoder->pre_enable(encoder);
5026
5027         if (intel_crtc->config->has_pch_encoder) {
5028                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5029                                                       true);
5030                 dev_priv->display.fdi_link_train(crtc);
5031         }
5032
5033         intel_ddi_enable_pipe_clock(intel_crtc);
5034
5035         if (INTEL_INFO(dev)->gen == 9)
5036                 skylake_pfit_update(intel_crtc, 1);
5037         else if (INTEL_INFO(dev)->gen < 9)
5038                 ironlake_pfit_enable(intel_crtc);
5039         else
5040                 MISSING_CASE(INTEL_INFO(dev)->gen);
5041
5042         /*
5043          * On ILK+ LUT must be loaded before the pipe is running but with
5044          * clocks enabled
5045          */
5046         intel_crtc_load_lut(crtc);
5047
5048         intel_ddi_set_pipe_settings(crtc);
5049         intel_ddi_enable_transcoder_func(crtc);
5050
5051         intel_update_watermarks(crtc);
5052         intel_enable_pipe(intel_crtc);
5053
5054         if (intel_crtc->config->has_pch_encoder)
5055                 lpt_pch_enable(crtc);
5056
5057         if (intel_crtc->config->dp_encoder_is_mst)
5058                 intel_ddi_set_vc_payload_alloc(crtc, true);
5059
5060         assert_vblank_disabled(crtc);
5061         drm_crtc_vblank_on(crtc);
5062
5063         for_each_encoder_on_crtc(dev, crtc, encoder) {
5064                 encoder->enable(encoder);
5065                 intel_opregion_notify_encoder(encoder, true);
5066         }
5067
5068         /* If we change the relative order between pipe/planes enabling, we need
5069          * to change the workaround. */
5070         haswell_mode_set_planes_workaround(intel_crtc);
5071 }
5072
5073 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5074 {
5075         struct drm_device *dev = crtc->base.dev;
5076         struct drm_i915_private *dev_priv = dev->dev_private;
5077         int pipe = crtc->pipe;
5078
5079         /* To avoid upsetting the power well on haswell only disable the pfit if
5080          * it's in use. The hw state code will make sure we get this right. */
5081         if (crtc->config->pch_pfit.enabled) {
5082                 I915_WRITE(PF_CTL(pipe), 0);
5083                 I915_WRITE(PF_WIN_POS(pipe), 0);
5084                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5085         }
5086 }
5087
5088 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5089 {
5090         struct drm_device *dev = crtc->dev;
5091         struct drm_i915_private *dev_priv = dev->dev_private;
5092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5093         struct intel_encoder *encoder;
5094         int pipe = intel_crtc->pipe;
5095         u32 reg, temp;
5096
5097         if (!intel_crtc->active)
5098                 return;
5099
5100         for_each_encoder_on_crtc(dev, crtc, encoder)
5101                 encoder->disable(encoder);
5102
5103         drm_crtc_vblank_off(crtc);
5104         assert_vblank_disabled(crtc);
5105
5106         if (intel_crtc->config->has_pch_encoder)
5107                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5108
5109         intel_disable_pipe(intel_crtc);
5110
5111         ironlake_pfit_disable(intel_crtc);
5112
5113         if (intel_crtc->config->has_pch_encoder)
5114                 ironlake_fdi_disable(crtc);
5115
5116         for_each_encoder_on_crtc(dev, crtc, encoder)
5117                 if (encoder->post_disable)
5118                         encoder->post_disable(encoder);
5119
5120         if (intel_crtc->config->has_pch_encoder) {
5121                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5122
5123                 if (HAS_PCH_CPT(dev)) {
5124                         /* disable TRANS_DP_CTL */
5125                         reg = TRANS_DP_CTL(pipe);
5126                         temp = I915_READ(reg);
5127                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5128                                   TRANS_DP_PORT_SEL_MASK);
5129                         temp |= TRANS_DP_PORT_SEL_NONE;
5130                         I915_WRITE(reg, temp);
5131
5132                         /* disable DPLL_SEL */
5133                         temp = I915_READ(PCH_DPLL_SEL);
5134                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5135                         I915_WRITE(PCH_DPLL_SEL, temp);
5136                 }
5137
5138                 /* disable PCH DPLL */
5139                 intel_disable_shared_dpll(intel_crtc);
5140
5141                 ironlake_fdi_pll_disable(intel_crtc);
5142         }
5143
5144         intel_crtc->active = false;
5145         intel_update_watermarks(crtc);
5146
5147         mutex_lock(&dev->struct_mutex);
5148         intel_fbc_update(dev);
5149         mutex_unlock(&dev->struct_mutex);
5150 }
5151
5152 static void haswell_crtc_disable(struct drm_crtc *crtc)
5153 {
5154         struct drm_device *dev = crtc->dev;
5155         struct drm_i915_private *dev_priv = dev->dev_private;
5156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5157         struct intel_encoder *encoder;
5158         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5159
5160         if (!intel_crtc->active)
5161                 return;
5162
5163         for_each_encoder_on_crtc(dev, crtc, encoder) {
5164                 intel_opregion_notify_encoder(encoder, false);
5165                 encoder->disable(encoder);
5166         }
5167
5168         drm_crtc_vblank_off(crtc);
5169         assert_vblank_disabled(crtc);
5170
5171         if (intel_crtc->config->has_pch_encoder)
5172                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5173                                                       false);
5174         intel_disable_pipe(intel_crtc);
5175
5176         if (intel_crtc->config->dp_encoder_is_mst)
5177                 intel_ddi_set_vc_payload_alloc(crtc, false);
5178
5179         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5180
5181         if (INTEL_INFO(dev)->gen == 9)
5182                 skylake_pfit_update(intel_crtc, 0);
5183         else if (INTEL_INFO(dev)->gen < 9)
5184                 ironlake_pfit_disable(intel_crtc);
5185         else
5186                 MISSING_CASE(INTEL_INFO(dev)->gen);
5187
5188         intel_ddi_disable_pipe_clock(intel_crtc);
5189
5190         if (intel_crtc->config->has_pch_encoder) {
5191                 lpt_disable_pch_transcoder(dev_priv);
5192                 intel_ddi_fdi_disable(crtc);
5193         }
5194
5195         for_each_encoder_on_crtc(dev, crtc, encoder)
5196                 if (encoder->post_disable)
5197                         encoder->post_disable(encoder);
5198
5199         intel_crtc->active = false;
5200         intel_update_watermarks(crtc);
5201
5202         mutex_lock(&dev->struct_mutex);
5203         intel_fbc_update(dev);
5204         mutex_unlock(&dev->struct_mutex);
5205
5206         if (intel_crtc_to_shared_dpll(intel_crtc))
5207                 intel_disable_shared_dpll(intel_crtc);
5208 }
5209
5210 static void ironlake_crtc_off(struct drm_crtc *crtc)
5211 {
5212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213         intel_put_shared_dpll(intel_crtc);
5214 }
5215
5216
5217 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5218 {
5219         struct drm_device *dev = crtc->base.dev;
5220         struct drm_i915_private *dev_priv = dev->dev_private;
5221         struct intel_crtc_state *pipe_config = crtc->config;
5222
5223         if (!pipe_config->gmch_pfit.control)
5224                 return;
5225
5226         /*
5227          * The panel fitter should only be adjusted whilst the pipe is disabled,
5228          * according to register description and PRM.
5229          */
5230         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5231         assert_pipe_disabled(dev_priv, crtc->pipe);
5232
5233         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5234         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5235
5236         /* Border color in case we don't scale up to the full screen. Black by
5237          * default, change to something else for debugging. */
5238         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5239 }
5240
5241 static enum intel_display_power_domain port_to_power_domain(enum port port)
5242 {
5243         switch (port) {
5244         case PORT_A:
5245                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5246         case PORT_B:
5247                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5248         case PORT_C:
5249                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5250         case PORT_D:
5251                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5252         default:
5253                 WARN_ON_ONCE(1);
5254                 return POWER_DOMAIN_PORT_OTHER;
5255         }
5256 }
5257
5258 #define for_each_power_domain(domain, mask)                             \
5259         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5260                 if ((1 << (domain)) & (mask))
5261
5262 enum intel_display_power_domain
5263 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5264 {
5265         struct drm_device *dev = intel_encoder->base.dev;
5266         struct intel_digital_port *intel_dig_port;
5267
5268         switch (intel_encoder->type) {
5269         case INTEL_OUTPUT_UNKNOWN:
5270                 /* Only DDI platforms should ever use this output type */
5271                 WARN_ON_ONCE(!HAS_DDI(dev));
5272         case INTEL_OUTPUT_DISPLAYPORT:
5273         case INTEL_OUTPUT_HDMI:
5274         case INTEL_OUTPUT_EDP:
5275                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5276                 return port_to_power_domain(intel_dig_port->port);
5277         case INTEL_OUTPUT_DP_MST:
5278                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5279                 return port_to_power_domain(intel_dig_port->port);
5280         case INTEL_OUTPUT_ANALOG:
5281                 return POWER_DOMAIN_PORT_CRT;
5282         case INTEL_OUTPUT_DSI:
5283                 return POWER_DOMAIN_PORT_DSI;
5284         default:
5285                 return POWER_DOMAIN_PORT_OTHER;
5286         }
5287 }
5288
5289 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5290 {
5291         struct drm_device *dev = crtc->dev;
5292         struct intel_encoder *intel_encoder;
5293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5294         enum pipe pipe = intel_crtc->pipe;
5295         unsigned long mask;
5296         enum transcoder transcoder;
5297
5298         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5299
5300         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5301         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5302         if (intel_crtc->config->pch_pfit.enabled ||
5303             intel_crtc->config->pch_pfit.force_thru)
5304                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5305
5306         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5307                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5308
5309         return mask;
5310 }
5311
5312 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5313 {
5314         struct drm_device *dev = state->dev;
5315         struct drm_i915_private *dev_priv = dev->dev_private;
5316         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5317         struct intel_crtc *crtc;
5318
5319         /*
5320          * First get all needed power domains, then put all unneeded, to avoid
5321          * any unnecessary toggling of the power wells.
5322          */
5323         for_each_intel_crtc(dev, crtc) {
5324                 enum intel_display_power_domain domain;
5325
5326                 if (!crtc->base.state->enable)
5327                         continue;
5328
5329                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5330
5331                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5332                         intel_display_power_get(dev_priv, domain);
5333         }
5334
5335         if (dev_priv->display.modeset_global_resources)
5336                 dev_priv->display.modeset_global_resources(state);
5337
5338         for_each_intel_crtc(dev, crtc) {
5339                 enum intel_display_power_domain domain;
5340
5341                 for_each_power_domain(domain, crtc->enabled_power_domains)
5342                         intel_display_power_put(dev_priv, domain);
5343
5344                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5345         }
5346
5347         intel_display_set_init_power(dev_priv, false);
5348 }
5349
5350 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5351 {
5352         struct drm_i915_private *dev_priv = dev->dev_private;
5353         uint32_t divider;
5354         uint32_t ratio;
5355         uint32_t current_freq;
5356         int ret;
5357
5358         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5359         switch (frequency) {
5360         case 144000:
5361                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5362                 ratio = BXT_DE_PLL_RATIO(60);
5363                 break;
5364         case 288000:
5365                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5366                 ratio = BXT_DE_PLL_RATIO(60);
5367                 break;
5368         case 384000:
5369                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5370                 ratio = BXT_DE_PLL_RATIO(60);
5371                 break;
5372         case 576000:
5373                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5374                 ratio = BXT_DE_PLL_RATIO(60);
5375                 break;
5376         case 624000:
5377                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5378                 ratio = BXT_DE_PLL_RATIO(65);
5379                 break;
5380         case 19200:
5381                 /*
5382                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5383                  * to suppress GCC warning.
5384                  */
5385                 ratio = 0;
5386                 divider = 0;
5387                 break;
5388         default:
5389                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5390
5391                 return;
5392         }
5393
5394         mutex_lock(&dev_priv->rps.hw_lock);
5395         /* Inform power controller of upcoming frequency change */
5396         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5397                                       0x80000000);
5398         mutex_unlock(&dev_priv->rps.hw_lock);
5399
5400         if (ret) {
5401                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5402                           ret, frequency);
5403                 return;
5404         }
5405
5406         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5407         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5408         current_freq = current_freq * 500 + 1000;
5409
5410         /*
5411          * DE PLL has to be disabled when
5412          * - setting to 19.2MHz (bypass, PLL isn't used)
5413          * - before setting to 624MHz (PLL needs toggling)
5414          * - before setting to any frequency from 624MHz (PLL needs toggling)
5415          */
5416         if (frequency == 19200 || frequency == 624000 ||
5417             current_freq == 624000) {
5418                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5419                 /* Timeout 200us */
5420                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5421                              1))
5422                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5423         }
5424
5425         if (frequency != 19200) {
5426                 uint32_t val;
5427
5428                 val = I915_READ(BXT_DE_PLL_CTL);
5429                 val &= ~BXT_DE_PLL_RATIO_MASK;
5430                 val |= ratio;
5431                 I915_WRITE(BXT_DE_PLL_CTL, val);
5432
5433                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5434                 /* Timeout 200us */
5435                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5436                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5437
5438                 val = I915_READ(CDCLK_CTL);
5439                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5440                 val |= divider;
5441                 /*
5442                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5443                  * enable otherwise.
5444                  */
5445                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5446                 if (frequency >= 500000)
5447                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5448
5449                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5450                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5451                 val |= (frequency - 1000) / 500;
5452                 I915_WRITE(CDCLK_CTL, val);
5453         }
5454
5455         mutex_lock(&dev_priv->rps.hw_lock);
5456         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5457                                       DIV_ROUND_UP(frequency, 25000));
5458         mutex_unlock(&dev_priv->rps.hw_lock);
5459
5460         if (ret) {
5461                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5462                           ret, frequency);
5463                 return;
5464         }
5465
5466         dev_priv->cdclk_freq = frequency;
5467 }
5468
5469 void broxton_init_cdclk(struct drm_device *dev)
5470 {
5471         struct drm_i915_private *dev_priv = dev->dev_private;
5472         uint32_t val;
5473
5474         /*
5475          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5476          * or else the reset will hang because there is no PCH to respond.
5477          * Move the handshake programming to initialization sequence.
5478          * Previously was left up to BIOS.
5479          */
5480         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5481         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5482         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5483
5484         /* Enable PG1 for cdclk */
5485         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5486
5487         /* check if cd clock is enabled */
5488         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5489                 DRM_DEBUG_KMS("Display already initialized\n");
5490                 return;
5491         }
5492
5493         /*
5494          * FIXME:
5495          * - The initial CDCLK needs to be read from VBT.
5496          *   Need to make this change after VBT has changes for BXT.
5497          * - check if setting the max (or any) cdclk freq is really necessary
5498          *   here, it belongs to modeset time
5499          */
5500         broxton_set_cdclk(dev, 624000);
5501
5502         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5503         POSTING_READ(DBUF_CTL);
5504
5505         udelay(10);
5506
5507         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5508                 DRM_ERROR("DBuf power enable timeout!\n");
5509 }
5510
5511 void broxton_uninit_cdclk(struct drm_device *dev)
5512 {
5513         struct drm_i915_private *dev_priv = dev->dev_private;
5514
5515         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5516         POSTING_READ(DBUF_CTL);
5517
5518         udelay(10);
5519
5520         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5521                 DRM_ERROR("DBuf power disable timeout!\n");
5522
5523         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5524         broxton_set_cdclk(dev, 19200);
5525
5526         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5527 }
5528
5529 static const struct skl_cdclk_entry {
5530         unsigned int freq;
5531         unsigned int vco;
5532 } skl_cdclk_frequencies[] = {
5533         { .freq = 308570, .vco = 8640 },
5534         { .freq = 337500, .vco = 8100 },
5535         { .freq = 432000, .vco = 8640 },
5536         { .freq = 450000, .vco = 8100 },
5537         { .freq = 540000, .vco = 8100 },
5538         { .freq = 617140, .vco = 8640 },
5539         { .freq = 675000, .vco = 8100 },
5540 };
5541
5542 static unsigned int skl_cdclk_decimal(unsigned int freq)
5543 {
5544         return (freq - 1000) / 500;
5545 }
5546
5547 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5548 {
5549         unsigned int i;
5550
5551         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5552                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5553
5554                 if (e->freq == freq)
5555                         return e->vco;
5556         }
5557
5558         return 8100;
5559 }
5560
5561 static void
5562 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5563 {
5564         unsigned int min_freq;
5565         u32 val;
5566
5567         /* select the minimum CDCLK before enabling DPLL 0 */
5568         val = I915_READ(CDCLK_CTL);
5569         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5570         val |= CDCLK_FREQ_337_308;
5571
5572         if (required_vco == 8640)
5573                 min_freq = 308570;
5574         else
5575                 min_freq = 337500;
5576
5577         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5578
5579         I915_WRITE(CDCLK_CTL, val);
5580         POSTING_READ(CDCLK_CTL);
5581
5582         /*
5583          * We always enable DPLL0 with the lowest link rate possible, but still
5584          * taking into account the VCO required to operate the eDP panel at the
5585          * desired frequency. The usual DP link rates operate with a VCO of
5586          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5587          * The modeset code is responsible for the selection of the exact link
5588          * rate later on, with the constraint of choosing a frequency that
5589          * works with required_vco.
5590          */
5591         val = I915_READ(DPLL_CTRL1);
5592
5593         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5594                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5595         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5596         if (required_vco == 8640)
5597                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5598                                             SKL_DPLL0);
5599         else
5600                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5601                                             SKL_DPLL0);
5602
5603         I915_WRITE(DPLL_CTRL1, val);
5604         POSTING_READ(DPLL_CTRL1);
5605
5606         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5607
5608         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5609                 DRM_ERROR("DPLL0 not locked\n");
5610 }
5611
5612 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5613 {
5614         int ret;
5615         u32 val;
5616
5617         /* inform PCU we want to change CDCLK */
5618         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5619         mutex_lock(&dev_priv->rps.hw_lock);
5620         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5621         mutex_unlock(&dev_priv->rps.hw_lock);
5622
5623         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5624 }
5625
5626 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5627 {
5628         unsigned int i;
5629
5630         for (i = 0; i < 15; i++) {
5631                 if (skl_cdclk_pcu_ready(dev_priv))
5632                         return true;
5633                 udelay(10);
5634         }
5635
5636         return false;
5637 }
5638
5639 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5640 {
5641         u32 freq_select, pcu_ack;
5642
5643         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5644
5645         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5646                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5647                 return;
5648         }
5649
5650         /* set CDCLK_CTL */
5651         switch(freq) {
5652         case 450000:
5653         case 432000:
5654                 freq_select = CDCLK_FREQ_450_432;
5655                 pcu_ack = 1;
5656                 break;
5657         case 540000:
5658                 freq_select = CDCLK_FREQ_540;
5659                 pcu_ack = 2;
5660                 break;
5661         case 308570:
5662         case 337500:
5663         default:
5664                 freq_select = CDCLK_FREQ_337_308;
5665                 pcu_ack = 0;
5666                 break;
5667         case 617140:
5668         case 675000:
5669                 freq_select = CDCLK_FREQ_675_617;
5670                 pcu_ack = 3;
5671                 break;
5672         }
5673
5674         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5675         POSTING_READ(CDCLK_CTL);
5676
5677         /* inform PCU of the change */
5678         mutex_lock(&dev_priv->rps.hw_lock);
5679         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5680         mutex_unlock(&dev_priv->rps.hw_lock);
5681 }
5682
5683 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5684 {
5685         /* disable DBUF power */
5686         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5687         POSTING_READ(DBUF_CTL);
5688
5689         udelay(10);
5690
5691         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5692                 DRM_ERROR("DBuf power disable timeout\n");
5693
5694         /* disable DPLL0 */
5695         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5696         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5697                 DRM_ERROR("Couldn't disable DPLL0\n");
5698
5699         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5700 }
5701
5702 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5703 {
5704         u32 val;
5705         unsigned int required_vco;
5706
5707         /* enable PCH reset handshake */
5708         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5709         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5710
5711         /* enable PG1 and Misc I/O */
5712         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5713
5714         /* DPLL0 already enabed !? */
5715         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5716                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5717                 return;
5718         }
5719
5720         /* enable DPLL0 */
5721         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5722         skl_dpll0_enable(dev_priv, required_vco);
5723
5724         /* set CDCLK to the frequency the BIOS chose */
5725         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5726
5727         /* enable DBUF power */
5728         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5729         POSTING_READ(DBUF_CTL);
5730
5731         udelay(10);
5732
5733         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5734                 DRM_ERROR("DBuf power enable timeout\n");
5735 }
5736
5737 /* returns HPLL frequency in kHz */
5738 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5739 {
5740         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5741
5742         /* Obtain SKU information */
5743         mutex_lock(&dev_priv->sb_lock);
5744         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5745                 CCK_FUSE_HPLL_FREQ_MASK;
5746         mutex_unlock(&dev_priv->sb_lock);
5747
5748         return vco_freq[hpll_freq] * 1000;
5749 }
5750
5751 static void vlv_update_cdclk(struct drm_device *dev)
5752 {
5753         struct drm_i915_private *dev_priv = dev->dev_private;
5754
5755         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5756         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5757                          dev_priv->cdclk_freq);
5758
5759         /*
5760          * Program the gmbus_freq based on the cdclk frequency.
5761          * BSpec erroneously claims we should aim for 4MHz, but
5762          * in fact 1MHz is the correct frequency.
5763          */
5764         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5765 }
5766
5767 /* Adjust CDclk dividers to allow high res or save power if possible */
5768 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5769 {
5770         struct drm_i915_private *dev_priv = dev->dev_private;
5771         u32 val, cmd;
5772
5773         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5774                                         != dev_priv->cdclk_freq);
5775
5776         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5777                 cmd = 2;
5778         else if (cdclk == 266667)
5779                 cmd = 1;
5780         else
5781                 cmd = 0;
5782
5783         mutex_lock(&dev_priv->rps.hw_lock);
5784         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5785         val &= ~DSPFREQGUAR_MASK;
5786         val |= (cmd << DSPFREQGUAR_SHIFT);
5787         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5788         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5789                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5790                      50)) {
5791                 DRM_ERROR("timed out waiting for CDclk change\n");
5792         }
5793         mutex_unlock(&dev_priv->rps.hw_lock);
5794
5795         mutex_lock(&dev_priv->sb_lock);
5796
5797         if (cdclk == 400000) {
5798                 u32 divider;
5799
5800                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5801
5802                 /* adjust cdclk divider */
5803                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5804                 val &= ~DISPLAY_FREQUENCY_VALUES;
5805                 val |= divider;
5806                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5807
5808                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5809                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5810                              50))
5811                         DRM_ERROR("timed out waiting for CDclk change\n");
5812         }
5813
5814         /* adjust self-refresh exit latency value */
5815         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5816         val &= ~0x7f;
5817
5818         /*
5819          * For high bandwidth configs, we set a higher latency in the bunit
5820          * so that the core display fetch happens in time to avoid underruns.
5821          */
5822         if (cdclk == 400000)
5823                 val |= 4500 / 250; /* 4.5 usec */
5824         else
5825                 val |= 3000 / 250; /* 3.0 usec */
5826         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5827
5828         mutex_unlock(&dev_priv->sb_lock);
5829
5830         vlv_update_cdclk(dev);
5831 }
5832
5833 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5834 {
5835         struct drm_i915_private *dev_priv = dev->dev_private;
5836         u32 val, cmd;
5837
5838         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5839                                                 != dev_priv->cdclk_freq);
5840
5841         switch (cdclk) {
5842         case 333333:
5843         case 320000:
5844         case 266667:
5845         case 200000:
5846                 break;
5847         default:
5848                 MISSING_CASE(cdclk);
5849                 return;
5850         }
5851
5852         /*
5853          * Specs are full of misinformation, but testing on actual
5854          * hardware has shown that we just need to write the desired
5855          * CCK divider into the Punit register.
5856          */
5857         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5858
5859         mutex_lock(&dev_priv->rps.hw_lock);
5860         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5861         val &= ~DSPFREQGUAR_MASK_CHV;
5862         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5863         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5864         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5865                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5866                      50)) {
5867                 DRM_ERROR("timed out waiting for CDclk change\n");
5868         }
5869         mutex_unlock(&dev_priv->rps.hw_lock);
5870
5871         vlv_update_cdclk(dev);
5872 }
5873
5874 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5875                                  int max_pixclk)
5876 {
5877         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5878         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5879
5880         /*
5881          * Really only a few cases to deal with, as only 4 CDclks are supported:
5882          *   200MHz
5883          *   267MHz
5884          *   320/333MHz (depends on HPLL freq)
5885          *   400MHz (VLV only)
5886          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5887          * of the lower bin and adjust if needed.
5888          *
5889          * We seem to get an unstable or solid color picture at 200MHz.
5890          * Not sure what's wrong. For now use 200MHz only when all pipes
5891          * are off.
5892          */
5893         if (!IS_CHERRYVIEW(dev_priv) &&
5894             max_pixclk > freq_320*limit/100)
5895                 return 400000;
5896         else if (max_pixclk > 266667*limit/100)
5897                 return freq_320;
5898         else if (max_pixclk > 0)
5899                 return 266667;
5900         else
5901                 return 200000;
5902 }
5903
5904 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5905                               int max_pixclk)
5906 {
5907         /*
5908          * FIXME:
5909          * - remove the guardband, it's not needed on BXT
5910          * - set 19.2MHz bypass frequency if there are no active pipes
5911          */
5912         if (max_pixclk > 576000*9/10)
5913                 return 624000;
5914         else if (max_pixclk > 384000*9/10)
5915                 return 576000;
5916         else if (max_pixclk > 288000*9/10)
5917                 return 384000;
5918         else if (max_pixclk > 144000*9/10)
5919                 return 288000;
5920         else
5921                 return 144000;
5922 }
5923
5924 /* Compute the max pixel clock for new configuration. Uses atomic state if
5925  * that's non-NULL, look at current state otherwise. */
5926 static int intel_mode_max_pixclk(struct drm_device *dev,
5927                                  struct drm_atomic_state *state)
5928 {
5929         struct intel_crtc *intel_crtc;
5930         struct intel_crtc_state *crtc_state;
5931         int max_pixclk = 0;
5932
5933         for_each_intel_crtc(dev, intel_crtc) {
5934                 if (state)
5935                         crtc_state =
5936                                 intel_atomic_get_crtc_state(state, intel_crtc);
5937                 else
5938                         crtc_state = intel_crtc->config;
5939                 if (IS_ERR(crtc_state))
5940                         return PTR_ERR(crtc_state);
5941
5942                 if (!crtc_state->base.enable)
5943                         continue;
5944
5945                 max_pixclk = max(max_pixclk,
5946                                  crtc_state->base.adjusted_mode.crtc_clock);
5947         }
5948
5949         return max_pixclk;
5950 }
5951
5952 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5953 {
5954         struct drm_i915_private *dev_priv = to_i915(state->dev);
5955         struct drm_crtc *crtc;
5956         struct drm_crtc_state *crtc_state;
5957         int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5958         int cdclk, i;
5959
5960         if (max_pixclk < 0)
5961                 return max_pixclk;
5962
5963         if (IS_VALLEYVIEW(dev_priv))
5964                 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5965         else
5966                 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5967
5968         if (cdclk == dev_priv->cdclk_freq)
5969                 return 0;
5970
5971         /* add all active pipes to the state */
5972         for_each_crtc(state->dev, crtc) {
5973                 if (!crtc->state->enable)
5974                         continue;
5975
5976                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5977                 if (IS_ERR(crtc_state))
5978                         return PTR_ERR(crtc_state);
5979         }
5980
5981         /* disable/enable all currently active pipes while we change cdclk */
5982         for_each_crtc_in_state(state, crtc, crtc_state, i)
5983                 if (crtc_state->enable)
5984                         crtc_state->mode_changed = true;
5985
5986         return 0;
5987 }
5988
5989 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5990 {
5991         unsigned int credits, default_credits;
5992
5993         if (IS_CHERRYVIEW(dev_priv))
5994                 default_credits = PFI_CREDIT(12);
5995         else
5996                 default_credits = PFI_CREDIT(8);
5997
5998         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5999                 /* CHV suggested value is 31 or 63 */
6000                 if (IS_CHERRYVIEW(dev_priv))
6001                         credits = PFI_CREDIT_31;
6002                 else
6003                         credits = PFI_CREDIT(15);
6004         } else {
6005                 credits = default_credits;
6006         }
6007
6008         /*
6009          * WA - write default credits before re-programming
6010          * FIXME: should we also set the resend bit here?
6011          */
6012         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6013                    default_credits);
6014
6015         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6016                    credits | PFI_CREDIT_RESEND);
6017
6018         /*
6019          * FIXME is this guaranteed to clear
6020          * immediately or should we poll for it?
6021          */
6022         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6023 }
6024
6025 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
6026 {
6027         struct drm_device *dev = old_state->dev;
6028         struct drm_i915_private *dev_priv = dev->dev_private;
6029         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
6030         int req_cdclk;
6031
6032         /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6033          * never fail. */
6034         if (WARN_ON(max_pixclk < 0))
6035                 return;
6036
6037         req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6038
6039         if (req_cdclk != dev_priv->cdclk_freq) {
6040                 /*
6041                  * FIXME: We can end up here with all power domains off, yet
6042                  * with a CDCLK frequency other than the minimum. To account
6043                  * for this take the PIPE-A power domain, which covers the HW
6044                  * blocks needed for the following programming. This can be
6045                  * removed once it's guaranteed that we get here either with
6046                  * the minimum CDCLK set, or the required power domains
6047                  * enabled.
6048                  */
6049                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6050
6051                 if (IS_CHERRYVIEW(dev))
6052                         cherryview_set_cdclk(dev, req_cdclk);
6053                 else
6054                         valleyview_set_cdclk(dev, req_cdclk);
6055
6056                 vlv_program_pfi_credits(dev_priv);
6057
6058                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6059         }
6060 }
6061
6062 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6063 {
6064         struct drm_device *dev = crtc->dev;
6065         struct drm_i915_private *dev_priv = to_i915(dev);
6066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6067         struct intel_encoder *encoder;
6068         int pipe = intel_crtc->pipe;
6069         bool is_dsi;
6070
6071         WARN_ON(!crtc->state->enable);
6072
6073         if (intel_crtc->active)
6074                 return;
6075
6076         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6077
6078         if (!is_dsi) {
6079                 if (IS_CHERRYVIEW(dev))
6080                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6081                 else
6082                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6083         }
6084
6085         if (intel_crtc->config->has_dp_encoder)
6086                 intel_dp_set_m_n(intel_crtc, M1_N1);
6087
6088         intel_set_pipe_timings(intel_crtc);
6089
6090         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6091                 struct drm_i915_private *dev_priv = dev->dev_private;
6092
6093                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6094                 I915_WRITE(CHV_CANVAS(pipe), 0);
6095         }
6096
6097         i9xx_set_pipeconf(intel_crtc);
6098
6099         intel_crtc->active = true;
6100
6101         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6102
6103         for_each_encoder_on_crtc(dev, crtc, encoder)
6104                 if (encoder->pre_pll_enable)
6105                         encoder->pre_pll_enable(encoder);
6106
6107         if (!is_dsi) {
6108                 if (IS_CHERRYVIEW(dev))
6109                         chv_enable_pll(intel_crtc, intel_crtc->config);
6110                 else
6111                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6112         }
6113
6114         for_each_encoder_on_crtc(dev, crtc, encoder)
6115                 if (encoder->pre_enable)
6116                         encoder->pre_enable(encoder);
6117
6118         i9xx_pfit_enable(intel_crtc);
6119
6120         intel_crtc_load_lut(crtc);
6121
6122         intel_update_watermarks(crtc);
6123         intel_enable_pipe(intel_crtc);
6124
6125         assert_vblank_disabled(crtc);
6126         drm_crtc_vblank_on(crtc);
6127
6128         for_each_encoder_on_crtc(dev, crtc, encoder)
6129                 encoder->enable(encoder);
6130 }
6131
6132 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6133 {
6134         struct drm_device *dev = crtc->base.dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136
6137         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6138         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6139 }
6140
6141 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6142 {
6143         struct drm_device *dev = crtc->dev;
6144         struct drm_i915_private *dev_priv = to_i915(dev);
6145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6146         struct intel_encoder *encoder;
6147         int pipe = intel_crtc->pipe;
6148
6149         WARN_ON(!crtc->state->enable);
6150
6151         if (intel_crtc->active)
6152                 return;
6153
6154         i9xx_set_pll_dividers(intel_crtc);
6155
6156         if (intel_crtc->config->has_dp_encoder)
6157                 intel_dp_set_m_n(intel_crtc, M1_N1);
6158
6159         intel_set_pipe_timings(intel_crtc);
6160
6161         i9xx_set_pipeconf(intel_crtc);
6162
6163         intel_crtc->active = true;
6164
6165         if (!IS_GEN2(dev))
6166                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6167
6168         for_each_encoder_on_crtc(dev, crtc, encoder)
6169                 if (encoder->pre_enable)
6170                         encoder->pre_enable(encoder);
6171
6172         i9xx_enable_pll(intel_crtc);
6173
6174         i9xx_pfit_enable(intel_crtc);
6175
6176         intel_crtc_load_lut(crtc);
6177
6178         intel_update_watermarks(crtc);
6179         intel_enable_pipe(intel_crtc);
6180
6181         assert_vblank_disabled(crtc);
6182         drm_crtc_vblank_on(crtc);
6183
6184         for_each_encoder_on_crtc(dev, crtc, encoder)
6185                 encoder->enable(encoder);
6186 }
6187
6188 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6189 {
6190         struct drm_device *dev = crtc->base.dev;
6191         struct drm_i915_private *dev_priv = dev->dev_private;
6192
6193         if (!crtc->config->gmch_pfit.control)
6194                 return;
6195
6196         assert_pipe_disabled(dev_priv, crtc->pipe);
6197
6198         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6199                          I915_READ(PFIT_CONTROL));
6200         I915_WRITE(PFIT_CONTROL, 0);
6201 }
6202
6203 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6204 {
6205         struct drm_device *dev = crtc->dev;
6206         struct drm_i915_private *dev_priv = dev->dev_private;
6207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6208         struct intel_encoder *encoder;
6209         int pipe = intel_crtc->pipe;
6210
6211         if (!intel_crtc->active)
6212                 return;
6213
6214         /*
6215          * On gen2 planes are double buffered but the pipe isn't, so we must
6216          * wait for planes to fully turn off before disabling the pipe.
6217          * We also need to wait on all gmch platforms because of the
6218          * self-refresh mode constraint explained above.
6219          */
6220         intel_wait_for_vblank(dev, pipe);
6221
6222         for_each_encoder_on_crtc(dev, crtc, encoder)
6223                 encoder->disable(encoder);
6224
6225         drm_crtc_vblank_off(crtc);
6226         assert_vblank_disabled(crtc);
6227
6228         intel_disable_pipe(intel_crtc);
6229
6230         i9xx_pfit_disable(intel_crtc);
6231
6232         for_each_encoder_on_crtc(dev, crtc, encoder)
6233                 if (encoder->post_disable)
6234                         encoder->post_disable(encoder);
6235
6236         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6237                 if (IS_CHERRYVIEW(dev))
6238                         chv_disable_pll(dev_priv, pipe);
6239                 else if (IS_VALLEYVIEW(dev))
6240                         vlv_disable_pll(dev_priv, pipe);
6241                 else
6242                         i9xx_disable_pll(intel_crtc);
6243         }
6244
6245         if (!IS_GEN2(dev))
6246                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6247
6248         intel_crtc->active = false;
6249         intel_update_watermarks(crtc);
6250
6251         mutex_lock(&dev->struct_mutex);
6252         intel_fbc_update(dev);
6253         mutex_unlock(&dev->struct_mutex);
6254 }
6255
6256 static void i9xx_crtc_off(struct drm_crtc *crtc)
6257 {
6258 }
6259
6260 /* Master function to enable/disable CRTC and corresponding power wells */
6261 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6262 {
6263         struct drm_device *dev = crtc->dev;
6264         struct drm_i915_private *dev_priv = dev->dev_private;
6265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6266         enum intel_display_power_domain domain;
6267         unsigned long domains;
6268
6269         if (enable) {
6270                 if (!intel_crtc->active) {
6271                         domains = get_crtc_power_domains(crtc);
6272                         for_each_power_domain(domain, domains)
6273                                 intel_display_power_get(dev_priv, domain);
6274                         intel_crtc->enabled_power_domains = domains;
6275
6276                         dev_priv->display.crtc_enable(crtc);
6277                         intel_crtc_enable_planes(crtc);
6278                 }
6279         } else {
6280                 if (intel_crtc->active) {
6281                         intel_crtc_disable_planes(crtc);
6282                         dev_priv->display.crtc_disable(crtc);
6283
6284                         domains = intel_crtc->enabled_power_domains;
6285                         for_each_power_domain(domain, domains)
6286                                 intel_display_power_put(dev_priv, domain);
6287                         intel_crtc->enabled_power_domains = 0;
6288                 }
6289         }
6290 }
6291
6292 /**
6293  * Sets the power management mode of the pipe and plane.
6294  */
6295 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6296 {
6297         struct drm_device *dev = crtc->dev;
6298         struct intel_encoder *intel_encoder;
6299         bool enable = false;
6300
6301         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6302                 enable |= intel_encoder->connectors_active;
6303
6304         intel_crtc_control(crtc, enable);
6305
6306         crtc->state->active = enable;
6307 }
6308
6309 static void intel_crtc_disable(struct drm_crtc *crtc)
6310 {
6311         struct drm_device *dev = crtc->dev;
6312         struct drm_connector *connector;
6313         struct drm_i915_private *dev_priv = dev->dev_private;
6314
6315         /* crtc should still be enabled when we disable it. */
6316         WARN_ON(!crtc->state->enable);
6317
6318         intel_crtc_disable_planes(crtc);
6319         dev_priv->display.crtc_disable(crtc);
6320         dev_priv->display.off(crtc);
6321
6322         drm_plane_helper_disable(crtc->primary);
6323
6324         /* Update computed state. */
6325         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6326                 if (!connector->encoder || !connector->encoder->crtc)
6327                         continue;
6328
6329                 if (connector->encoder->crtc != crtc)
6330                         continue;
6331
6332                 connector->dpms = DRM_MODE_DPMS_OFF;
6333                 to_intel_encoder(connector->encoder)->connectors_active = false;
6334         }
6335 }
6336
6337 void intel_encoder_destroy(struct drm_encoder *encoder)
6338 {
6339         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6340
6341         drm_encoder_cleanup(encoder);
6342         kfree(intel_encoder);
6343 }
6344
6345 /* Simple dpms helper for encoders with just one connector, no cloning and only
6346  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6347  * state of the entire output pipe. */
6348 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6349 {
6350         if (mode == DRM_MODE_DPMS_ON) {
6351                 encoder->connectors_active = true;
6352
6353                 intel_crtc_update_dpms(encoder->base.crtc);
6354         } else {
6355                 encoder->connectors_active = false;
6356
6357                 intel_crtc_update_dpms(encoder->base.crtc);
6358         }
6359 }
6360
6361 /* Cross check the actual hw state with our own modeset state tracking (and it's
6362  * internal consistency). */
6363 static void intel_connector_check_state(struct intel_connector *connector)
6364 {
6365         if (connector->get_hw_state(connector)) {
6366                 struct intel_encoder *encoder = connector->encoder;
6367                 struct drm_crtc *crtc;
6368                 bool encoder_enabled;
6369                 enum pipe pipe;
6370
6371                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372                               connector->base.base.id,
6373                               connector->base.name);
6374
6375                 /* there is no real hw state for MST connectors */
6376                 if (connector->mst_port)
6377                         return;
6378
6379                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6380                      "wrong connector dpms state\n");
6381                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6382                      "active connector not linked to encoder\n");
6383
6384                 if (encoder) {
6385                         I915_STATE_WARN(!encoder->connectors_active,
6386                              "encoder->connectors_active not set\n");
6387
6388                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6389                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6390                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6391                                 return;
6392
6393                         crtc = encoder->base.crtc;
6394
6395                         I915_STATE_WARN(!crtc->state->enable,
6396                                         "crtc not enabled\n");
6397                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6398                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6399                              "encoder active on the wrong pipe\n");
6400                 }
6401         }
6402 }
6403
6404 int intel_connector_init(struct intel_connector *connector)
6405 {
6406         struct drm_connector_state *connector_state;
6407
6408         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6409         if (!connector_state)
6410                 return -ENOMEM;
6411
6412         connector->base.state = connector_state;
6413         return 0;
6414 }
6415
6416 struct intel_connector *intel_connector_alloc(void)
6417 {
6418         struct intel_connector *connector;
6419
6420         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6421         if (!connector)
6422                 return NULL;
6423
6424         if (intel_connector_init(connector) < 0) {
6425                 kfree(connector);
6426                 return NULL;
6427         }
6428
6429         return connector;
6430 }
6431
6432 /* Even simpler default implementation, if there's really no special case to
6433  * consider. */
6434 void intel_connector_dpms(struct drm_connector *connector, int mode)
6435 {
6436         /* All the simple cases only support two dpms states. */
6437         if (mode != DRM_MODE_DPMS_ON)
6438                 mode = DRM_MODE_DPMS_OFF;
6439
6440         if (mode == connector->dpms)
6441                 return;
6442
6443         connector->dpms = mode;
6444
6445         /* Only need to change hw state when actually enabled */
6446         if (connector->encoder)
6447                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6448
6449         intel_modeset_check_state(connector->dev);
6450 }
6451
6452 /* Simple connector->get_hw_state implementation for encoders that support only
6453  * one connector and no cloning and hence the encoder state determines the state
6454  * of the connector. */
6455 bool intel_connector_get_hw_state(struct intel_connector *connector)
6456 {
6457         enum pipe pipe = 0;
6458         struct intel_encoder *encoder = connector->encoder;
6459
6460         return encoder->get_hw_state(encoder, &pipe);
6461 }
6462
6463 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6464 {
6465         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6466                 return crtc_state->fdi_lanes;
6467
6468         return 0;
6469 }
6470
6471 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6472                                      struct intel_crtc_state *pipe_config)
6473 {
6474         struct drm_atomic_state *state = pipe_config->base.state;
6475         struct intel_crtc *other_crtc;
6476         struct intel_crtc_state *other_crtc_state;
6477
6478         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6479                       pipe_name(pipe), pipe_config->fdi_lanes);
6480         if (pipe_config->fdi_lanes > 4) {
6481                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6482                               pipe_name(pipe), pipe_config->fdi_lanes);
6483                 return -EINVAL;
6484         }
6485
6486         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6487                 if (pipe_config->fdi_lanes > 2) {
6488                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6489                                       pipe_config->fdi_lanes);
6490                         return -EINVAL;
6491                 } else {
6492                         return 0;
6493                 }
6494         }
6495
6496         if (INTEL_INFO(dev)->num_pipes == 2)
6497                 return 0;
6498
6499         /* Ivybridge 3 pipe is really complicated */
6500         switch (pipe) {
6501         case PIPE_A:
6502                 return 0;
6503         case PIPE_B:
6504                 if (pipe_config->fdi_lanes <= 2)
6505                         return 0;
6506
6507                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6508                 other_crtc_state =
6509                         intel_atomic_get_crtc_state(state, other_crtc);
6510                 if (IS_ERR(other_crtc_state))
6511                         return PTR_ERR(other_crtc_state);
6512
6513                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6514                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6515                                       pipe_name(pipe), pipe_config->fdi_lanes);
6516                         return -EINVAL;
6517                 }
6518                 return 0;
6519         case PIPE_C:
6520                 if (pipe_config->fdi_lanes > 2) {
6521                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6522                                       pipe_name(pipe), pipe_config->fdi_lanes);
6523                         return -EINVAL;
6524                 }
6525
6526                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6527                 other_crtc_state =
6528                         intel_atomic_get_crtc_state(state, other_crtc);
6529                 if (IS_ERR(other_crtc_state))
6530                         return PTR_ERR(other_crtc_state);
6531
6532                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6533                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6534                         return -EINVAL;
6535                 }
6536                 return 0;
6537         default:
6538                 BUG();
6539         }
6540 }
6541
6542 #define RETRY 1
6543 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6544                                        struct intel_crtc_state *pipe_config)
6545 {
6546         struct drm_device *dev = intel_crtc->base.dev;
6547         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6548         int lane, link_bw, fdi_dotclock, ret;
6549         bool needs_recompute = false;
6550
6551 retry:
6552         /* FDI is a binary signal running at ~2.7GHz, encoding
6553          * each output octet as 10 bits. The actual frequency
6554          * is stored as a divider into a 100MHz clock, and the
6555          * mode pixel clock is stored in units of 1KHz.
6556          * Hence the bw of each lane in terms of the mode signal
6557          * is:
6558          */
6559         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6560
6561         fdi_dotclock = adjusted_mode->crtc_clock;
6562
6563         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6564                                            pipe_config->pipe_bpp);
6565
6566         pipe_config->fdi_lanes = lane;
6567
6568         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6569                                link_bw, &pipe_config->fdi_m_n);
6570
6571         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6572                                        intel_crtc->pipe, pipe_config);
6573         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6574                 pipe_config->pipe_bpp -= 2*3;
6575                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6576                               pipe_config->pipe_bpp);
6577                 needs_recompute = true;
6578                 pipe_config->bw_constrained = true;
6579
6580                 goto retry;
6581         }
6582
6583         if (needs_recompute)
6584                 return RETRY;
6585
6586         return ret;
6587 }
6588
6589 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6590                                    struct intel_crtc_state *pipe_config)
6591 {
6592         pipe_config->ips_enabled = i915.enable_ips &&
6593                                    hsw_crtc_supports_ips(crtc) &&
6594                                    pipe_config->pipe_bpp <= 24;
6595 }
6596
6597 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6598                                      struct intel_crtc_state *pipe_config)
6599 {
6600         struct drm_device *dev = crtc->base.dev;
6601         struct drm_i915_private *dev_priv = dev->dev_private;
6602         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6603         int ret;
6604
6605         /* FIXME should check pixel clock limits on all platforms */
6606         if (INTEL_INFO(dev)->gen < 4) {
6607                 int clock_limit =
6608                         dev_priv->display.get_display_clock_speed(dev);
6609
6610                 /*
6611                  * Enable pixel doubling when the dot clock
6612                  * is > 90% of the (display) core speed.
6613                  *
6614                  * GDG double wide on either pipe,
6615                  * otherwise pipe A only.
6616                  */
6617                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6618                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6619                         clock_limit *= 2;
6620                         pipe_config->double_wide = true;
6621                 }
6622
6623                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6624                         return -EINVAL;
6625         }
6626
6627         /*
6628          * Pipe horizontal size must be even in:
6629          * - DVO ganged mode
6630          * - LVDS dual channel mode
6631          * - Double wide pipe
6632          */
6633         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6634              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6635                 pipe_config->pipe_src_w &= ~1;
6636
6637         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6638          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6639          */
6640         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6641                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6642                 return -EINVAL;
6643
6644         if (HAS_IPS(dev))
6645                 hsw_compute_ips_config(crtc, pipe_config);
6646
6647         if (pipe_config->has_pch_encoder)
6648                 return ironlake_fdi_compute_config(crtc, pipe_config);
6649
6650         /* FIXME: remove below call once atomic mode set is place and all crtc
6651          * related checks called from atomic_crtc_check function */
6652         ret = 0;
6653         DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6654                 crtc, pipe_config->base.state);
6655         ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6656
6657         return ret;
6658 }
6659
6660 static int skylake_get_display_clock_speed(struct drm_device *dev)
6661 {
6662         struct drm_i915_private *dev_priv = to_i915(dev);
6663         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6664         uint32_t cdctl = I915_READ(CDCLK_CTL);
6665         uint32_t linkrate;
6666
6667         if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6668                 WARN(1, "LCPLL1 not enabled\n");
6669                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6670         }
6671
6672         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6673                 return 540000;
6674
6675         linkrate = (I915_READ(DPLL_CTRL1) &
6676                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6677
6678         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6679             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6680                 /* vco 8640 */
6681                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6682                 case CDCLK_FREQ_450_432:
6683                         return 432000;
6684                 case CDCLK_FREQ_337_308:
6685                         return 308570;
6686                 case CDCLK_FREQ_675_617:
6687                         return 617140;
6688                 default:
6689                         WARN(1, "Unknown cd freq selection\n");
6690                 }
6691         } else {
6692                 /* vco 8100 */
6693                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6694                 case CDCLK_FREQ_450_432:
6695                         return 450000;
6696                 case CDCLK_FREQ_337_308:
6697                         return 337500;
6698                 case CDCLK_FREQ_675_617:
6699                         return 675000;
6700                 default:
6701                         WARN(1, "Unknown cd freq selection\n");
6702                 }
6703         }
6704
6705         /* error case, do as if DPLL0 isn't enabled */
6706         return 24000;
6707 }
6708
6709 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6710 {
6711         struct drm_i915_private *dev_priv = dev->dev_private;
6712         uint32_t lcpll = I915_READ(LCPLL_CTL);
6713         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6714
6715         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6716                 return 800000;
6717         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6718                 return 450000;
6719         else if (freq == LCPLL_CLK_FREQ_450)
6720                 return 450000;
6721         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6722                 return 540000;
6723         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6724                 return 337500;
6725         else
6726                 return 675000;
6727 }
6728
6729 static int haswell_get_display_clock_speed(struct drm_device *dev)
6730 {
6731         struct drm_i915_private *dev_priv = dev->dev_private;
6732         uint32_t lcpll = I915_READ(LCPLL_CTL);
6733         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6734
6735         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6736                 return 800000;
6737         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6738                 return 450000;
6739         else if (freq == LCPLL_CLK_FREQ_450)
6740                 return 450000;
6741         else if (IS_HSW_ULT(dev))
6742                 return 337500;
6743         else
6744                 return 540000;
6745 }
6746
6747 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6748 {
6749         struct drm_i915_private *dev_priv = dev->dev_private;
6750         u32 val;
6751         int divider;
6752
6753         if (dev_priv->hpll_freq == 0)
6754                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6755
6756         mutex_lock(&dev_priv->sb_lock);
6757         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6758         mutex_unlock(&dev_priv->sb_lock);
6759
6760         divider = val & DISPLAY_FREQUENCY_VALUES;
6761
6762         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6763              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6764              "cdclk change in progress\n");
6765
6766         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6767 }
6768
6769 static int ilk_get_display_clock_speed(struct drm_device *dev)
6770 {
6771         return 450000;
6772 }
6773
6774 static int i945_get_display_clock_speed(struct drm_device *dev)
6775 {
6776         return 400000;
6777 }
6778
6779 static int i915_get_display_clock_speed(struct drm_device *dev)
6780 {
6781         return 333333;
6782 }
6783
6784 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6785 {
6786         return 200000;
6787 }
6788
6789 static int pnv_get_display_clock_speed(struct drm_device *dev)
6790 {
6791         u16 gcfgc = 0;
6792
6793         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6794
6795         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6796         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6797                 return 266667;
6798         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6799                 return 333333;
6800         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6801                 return 444444;
6802         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6803                 return 200000;
6804         default:
6805                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6806         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6807                 return 133333;
6808         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6809                 return 166667;
6810         }
6811 }
6812
6813 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6814 {
6815         u16 gcfgc = 0;
6816
6817         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6818
6819         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6820                 return 133333;
6821         else {
6822                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6823                 case GC_DISPLAY_CLOCK_333_MHZ:
6824                         return 333333;
6825                 default:
6826                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6827                         return 190000;
6828                 }
6829         }
6830 }
6831
6832 static int i865_get_display_clock_speed(struct drm_device *dev)
6833 {
6834         return 266667;
6835 }
6836
6837 static int i855_get_display_clock_speed(struct drm_device *dev)
6838 {
6839         u16 hpllcc = 0;
6840         /* Assume that the hardware is in the high speed state.  This
6841          * should be the default.
6842          */
6843         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6844         case GC_CLOCK_133_200:
6845         case GC_CLOCK_100_200:
6846                 return 200000;
6847         case GC_CLOCK_166_250:
6848                 return 250000;
6849         case GC_CLOCK_100_133:
6850                 return 133333;
6851         }
6852
6853         /* Shouldn't happen */
6854         return 0;
6855 }
6856
6857 static int i830_get_display_clock_speed(struct drm_device *dev)
6858 {
6859         return 133333;
6860 }
6861
6862 static void
6863 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6864 {
6865         while (*num > DATA_LINK_M_N_MASK ||
6866                *den > DATA_LINK_M_N_MASK) {
6867                 *num >>= 1;
6868                 *den >>= 1;
6869         }
6870 }
6871
6872 static void compute_m_n(unsigned int m, unsigned int n,
6873                         uint32_t *ret_m, uint32_t *ret_n)
6874 {
6875         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6876         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6877         intel_reduce_m_n_ratio(ret_m, ret_n);
6878 }
6879
6880 void
6881 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6882                        int pixel_clock, int link_clock,
6883                        struct intel_link_m_n *m_n)
6884 {
6885         m_n->tu = 64;
6886
6887         compute_m_n(bits_per_pixel * pixel_clock,
6888                     link_clock * nlanes * 8,
6889                     &m_n->gmch_m, &m_n->gmch_n);
6890
6891         compute_m_n(pixel_clock, link_clock,
6892                     &m_n->link_m, &m_n->link_n);
6893 }
6894
6895 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6896 {
6897         if (i915.panel_use_ssc >= 0)
6898                 return i915.panel_use_ssc != 0;
6899         return dev_priv->vbt.lvds_use_ssc
6900                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6901 }
6902
6903 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6904                            int num_connectors)
6905 {
6906         struct drm_device *dev = crtc_state->base.crtc->dev;
6907         struct drm_i915_private *dev_priv = dev->dev_private;
6908         int refclk;
6909
6910         WARN_ON(!crtc_state->base.state);
6911
6912         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6913                 refclk = 100000;
6914         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6915             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6916                 refclk = dev_priv->vbt.lvds_ssc_freq;
6917                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6918         } else if (!IS_GEN2(dev)) {
6919                 refclk = 96000;
6920         } else {
6921                 refclk = 48000;
6922         }
6923
6924         return refclk;
6925 }
6926
6927 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6928 {
6929         return (1 << dpll->n) << 16 | dpll->m2;
6930 }
6931
6932 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6933 {
6934         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6935 }
6936
6937 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6938                                      struct intel_crtc_state *crtc_state,
6939                                      intel_clock_t *reduced_clock)
6940 {
6941         struct drm_device *dev = crtc->base.dev;
6942         u32 fp, fp2 = 0;
6943
6944         if (IS_PINEVIEW(dev)) {
6945                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6946                 if (reduced_clock)
6947                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6948         } else {
6949                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6950                 if (reduced_clock)
6951                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6952         }
6953
6954         crtc_state->dpll_hw_state.fp0 = fp;
6955
6956         crtc->lowfreq_avail = false;
6957         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6958             reduced_clock) {
6959                 crtc_state->dpll_hw_state.fp1 = fp2;
6960                 crtc->lowfreq_avail = true;
6961         } else {
6962                 crtc_state->dpll_hw_state.fp1 = fp;
6963         }
6964 }
6965
6966 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6967                 pipe)
6968 {
6969         u32 reg_val;
6970
6971         /*
6972          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6973          * and set it to a reasonable value instead.
6974          */
6975         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6976         reg_val &= 0xffffff00;
6977         reg_val |= 0x00000030;
6978         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6979
6980         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6981         reg_val &= 0x8cffffff;
6982         reg_val = 0x8c000000;
6983         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6984
6985         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6986         reg_val &= 0xffffff00;
6987         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6988
6989         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6990         reg_val &= 0x00ffffff;
6991         reg_val |= 0xb0000000;
6992         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6993 }
6994
6995 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6996                                          struct intel_link_m_n *m_n)
6997 {
6998         struct drm_device *dev = crtc->base.dev;
6999         struct drm_i915_private *dev_priv = dev->dev_private;
7000         int pipe = crtc->pipe;
7001
7002         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7003         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7004         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7005         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7006 }
7007
7008 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7009                                          struct intel_link_m_n *m_n,
7010                                          struct intel_link_m_n *m2_n2)
7011 {
7012         struct drm_device *dev = crtc->base.dev;
7013         struct drm_i915_private *dev_priv = dev->dev_private;
7014         int pipe = crtc->pipe;
7015         enum transcoder transcoder = crtc->config->cpu_transcoder;
7016
7017         if (INTEL_INFO(dev)->gen >= 5) {
7018                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7019                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7020                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7021                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7022                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7023                  * for gen < 8) and if DRRS is supported (to make sure the
7024                  * registers are not unnecessarily accessed).
7025                  */
7026                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7027                         crtc->config->has_drrs) {
7028                         I915_WRITE(PIPE_DATA_M2(transcoder),
7029                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7030                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7031                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7032                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7033                 }
7034         } else {
7035                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7036                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7037                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7038                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7039         }
7040 }
7041
7042 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7043 {
7044         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7045
7046         if (m_n == M1_N1) {
7047                 dp_m_n = &crtc->config->dp_m_n;
7048                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7049         } else if (m_n == M2_N2) {
7050
7051                 /*
7052                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7053                  * needs to be programmed into M1_N1.
7054                  */
7055                 dp_m_n = &crtc->config->dp_m2_n2;
7056         } else {
7057                 DRM_ERROR("Unsupported divider value\n");
7058                 return;
7059         }
7060
7061         if (crtc->config->has_pch_encoder)
7062                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7063         else
7064                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7065 }
7066
7067 static void vlv_update_pll(struct intel_crtc *crtc,
7068                            struct intel_crtc_state *pipe_config)
7069 {
7070         u32 dpll, dpll_md;
7071
7072         /*
7073          * Enable DPIO clock input. We should never disable the reference
7074          * clock for pipe B, since VGA hotplug / manual detection depends
7075          * on it.
7076          */
7077         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7078                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7079         /* We should never disable this, set it here for state tracking */
7080         if (crtc->pipe == PIPE_B)
7081                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7082         dpll |= DPLL_VCO_ENABLE;
7083         pipe_config->dpll_hw_state.dpll = dpll;
7084
7085         dpll_md = (pipe_config->pixel_multiplier - 1)
7086                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7087         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7088 }
7089
7090 static void vlv_prepare_pll(struct intel_crtc *crtc,
7091                             const struct intel_crtc_state *pipe_config)
7092 {
7093         struct drm_device *dev = crtc->base.dev;
7094         struct drm_i915_private *dev_priv = dev->dev_private;
7095         int pipe = crtc->pipe;
7096         u32 mdiv;
7097         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7098         u32 coreclk, reg_val;
7099
7100         mutex_lock(&dev_priv->sb_lock);
7101
7102         bestn = pipe_config->dpll.n;
7103         bestm1 = pipe_config->dpll.m1;
7104         bestm2 = pipe_config->dpll.m2;
7105         bestp1 = pipe_config->dpll.p1;
7106         bestp2 = pipe_config->dpll.p2;
7107
7108         /* See eDP HDMI DPIO driver vbios notes doc */
7109
7110         /* PLL B needs special handling */
7111         if (pipe == PIPE_B)
7112                 vlv_pllb_recal_opamp(dev_priv, pipe);
7113
7114         /* Set up Tx target for periodic Rcomp update */
7115         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7116
7117         /* Disable target IRef on PLL */
7118         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7119         reg_val &= 0x00ffffff;
7120         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7121
7122         /* Disable fast lock */
7123         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7124
7125         /* Set idtafcrecal before PLL is enabled */
7126         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7127         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7128         mdiv |= ((bestn << DPIO_N_SHIFT));
7129         mdiv |= (1 << DPIO_K_SHIFT);
7130
7131         /*
7132          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7133          * but we don't support that).
7134          * Note: don't use the DAC post divider as it seems unstable.
7135          */
7136         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7137         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7138
7139         mdiv |= DPIO_ENABLE_CALIBRATION;
7140         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7141
7142         /* Set HBR and RBR LPF coefficients */
7143         if (pipe_config->port_clock == 162000 ||
7144             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7145             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7146                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7147                                  0x009f0003);
7148         else
7149                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7150                                  0x00d0000f);
7151
7152         if (pipe_config->has_dp_encoder) {
7153                 /* Use SSC source */
7154                 if (pipe == PIPE_A)
7155                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7156                                          0x0df40000);
7157                 else
7158                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7159                                          0x0df70000);
7160         } else { /* HDMI or VGA */
7161                 /* Use bend source */
7162                 if (pipe == PIPE_A)
7163                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7164                                          0x0df70000);
7165                 else
7166                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7167                                          0x0df40000);
7168         }
7169
7170         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7171         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7172         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7173             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7174                 coreclk |= 0x01000000;
7175         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7176
7177         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7178         mutex_unlock(&dev_priv->sb_lock);
7179 }
7180
7181 static void chv_update_pll(struct intel_crtc *crtc,
7182                            struct intel_crtc_state *pipe_config)
7183 {
7184         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7185                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7186                 DPLL_VCO_ENABLE;
7187         if (crtc->pipe != PIPE_A)
7188                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7189
7190         pipe_config->dpll_hw_state.dpll_md =
7191                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7192 }
7193
7194 static void chv_prepare_pll(struct intel_crtc *crtc,
7195                             const struct intel_crtc_state *pipe_config)
7196 {
7197         struct drm_device *dev = crtc->base.dev;
7198         struct drm_i915_private *dev_priv = dev->dev_private;
7199         int pipe = crtc->pipe;
7200         int dpll_reg = DPLL(crtc->pipe);
7201         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7202         u32 loopfilter, tribuf_calcntr;
7203         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7204         u32 dpio_val;
7205         int vco;
7206
7207         bestn = pipe_config->dpll.n;
7208         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7209         bestm1 = pipe_config->dpll.m1;
7210         bestm2 = pipe_config->dpll.m2 >> 22;
7211         bestp1 = pipe_config->dpll.p1;
7212         bestp2 = pipe_config->dpll.p2;
7213         vco = pipe_config->dpll.vco;
7214         dpio_val = 0;
7215         loopfilter = 0;
7216
7217         /*
7218          * Enable Refclk and SSC
7219          */
7220         I915_WRITE(dpll_reg,
7221                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7222
7223         mutex_lock(&dev_priv->sb_lock);
7224
7225         /* p1 and p2 divider */
7226         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7227                         5 << DPIO_CHV_S1_DIV_SHIFT |
7228                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7229                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7230                         1 << DPIO_CHV_K_DIV_SHIFT);
7231
7232         /* Feedback post-divider - m2 */
7233         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7234
7235         /* Feedback refclk divider - n and m1 */
7236         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7237                         DPIO_CHV_M1_DIV_BY_2 |
7238                         1 << DPIO_CHV_N_DIV_SHIFT);
7239
7240         /* M2 fraction division */
7241         if (bestm2_frac)
7242                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7243
7244         /* M2 fraction division enable */
7245         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7246         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7247         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7248         if (bestm2_frac)
7249                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7250         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7251
7252         /* Program digital lock detect threshold */
7253         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7254         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7255                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7256         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7257         if (!bestm2_frac)
7258                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7259         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7260
7261         /* Loop filter */
7262         if (vco == 5400000) {
7263                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7264                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7265                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7266                 tribuf_calcntr = 0x9;
7267         } else if (vco <= 6200000) {
7268                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7269                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7270                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7271                 tribuf_calcntr = 0x9;
7272         } else if (vco <= 6480000) {
7273                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7274                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7275                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7276                 tribuf_calcntr = 0x8;
7277         } else {
7278                 /* Not supported. Apply the same limits as in the max case */
7279                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7280                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7281                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7282                 tribuf_calcntr = 0;
7283         }
7284         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7285
7286         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7287         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7288         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7289         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7290
7291         /* AFC Recal */
7292         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7293                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7294                         DPIO_AFC_RECAL);
7295
7296         mutex_unlock(&dev_priv->sb_lock);
7297 }
7298
7299 /**
7300  * vlv_force_pll_on - forcibly enable just the PLL
7301  * @dev_priv: i915 private structure
7302  * @pipe: pipe PLL to enable
7303  * @dpll: PLL configuration
7304  *
7305  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7306  * in cases where we need the PLL enabled even when @pipe is not going to
7307  * be enabled.
7308  */
7309 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7310                       const struct dpll *dpll)
7311 {
7312         struct intel_crtc *crtc =
7313                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7314         struct intel_crtc_state pipe_config = {
7315                 .base.crtc = &crtc->base,
7316                 .pixel_multiplier = 1,
7317                 .dpll = *dpll,
7318         };
7319
7320         if (IS_CHERRYVIEW(dev)) {
7321                 chv_update_pll(crtc, &pipe_config);
7322                 chv_prepare_pll(crtc, &pipe_config);
7323                 chv_enable_pll(crtc, &pipe_config);
7324         } else {
7325                 vlv_update_pll(crtc, &pipe_config);
7326                 vlv_prepare_pll(crtc, &pipe_config);
7327                 vlv_enable_pll(crtc, &pipe_config);
7328         }
7329 }
7330
7331 /**
7332  * vlv_force_pll_off - forcibly disable just the PLL
7333  * @dev_priv: i915 private structure
7334  * @pipe: pipe PLL to disable
7335  *
7336  * Disable the PLL for @pipe. To be used in cases where we need
7337  * the PLL enabled even when @pipe is not going to be enabled.
7338  */
7339 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7340 {
7341         if (IS_CHERRYVIEW(dev))
7342                 chv_disable_pll(to_i915(dev), pipe);
7343         else
7344                 vlv_disable_pll(to_i915(dev), pipe);
7345 }
7346
7347 static void i9xx_update_pll(struct intel_crtc *crtc,
7348                             struct intel_crtc_state *crtc_state,
7349                             intel_clock_t *reduced_clock,
7350                             int num_connectors)
7351 {
7352         struct drm_device *dev = crtc->base.dev;
7353         struct drm_i915_private *dev_priv = dev->dev_private;
7354         u32 dpll;
7355         bool is_sdvo;
7356         struct dpll *clock = &crtc_state->dpll;
7357
7358         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7359
7360         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7361                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7362
7363         dpll = DPLL_VGA_MODE_DIS;
7364
7365         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7366                 dpll |= DPLLB_MODE_LVDS;
7367         else
7368                 dpll |= DPLLB_MODE_DAC_SERIAL;
7369
7370         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7371                 dpll |= (crtc_state->pixel_multiplier - 1)
7372                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7373         }
7374
7375         if (is_sdvo)
7376                 dpll |= DPLL_SDVO_HIGH_SPEED;
7377
7378         if (crtc_state->has_dp_encoder)
7379                 dpll |= DPLL_SDVO_HIGH_SPEED;
7380
7381         /* compute bitmask from p1 value */
7382         if (IS_PINEVIEW(dev))
7383                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7384         else {
7385                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7386                 if (IS_G4X(dev) && reduced_clock)
7387                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7388         }
7389         switch (clock->p2) {
7390         case 5:
7391                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7392                 break;
7393         case 7:
7394                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7395                 break;
7396         case 10:
7397                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7398                 break;
7399         case 14:
7400                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7401                 break;
7402         }
7403         if (INTEL_INFO(dev)->gen >= 4)
7404                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7405
7406         if (crtc_state->sdvo_tv_clock)
7407                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7408         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7409                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7410                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7411         else
7412                 dpll |= PLL_REF_INPUT_DREFCLK;
7413
7414         dpll |= DPLL_VCO_ENABLE;
7415         crtc_state->dpll_hw_state.dpll = dpll;
7416
7417         if (INTEL_INFO(dev)->gen >= 4) {
7418                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7419                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7420                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7421         }
7422 }
7423
7424 static void i8xx_update_pll(struct intel_crtc *crtc,
7425                             struct intel_crtc_state *crtc_state,
7426                             intel_clock_t *reduced_clock,
7427                             int num_connectors)
7428 {
7429         struct drm_device *dev = crtc->base.dev;
7430         struct drm_i915_private *dev_priv = dev->dev_private;
7431         u32 dpll;
7432         struct dpll *clock = &crtc_state->dpll;
7433
7434         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7435
7436         dpll = DPLL_VGA_MODE_DIS;
7437
7438         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7439                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7440         } else {
7441                 if (clock->p1 == 2)
7442                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7443                 else
7444                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7445                 if (clock->p2 == 4)
7446                         dpll |= PLL_P2_DIVIDE_BY_4;
7447         }
7448
7449         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7450                 dpll |= DPLL_DVO_2X_MODE;
7451
7452         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7453                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7454                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7455         else
7456                 dpll |= PLL_REF_INPUT_DREFCLK;
7457
7458         dpll |= DPLL_VCO_ENABLE;
7459         crtc_state->dpll_hw_state.dpll = dpll;
7460 }
7461
7462 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7463 {
7464         struct drm_device *dev = intel_crtc->base.dev;
7465         struct drm_i915_private *dev_priv = dev->dev_private;
7466         enum pipe pipe = intel_crtc->pipe;
7467         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7468         struct drm_display_mode *adjusted_mode =
7469                 &intel_crtc->config->base.adjusted_mode;
7470         uint32_t crtc_vtotal, crtc_vblank_end;
7471         int vsyncshift = 0;
7472
7473         /* We need to be careful not to changed the adjusted mode, for otherwise
7474          * the hw state checker will get angry at the mismatch. */
7475         crtc_vtotal = adjusted_mode->crtc_vtotal;
7476         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7477
7478         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7479                 /* the chip adds 2 halflines automatically */
7480                 crtc_vtotal -= 1;
7481                 crtc_vblank_end -= 1;
7482
7483                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7484                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7485                 else
7486                         vsyncshift = adjusted_mode->crtc_hsync_start -
7487                                 adjusted_mode->crtc_htotal / 2;
7488                 if (vsyncshift < 0)
7489                         vsyncshift += adjusted_mode->crtc_htotal;
7490         }
7491
7492         if (INTEL_INFO(dev)->gen > 3)
7493                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7494
7495         I915_WRITE(HTOTAL(cpu_transcoder),
7496                    (adjusted_mode->crtc_hdisplay - 1) |
7497                    ((adjusted_mode->crtc_htotal - 1) << 16));
7498         I915_WRITE(HBLANK(cpu_transcoder),
7499                    (adjusted_mode->crtc_hblank_start - 1) |
7500                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7501         I915_WRITE(HSYNC(cpu_transcoder),
7502                    (adjusted_mode->crtc_hsync_start - 1) |
7503                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7504
7505         I915_WRITE(VTOTAL(cpu_transcoder),
7506                    (adjusted_mode->crtc_vdisplay - 1) |
7507                    ((crtc_vtotal - 1) << 16));
7508         I915_WRITE(VBLANK(cpu_transcoder),
7509                    (adjusted_mode->crtc_vblank_start - 1) |
7510                    ((crtc_vblank_end - 1) << 16));
7511         I915_WRITE(VSYNC(cpu_transcoder),
7512                    (adjusted_mode->crtc_vsync_start - 1) |
7513                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7514
7515         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7516          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7517          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7518          * bits. */
7519         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7520             (pipe == PIPE_B || pipe == PIPE_C))
7521                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7522
7523         /* pipesrc controls the size that is scaled from, which should
7524          * always be the user's requested size.
7525          */
7526         I915_WRITE(PIPESRC(pipe),
7527                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7528                    (intel_crtc->config->pipe_src_h - 1));
7529 }
7530
7531 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7532                                    struct intel_crtc_state *pipe_config)
7533 {
7534         struct drm_device *dev = crtc->base.dev;
7535         struct drm_i915_private *dev_priv = dev->dev_private;
7536         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7537         uint32_t tmp;
7538
7539         tmp = I915_READ(HTOTAL(cpu_transcoder));
7540         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7541         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7542         tmp = I915_READ(HBLANK(cpu_transcoder));
7543         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7544         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7545         tmp = I915_READ(HSYNC(cpu_transcoder));
7546         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7547         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7548
7549         tmp = I915_READ(VTOTAL(cpu_transcoder));
7550         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7551         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7552         tmp = I915_READ(VBLANK(cpu_transcoder));
7553         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7554         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7555         tmp = I915_READ(VSYNC(cpu_transcoder));
7556         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7557         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7558
7559         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7560                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7561                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7562                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7563         }
7564
7565         tmp = I915_READ(PIPESRC(crtc->pipe));
7566         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7567         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7568
7569         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7570         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7571 }
7572
7573 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7574                                  struct intel_crtc_state *pipe_config)
7575 {
7576         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7577         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7578         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7579         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7580
7581         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7582         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7583         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7584         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7585
7586         mode->flags = pipe_config->base.adjusted_mode.flags;
7587
7588         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7589         mode->flags |= pipe_config->base.adjusted_mode.flags;
7590 }
7591
7592 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7593 {
7594         struct drm_device *dev = intel_crtc->base.dev;
7595         struct drm_i915_private *dev_priv = dev->dev_private;
7596         uint32_t pipeconf;
7597
7598         pipeconf = 0;
7599
7600         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7601             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7602                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7603
7604         if (intel_crtc->config->double_wide)
7605                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7606
7607         /* only g4x and later have fancy bpc/dither controls */
7608         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7609                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7610                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7611                         pipeconf |= PIPECONF_DITHER_EN |
7612                                     PIPECONF_DITHER_TYPE_SP;
7613
7614                 switch (intel_crtc->config->pipe_bpp) {
7615                 case 18:
7616                         pipeconf |= PIPECONF_6BPC;
7617                         break;
7618                 case 24:
7619                         pipeconf |= PIPECONF_8BPC;
7620                         break;
7621                 case 30:
7622                         pipeconf |= PIPECONF_10BPC;
7623                         break;
7624                 default:
7625                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7626                         BUG();
7627                 }
7628         }
7629
7630         if (HAS_PIPE_CXSR(dev)) {
7631                 if (intel_crtc->lowfreq_avail) {
7632                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7633                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7634                 } else {
7635                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7636                 }
7637         }
7638
7639         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7640                 if (INTEL_INFO(dev)->gen < 4 ||
7641                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7642                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7643                 else
7644                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7645         } else
7646                 pipeconf |= PIPECONF_PROGRESSIVE;
7647
7648         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7649                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7650
7651         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7652         POSTING_READ(PIPECONF(intel_crtc->pipe));
7653 }
7654
7655 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7656                                    struct intel_crtc_state *crtc_state)
7657 {
7658         struct drm_device *dev = crtc->base.dev;
7659         struct drm_i915_private *dev_priv = dev->dev_private;
7660         int refclk, num_connectors = 0;
7661         intel_clock_t clock, reduced_clock;
7662         bool ok, has_reduced_clock = false;
7663         bool is_lvds = false, is_dsi = false;
7664         struct intel_encoder *encoder;
7665         const intel_limit_t *limit;
7666         struct drm_atomic_state *state = crtc_state->base.state;
7667         struct drm_connector *connector;
7668         struct drm_connector_state *connector_state;
7669         int i;
7670
7671         memset(&crtc_state->dpll_hw_state, 0,
7672                sizeof(crtc_state->dpll_hw_state));
7673
7674         for_each_connector_in_state(state, connector, connector_state, i) {
7675                 if (connector_state->crtc != &crtc->base)
7676                         continue;
7677
7678                 encoder = to_intel_encoder(connector_state->best_encoder);
7679
7680                 switch (encoder->type) {
7681                 case INTEL_OUTPUT_LVDS:
7682                         is_lvds = true;
7683                         break;
7684                 case INTEL_OUTPUT_DSI:
7685                         is_dsi = true;
7686                         break;
7687                 default:
7688                         break;
7689                 }
7690
7691                 num_connectors++;
7692         }
7693
7694         if (is_dsi)
7695                 return 0;
7696
7697         if (!crtc_state->clock_set) {
7698                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7699
7700                 /*
7701                  * Returns a set of divisors for the desired target clock with
7702                  * the given refclk, or FALSE.  The returned values represent
7703                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7704                  * 2) / p1 / p2.
7705                  */
7706                 limit = intel_limit(crtc_state, refclk);
7707                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7708                                                  crtc_state->port_clock,
7709                                                  refclk, NULL, &clock);
7710                 if (!ok) {
7711                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7712                         return -EINVAL;
7713                 }
7714
7715                 if (is_lvds && dev_priv->lvds_downclock_avail) {
7716                         /*
7717                          * Ensure we match the reduced clock's P to the target
7718                          * clock.  If the clocks don't match, we can't switch
7719                          * the display clock by using the FP0/FP1. In such case
7720                          * we will disable the LVDS downclock feature.
7721                          */
7722                         has_reduced_clock =
7723                                 dev_priv->display.find_dpll(limit, crtc_state,
7724                                                             dev_priv->lvds_downclock,
7725                                                             refclk, &clock,
7726                                                             &reduced_clock);
7727                 }
7728                 /* Compat-code for transition, will disappear. */
7729                 crtc_state->dpll.n = clock.n;
7730                 crtc_state->dpll.m1 = clock.m1;
7731                 crtc_state->dpll.m2 = clock.m2;
7732                 crtc_state->dpll.p1 = clock.p1;
7733                 crtc_state->dpll.p2 = clock.p2;
7734         }
7735
7736         if (IS_GEN2(dev)) {
7737                 i8xx_update_pll(crtc, crtc_state,
7738                                 has_reduced_clock ? &reduced_clock : NULL,
7739                                 num_connectors);
7740         } else if (IS_CHERRYVIEW(dev)) {
7741                 chv_update_pll(crtc, crtc_state);
7742         } else if (IS_VALLEYVIEW(dev)) {
7743                 vlv_update_pll(crtc, crtc_state);
7744         } else {
7745                 i9xx_update_pll(crtc, crtc_state,
7746                                 has_reduced_clock ? &reduced_clock : NULL,
7747                                 num_connectors);
7748         }
7749
7750         return 0;
7751 }
7752
7753 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7754                                  struct intel_crtc_state *pipe_config)
7755 {
7756         struct drm_device *dev = crtc->base.dev;
7757         struct drm_i915_private *dev_priv = dev->dev_private;
7758         uint32_t tmp;
7759
7760         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7761                 return;
7762
7763         tmp = I915_READ(PFIT_CONTROL);
7764         if (!(tmp & PFIT_ENABLE))
7765                 return;
7766
7767         /* Check whether the pfit is attached to our pipe. */
7768         if (INTEL_INFO(dev)->gen < 4) {
7769                 if (crtc->pipe != PIPE_B)
7770                         return;
7771         } else {
7772                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7773                         return;
7774         }
7775
7776         pipe_config->gmch_pfit.control = tmp;
7777         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7778         if (INTEL_INFO(dev)->gen < 5)
7779                 pipe_config->gmch_pfit.lvds_border_bits =
7780                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7781 }
7782
7783 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7784                                struct intel_crtc_state *pipe_config)
7785 {
7786         struct drm_device *dev = crtc->base.dev;
7787         struct drm_i915_private *dev_priv = dev->dev_private;
7788         int pipe = pipe_config->cpu_transcoder;
7789         intel_clock_t clock;
7790         u32 mdiv;
7791         int refclk = 100000;
7792
7793         /* In case of MIPI DPLL will not even be used */
7794         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7795                 return;
7796
7797         mutex_lock(&dev_priv->sb_lock);
7798         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7799         mutex_unlock(&dev_priv->sb_lock);
7800
7801         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7802         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7803         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7804         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7805         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7806
7807         vlv_clock(refclk, &clock);
7808
7809         /* clock.dot is the fast clock */
7810         pipe_config->port_clock = clock.dot / 5;
7811 }
7812
7813 static void
7814 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7815                               struct intel_initial_plane_config *plane_config)
7816 {
7817         struct drm_device *dev = crtc->base.dev;
7818         struct drm_i915_private *dev_priv = dev->dev_private;
7819         u32 val, base, offset;
7820         int pipe = crtc->pipe, plane = crtc->plane;
7821         int fourcc, pixel_format;
7822         unsigned int aligned_height;
7823         struct drm_framebuffer *fb;
7824         struct intel_framebuffer *intel_fb;
7825
7826         val = I915_READ(DSPCNTR(plane));
7827         if (!(val & DISPLAY_PLANE_ENABLE))
7828                 return;
7829
7830         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7831         if (!intel_fb) {
7832                 DRM_DEBUG_KMS("failed to alloc fb\n");
7833                 return;
7834         }
7835
7836         fb = &intel_fb->base;
7837
7838         if (INTEL_INFO(dev)->gen >= 4) {
7839                 if (val & DISPPLANE_TILED) {
7840                         plane_config->tiling = I915_TILING_X;
7841                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7842                 }
7843         }
7844
7845         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7846         fourcc = i9xx_format_to_fourcc(pixel_format);
7847         fb->pixel_format = fourcc;
7848         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7849
7850         if (INTEL_INFO(dev)->gen >= 4) {
7851                 if (plane_config->tiling)
7852                         offset = I915_READ(DSPTILEOFF(plane));
7853                 else
7854                         offset = I915_READ(DSPLINOFF(plane));
7855                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7856         } else {
7857                 base = I915_READ(DSPADDR(plane));
7858         }
7859         plane_config->base = base;
7860
7861         val = I915_READ(PIPESRC(pipe));
7862         fb->width = ((val >> 16) & 0xfff) + 1;
7863         fb->height = ((val >> 0) & 0xfff) + 1;
7864
7865         val = I915_READ(DSPSTRIDE(pipe));
7866         fb->pitches[0] = val & 0xffffffc0;
7867
7868         aligned_height = intel_fb_align_height(dev, fb->height,
7869                                                fb->pixel_format,
7870                                                fb->modifier[0]);
7871
7872         plane_config->size = fb->pitches[0] * aligned_height;
7873
7874         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7875                       pipe_name(pipe), plane, fb->width, fb->height,
7876                       fb->bits_per_pixel, base, fb->pitches[0],
7877                       plane_config->size);
7878
7879         plane_config->fb = intel_fb;
7880 }
7881
7882 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7883                                struct intel_crtc_state *pipe_config)
7884 {
7885         struct drm_device *dev = crtc->base.dev;
7886         struct drm_i915_private *dev_priv = dev->dev_private;
7887         int pipe = pipe_config->cpu_transcoder;
7888         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7889         intel_clock_t clock;
7890         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7891         int refclk = 100000;
7892
7893         mutex_lock(&dev_priv->sb_lock);
7894         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7895         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7896         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7897         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7898         mutex_unlock(&dev_priv->sb_lock);
7899
7900         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7901         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7902         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7903         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7904         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7905
7906         chv_clock(refclk, &clock);
7907
7908         /* clock.dot is the fast clock */
7909         pipe_config->port_clock = clock.dot / 5;
7910 }
7911
7912 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7913                                  struct intel_crtc_state *pipe_config)
7914 {
7915         struct drm_device *dev = crtc->base.dev;
7916         struct drm_i915_private *dev_priv = dev->dev_private;
7917         uint32_t tmp;
7918
7919         if (!intel_display_power_is_enabled(dev_priv,
7920                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7921                 return false;
7922
7923         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7924         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7925
7926         tmp = I915_READ(PIPECONF(crtc->pipe));
7927         if (!(tmp & PIPECONF_ENABLE))
7928                 return false;
7929
7930         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7931                 switch (tmp & PIPECONF_BPC_MASK) {
7932                 case PIPECONF_6BPC:
7933                         pipe_config->pipe_bpp = 18;
7934                         break;
7935                 case PIPECONF_8BPC:
7936                         pipe_config->pipe_bpp = 24;
7937                         break;
7938                 case PIPECONF_10BPC:
7939                         pipe_config->pipe_bpp = 30;
7940                         break;
7941                 default:
7942                         break;
7943                 }
7944         }
7945
7946         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7947                 pipe_config->limited_color_range = true;
7948
7949         if (INTEL_INFO(dev)->gen < 4)
7950                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7951
7952         intel_get_pipe_timings(crtc, pipe_config);
7953
7954         i9xx_get_pfit_config(crtc, pipe_config);
7955
7956         if (INTEL_INFO(dev)->gen >= 4) {
7957                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7958                 pipe_config->pixel_multiplier =
7959                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7960                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7961                 pipe_config->dpll_hw_state.dpll_md = tmp;
7962         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7963                 tmp = I915_READ(DPLL(crtc->pipe));
7964                 pipe_config->pixel_multiplier =
7965                         ((tmp & SDVO_MULTIPLIER_MASK)
7966                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7967         } else {
7968                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7969                  * port and will be fixed up in the encoder->get_config
7970                  * function. */
7971                 pipe_config->pixel_multiplier = 1;
7972         }
7973         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7974         if (!IS_VALLEYVIEW(dev)) {
7975                 /*
7976                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7977                  * on 830. Filter it out here so that we don't
7978                  * report errors due to that.
7979                  */
7980                 if (IS_I830(dev))
7981                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7982
7983                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7984                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7985         } else {
7986                 /* Mask out read-only status bits. */
7987                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7988                                                      DPLL_PORTC_READY_MASK |
7989                                                      DPLL_PORTB_READY_MASK);
7990         }
7991
7992         if (IS_CHERRYVIEW(dev))
7993                 chv_crtc_clock_get(crtc, pipe_config);
7994         else if (IS_VALLEYVIEW(dev))
7995                 vlv_crtc_clock_get(crtc, pipe_config);
7996         else
7997                 i9xx_crtc_clock_get(crtc, pipe_config);
7998
7999         return true;
8000 }
8001
8002 static void ironlake_init_pch_refclk(struct drm_device *dev)
8003 {
8004         struct drm_i915_private *dev_priv = dev->dev_private;
8005         struct intel_encoder *encoder;
8006         u32 val, final;
8007         bool has_lvds = false;
8008         bool has_cpu_edp = false;
8009         bool has_panel = false;
8010         bool has_ck505 = false;
8011         bool can_ssc = false;
8012
8013         /* We need to take the global config into account */
8014         for_each_intel_encoder(dev, encoder) {
8015                 switch (encoder->type) {
8016                 case INTEL_OUTPUT_LVDS:
8017                         has_panel = true;
8018                         has_lvds = true;
8019                         break;
8020                 case INTEL_OUTPUT_EDP:
8021                         has_panel = true;
8022                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8023                                 has_cpu_edp = true;
8024                         break;
8025                 default:
8026                         break;
8027                 }
8028         }
8029
8030         if (HAS_PCH_IBX(dev)) {
8031                 has_ck505 = dev_priv->vbt.display_clock_mode;
8032                 can_ssc = has_ck505;
8033         } else {
8034                 has_ck505 = false;
8035                 can_ssc = true;
8036         }
8037
8038         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8039                       has_panel, has_lvds, has_ck505);
8040
8041         /* Ironlake: try to setup display ref clock before DPLL
8042          * enabling. This is only under driver's control after
8043          * PCH B stepping, previous chipset stepping should be
8044          * ignoring this setting.
8045          */
8046         val = I915_READ(PCH_DREF_CONTROL);
8047
8048         /* As we must carefully and slowly disable/enable each source in turn,
8049          * compute the final state we want first and check if we need to
8050          * make any changes at all.
8051          */
8052         final = val;
8053         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8054         if (has_ck505)
8055                 final |= DREF_NONSPREAD_CK505_ENABLE;
8056         else
8057                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8058
8059         final &= ~DREF_SSC_SOURCE_MASK;
8060         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8061         final &= ~DREF_SSC1_ENABLE;
8062
8063         if (has_panel) {
8064                 final |= DREF_SSC_SOURCE_ENABLE;
8065
8066                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8067                         final |= DREF_SSC1_ENABLE;
8068
8069                 if (has_cpu_edp) {
8070                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8071                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8072                         else
8073                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8074                 } else
8075                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8076         } else {
8077                 final |= DREF_SSC_SOURCE_DISABLE;
8078                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8079         }
8080
8081         if (final == val)
8082                 return;
8083
8084         /* Always enable nonspread source */
8085         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8086
8087         if (has_ck505)
8088                 val |= DREF_NONSPREAD_CK505_ENABLE;
8089         else
8090                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8091
8092         if (has_panel) {
8093                 val &= ~DREF_SSC_SOURCE_MASK;
8094                 val |= DREF_SSC_SOURCE_ENABLE;
8095
8096                 /* SSC must be turned on before enabling the CPU output  */
8097                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8098                         DRM_DEBUG_KMS("Using SSC on panel\n");
8099                         val |= DREF_SSC1_ENABLE;
8100                 } else
8101                         val &= ~DREF_SSC1_ENABLE;
8102
8103                 /* Get SSC going before enabling the outputs */
8104                 I915_WRITE(PCH_DREF_CONTROL, val);
8105                 POSTING_READ(PCH_DREF_CONTROL);
8106                 udelay(200);
8107
8108                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8109
8110                 /* Enable CPU source on CPU attached eDP */
8111                 if (has_cpu_edp) {
8112                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8113                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8114                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8115                         } else
8116                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8117                 } else
8118                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8119
8120                 I915_WRITE(PCH_DREF_CONTROL, val);
8121                 POSTING_READ(PCH_DREF_CONTROL);
8122                 udelay(200);
8123         } else {
8124                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8125
8126                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8127
8128                 /* Turn off CPU output */
8129                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8130
8131                 I915_WRITE(PCH_DREF_CONTROL, val);
8132                 POSTING_READ(PCH_DREF_CONTROL);
8133                 udelay(200);
8134
8135                 /* Turn off the SSC source */
8136                 val &= ~DREF_SSC_SOURCE_MASK;
8137                 val |= DREF_SSC_SOURCE_DISABLE;
8138
8139                 /* Turn off SSC1 */
8140                 val &= ~DREF_SSC1_ENABLE;
8141
8142                 I915_WRITE(PCH_DREF_CONTROL, val);
8143                 POSTING_READ(PCH_DREF_CONTROL);
8144                 udelay(200);
8145         }
8146
8147         BUG_ON(val != final);
8148 }
8149
8150 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8151 {
8152         uint32_t tmp;
8153
8154         tmp = I915_READ(SOUTH_CHICKEN2);
8155         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8156         I915_WRITE(SOUTH_CHICKEN2, tmp);
8157
8158         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8159                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8160                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8161
8162         tmp = I915_READ(SOUTH_CHICKEN2);
8163         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8164         I915_WRITE(SOUTH_CHICKEN2, tmp);
8165
8166         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8167                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8168                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8169 }
8170
8171 /* WaMPhyProgramming:hsw */
8172 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8173 {
8174         uint32_t tmp;
8175
8176         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8177         tmp &= ~(0xFF << 24);
8178         tmp |= (0x12 << 24);
8179         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8180
8181         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8182         tmp |= (1 << 11);
8183         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8184
8185         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8186         tmp |= (1 << 11);
8187         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8188
8189         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8190         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8191         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8192
8193         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8194         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8195         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8196
8197         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8198         tmp &= ~(7 << 13);
8199         tmp |= (5 << 13);
8200         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8201
8202         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8203         tmp &= ~(7 << 13);
8204         tmp |= (5 << 13);
8205         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8206
8207         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8208         tmp &= ~0xFF;
8209         tmp |= 0x1C;
8210         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8211
8212         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8213         tmp &= ~0xFF;
8214         tmp |= 0x1C;
8215         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8216
8217         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8218         tmp &= ~(0xFF << 16);
8219         tmp |= (0x1C << 16);
8220         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8221
8222         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8223         tmp &= ~(0xFF << 16);
8224         tmp |= (0x1C << 16);
8225         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8226
8227         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8228         tmp |= (1 << 27);
8229         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8230
8231         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8232         tmp |= (1 << 27);
8233         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8234
8235         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8236         tmp &= ~(0xF << 28);
8237         tmp |= (4 << 28);
8238         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8239
8240         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8241         tmp &= ~(0xF << 28);
8242         tmp |= (4 << 28);
8243         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8244 }
8245
8246 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8247  * Programming" based on the parameters passed:
8248  * - Sequence to enable CLKOUT_DP
8249  * - Sequence to enable CLKOUT_DP without spread
8250  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8251  */
8252 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8253                                  bool with_fdi)
8254 {
8255         struct drm_i915_private *dev_priv = dev->dev_private;
8256         uint32_t reg, tmp;
8257
8258         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8259                 with_spread = true;
8260         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8261                  with_fdi, "LP PCH doesn't have FDI\n"))
8262                 with_fdi = false;
8263
8264         mutex_lock(&dev_priv->sb_lock);
8265
8266         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8267         tmp &= ~SBI_SSCCTL_DISABLE;
8268         tmp |= SBI_SSCCTL_PATHALT;
8269         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8270
8271         udelay(24);
8272
8273         if (with_spread) {
8274                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8275                 tmp &= ~SBI_SSCCTL_PATHALT;
8276                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8277
8278                 if (with_fdi) {
8279                         lpt_reset_fdi_mphy(dev_priv);
8280                         lpt_program_fdi_mphy(dev_priv);
8281                 }
8282         }
8283
8284         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8285                SBI_GEN0 : SBI_DBUFF0;
8286         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8287         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8288         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8289
8290         mutex_unlock(&dev_priv->sb_lock);
8291 }
8292
8293 /* Sequence to disable CLKOUT_DP */
8294 static void lpt_disable_clkout_dp(struct drm_device *dev)
8295 {
8296         struct drm_i915_private *dev_priv = dev->dev_private;
8297         uint32_t reg, tmp;
8298
8299         mutex_lock(&dev_priv->sb_lock);
8300
8301         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8302                SBI_GEN0 : SBI_DBUFF0;
8303         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8304         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8305         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8306
8307         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8308         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8309                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8310                         tmp |= SBI_SSCCTL_PATHALT;
8311                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8312                         udelay(32);
8313                 }
8314                 tmp |= SBI_SSCCTL_DISABLE;
8315                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8316         }
8317
8318         mutex_unlock(&dev_priv->sb_lock);
8319 }
8320
8321 static void lpt_init_pch_refclk(struct drm_device *dev)
8322 {
8323         struct intel_encoder *encoder;
8324         bool has_vga = false;
8325
8326         for_each_intel_encoder(dev, encoder) {
8327                 switch (encoder->type) {
8328                 case INTEL_OUTPUT_ANALOG:
8329                         has_vga = true;
8330                         break;
8331                 default:
8332                         break;
8333                 }
8334         }
8335
8336         if (has_vga)
8337                 lpt_enable_clkout_dp(dev, true, true);
8338         else
8339                 lpt_disable_clkout_dp(dev);
8340 }
8341
8342 /*
8343  * Initialize reference clocks when the driver loads
8344  */
8345 void intel_init_pch_refclk(struct drm_device *dev)
8346 {
8347         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8348                 ironlake_init_pch_refclk(dev);
8349         else if (HAS_PCH_LPT(dev))
8350                 lpt_init_pch_refclk(dev);
8351 }
8352
8353 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8354 {
8355         struct drm_device *dev = crtc_state->base.crtc->dev;
8356         struct drm_i915_private *dev_priv = dev->dev_private;
8357         struct drm_atomic_state *state = crtc_state->base.state;
8358         struct drm_connector *connector;
8359         struct drm_connector_state *connector_state;
8360         struct intel_encoder *encoder;
8361         int num_connectors = 0, i;
8362         bool is_lvds = false;
8363
8364         for_each_connector_in_state(state, connector, connector_state, i) {
8365                 if (connector_state->crtc != crtc_state->base.crtc)
8366                         continue;
8367
8368                 encoder = to_intel_encoder(connector_state->best_encoder);
8369
8370                 switch (encoder->type) {
8371                 case INTEL_OUTPUT_LVDS:
8372                         is_lvds = true;
8373                         break;
8374                 default:
8375                         break;
8376                 }
8377                 num_connectors++;
8378         }
8379
8380         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8381                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8382                               dev_priv->vbt.lvds_ssc_freq);
8383                 return dev_priv->vbt.lvds_ssc_freq;
8384         }
8385
8386         return 120000;
8387 }
8388
8389 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8390 {
8391         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8393         int pipe = intel_crtc->pipe;
8394         uint32_t val;
8395
8396         val = 0;
8397
8398         switch (intel_crtc->config->pipe_bpp) {
8399         case 18:
8400                 val |= PIPECONF_6BPC;
8401                 break;
8402         case 24:
8403                 val |= PIPECONF_8BPC;
8404                 break;
8405         case 30:
8406                 val |= PIPECONF_10BPC;
8407                 break;
8408         case 36:
8409                 val |= PIPECONF_12BPC;
8410                 break;
8411         default:
8412                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8413                 BUG();
8414         }
8415
8416         if (intel_crtc->config->dither)
8417                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8418
8419         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8420                 val |= PIPECONF_INTERLACED_ILK;
8421         else
8422                 val |= PIPECONF_PROGRESSIVE;
8423
8424         if (intel_crtc->config->limited_color_range)
8425                 val |= PIPECONF_COLOR_RANGE_SELECT;
8426
8427         I915_WRITE(PIPECONF(pipe), val);
8428         POSTING_READ(PIPECONF(pipe));
8429 }
8430
8431 /*
8432  * Set up the pipe CSC unit.
8433  *
8434  * Currently only full range RGB to limited range RGB conversion
8435  * is supported, but eventually this should handle various
8436  * RGB<->YCbCr scenarios as well.
8437  */
8438 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8439 {
8440         struct drm_device *dev = crtc->dev;
8441         struct drm_i915_private *dev_priv = dev->dev_private;
8442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8443         int pipe = intel_crtc->pipe;
8444         uint16_t coeff = 0x7800; /* 1.0 */
8445
8446         /*
8447          * TODO: Check what kind of values actually come out of the pipe
8448          * with these coeff/postoff values and adjust to get the best
8449          * accuracy. Perhaps we even need to take the bpc value into
8450          * consideration.
8451          */
8452
8453         if (intel_crtc->config->limited_color_range)
8454                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8455
8456         /*
8457          * GY/GU and RY/RU should be the other way around according
8458          * to BSpec, but reality doesn't agree. Just set them up in
8459          * a way that results in the correct picture.
8460          */
8461         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8462         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8463
8464         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8465         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8466
8467         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8468         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8469
8470         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8471         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8472         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8473
8474         if (INTEL_INFO(dev)->gen > 6) {
8475                 uint16_t postoff = 0;
8476
8477                 if (intel_crtc->config->limited_color_range)
8478                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8479
8480                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8481                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8482                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8483
8484                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8485         } else {
8486                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8487
8488                 if (intel_crtc->config->limited_color_range)
8489                         mode |= CSC_BLACK_SCREEN_OFFSET;
8490
8491                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8492         }
8493 }
8494
8495 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8496 {
8497         struct drm_device *dev = crtc->dev;
8498         struct drm_i915_private *dev_priv = dev->dev_private;
8499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8500         enum pipe pipe = intel_crtc->pipe;
8501         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8502         uint32_t val;
8503
8504         val = 0;
8505
8506         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8507                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8508
8509         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8510                 val |= PIPECONF_INTERLACED_ILK;
8511         else
8512                 val |= PIPECONF_PROGRESSIVE;
8513
8514         I915_WRITE(PIPECONF(cpu_transcoder), val);
8515         POSTING_READ(PIPECONF(cpu_transcoder));
8516
8517         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8518         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8519
8520         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8521                 val = 0;
8522
8523                 switch (intel_crtc->config->pipe_bpp) {
8524                 case 18:
8525                         val |= PIPEMISC_DITHER_6_BPC;
8526                         break;
8527                 case 24:
8528                         val |= PIPEMISC_DITHER_8_BPC;
8529                         break;
8530                 case 30:
8531                         val |= PIPEMISC_DITHER_10_BPC;
8532                         break;
8533                 case 36:
8534                         val |= PIPEMISC_DITHER_12_BPC;
8535                         break;
8536                 default:
8537                         /* Case prevented by pipe_config_set_bpp. */
8538                         BUG();
8539                 }
8540
8541                 if (intel_crtc->config->dither)
8542                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8543
8544                 I915_WRITE(PIPEMISC(pipe), val);
8545         }
8546 }
8547
8548 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8549                                     struct intel_crtc_state *crtc_state,
8550                                     intel_clock_t *clock,
8551                                     bool *has_reduced_clock,
8552                                     intel_clock_t *reduced_clock)
8553 {
8554         struct drm_device *dev = crtc->dev;
8555         struct drm_i915_private *dev_priv = dev->dev_private;
8556         int refclk;
8557         const intel_limit_t *limit;
8558         bool ret, is_lvds = false;
8559
8560         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8561
8562         refclk = ironlake_get_refclk(crtc_state);
8563
8564         /*
8565          * Returns a set of divisors for the desired target clock with the given
8566          * refclk, or FALSE.  The returned values represent the clock equation:
8567          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8568          */
8569         limit = intel_limit(crtc_state, refclk);
8570         ret = dev_priv->display.find_dpll(limit, crtc_state,
8571                                           crtc_state->port_clock,
8572                                           refclk, NULL, clock);
8573         if (!ret)
8574                 return false;
8575
8576         if (is_lvds && dev_priv->lvds_downclock_avail) {
8577                 /*
8578                  * Ensure we match the reduced clock's P to the target clock.
8579                  * If the clocks don't match, we can't switch the display clock
8580                  * by using the FP0/FP1. In such case we will disable the LVDS
8581                  * downclock feature.
8582                 */
8583                 *has_reduced_clock =
8584                         dev_priv->display.find_dpll(limit, crtc_state,
8585                                                     dev_priv->lvds_downclock,
8586                                                     refclk, clock,
8587                                                     reduced_clock);
8588         }
8589
8590         return true;
8591 }
8592
8593 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8594 {
8595         /*
8596          * Account for spread spectrum to avoid
8597          * oversubscribing the link. Max center spread
8598          * is 2.5%; use 5% for safety's sake.
8599          */
8600         u32 bps = target_clock * bpp * 21 / 20;
8601         return DIV_ROUND_UP(bps, link_bw * 8);
8602 }
8603
8604 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8605 {
8606         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8607 }
8608
8609 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8610                                       struct intel_crtc_state *crtc_state,
8611                                       u32 *fp,
8612                                       intel_clock_t *reduced_clock, u32 *fp2)
8613 {
8614         struct drm_crtc *crtc = &intel_crtc->base;
8615         struct drm_device *dev = crtc->dev;
8616         struct drm_i915_private *dev_priv = dev->dev_private;
8617         struct drm_atomic_state *state = crtc_state->base.state;
8618         struct drm_connector *connector;
8619         struct drm_connector_state *connector_state;
8620         struct intel_encoder *encoder;
8621         uint32_t dpll;
8622         int factor, num_connectors = 0, i;
8623         bool is_lvds = false, is_sdvo = false;
8624
8625         for_each_connector_in_state(state, connector, connector_state, i) {
8626                 if (connector_state->crtc != crtc_state->base.crtc)
8627                         continue;
8628
8629                 encoder = to_intel_encoder(connector_state->best_encoder);
8630
8631                 switch (encoder->type) {
8632                 case INTEL_OUTPUT_LVDS:
8633                         is_lvds = true;
8634                         break;
8635                 case INTEL_OUTPUT_SDVO:
8636                 case INTEL_OUTPUT_HDMI:
8637                         is_sdvo = true;
8638                         break;
8639                 default:
8640                         break;
8641                 }
8642
8643                 num_connectors++;
8644         }
8645
8646         /* Enable autotuning of the PLL clock (if permissible) */
8647         factor = 21;
8648         if (is_lvds) {
8649                 if ((intel_panel_use_ssc(dev_priv) &&
8650                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8651                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8652                         factor = 25;
8653         } else if (crtc_state->sdvo_tv_clock)
8654                 factor = 20;
8655
8656         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8657                 *fp |= FP_CB_TUNE;
8658
8659         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8660                 *fp2 |= FP_CB_TUNE;
8661
8662         dpll = 0;
8663
8664         if (is_lvds)
8665                 dpll |= DPLLB_MODE_LVDS;
8666         else
8667                 dpll |= DPLLB_MODE_DAC_SERIAL;
8668
8669         dpll |= (crtc_state->pixel_multiplier - 1)
8670                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8671
8672         if (is_sdvo)
8673                 dpll |= DPLL_SDVO_HIGH_SPEED;
8674         if (crtc_state->has_dp_encoder)
8675                 dpll |= DPLL_SDVO_HIGH_SPEED;
8676
8677         /* compute bitmask from p1 value */
8678         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8679         /* also FPA1 */
8680         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8681
8682         switch (crtc_state->dpll.p2) {
8683         case 5:
8684                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8685                 break;
8686         case 7:
8687                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8688                 break;
8689         case 10:
8690                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8691                 break;
8692         case 14:
8693                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8694                 break;
8695         }
8696
8697         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8698                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8699         else
8700                 dpll |= PLL_REF_INPUT_DREFCLK;
8701
8702         return dpll | DPLL_VCO_ENABLE;
8703 }
8704
8705 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8706                                        struct intel_crtc_state *crtc_state)
8707 {
8708         struct drm_device *dev = crtc->base.dev;
8709         intel_clock_t clock, reduced_clock;
8710         u32 dpll = 0, fp = 0, fp2 = 0;
8711         bool ok, has_reduced_clock = false;
8712         bool is_lvds = false;
8713         struct intel_shared_dpll *pll;
8714
8715         memset(&crtc_state->dpll_hw_state, 0,
8716                sizeof(crtc_state->dpll_hw_state));
8717
8718         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8719
8720         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8721              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8722
8723         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8724                                      &has_reduced_clock, &reduced_clock);
8725         if (!ok && !crtc_state->clock_set) {
8726                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8727                 return -EINVAL;
8728         }
8729         /* Compat-code for transition, will disappear. */
8730         if (!crtc_state->clock_set) {
8731                 crtc_state->dpll.n = clock.n;
8732                 crtc_state->dpll.m1 = clock.m1;
8733                 crtc_state->dpll.m2 = clock.m2;
8734                 crtc_state->dpll.p1 = clock.p1;
8735                 crtc_state->dpll.p2 = clock.p2;
8736         }
8737
8738         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8739         if (crtc_state->has_pch_encoder) {
8740                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8741                 if (has_reduced_clock)
8742                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8743
8744                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8745                                              &fp, &reduced_clock,
8746                                              has_reduced_clock ? &fp2 : NULL);
8747
8748                 crtc_state->dpll_hw_state.dpll = dpll;
8749                 crtc_state->dpll_hw_state.fp0 = fp;
8750                 if (has_reduced_clock)
8751                         crtc_state->dpll_hw_state.fp1 = fp2;
8752                 else
8753                         crtc_state->dpll_hw_state.fp1 = fp;
8754
8755                 pll = intel_get_shared_dpll(crtc, crtc_state);
8756                 if (pll == NULL) {
8757                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8758                                          pipe_name(crtc->pipe));
8759                         return -EINVAL;
8760                 }
8761         }
8762
8763         if (is_lvds && has_reduced_clock)
8764                 crtc->lowfreq_avail = true;
8765         else
8766                 crtc->lowfreq_avail = false;
8767
8768         return 0;
8769 }
8770
8771 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8772                                          struct intel_link_m_n *m_n)
8773 {
8774         struct drm_device *dev = crtc->base.dev;
8775         struct drm_i915_private *dev_priv = dev->dev_private;
8776         enum pipe pipe = crtc->pipe;
8777
8778         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8779         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8780         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8781                 & ~TU_SIZE_MASK;
8782         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8783         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8784                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8785 }
8786
8787 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8788                                          enum transcoder transcoder,
8789                                          struct intel_link_m_n *m_n,
8790                                          struct intel_link_m_n *m2_n2)
8791 {
8792         struct drm_device *dev = crtc->base.dev;
8793         struct drm_i915_private *dev_priv = dev->dev_private;
8794         enum pipe pipe = crtc->pipe;
8795
8796         if (INTEL_INFO(dev)->gen >= 5) {
8797                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8798                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8799                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8800                         & ~TU_SIZE_MASK;
8801                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8802                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8803                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8804                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8805                  * gen < 8) and if DRRS is supported (to make sure the
8806                  * registers are not unnecessarily read).
8807                  */
8808                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8809                         crtc->config->has_drrs) {
8810                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8811                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8812                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8813                                         & ~TU_SIZE_MASK;
8814                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8815                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8816                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8817                 }
8818         } else {
8819                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8820                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8821                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8822                         & ~TU_SIZE_MASK;
8823                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8824                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8825                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8826         }
8827 }
8828
8829 void intel_dp_get_m_n(struct intel_crtc *crtc,
8830                       struct intel_crtc_state *pipe_config)
8831 {
8832         if (pipe_config->has_pch_encoder)
8833                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8834         else
8835                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8836                                              &pipe_config->dp_m_n,
8837                                              &pipe_config->dp_m2_n2);
8838 }
8839
8840 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8841                                         struct intel_crtc_state *pipe_config)
8842 {
8843         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8844                                      &pipe_config->fdi_m_n, NULL);
8845 }
8846
8847 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8848                                     struct intel_crtc_state *pipe_config)
8849 {
8850         struct drm_device *dev = crtc->base.dev;
8851         struct drm_i915_private *dev_priv = dev->dev_private;
8852         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8853         uint32_t ps_ctrl = 0;
8854         int id = -1;
8855         int i;
8856
8857         /* find scaler attached to this pipe */
8858         for (i = 0; i < crtc->num_scalers; i++) {
8859                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8860                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8861                         id = i;
8862                         pipe_config->pch_pfit.enabled = true;
8863                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8864                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8865                         break;
8866                 }
8867         }
8868
8869         scaler_state->scaler_id = id;
8870         if (id >= 0) {
8871                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8872         } else {
8873                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8874         }
8875 }
8876
8877 static void
8878 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8879                                  struct intel_initial_plane_config *plane_config)
8880 {
8881         struct drm_device *dev = crtc->base.dev;
8882         struct drm_i915_private *dev_priv = dev->dev_private;
8883         u32 val, base, offset, stride_mult, tiling;
8884         int pipe = crtc->pipe;
8885         int fourcc, pixel_format;
8886         unsigned int aligned_height;
8887         struct drm_framebuffer *fb;
8888         struct intel_framebuffer *intel_fb;
8889
8890         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8891         if (!intel_fb) {
8892                 DRM_DEBUG_KMS("failed to alloc fb\n");
8893                 return;
8894         }
8895
8896         fb = &intel_fb->base;
8897
8898         val = I915_READ(PLANE_CTL(pipe, 0));
8899         if (!(val & PLANE_CTL_ENABLE))
8900                 goto error;
8901
8902         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8903         fourcc = skl_format_to_fourcc(pixel_format,
8904                                       val & PLANE_CTL_ORDER_RGBX,
8905                                       val & PLANE_CTL_ALPHA_MASK);
8906         fb->pixel_format = fourcc;
8907         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8908
8909         tiling = val & PLANE_CTL_TILED_MASK;
8910         switch (tiling) {
8911         case PLANE_CTL_TILED_LINEAR:
8912                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8913                 break;
8914         case PLANE_CTL_TILED_X:
8915                 plane_config->tiling = I915_TILING_X;
8916                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8917                 break;
8918         case PLANE_CTL_TILED_Y:
8919                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8920                 break;
8921         case PLANE_CTL_TILED_YF:
8922                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8923                 break;
8924         default:
8925                 MISSING_CASE(tiling);
8926                 goto error;
8927         }
8928
8929         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8930         plane_config->base = base;
8931
8932         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8933
8934         val = I915_READ(PLANE_SIZE(pipe, 0));
8935         fb->height = ((val >> 16) & 0xfff) + 1;
8936         fb->width = ((val >> 0) & 0x1fff) + 1;
8937
8938         val = I915_READ(PLANE_STRIDE(pipe, 0));
8939         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8940                                                 fb->pixel_format);
8941         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8942
8943         aligned_height = intel_fb_align_height(dev, fb->height,
8944                                                fb->pixel_format,
8945                                                fb->modifier[0]);
8946
8947         plane_config->size = fb->pitches[0] * aligned_height;
8948
8949         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8950                       pipe_name(pipe), fb->width, fb->height,
8951                       fb->bits_per_pixel, base, fb->pitches[0],
8952                       plane_config->size);
8953
8954         plane_config->fb = intel_fb;
8955         return;
8956
8957 error:
8958         kfree(fb);
8959 }
8960
8961 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8962                                      struct intel_crtc_state *pipe_config)
8963 {
8964         struct drm_device *dev = crtc->base.dev;
8965         struct drm_i915_private *dev_priv = dev->dev_private;
8966         uint32_t tmp;
8967
8968         tmp = I915_READ(PF_CTL(crtc->pipe));
8969
8970         if (tmp & PF_ENABLE) {
8971                 pipe_config->pch_pfit.enabled = true;
8972                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8973                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8974
8975                 /* We currently do not free assignements of panel fitters on
8976                  * ivb/hsw (since we don't use the higher upscaling modes which
8977                  * differentiates them) so just WARN about this case for now. */
8978                 if (IS_GEN7(dev)) {
8979                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8980                                 PF_PIPE_SEL_IVB(crtc->pipe));
8981                 }
8982         }
8983 }
8984
8985 static void
8986 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8987                                   struct intel_initial_plane_config *plane_config)
8988 {
8989         struct drm_device *dev = crtc->base.dev;
8990         struct drm_i915_private *dev_priv = dev->dev_private;
8991         u32 val, base, offset;
8992         int pipe = crtc->pipe;
8993         int fourcc, pixel_format;
8994         unsigned int aligned_height;
8995         struct drm_framebuffer *fb;
8996         struct intel_framebuffer *intel_fb;
8997
8998         val = I915_READ(DSPCNTR(pipe));
8999         if (!(val & DISPLAY_PLANE_ENABLE))
9000                 return;
9001
9002         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9003         if (!intel_fb) {
9004                 DRM_DEBUG_KMS("failed to alloc fb\n");
9005                 return;
9006         }
9007
9008         fb = &intel_fb->base;
9009
9010         if (INTEL_INFO(dev)->gen >= 4) {
9011                 if (val & DISPPLANE_TILED) {
9012                         plane_config->tiling = I915_TILING_X;
9013                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9014                 }
9015         }
9016
9017         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9018         fourcc = i9xx_format_to_fourcc(pixel_format);
9019         fb->pixel_format = fourcc;
9020         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9021
9022         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9023         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9024                 offset = I915_READ(DSPOFFSET(pipe));
9025         } else {
9026                 if (plane_config->tiling)
9027                         offset = I915_READ(DSPTILEOFF(pipe));
9028                 else
9029                         offset = I915_READ(DSPLINOFF(pipe));
9030         }
9031         plane_config->base = base;
9032
9033         val = I915_READ(PIPESRC(pipe));
9034         fb->width = ((val >> 16) & 0xfff) + 1;
9035         fb->height = ((val >> 0) & 0xfff) + 1;
9036
9037         val = I915_READ(DSPSTRIDE(pipe));
9038         fb->pitches[0] = val & 0xffffffc0;
9039
9040         aligned_height = intel_fb_align_height(dev, fb->height,
9041                                                fb->pixel_format,
9042                                                fb->modifier[0]);
9043
9044         plane_config->size = fb->pitches[0] * aligned_height;
9045
9046         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9047                       pipe_name(pipe), fb->width, fb->height,
9048                       fb->bits_per_pixel, base, fb->pitches[0],
9049                       plane_config->size);
9050
9051         plane_config->fb = intel_fb;
9052 }
9053
9054 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9055                                      struct intel_crtc_state *pipe_config)
9056 {
9057         struct drm_device *dev = crtc->base.dev;
9058         struct drm_i915_private *dev_priv = dev->dev_private;
9059         uint32_t tmp;
9060
9061         if (!intel_display_power_is_enabled(dev_priv,
9062                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9063                 return false;
9064
9065         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9066         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9067
9068         tmp = I915_READ(PIPECONF(crtc->pipe));
9069         if (!(tmp & PIPECONF_ENABLE))
9070                 return false;
9071
9072         switch (tmp & PIPECONF_BPC_MASK) {
9073         case PIPECONF_6BPC:
9074                 pipe_config->pipe_bpp = 18;
9075                 break;
9076         case PIPECONF_8BPC:
9077                 pipe_config->pipe_bpp = 24;
9078                 break;
9079         case PIPECONF_10BPC:
9080                 pipe_config->pipe_bpp = 30;
9081                 break;
9082         case PIPECONF_12BPC:
9083                 pipe_config->pipe_bpp = 36;
9084                 break;
9085         default:
9086                 break;
9087         }
9088
9089         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9090                 pipe_config->limited_color_range = true;
9091
9092         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9093                 struct intel_shared_dpll *pll;
9094
9095                 pipe_config->has_pch_encoder = true;
9096
9097                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9098                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9099                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9100
9101                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9102
9103                 if (HAS_PCH_IBX(dev_priv->dev)) {
9104                         pipe_config->shared_dpll =
9105                                 (enum intel_dpll_id) crtc->pipe;
9106                 } else {
9107                         tmp = I915_READ(PCH_DPLL_SEL);
9108                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9109                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9110                         else
9111                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9112                 }
9113
9114                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9115
9116                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9117                                            &pipe_config->dpll_hw_state));
9118
9119                 tmp = pipe_config->dpll_hw_state.dpll;
9120                 pipe_config->pixel_multiplier =
9121                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9122                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9123
9124                 ironlake_pch_clock_get(crtc, pipe_config);
9125         } else {
9126                 pipe_config->pixel_multiplier = 1;
9127         }
9128
9129         intel_get_pipe_timings(crtc, pipe_config);
9130
9131         ironlake_get_pfit_config(crtc, pipe_config);
9132
9133         return true;
9134 }
9135
9136 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9137 {
9138         struct drm_device *dev = dev_priv->dev;
9139         struct intel_crtc *crtc;
9140
9141         for_each_intel_crtc(dev, crtc)
9142                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9143                      pipe_name(crtc->pipe));
9144
9145         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9146         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9147         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9148         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9149         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9150         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9151              "CPU PWM1 enabled\n");
9152         if (IS_HASWELL(dev))
9153                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9154                      "CPU PWM2 enabled\n");
9155         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9156              "PCH PWM1 enabled\n");
9157         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9158              "Utility pin enabled\n");
9159         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9160
9161         /*
9162          * In theory we can still leave IRQs enabled, as long as only the HPD
9163          * interrupts remain enabled. We used to check for that, but since it's
9164          * gen-specific and since we only disable LCPLL after we fully disable
9165          * the interrupts, the check below should be enough.
9166          */
9167         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9168 }
9169
9170 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9171 {
9172         struct drm_device *dev = dev_priv->dev;
9173
9174         if (IS_HASWELL(dev))
9175                 return I915_READ(D_COMP_HSW);
9176         else
9177                 return I915_READ(D_COMP_BDW);
9178 }
9179
9180 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9181 {
9182         struct drm_device *dev = dev_priv->dev;
9183
9184         if (IS_HASWELL(dev)) {
9185                 mutex_lock(&dev_priv->rps.hw_lock);
9186                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9187                                             val))
9188                         DRM_ERROR("Failed to write to D_COMP\n");
9189                 mutex_unlock(&dev_priv->rps.hw_lock);
9190         } else {
9191                 I915_WRITE(D_COMP_BDW, val);
9192                 POSTING_READ(D_COMP_BDW);
9193         }
9194 }
9195
9196 /*
9197  * This function implements pieces of two sequences from BSpec:
9198  * - Sequence for display software to disable LCPLL
9199  * - Sequence for display software to allow package C8+
9200  * The steps implemented here are just the steps that actually touch the LCPLL
9201  * register. Callers should take care of disabling all the display engine
9202  * functions, doing the mode unset, fixing interrupts, etc.
9203  */
9204 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9205                               bool switch_to_fclk, bool allow_power_down)
9206 {
9207         uint32_t val;
9208
9209         assert_can_disable_lcpll(dev_priv);
9210
9211         val = I915_READ(LCPLL_CTL);
9212
9213         if (switch_to_fclk) {
9214                 val |= LCPLL_CD_SOURCE_FCLK;
9215                 I915_WRITE(LCPLL_CTL, val);
9216
9217                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9218                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9219                         DRM_ERROR("Switching to FCLK failed\n");
9220
9221                 val = I915_READ(LCPLL_CTL);
9222         }
9223
9224         val |= LCPLL_PLL_DISABLE;
9225         I915_WRITE(LCPLL_CTL, val);
9226         POSTING_READ(LCPLL_CTL);
9227
9228         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9229                 DRM_ERROR("LCPLL still locked\n");
9230
9231         val = hsw_read_dcomp(dev_priv);
9232         val |= D_COMP_COMP_DISABLE;
9233         hsw_write_dcomp(dev_priv, val);
9234         ndelay(100);
9235
9236         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9237                      1))
9238                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9239
9240         if (allow_power_down) {
9241                 val = I915_READ(LCPLL_CTL);
9242                 val |= LCPLL_POWER_DOWN_ALLOW;
9243                 I915_WRITE(LCPLL_CTL, val);
9244                 POSTING_READ(LCPLL_CTL);
9245         }
9246 }
9247
9248 /*
9249  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9250  * source.
9251  */
9252 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9253 {
9254         uint32_t val;
9255
9256         val = I915_READ(LCPLL_CTL);
9257
9258         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9259                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9260                 return;
9261
9262         /*
9263          * Make sure we're not on PC8 state before disabling PC8, otherwise
9264          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9265          */
9266         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9267
9268         if (val & LCPLL_POWER_DOWN_ALLOW) {
9269                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9270                 I915_WRITE(LCPLL_CTL, val);
9271                 POSTING_READ(LCPLL_CTL);
9272         }
9273
9274         val = hsw_read_dcomp(dev_priv);
9275         val |= D_COMP_COMP_FORCE;
9276         val &= ~D_COMP_COMP_DISABLE;
9277         hsw_write_dcomp(dev_priv, val);
9278
9279         val = I915_READ(LCPLL_CTL);
9280         val &= ~LCPLL_PLL_DISABLE;
9281         I915_WRITE(LCPLL_CTL, val);
9282
9283         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9284                 DRM_ERROR("LCPLL not locked yet\n");
9285
9286         if (val & LCPLL_CD_SOURCE_FCLK) {
9287                 val = I915_READ(LCPLL_CTL);
9288                 val &= ~LCPLL_CD_SOURCE_FCLK;
9289                 I915_WRITE(LCPLL_CTL, val);
9290
9291                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9292                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9293                         DRM_ERROR("Switching back to LCPLL failed\n");
9294         }
9295
9296         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9297 }
9298
9299 /*
9300  * Package states C8 and deeper are really deep PC states that can only be
9301  * reached when all the devices on the system allow it, so even if the graphics
9302  * device allows PC8+, it doesn't mean the system will actually get to these
9303  * states. Our driver only allows PC8+ when going into runtime PM.
9304  *
9305  * The requirements for PC8+ are that all the outputs are disabled, the power
9306  * well is disabled and most interrupts are disabled, and these are also
9307  * requirements for runtime PM. When these conditions are met, we manually do
9308  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9309  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9310  * hang the machine.
9311  *
9312  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9313  * the state of some registers, so when we come back from PC8+ we need to
9314  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9315  * need to take care of the registers kept by RC6. Notice that this happens even
9316  * if we don't put the device in PCI D3 state (which is what currently happens
9317  * because of the runtime PM support).
9318  *
9319  * For more, read "Display Sequences for Package C8" on the hardware
9320  * documentation.
9321  */
9322 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9323 {
9324         struct drm_device *dev = dev_priv->dev;
9325         uint32_t val;
9326
9327         DRM_DEBUG_KMS("Enabling package C8+\n");
9328
9329         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9330                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9331                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9332                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9333         }
9334
9335         lpt_disable_clkout_dp(dev);
9336         hsw_disable_lcpll(dev_priv, true, true);
9337 }
9338
9339 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9340 {
9341         struct drm_device *dev = dev_priv->dev;
9342         uint32_t val;
9343
9344         DRM_DEBUG_KMS("Disabling package C8+\n");
9345
9346         hsw_restore_lcpll(dev_priv);
9347         lpt_init_pch_refclk(dev);
9348
9349         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9350                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9351                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9352                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9353         }
9354
9355         intel_prepare_ddi(dev);
9356 }
9357
9358 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9359 {
9360         struct drm_device *dev = old_state->dev;
9361         struct drm_i915_private *dev_priv = dev->dev_private;
9362         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9363         int req_cdclk;
9364
9365         /* see the comment in valleyview_modeset_global_resources */
9366         if (WARN_ON(max_pixclk < 0))
9367                 return;
9368
9369         req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9370
9371         if (req_cdclk != dev_priv->cdclk_freq)
9372                 broxton_set_cdclk(dev, req_cdclk);
9373 }
9374
9375 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9376                                       struct intel_crtc_state *crtc_state)
9377 {
9378         if (!intel_ddi_pll_select(crtc, crtc_state))
9379                 return -EINVAL;
9380
9381         crtc->lowfreq_avail = false;
9382
9383         return 0;
9384 }
9385
9386 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9387                                 enum port port,
9388                                 struct intel_crtc_state *pipe_config)
9389 {
9390         switch (port) {
9391         case PORT_A:
9392                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9393                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9394                 break;
9395         case PORT_B:
9396                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9397                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9398                 break;
9399         case PORT_C:
9400                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9401                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9402                 break;
9403         default:
9404                 DRM_ERROR("Incorrect port type\n");
9405         }
9406 }
9407
9408 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9409                                 enum port port,
9410                                 struct intel_crtc_state *pipe_config)
9411 {
9412         u32 temp, dpll_ctl1;
9413
9414         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9415         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9416
9417         switch (pipe_config->ddi_pll_sel) {
9418         case SKL_DPLL0:
9419                 /*
9420                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9421                  * of the shared DPLL framework and thus needs to be read out
9422                  * separately
9423                  */
9424                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9425                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9426                 break;
9427         case SKL_DPLL1:
9428                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9429                 break;
9430         case SKL_DPLL2:
9431                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9432                 break;
9433         case SKL_DPLL3:
9434                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9435                 break;
9436         }
9437 }
9438
9439 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9440                                 enum port port,
9441                                 struct intel_crtc_state *pipe_config)
9442 {
9443         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9444
9445         switch (pipe_config->ddi_pll_sel) {
9446         case PORT_CLK_SEL_WRPLL1:
9447                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9448                 break;
9449         case PORT_CLK_SEL_WRPLL2:
9450                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9451                 break;
9452         }
9453 }
9454
9455 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9456                                        struct intel_crtc_state *pipe_config)
9457 {
9458         struct drm_device *dev = crtc->base.dev;
9459         struct drm_i915_private *dev_priv = dev->dev_private;
9460         struct intel_shared_dpll *pll;
9461         enum port port;
9462         uint32_t tmp;
9463
9464         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9465
9466         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9467
9468         if (IS_SKYLAKE(dev))
9469                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9470         else if (IS_BROXTON(dev))
9471                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9472         else
9473                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9474
9475         if (pipe_config->shared_dpll >= 0) {
9476                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9477
9478                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9479                                            &pipe_config->dpll_hw_state));
9480         }
9481
9482         /*
9483          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9484          * DDI E. So just check whether this pipe is wired to DDI E and whether
9485          * the PCH transcoder is on.
9486          */
9487         if (INTEL_INFO(dev)->gen < 9 &&
9488             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9489                 pipe_config->has_pch_encoder = true;
9490
9491                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9492                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9493                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9494
9495                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9496         }
9497 }
9498
9499 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9500                                     struct intel_crtc_state *pipe_config)
9501 {
9502         struct drm_device *dev = crtc->base.dev;
9503         struct drm_i915_private *dev_priv = dev->dev_private;
9504         enum intel_display_power_domain pfit_domain;
9505         uint32_t tmp;
9506
9507         if (!intel_display_power_is_enabled(dev_priv,
9508                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9509                 return false;
9510
9511         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9512         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9513
9514         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9515         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9516                 enum pipe trans_edp_pipe;
9517                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9518                 default:
9519                         WARN(1, "unknown pipe linked to edp transcoder\n");
9520                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9521                 case TRANS_DDI_EDP_INPUT_A_ON:
9522                         trans_edp_pipe = PIPE_A;
9523                         break;
9524                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9525                         trans_edp_pipe = PIPE_B;
9526                         break;
9527                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9528                         trans_edp_pipe = PIPE_C;
9529                         break;
9530                 }
9531
9532                 if (trans_edp_pipe == crtc->pipe)
9533                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9534         }
9535
9536         if (!intel_display_power_is_enabled(dev_priv,
9537                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9538                 return false;
9539
9540         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9541         if (!(tmp & PIPECONF_ENABLE))
9542                 return false;
9543
9544         haswell_get_ddi_port_state(crtc, pipe_config);
9545
9546         intel_get_pipe_timings(crtc, pipe_config);
9547
9548         if (INTEL_INFO(dev)->gen >= 9) {
9549                 skl_init_scalers(dev, crtc, pipe_config);
9550         }
9551
9552         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9553
9554         if (INTEL_INFO(dev)->gen >= 9) {
9555                 pipe_config->scaler_state.scaler_id = -1;
9556                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9557         }
9558
9559         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9560                 if (INTEL_INFO(dev)->gen == 9)
9561                         skylake_get_pfit_config(crtc, pipe_config);
9562                 else if (INTEL_INFO(dev)->gen < 9)
9563                         ironlake_get_pfit_config(crtc, pipe_config);
9564                 else
9565                         MISSING_CASE(INTEL_INFO(dev)->gen);
9566         }
9567
9568         if (IS_HASWELL(dev))
9569                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9570                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9571
9572         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9573                 pipe_config->pixel_multiplier =
9574                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9575         } else {
9576                 pipe_config->pixel_multiplier = 1;
9577         }
9578
9579         return true;
9580 }
9581
9582 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9583 {
9584         struct drm_device *dev = crtc->dev;
9585         struct drm_i915_private *dev_priv = dev->dev_private;
9586         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9587         uint32_t cntl = 0, size = 0;
9588
9589         if (base) {
9590                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9591                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9592                 unsigned int stride = roundup_pow_of_two(width) * 4;
9593
9594                 switch (stride) {
9595                 default:
9596                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9597                                   width, stride);
9598                         stride = 256;
9599                         /* fallthrough */
9600                 case 256:
9601                 case 512:
9602                 case 1024:
9603                 case 2048:
9604                         break;
9605                 }
9606
9607                 cntl |= CURSOR_ENABLE |
9608                         CURSOR_GAMMA_ENABLE |
9609                         CURSOR_FORMAT_ARGB |
9610                         CURSOR_STRIDE(stride);
9611
9612                 size = (height << 12) | width;
9613         }
9614
9615         if (intel_crtc->cursor_cntl != 0 &&
9616             (intel_crtc->cursor_base != base ||
9617              intel_crtc->cursor_size != size ||
9618              intel_crtc->cursor_cntl != cntl)) {
9619                 /* On these chipsets we can only modify the base/size/stride
9620                  * whilst the cursor is disabled.
9621                  */
9622                 I915_WRITE(_CURACNTR, 0);
9623                 POSTING_READ(_CURACNTR);
9624                 intel_crtc->cursor_cntl = 0;
9625         }
9626
9627         if (intel_crtc->cursor_base != base) {
9628                 I915_WRITE(_CURABASE, base);
9629                 intel_crtc->cursor_base = base;
9630         }
9631
9632         if (intel_crtc->cursor_size != size) {
9633                 I915_WRITE(CURSIZE, size);
9634                 intel_crtc->cursor_size = size;
9635         }
9636
9637         if (intel_crtc->cursor_cntl != cntl) {
9638                 I915_WRITE(_CURACNTR, cntl);
9639                 POSTING_READ(_CURACNTR);
9640                 intel_crtc->cursor_cntl = cntl;
9641         }
9642 }
9643
9644 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9645 {
9646         struct drm_device *dev = crtc->dev;
9647         struct drm_i915_private *dev_priv = dev->dev_private;
9648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9649         int pipe = intel_crtc->pipe;
9650         uint32_t cntl;
9651
9652         cntl = 0;
9653         if (base) {
9654                 cntl = MCURSOR_GAMMA_ENABLE;
9655                 switch (intel_crtc->base.cursor->state->crtc_w) {
9656                         case 64:
9657                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9658                                 break;
9659                         case 128:
9660                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9661                                 break;
9662                         case 256:
9663                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9664                                 break;
9665                         default:
9666                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9667                                 return;
9668                 }
9669                 cntl |= pipe << 28; /* Connect to correct pipe */
9670
9671                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9672                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9673         }
9674
9675         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9676                 cntl |= CURSOR_ROTATE_180;
9677
9678         if (intel_crtc->cursor_cntl != cntl) {
9679                 I915_WRITE(CURCNTR(pipe), cntl);
9680                 POSTING_READ(CURCNTR(pipe));
9681                 intel_crtc->cursor_cntl = cntl;
9682         }
9683
9684         /* and commit changes on next vblank */
9685         I915_WRITE(CURBASE(pipe), base);
9686         POSTING_READ(CURBASE(pipe));
9687
9688         intel_crtc->cursor_base = base;
9689 }
9690
9691 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9692 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9693                                      bool on)
9694 {
9695         struct drm_device *dev = crtc->dev;
9696         struct drm_i915_private *dev_priv = dev->dev_private;
9697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9698         int pipe = intel_crtc->pipe;
9699         int x = crtc->cursor_x;
9700         int y = crtc->cursor_y;
9701         u32 base = 0, pos = 0;
9702
9703         if (on)
9704                 base = intel_crtc->cursor_addr;
9705
9706         if (x >= intel_crtc->config->pipe_src_w)
9707                 base = 0;
9708
9709         if (y >= intel_crtc->config->pipe_src_h)
9710                 base = 0;
9711
9712         if (x < 0) {
9713                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9714                         base = 0;
9715
9716                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9717                 x = -x;
9718         }
9719         pos |= x << CURSOR_X_SHIFT;
9720
9721         if (y < 0) {
9722                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9723                         base = 0;
9724
9725                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9726                 y = -y;
9727         }
9728         pos |= y << CURSOR_Y_SHIFT;
9729
9730         if (base == 0 && intel_crtc->cursor_base == 0)
9731                 return;
9732
9733         I915_WRITE(CURPOS(pipe), pos);
9734
9735         /* ILK+ do this automagically */
9736         if (HAS_GMCH_DISPLAY(dev) &&
9737             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9738                 base += (intel_crtc->base.cursor->state->crtc_h *
9739                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9740         }
9741
9742         if (IS_845G(dev) || IS_I865G(dev))
9743                 i845_update_cursor(crtc, base);
9744         else
9745                 i9xx_update_cursor(crtc, base);
9746 }
9747
9748 static bool cursor_size_ok(struct drm_device *dev,
9749                            uint32_t width, uint32_t height)
9750 {
9751         if (width == 0 || height == 0)
9752                 return false;
9753
9754         /*
9755          * 845g/865g are special in that they are only limited by
9756          * the width of their cursors, the height is arbitrary up to
9757          * the precision of the register. Everything else requires
9758          * square cursors, limited to a few power-of-two sizes.
9759          */
9760         if (IS_845G(dev) || IS_I865G(dev)) {
9761                 if ((width & 63) != 0)
9762                         return false;
9763
9764                 if (width > (IS_845G(dev) ? 64 : 512))
9765                         return false;
9766
9767                 if (height > 1023)
9768                         return false;
9769         } else {
9770                 switch (width | height) {
9771                 case 256:
9772                 case 128:
9773                         if (IS_GEN2(dev))
9774                                 return false;
9775                 case 64:
9776                         break;
9777                 default:
9778                         return false;
9779                 }
9780         }
9781
9782         return true;
9783 }
9784
9785 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9786                                  u16 *blue, uint32_t start, uint32_t size)
9787 {
9788         int end = (start + size > 256) ? 256 : start + size, i;
9789         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9790
9791         for (i = start; i < end; i++) {
9792                 intel_crtc->lut_r[i] = red[i] >> 8;
9793                 intel_crtc->lut_g[i] = green[i] >> 8;
9794                 intel_crtc->lut_b[i] = blue[i] >> 8;
9795         }
9796
9797         intel_crtc_load_lut(crtc);
9798 }
9799
9800 /* VESA 640x480x72Hz mode to set on the pipe */
9801 static struct drm_display_mode load_detect_mode = {
9802         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9803                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9804 };
9805
9806 struct drm_framebuffer *
9807 __intel_framebuffer_create(struct drm_device *dev,
9808                            struct drm_mode_fb_cmd2 *mode_cmd,
9809                            struct drm_i915_gem_object *obj)
9810 {
9811         struct intel_framebuffer *intel_fb;
9812         int ret;
9813
9814         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9815         if (!intel_fb) {
9816                 drm_gem_object_unreference(&obj->base);
9817                 return ERR_PTR(-ENOMEM);
9818         }
9819
9820         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9821         if (ret)
9822                 goto err;
9823
9824         return &intel_fb->base;
9825 err:
9826         drm_gem_object_unreference(&obj->base);
9827         kfree(intel_fb);
9828
9829         return ERR_PTR(ret);
9830 }
9831
9832 static struct drm_framebuffer *
9833 intel_framebuffer_create(struct drm_device *dev,
9834                          struct drm_mode_fb_cmd2 *mode_cmd,
9835                          struct drm_i915_gem_object *obj)
9836 {
9837         struct drm_framebuffer *fb;
9838         int ret;
9839
9840         ret = i915_mutex_lock_interruptible(dev);
9841         if (ret)
9842                 return ERR_PTR(ret);
9843         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9844         mutex_unlock(&dev->struct_mutex);
9845
9846         return fb;
9847 }
9848
9849 static u32
9850 intel_framebuffer_pitch_for_width(int width, int bpp)
9851 {
9852         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9853         return ALIGN(pitch, 64);
9854 }
9855
9856 static u32
9857 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9858 {
9859         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9860         return PAGE_ALIGN(pitch * mode->vdisplay);
9861 }
9862
9863 static struct drm_framebuffer *
9864 intel_framebuffer_create_for_mode(struct drm_device *dev,
9865                                   struct drm_display_mode *mode,
9866                                   int depth, int bpp)
9867 {
9868         struct drm_i915_gem_object *obj;
9869         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9870
9871         obj = i915_gem_alloc_object(dev,
9872                                     intel_framebuffer_size_for_mode(mode, bpp));
9873         if (obj == NULL)
9874                 return ERR_PTR(-ENOMEM);
9875
9876         mode_cmd.width = mode->hdisplay;
9877         mode_cmd.height = mode->vdisplay;
9878         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9879                                                                 bpp);
9880         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9881
9882         return intel_framebuffer_create(dev, &mode_cmd, obj);
9883 }
9884
9885 static struct drm_framebuffer *
9886 mode_fits_in_fbdev(struct drm_device *dev,
9887                    struct drm_display_mode *mode)
9888 {
9889 #ifdef CONFIG_DRM_I915_FBDEV
9890         struct drm_i915_private *dev_priv = dev->dev_private;
9891         struct drm_i915_gem_object *obj;
9892         struct drm_framebuffer *fb;
9893
9894         if (!dev_priv->fbdev)
9895                 return NULL;
9896
9897         if (!dev_priv->fbdev->fb)
9898                 return NULL;
9899
9900         obj = dev_priv->fbdev->fb->obj;
9901         BUG_ON(!obj);
9902
9903         fb = &dev_priv->fbdev->fb->base;
9904         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9905                                                                fb->bits_per_pixel))
9906                 return NULL;
9907
9908         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9909                 return NULL;
9910
9911         return fb;
9912 #else
9913         return NULL;
9914 #endif
9915 }
9916
9917 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9918                                            struct drm_crtc *crtc,
9919                                            struct drm_display_mode *mode,
9920                                            struct drm_framebuffer *fb,
9921                                            int x, int y)
9922 {
9923         struct drm_plane_state *plane_state;
9924         int hdisplay, vdisplay;
9925         int ret;
9926
9927         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9928         if (IS_ERR(plane_state))
9929                 return PTR_ERR(plane_state);
9930
9931         if (mode)
9932                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9933         else
9934                 hdisplay = vdisplay = 0;
9935
9936         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9937         if (ret)
9938                 return ret;
9939         drm_atomic_set_fb_for_plane(plane_state, fb);
9940         plane_state->crtc_x = 0;
9941         plane_state->crtc_y = 0;
9942         plane_state->crtc_w = hdisplay;
9943         plane_state->crtc_h = vdisplay;
9944         plane_state->src_x = x << 16;
9945         plane_state->src_y = y << 16;
9946         plane_state->src_w = hdisplay << 16;
9947         plane_state->src_h = vdisplay << 16;
9948
9949         return 0;
9950 }
9951
9952 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9953                                 struct drm_display_mode *mode,
9954                                 struct intel_load_detect_pipe *old,
9955                                 struct drm_modeset_acquire_ctx *ctx)
9956 {
9957         struct intel_crtc *intel_crtc;
9958         struct intel_encoder *intel_encoder =
9959                 intel_attached_encoder(connector);
9960         struct drm_crtc *possible_crtc;
9961         struct drm_encoder *encoder = &intel_encoder->base;
9962         struct drm_crtc *crtc = NULL;
9963         struct drm_device *dev = encoder->dev;
9964         struct drm_framebuffer *fb;
9965         struct drm_mode_config *config = &dev->mode_config;
9966         struct drm_atomic_state *state = NULL;
9967         struct drm_connector_state *connector_state;
9968         struct intel_crtc_state *crtc_state;
9969         int ret, i = -1;
9970
9971         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9972                       connector->base.id, connector->name,
9973                       encoder->base.id, encoder->name);
9974
9975 retry:
9976         ret = drm_modeset_lock(&config->connection_mutex, ctx);
9977         if (ret)
9978                 goto fail_unlock;
9979
9980         /*
9981          * Algorithm gets a little messy:
9982          *
9983          *   - if the connector already has an assigned crtc, use it (but make
9984          *     sure it's on first)
9985          *
9986          *   - try to find the first unused crtc that can drive this connector,
9987          *     and use that if we find one
9988          */
9989
9990         /* See if we already have a CRTC for this connector */
9991         if (encoder->crtc) {
9992                 crtc = encoder->crtc;
9993
9994                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9995                 if (ret)
9996                         goto fail_unlock;
9997                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9998                 if (ret)
9999                         goto fail_unlock;
10000
10001                 old->dpms_mode = connector->dpms;
10002                 old->load_detect_temp = false;
10003
10004                 /* Make sure the crtc and connector are running */
10005                 if (connector->dpms != DRM_MODE_DPMS_ON)
10006                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10007
10008                 return true;
10009         }
10010
10011         /* Find an unused one (if possible) */
10012         for_each_crtc(dev, possible_crtc) {
10013                 i++;
10014                 if (!(encoder->possible_crtcs & (1 << i)))
10015                         continue;
10016                 if (possible_crtc->state->enable)
10017                         continue;
10018                 /* This can occur when applying the pipe A quirk on resume. */
10019                 if (to_intel_crtc(possible_crtc)->new_enabled)
10020                         continue;
10021
10022                 crtc = possible_crtc;
10023                 break;
10024         }
10025
10026         /*
10027          * If we didn't find an unused CRTC, don't use any.
10028          */
10029         if (!crtc) {
10030                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10031                 goto fail_unlock;
10032         }
10033
10034         ret = drm_modeset_lock(&crtc->mutex, ctx);
10035         if (ret)
10036                 goto fail_unlock;
10037         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10038         if (ret)
10039                 goto fail_unlock;
10040         intel_encoder->new_crtc = to_intel_crtc(crtc);
10041         to_intel_connector(connector)->new_encoder = intel_encoder;
10042
10043         intel_crtc = to_intel_crtc(crtc);
10044         intel_crtc->new_enabled = true;
10045         old->dpms_mode = connector->dpms;
10046         old->load_detect_temp = true;
10047         old->release_fb = NULL;
10048
10049         state = drm_atomic_state_alloc(dev);
10050         if (!state)
10051                 return false;
10052
10053         state->acquire_ctx = ctx;
10054
10055         connector_state = drm_atomic_get_connector_state(state, connector);
10056         if (IS_ERR(connector_state)) {
10057                 ret = PTR_ERR(connector_state);
10058                 goto fail;
10059         }
10060
10061         connector_state->crtc = crtc;
10062         connector_state->best_encoder = &intel_encoder->base;
10063
10064         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10065         if (IS_ERR(crtc_state)) {
10066                 ret = PTR_ERR(crtc_state);
10067                 goto fail;
10068         }
10069
10070         crtc_state->base.active = crtc_state->base.enable = true;
10071
10072         if (!mode)
10073                 mode = &load_detect_mode;
10074
10075         /* We need a framebuffer large enough to accommodate all accesses
10076          * that the plane may generate whilst we perform load detection.
10077          * We can not rely on the fbcon either being present (we get called
10078          * during its initialisation to detect all boot displays, or it may
10079          * not even exist) or that it is large enough to satisfy the
10080          * requested mode.
10081          */
10082         fb = mode_fits_in_fbdev(dev, mode);
10083         if (fb == NULL) {
10084                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10085                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10086                 old->release_fb = fb;
10087         } else
10088                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10089         if (IS_ERR(fb)) {
10090                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10091                 goto fail;
10092         }
10093
10094         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10095         if (ret)
10096                 goto fail;
10097
10098         drm_mode_copy(&crtc_state->base.mode, mode);
10099
10100         if (intel_set_mode(crtc, state, true)) {
10101                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10102                 if (old->release_fb)
10103                         old->release_fb->funcs->destroy(old->release_fb);
10104                 goto fail;
10105         }
10106         crtc->primary->crtc = crtc;
10107
10108         /* let the connector get through one full cycle before testing */
10109         intel_wait_for_vblank(dev, intel_crtc->pipe);
10110         return true;
10111
10112  fail:
10113         intel_crtc->new_enabled = crtc->state->enable;
10114 fail_unlock:
10115         drm_atomic_state_free(state);
10116         state = NULL;
10117
10118         if (ret == -EDEADLK) {
10119                 drm_modeset_backoff(ctx);
10120                 goto retry;
10121         }
10122
10123         return false;
10124 }
10125
10126 void intel_release_load_detect_pipe(struct drm_connector *connector,
10127                                     struct intel_load_detect_pipe *old,
10128                                     struct drm_modeset_acquire_ctx *ctx)
10129 {
10130         struct drm_device *dev = connector->dev;
10131         struct intel_encoder *intel_encoder =
10132                 intel_attached_encoder(connector);
10133         struct drm_encoder *encoder = &intel_encoder->base;
10134         struct drm_crtc *crtc = encoder->crtc;
10135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10136         struct drm_atomic_state *state;
10137         struct drm_connector_state *connector_state;
10138         struct intel_crtc_state *crtc_state;
10139         int ret;
10140
10141         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10142                       connector->base.id, connector->name,
10143                       encoder->base.id, encoder->name);
10144
10145         if (old->load_detect_temp) {
10146                 state = drm_atomic_state_alloc(dev);
10147                 if (!state)
10148                         goto fail;
10149
10150                 state->acquire_ctx = ctx;
10151
10152                 connector_state = drm_atomic_get_connector_state(state, connector);
10153                 if (IS_ERR(connector_state))
10154                         goto fail;
10155
10156                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10157                 if (IS_ERR(crtc_state))
10158                         goto fail;
10159
10160                 to_intel_connector(connector)->new_encoder = NULL;
10161                 intel_encoder->new_crtc = NULL;
10162                 intel_crtc->new_enabled = false;
10163
10164                 connector_state->best_encoder = NULL;
10165                 connector_state->crtc = NULL;
10166
10167                 crtc_state->base.enable = crtc_state->base.active = false;
10168
10169                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10170                                                       0, 0);
10171                 if (ret)
10172                         goto fail;
10173
10174                 ret = intel_set_mode(crtc, state, true);
10175                 if (ret)
10176                         goto fail;
10177
10178                 if (old->release_fb) {
10179                         drm_framebuffer_unregister_private(old->release_fb);
10180                         drm_framebuffer_unreference(old->release_fb);
10181                 }
10182
10183                 return;
10184         }
10185
10186         /* Switch crtc and encoder back off if necessary */
10187         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10188                 connector->funcs->dpms(connector, old->dpms_mode);
10189
10190         return;
10191 fail:
10192         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10193         drm_atomic_state_free(state);
10194 }
10195
10196 static int i9xx_pll_refclk(struct drm_device *dev,
10197                            const struct intel_crtc_state *pipe_config)
10198 {
10199         struct drm_i915_private *dev_priv = dev->dev_private;
10200         u32 dpll = pipe_config->dpll_hw_state.dpll;
10201
10202         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10203                 return dev_priv->vbt.lvds_ssc_freq;
10204         else if (HAS_PCH_SPLIT(dev))
10205                 return 120000;
10206         else if (!IS_GEN2(dev))
10207                 return 96000;
10208         else
10209                 return 48000;
10210 }
10211
10212 /* Returns the clock of the currently programmed mode of the given pipe. */
10213 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10214                                 struct intel_crtc_state *pipe_config)
10215 {
10216         struct drm_device *dev = crtc->base.dev;
10217         struct drm_i915_private *dev_priv = dev->dev_private;
10218         int pipe = pipe_config->cpu_transcoder;
10219         u32 dpll = pipe_config->dpll_hw_state.dpll;
10220         u32 fp;
10221         intel_clock_t clock;
10222         int refclk = i9xx_pll_refclk(dev, pipe_config);
10223
10224         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10225                 fp = pipe_config->dpll_hw_state.fp0;
10226         else
10227                 fp = pipe_config->dpll_hw_state.fp1;
10228
10229         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10230         if (IS_PINEVIEW(dev)) {
10231                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10232                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10233         } else {
10234                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10235                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10236         }
10237
10238         if (!IS_GEN2(dev)) {
10239                 if (IS_PINEVIEW(dev))
10240                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10241                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10242                 else
10243                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10244                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10245
10246                 switch (dpll & DPLL_MODE_MASK) {
10247                 case DPLLB_MODE_DAC_SERIAL:
10248                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10249                                 5 : 10;
10250                         break;
10251                 case DPLLB_MODE_LVDS:
10252                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10253                                 7 : 14;
10254                         break;
10255                 default:
10256                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10257                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10258                         return;
10259                 }
10260
10261                 if (IS_PINEVIEW(dev))
10262                         pineview_clock(refclk, &clock);
10263                 else
10264                         i9xx_clock(refclk, &clock);
10265         } else {
10266                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10267                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10268
10269                 if (is_lvds) {
10270                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10271                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10272
10273                         if (lvds & LVDS_CLKB_POWER_UP)
10274                                 clock.p2 = 7;
10275                         else
10276                                 clock.p2 = 14;
10277                 } else {
10278                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10279                                 clock.p1 = 2;
10280                         else {
10281                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10282                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10283                         }
10284                         if (dpll & PLL_P2_DIVIDE_BY_4)
10285                                 clock.p2 = 4;
10286                         else
10287                                 clock.p2 = 2;
10288                 }
10289
10290                 i9xx_clock(refclk, &clock);
10291         }
10292
10293         /*
10294          * This value includes pixel_multiplier. We will use
10295          * port_clock to compute adjusted_mode.crtc_clock in the
10296          * encoder's get_config() function.
10297          */
10298         pipe_config->port_clock = clock.dot;
10299 }
10300
10301 int intel_dotclock_calculate(int link_freq,
10302                              const struct intel_link_m_n *m_n)
10303 {
10304         /*
10305          * The calculation for the data clock is:
10306          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10307          * But we want to avoid losing precison if possible, so:
10308          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10309          *
10310          * and the link clock is simpler:
10311          * link_clock = (m * link_clock) / n
10312          */
10313
10314         if (!m_n->link_n)
10315                 return 0;
10316
10317         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10318 }
10319
10320 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10321                                    struct intel_crtc_state *pipe_config)
10322 {
10323         struct drm_device *dev = crtc->base.dev;
10324
10325         /* read out port_clock from the DPLL */
10326         i9xx_crtc_clock_get(crtc, pipe_config);
10327
10328         /*
10329          * This value does not include pixel_multiplier.
10330          * We will check that port_clock and adjusted_mode.crtc_clock
10331          * agree once we know their relationship in the encoder's
10332          * get_config() function.
10333          */
10334         pipe_config->base.adjusted_mode.crtc_clock =
10335                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10336                                          &pipe_config->fdi_m_n);
10337 }
10338
10339 /** Returns the currently programmed mode of the given pipe. */
10340 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10341                                              struct drm_crtc *crtc)
10342 {
10343         struct drm_i915_private *dev_priv = dev->dev_private;
10344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10345         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10346         struct drm_display_mode *mode;
10347         struct intel_crtc_state pipe_config;
10348         int htot = I915_READ(HTOTAL(cpu_transcoder));
10349         int hsync = I915_READ(HSYNC(cpu_transcoder));
10350         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10351         int vsync = I915_READ(VSYNC(cpu_transcoder));
10352         enum pipe pipe = intel_crtc->pipe;
10353
10354         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10355         if (!mode)
10356                 return NULL;
10357
10358         /*
10359          * Construct a pipe_config sufficient for getting the clock info
10360          * back out of crtc_clock_get.
10361          *
10362          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10363          * to use a real value here instead.
10364          */
10365         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10366         pipe_config.pixel_multiplier = 1;
10367         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10368         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10369         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10370         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10371
10372         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10373         mode->hdisplay = (htot & 0xffff) + 1;
10374         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10375         mode->hsync_start = (hsync & 0xffff) + 1;
10376         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10377         mode->vdisplay = (vtot & 0xffff) + 1;
10378         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10379         mode->vsync_start = (vsync & 0xffff) + 1;
10380         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10381
10382         drm_mode_set_name(mode);
10383
10384         return mode;
10385 }
10386
10387 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10388 {
10389         struct drm_device *dev = crtc->dev;
10390         struct drm_i915_private *dev_priv = dev->dev_private;
10391         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10392
10393         if (!HAS_GMCH_DISPLAY(dev))
10394                 return;
10395
10396         if (!dev_priv->lvds_downclock_avail)
10397                 return;
10398
10399         /*
10400          * Since this is called by a timer, we should never get here in
10401          * the manual case.
10402          */
10403         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10404                 int pipe = intel_crtc->pipe;
10405                 int dpll_reg = DPLL(pipe);
10406                 int dpll;
10407
10408                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10409
10410                 assert_panel_unlocked(dev_priv, pipe);
10411
10412                 dpll = I915_READ(dpll_reg);
10413                 dpll |= DISPLAY_RATE_SELECT_FPA1;
10414                 I915_WRITE(dpll_reg, dpll);
10415                 intel_wait_for_vblank(dev, pipe);
10416                 dpll = I915_READ(dpll_reg);
10417                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10418                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10419         }
10420
10421 }
10422
10423 void intel_mark_busy(struct drm_device *dev)
10424 {
10425         struct drm_i915_private *dev_priv = dev->dev_private;
10426
10427         if (dev_priv->mm.busy)
10428                 return;
10429
10430         intel_runtime_pm_get(dev_priv);
10431         i915_update_gfx_val(dev_priv);
10432         if (INTEL_INFO(dev)->gen >= 6)
10433                 gen6_rps_busy(dev_priv);
10434         dev_priv->mm.busy = true;
10435 }
10436
10437 void intel_mark_idle(struct drm_device *dev)
10438 {
10439         struct drm_i915_private *dev_priv = dev->dev_private;
10440         struct drm_crtc *crtc;
10441
10442         if (!dev_priv->mm.busy)
10443                 return;
10444
10445         dev_priv->mm.busy = false;
10446
10447         for_each_crtc(dev, crtc) {
10448                 if (!crtc->primary->fb)
10449                         continue;
10450
10451                 intel_decrease_pllclock(crtc);
10452         }
10453
10454         if (INTEL_INFO(dev)->gen >= 6)
10455                 gen6_rps_idle(dev->dev_private);
10456
10457         intel_runtime_pm_put(dev_priv);
10458 }
10459
10460 static void intel_crtc_destroy(struct drm_crtc *crtc)
10461 {
10462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10463         struct drm_device *dev = crtc->dev;
10464         struct intel_unpin_work *work;
10465
10466         spin_lock_irq(&dev->event_lock);
10467         work = intel_crtc->unpin_work;
10468         intel_crtc->unpin_work = NULL;
10469         spin_unlock_irq(&dev->event_lock);
10470
10471         if (work) {
10472                 cancel_work_sync(&work->work);
10473                 kfree(work);
10474         }
10475
10476         drm_crtc_cleanup(crtc);
10477
10478         kfree(intel_crtc);
10479 }
10480
10481 static void intel_unpin_work_fn(struct work_struct *__work)
10482 {
10483         struct intel_unpin_work *work =
10484                 container_of(__work, struct intel_unpin_work, work);
10485         struct drm_device *dev = work->crtc->dev;
10486         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10487
10488         mutex_lock(&dev->struct_mutex);
10489         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10490         drm_gem_object_unreference(&work->pending_flip_obj->base);
10491
10492         intel_fbc_update(dev);
10493
10494         if (work->flip_queued_req)
10495                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10496         mutex_unlock(&dev->struct_mutex);
10497
10498         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10499         drm_framebuffer_unreference(work->old_fb);
10500
10501         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10502         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10503
10504         kfree(work);
10505 }
10506
10507 static void do_intel_finish_page_flip(struct drm_device *dev,
10508                                       struct drm_crtc *crtc)
10509 {
10510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10511         struct intel_unpin_work *work;
10512         unsigned long flags;
10513
10514         /* Ignore early vblank irqs */
10515         if (intel_crtc == NULL)
10516                 return;
10517
10518         /*
10519          * This is called both by irq handlers and the reset code (to complete
10520          * lost pageflips) so needs the full irqsave spinlocks.
10521          */
10522         spin_lock_irqsave(&dev->event_lock, flags);
10523         work = intel_crtc->unpin_work;
10524
10525         /* Ensure we don't miss a work->pending update ... */
10526         smp_rmb();
10527
10528         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10529                 spin_unlock_irqrestore(&dev->event_lock, flags);
10530                 return;
10531         }
10532
10533         page_flip_completed(intel_crtc);
10534
10535         spin_unlock_irqrestore(&dev->event_lock, flags);
10536 }
10537
10538 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10539 {
10540         struct drm_i915_private *dev_priv = dev->dev_private;
10541         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10542
10543         do_intel_finish_page_flip(dev, crtc);
10544 }
10545
10546 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10547 {
10548         struct drm_i915_private *dev_priv = dev->dev_private;
10549         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10550
10551         do_intel_finish_page_flip(dev, crtc);
10552 }
10553
10554 /* Is 'a' after or equal to 'b'? */
10555 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10556 {
10557         return !((a - b) & 0x80000000);
10558 }
10559
10560 static bool page_flip_finished(struct intel_crtc *crtc)
10561 {
10562         struct drm_device *dev = crtc->base.dev;
10563         struct drm_i915_private *dev_priv = dev->dev_private;
10564
10565         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10566             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10567                 return true;
10568
10569         /*
10570          * The relevant registers doen't exist on pre-ctg.
10571          * As the flip done interrupt doesn't trigger for mmio
10572          * flips on gmch platforms, a flip count check isn't
10573          * really needed there. But since ctg has the registers,
10574          * include it in the check anyway.
10575          */
10576         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10577                 return true;
10578
10579         /*
10580          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10581          * used the same base address. In that case the mmio flip might
10582          * have completed, but the CS hasn't even executed the flip yet.
10583          *
10584          * A flip count check isn't enough as the CS might have updated
10585          * the base address just after start of vblank, but before we
10586          * managed to process the interrupt. This means we'd complete the
10587          * CS flip too soon.
10588          *
10589          * Combining both checks should get us a good enough result. It may
10590          * still happen that the CS flip has been executed, but has not
10591          * yet actually completed. But in case the base address is the same
10592          * anyway, we don't really care.
10593          */
10594         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10595                 crtc->unpin_work->gtt_offset &&
10596                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10597                                     crtc->unpin_work->flip_count);
10598 }
10599
10600 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10601 {
10602         struct drm_i915_private *dev_priv = dev->dev_private;
10603         struct intel_crtc *intel_crtc =
10604                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10605         unsigned long flags;
10606
10607
10608         /*
10609          * This is called both by irq handlers and the reset code (to complete
10610          * lost pageflips) so needs the full irqsave spinlocks.
10611          *
10612          * NB: An MMIO update of the plane base pointer will also
10613          * generate a page-flip completion irq, i.e. every modeset
10614          * is also accompanied by a spurious intel_prepare_page_flip().
10615          */
10616         spin_lock_irqsave(&dev->event_lock, flags);
10617         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10618                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10619         spin_unlock_irqrestore(&dev->event_lock, flags);
10620 }
10621
10622 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10623 {
10624         /* Ensure that the work item is consistent when activating it ... */
10625         smp_wmb();
10626         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10627         /* and that it is marked active as soon as the irq could fire. */
10628         smp_wmb();
10629 }
10630
10631 static int intel_gen2_queue_flip(struct drm_device *dev,
10632                                  struct drm_crtc *crtc,
10633                                  struct drm_framebuffer *fb,
10634                                  struct drm_i915_gem_object *obj,
10635                                  struct intel_engine_cs *ring,
10636                                  uint32_t flags)
10637 {
10638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10639         u32 flip_mask;
10640         int ret;
10641
10642         ret = intel_ring_begin(ring, 6);
10643         if (ret)
10644                 return ret;
10645
10646         /* Can't queue multiple flips, so wait for the previous
10647          * one to finish before executing the next.
10648          */
10649         if (intel_crtc->plane)
10650                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10651         else
10652                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10653         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10654         intel_ring_emit(ring, MI_NOOP);
10655         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10656                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10657         intel_ring_emit(ring, fb->pitches[0]);
10658         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10659         intel_ring_emit(ring, 0); /* aux display base address, unused */
10660
10661         intel_mark_page_flip_active(intel_crtc);
10662         __intel_ring_advance(ring);
10663         return 0;
10664 }
10665
10666 static int intel_gen3_queue_flip(struct drm_device *dev,
10667                                  struct drm_crtc *crtc,
10668                                  struct drm_framebuffer *fb,
10669                                  struct drm_i915_gem_object *obj,
10670                                  struct intel_engine_cs *ring,
10671                                  uint32_t flags)
10672 {
10673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10674         u32 flip_mask;
10675         int ret;
10676
10677         ret = intel_ring_begin(ring, 6);
10678         if (ret)
10679                 return ret;
10680
10681         if (intel_crtc->plane)
10682                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10683         else
10684                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10685         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10686         intel_ring_emit(ring, MI_NOOP);
10687         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10688                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10689         intel_ring_emit(ring, fb->pitches[0]);
10690         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10691         intel_ring_emit(ring, MI_NOOP);
10692
10693         intel_mark_page_flip_active(intel_crtc);
10694         __intel_ring_advance(ring);
10695         return 0;
10696 }
10697
10698 static int intel_gen4_queue_flip(struct drm_device *dev,
10699                                  struct drm_crtc *crtc,
10700                                  struct drm_framebuffer *fb,
10701                                  struct drm_i915_gem_object *obj,
10702                                  struct intel_engine_cs *ring,
10703                                  uint32_t flags)
10704 {
10705         struct drm_i915_private *dev_priv = dev->dev_private;
10706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10707         uint32_t pf, pipesrc;
10708         int ret;
10709
10710         ret = intel_ring_begin(ring, 4);
10711         if (ret)
10712                 return ret;
10713
10714         /* i965+ uses the linear or tiled offsets from the
10715          * Display Registers (which do not change across a page-flip)
10716          * so we need only reprogram the base address.
10717          */
10718         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10719                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10720         intel_ring_emit(ring, fb->pitches[0]);
10721         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10722                         obj->tiling_mode);
10723
10724         /* XXX Enabling the panel-fitter across page-flip is so far
10725          * untested on non-native modes, so ignore it for now.
10726          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10727          */
10728         pf = 0;
10729         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10730         intel_ring_emit(ring, pf | pipesrc);
10731
10732         intel_mark_page_flip_active(intel_crtc);
10733         __intel_ring_advance(ring);
10734         return 0;
10735 }
10736
10737 static int intel_gen6_queue_flip(struct drm_device *dev,
10738                                  struct drm_crtc *crtc,
10739                                  struct drm_framebuffer *fb,
10740                                  struct drm_i915_gem_object *obj,
10741                                  struct intel_engine_cs *ring,
10742                                  uint32_t flags)
10743 {
10744         struct drm_i915_private *dev_priv = dev->dev_private;
10745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10746         uint32_t pf, pipesrc;
10747         int ret;
10748
10749         ret = intel_ring_begin(ring, 4);
10750         if (ret)
10751                 return ret;
10752
10753         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10754                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10755         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10756         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10757
10758         /* Contrary to the suggestions in the documentation,
10759          * "Enable Panel Fitter" does not seem to be required when page
10760          * flipping with a non-native mode, and worse causes a normal
10761          * modeset to fail.
10762          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10763          */
10764         pf = 0;
10765         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10766         intel_ring_emit(ring, pf | pipesrc);
10767
10768         intel_mark_page_flip_active(intel_crtc);
10769         __intel_ring_advance(ring);
10770         return 0;
10771 }
10772
10773 static int intel_gen7_queue_flip(struct drm_device *dev,
10774                                  struct drm_crtc *crtc,
10775                                  struct drm_framebuffer *fb,
10776                                  struct drm_i915_gem_object *obj,
10777                                  struct intel_engine_cs *ring,
10778                                  uint32_t flags)
10779 {
10780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10781         uint32_t plane_bit = 0;
10782         int len, ret;
10783
10784         switch (intel_crtc->plane) {
10785         case PLANE_A:
10786                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10787                 break;
10788         case PLANE_B:
10789                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10790                 break;
10791         case PLANE_C:
10792                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10793                 break;
10794         default:
10795                 WARN_ONCE(1, "unknown plane in flip command\n");
10796                 return -ENODEV;
10797         }
10798
10799         len = 4;
10800         if (ring->id == RCS) {
10801                 len += 6;
10802                 /*
10803                  * On Gen 8, SRM is now taking an extra dword to accommodate
10804                  * 48bits addresses, and we need a NOOP for the batch size to
10805                  * stay even.
10806                  */
10807                 if (IS_GEN8(dev))
10808                         len += 2;
10809         }
10810
10811         /*
10812          * BSpec MI_DISPLAY_FLIP for IVB:
10813          * "The full packet must be contained within the same cache line."
10814          *
10815          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10816          * cacheline, if we ever start emitting more commands before
10817          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10818          * then do the cacheline alignment, and finally emit the
10819          * MI_DISPLAY_FLIP.
10820          */
10821         ret = intel_ring_cacheline_align(ring);
10822         if (ret)
10823                 return ret;
10824
10825         ret = intel_ring_begin(ring, len);
10826         if (ret)
10827                 return ret;
10828
10829         /* Unmask the flip-done completion message. Note that the bspec says that
10830          * we should do this for both the BCS and RCS, and that we must not unmask
10831          * more than one flip event at any time (or ensure that one flip message
10832          * can be sent by waiting for flip-done prior to queueing new flips).
10833          * Experimentation says that BCS works despite DERRMR masking all
10834          * flip-done completion events and that unmasking all planes at once
10835          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10836          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10837          */
10838         if (ring->id == RCS) {
10839                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10840                 intel_ring_emit(ring, DERRMR);
10841                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10842                                         DERRMR_PIPEB_PRI_FLIP_DONE |
10843                                         DERRMR_PIPEC_PRI_FLIP_DONE));
10844                 if (IS_GEN8(dev))
10845                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10846                                               MI_SRM_LRM_GLOBAL_GTT);
10847                 else
10848                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10849                                               MI_SRM_LRM_GLOBAL_GTT);
10850                 intel_ring_emit(ring, DERRMR);
10851                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10852                 if (IS_GEN8(dev)) {
10853                         intel_ring_emit(ring, 0);
10854                         intel_ring_emit(ring, MI_NOOP);
10855                 }
10856         }
10857
10858         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10859         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10860         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10861         intel_ring_emit(ring, (MI_NOOP));
10862
10863         intel_mark_page_flip_active(intel_crtc);
10864         __intel_ring_advance(ring);
10865         return 0;
10866 }
10867
10868 static bool use_mmio_flip(struct intel_engine_cs *ring,
10869                           struct drm_i915_gem_object *obj)
10870 {
10871         /*
10872          * This is not being used for older platforms, because
10873          * non-availability of flip done interrupt forces us to use
10874          * CS flips. Older platforms derive flip done using some clever
10875          * tricks involving the flip_pending status bits and vblank irqs.
10876          * So using MMIO flips there would disrupt this mechanism.
10877          */
10878
10879         if (ring == NULL)
10880                 return true;
10881
10882         if (INTEL_INFO(ring->dev)->gen < 5)
10883                 return false;
10884
10885         if (i915.use_mmio_flip < 0)
10886                 return false;
10887         else if (i915.use_mmio_flip > 0)
10888                 return true;
10889         else if (i915.enable_execlists)
10890                 return true;
10891         else
10892                 return ring != i915_gem_request_get_ring(obj->last_write_req);
10893 }
10894
10895 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10896 {
10897         struct drm_device *dev = intel_crtc->base.dev;
10898         struct drm_i915_private *dev_priv = dev->dev_private;
10899         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10900         const enum pipe pipe = intel_crtc->pipe;
10901         u32 ctl, stride;
10902
10903         ctl = I915_READ(PLANE_CTL(pipe, 0));
10904         ctl &= ~PLANE_CTL_TILED_MASK;
10905         switch (fb->modifier[0]) {
10906         case DRM_FORMAT_MOD_NONE:
10907                 break;
10908         case I915_FORMAT_MOD_X_TILED:
10909                 ctl |= PLANE_CTL_TILED_X;
10910                 break;
10911         case I915_FORMAT_MOD_Y_TILED:
10912                 ctl |= PLANE_CTL_TILED_Y;
10913                 break;
10914         case I915_FORMAT_MOD_Yf_TILED:
10915                 ctl |= PLANE_CTL_TILED_YF;
10916                 break;
10917         default:
10918                 MISSING_CASE(fb->modifier[0]);
10919         }
10920
10921         /*
10922          * The stride is either expressed as a multiple of 64 bytes chunks for
10923          * linear buffers or in number of tiles for tiled buffers.
10924          */
10925         stride = fb->pitches[0] /
10926                  intel_fb_stride_alignment(dev, fb->modifier[0],
10927                                            fb->pixel_format);
10928
10929         /*
10930          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10931          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10932          */
10933         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10934         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10935
10936         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10937         POSTING_READ(PLANE_SURF(pipe, 0));
10938 }
10939
10940 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10941 {
10942         struct drm_device *dev = intel_crtc->base.dev;
10943         struct drm_i915_private *dev_priv = dev->dev_private;
10944         struct intel_framebuffer *intel_fb =
10945                 to_intel_framebuffer(intel_crtc->base.primary->fb);
10946         struct drm_i915_gem_object *obj = intel_fb->obj;
10947         u32 dspcntr;
10948         u32 reg;
10949
10950         reg = DSPCNTR(intel_crtc->plane);
10951         dspcntr = I915_READ(reg);
10952
10953         if (obj->tiling_mode != I915_TILING_NONE)
10954                 dspcntr |= DISPPLANE_TILED;
10955         else
10956                 dspcntr &= ~DISPPLANE_TILED;
10957
10958         I915_WRITE(reg, dspcntr);
10959
10960         I915_WRITE(DSPSURF(intel_crtc->plane),
10961                    intel_crtc->unpin_work->gtt_offset);
10962         POSTING_READ(DSPSURF(intel_crtc->plane));
10963
10964 }
10965
10966 /*
10967  * XXX: This is the temporary way to update the plane registers until we get
10968  * around to using the usual plane update functions for MMIO flips
10969  */
10970 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10971 {
10972         struct drm_device *dev = intel_crtc->base.dev;
10973         bool atomic_update;
10974         u32 start_vbl_count;
10975
10976         intel_mark_page_flip_active(intel_crtc);
10977
10978         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10979
10980         if (INTEL_INFO(dev)->gen >= 9)
10981                 skl_do_mmio_flip(intel_crtc);
10982         else
10983                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10984                 ilk_do_mmio_flip(intel_crtc);
10985
10986         if (atomic_update)
10987                 intel_pipe_update_end(intel_crtc, start_vbl_count);
10988 }
10989
10990 static void intel_mmio_flip_work_func(struct work_struct *work)
10991 {
10992         struct intel_mmio_flip *mmio_flip =
10993                 container_of(work, struct intel_mmio_flip, work);
10994
10995         if (mmio_flip->req)
10996                 WARN_ON(__i915_wait_request(mmio_flip->req,
10997                                             mmio_flip->crtc->reset_counter,
10998                                             false, NULL,
10999                                             &mmio_flip->i915->rps.mmioflips));
11000
11001         intel_do_mmio_flip(mmio_flip->crtc);
11002
11003         i915_gem_request_unreference__unlocked(mmio_flip->req);
11004         kfree(mmio_flip);
11005 }
11006
11007 static int intel_queue_mmio_flip(struct drm_device *dev,
11008                                  struct drm_crtc *crtc,
11009                                  struct drm_framebuffer *fb,
11010                                  struct drm_i915_gem_object *obj,
11011                                  struct intel_engine_cs *ring,
11012                                  uint32_t flags)
11013 {
11014         struct intel_mmio_flip *mmio_flip;
11015
11016         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11017         if (mmio_flip == NULL)
11018                 return -ENOMEM;
11019
11020         mmio_flip->i915 = to_i915(dev);
11021         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11022         mmio_flip->crtc = to_intel_crtc(crtc);
11023
11024         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11025         schedule_work(&mmio_flip->work);
11026
11027         return 0;
11028 }
11029
11030 static int intel_default_queue_flip(struct drm_device *dev,
11031                                     struct drm_crtc *crtc,
11032                                     struct drm_framebuffer *fb,
11033                                     struct drm_i915_gem_object *obj,
11034                                     struct intel_engine_cs *ring,
11035                                     uint32_t flags)
11036 {
11037         return -ENODEV;
11038 }
11039
11040 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11041                                          struct drm_crtc *crtc)
11042 {
11043         struct drm_i915_private *dev_priv = dev->dev_private;
11044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11045         struct intel_unpin_work *work = intel_crtc->unpin_work;
11046         u32 addr;
11047
11048         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11049                 return true;
11050
11051         if (!work->enable_stall_check)
11052                 return false;
11053
11054         if (work->flip_ready_vblank == 0) {
11055                 if (work->flip_queued_req &&
11056                     !i915_gem_request_completed(work->flip_queued_req, true))
11057                         return false;
11058
11059                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11060         }
11061
11062         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11063                 return false;
11064
11065         /* Potential stall - if we see that the flip has happened,
11066          * assume a missed interrupt. */
11067         if (INTEL_INFO(dev)->gen >= 4)
11068                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11069         else
11070                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11071
11072         /* There is a potential issue here with a false positive after a flip
11073          * to the same address. We could address this by checking for a
11074          * non-incrementing frame counter.
11075          */
11076         return addr == work->gtt_offset;
11077 }
11078
11079 void intel_check_page_flip(struct drm_device *dev, int pipe)
11080 {
11081         struct drm_i915_private *dev_priv = dev->dev_private;
11082         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11084         struct intel_unpin_work *work;
11085
11086         WARN_ON(!in_interrupt());
11087
11088         if (crtc == NULL)
11089                 return;
11090
11091         spin_lock(&dev->event_lock);
11092         work = intel_crtc->unpin_work;
11093         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11094                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11095                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11096                 page_flip_completed(intel_crtc);
11097                 work = NULL;
11098         }
11099         if (work != NULL &&
11100             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11101                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11102         spin_unlock(&dev->event_lock);
11103 }
11104
11105 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11106                                 struct drm_framebuffer *fb,
11107                                 struct drm_pending_vblank_event *event,
11108                                 uint32_t page_flip_flags)
11109 {
11110         struct drm_device *dev = crtc->dev;
11111         struct drm_i915_private *dev_priv = dev->dev_private;
11112         struct drm_framebuffer *old_fb = crtc->primary->fb;
11113         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11115         struct drm_plane *primary = crtc->primary;
11116         enum pipe pipe = intel_crtc->pipe;
11117         struct intel_unpin_work *work;
11118         struct intel_engine_cs *ring;
11119         bool mmio_flip;
11120         int ret;
11121
11122         /*
11123          * drm_mode_page_flip_ioctl() should already catch this, but double
11124          * check to be safe.  In the future we may enable pageflipping from
11125          * a disabled primary plane.
11126          */
11127         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11128                 return -EBUSY;
11129
11130         /* Can't change pixel format via MI display flips. */
11131         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11132                 return -EINVAL;
11133
11134         /*
11135          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11136          * Note that pitch changes could also affect these register.
11137          */
11138         if (INTEL_INFO(dev)->gen > 3 &&
11139             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11140              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11141                 return -EINVAL;
11142
11143         if (i915_terminally_wedged(&dev_priv->gpu_error))
11144                 goto out_hang;
11145
11146         work = kzalloc(sizeof(*work), GFP_KERNEL);
11147         if (work == NULL)
11148                 return -ENOMEM;
11149
11150         work->event = event;
11151         work->crtc = crtc;
11152         work->old_fb = old_fb;
11153         INIT_WORK(&work->work, intel_unpin_work_fn);
11154
11155         ret = drm_crtc_vblank_get(crtc);
11156         if (ret)
11157                 goto free_work;
11158
11159         /* We borrow the event spin lock for protecting unpin_work */
11160         spin_lock_irq(&dev->event_lock);
11161         if (intel_crtc->unpin_work) {
11162                 /* Before declaring the flip queue wedged, check if
11163                  * the hardware completed the operation behind our backs.
11164                  */
11165                 if (__intel_pageflip_stall_check(dev, crtc)) {
11166                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11167                         page_flip_completed(intel_crtc);
11168                 } else {
11169                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11170                         spin_unlock_irq(&dev->event_lock);
11171
11172                         drm_crtc_vblank_put(crtc);
11173                         kfree(work);
11174                         return -EBUSY;
11175                 }
11176         }
11177         intel_crtc->unpin_work = work;
11178         spin_unlock_irq(&dev->event_lock);
11179
11180         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11181                 flush_workqueue(dev_priv->wq);
11182
11183         /* Reference the objects for the scheduled work. */
11184         drm_framebuffer_reference(work->old_fb);
11185         drm_gem_object_reference(&obj->base);
11186
11187         crtc->primary->fb = fb;
11188         update_state_fb(crtc->primary);
11189
11190         work->pending_flip_obj = obj;
11191
11192         ret = i915_mutex_lock_interruptible(dev);
11193         if (ret)
11194                 goto cleanup;
11195
11196         atomic_inc(&intel_crtc->unpin_work_count);
11197         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11198
11199         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11200                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11201
11202         if (IS_VALLEYVIEW(dev)) {
11203                 ring = &dev_priv->ring[BCS];
11204                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11205                         /* vlv: DISPLAY_FLIP fails to change tiling */
11206                         ring = NULL;
11207         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11208                 ring = &dev_priv->ring[BCS];
11209         } else if (INTEL_INFO(dev)->gen >= 7) {
11210                 ring = i915_gem_request_get_ring(obj->last_write_req);
11211                 if (ring == NULL || ring->id != RCS)
11212                         ring = &dev_priv->ring[BCS];
11213         } else {
11214                 ring = &dev_priv->ring[RCS];
11215         }
11216
11217         mmio_flip = use_mmio_flip(ring, obj);
11218
11219         /* When using CS flips, we want to emit semaphores between rings.
11220          * However, when using mmio flips we will create a task to do the
11221          * synchronisation, so all we want here is to pin the framebuffer
11222          * into the display plane and skip any waits.
11223          */
11224         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11225                                          crtc->primary->state,
11226                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11227         if (ret)
11228                 goto cleanup_pending;
11229
11230         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11231                                                   + intel_crtc->dspaddr_offset;
11232
11233         if (mmio_flip) {
11234                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11235                                             page_flip_flags);
11236                 if (ret)
11237                         goto cleanup_unpin;
11238
11239                 i915_gem_request_assign(&work->flip_queued_req,
11240                                         obj->last_write_req);
11241         } else {
11242                 if (obj->last_write_req) {
11243                         ret = i915_gem_check_olr(obj->last_write_req);
11244                         if (ret)
11245                                 goto cleanup_unpin;
11246                 }
11247
11248                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11249                                                    page_flip_flags);
11250                 if (ret)
11251                         goto cleanup_unpin;
11252
11253                 i915_gem_request_assign(&work->flip_queued_req,
11254                                         intel_ring_get_request(ring));
11255         }
11256
11257         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11258         work->enable_stall_check = true;
11259
11260         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11261                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11262
11263         intel_fbc_disable(dev);
11264         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11265         mutex_unlock(&dev->struct_mutex);
11266
11267         trace_i915_flip_request(intel_crtc->plane, obj);
11268
11269         return 0;
11270
11271 cleanup_unpin:
11272         intel_unpin_fb_obj(fb, crtc->primary->state);
11273 cleanup_pending:
11274         atomic_dec(&intel_crtc->unpin_work_count);
11275         mutex_unlock(&dev->struct_mutex);
11276 cleanup:
11277         crtc->primary->fb = old_fb;
11278         update_state_fb(crtc->primary);
11279
11280         drm_gem_object_unreference_unlocked(&obj->base);
11281         drm_framebuffer_unreference(work->old_fb);
11282
11283         spin_lock_irq(&dev->event_lock);
11284         intel_crtc->unpin_work = NULL;
11285         spin_unlock_irq(&dev->event_lock);
11286
11287         drm_crtc_vblank_put(crtc);
11288 free_work:
11289         kfree(work);
11290
11291         if (ret == -EIO) {
11292 out_hang:
11293                 ret = intel_plane_restore(primary);
11294                 if (ret == 0 && event) {
11295                         spin_lock_irq(&dev->event_lock);
11296                         drm_send_vblank_event(dev, pipe, event);
11297                         spin_unlock_irq(&dev->event_lock);
11298                 }
11299         }
11300         return ret;
11301 }
11302
11303 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11304         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11305         .load_lut = intel_crtc_load_lut,
11306         .atomic_begin = intel_begin_crtc_commit,
11307         .atomic_flush = intel_finish_crtc_commit,
11308 };
11309
11310 /**
11311  * intel_modeset_update_staged_output_state
11312  *
11313  * Updates the staged output configuration state, e.g. after we've read out the
11314  * current hw state.
11315  */
11316 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11317 {
11318         struct intel_crtc *crtc;
11319         struct intel_encoder *encoder;
11320         struct intel_connector *connector;
11321
11322         for_each_intel_connector(dev, connector) {
11323                 connector->new_encoder =
11324                         to_intel_encoder(connector->base.encoder);
11325         }
11326
11327         for_each_intel_encoder(dev, encoder) {
11328                 encoder->new_crtc =
11329                         to_intel_crtc(encoder->base.crtc);
11330         }
11331
11332         for_each_intel_crtc(dev, crtc) {
11333                 crtc->new_enabled = crtc->base.state->enable;
11334         }
11335 }
11336
11337 /* Transitional helper to copy current connector/encoder state to
11338  * connector->state. This is needed so that code that is partially
11339  * converted to atomic does the right thing.
11340  */
11341 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11342 {
11343         struct intel_connector *connector;
11344
11345         for_each_intel_connector(dev, connector) {
11346                 if (connector->base.encoder) {
11347                         connector->base.state->best_encoder =
11348                                 connector->base.encoder;
11349                         connector->base.state->crtc =
11350                                 connector->base.encoder->crtc;
11351                 } else {
11352                         connector->base.state->best_encoder = NULL;
11353                         connector->base.state->crtc = NULL;
11354                 }
11355         }
11356 }
11357
11358 /* Fixup legacy state after an atomic state swap.
11359  */
11360 static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11361 {
11362         struct intel_crtc *crtc;
11363         struct intel_encoder *encoder;
11364         struct intel_connector *connector;
11365
11366         for_each_intel_connector(state->dev, connector) {
11367                 connector->base.encoder = connector->base.state->best_encoder;
11368                 if (connector->base.encoder)
11369                         connector->base.encoder->crtc =
11370                                 connector->base.state->crtc;
11371         }
11372
11373         /* Update crtc of disabled encoders */
11374         for_each_intel_encoder(state->dev, encoder) {
11375                 int num_connectors = 0;
11376
11377                 for_each_intel_connector(state->dev, connector)
11378                         if (connector->base.encoder == &encoder->base)
11379                                 num_connectors++;
11380
11381                 if (num_connectors == 0)
11382                         encoder->base.crtc = NULL;
11383         }
11384
11385         for_each_intel_crtc(state->dev, crtc) {
11386                 crtc->base.enabled = crtc->base.state->enable;
11387                 crtc->config = to_intel_crtc_state(crtc->base.state);
11388         }
11389 }
11390
11391 static void
11392 connected_sink_compute_bpp(struct intel_connector *connector,
11393                            struct intel_crtc_state *pipe_config)
11394 {
11395         int bpp = pipe_config->pipe_bpp;
11396
11397         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11398                 connector->base.base.id,
11399                 connector->base.name);
11400
11401         /* Don't use an invalid EDID bpc value */
11402         if (connector->base.display_info.bpc &&
11403             connector->base.display_info.bpc * 3 < bpp) {
11404                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11405                               bpp, connector->base.display_info.bpc*3);
11406                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11407         }
11408
11409         /* Clamp bpp to 8 on screens without EDID 1.4 */
11410         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11411                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11412                               bpp);
11413                 pipe_config->pipe_bpp = 24;
11414         }
11415 }
11416
11417 static int
11418 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11419                           struct intel_crtc_state *pipe_config)
11420 {
11421         struct drm_device *dev = crtc->base.dev;
11422         struct drm_atomic_state *state;
11423         struct drm_connector *connector;
11424         struct drm_connector_state *connector_state;
11425         int bpp, i;
11426
11427         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11428                 bpp = 10*3;
11429         else if (INTEL_INFO(dev)->gen >= 5)
11430                 bpp = 12*3;
11431         else
11432                 bpp = 8*3;
11433
11434
11435         pipe_config->pipe_bpp = bpp;
11436
11437         state = pipe_config->base.state;
11438
11439         /* Clamp display bpp to EDID value */
11440         for_each_connector_in_state(state, connector, connector_state, i) {
11441                 if (connector_state->crtc != &crtc->base)
11442                         continue;
11443
11444                 connected_sink_compute_bpp(to_intel_connector(connector),
11445                                            pipe_config);
11446         }
11447
11448         return bpp;
11449 }
11450
11451 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11452 {
11453         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11454                         "type: 0x%x flags: 0x%x\n",
11455                 mode->crtc_clock,
11456                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11457                 mode->crtc_hsync_end, mode->crtc_htotal,
11458                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11459                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11460 }
11461
11462 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11463                                    struct intel_crtc_state *pipe_config,
11464                                    const char *context)
11465 {
11466         struct drm_device *dev = crtc->base.dev;
11467         struct drm_plane *plane;
11468         struct intel_plane *intel_plane;
11469         struct intel_plane_state *state;
11470         struct drm_framebuffer *fb;
11471
11472         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11473                       context, pipe_config, pipe_name(crtc->pipe));
11474
11475         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11476         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11477                       pipe_config->pipe_bpp, pipe_config->dither);
11478         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11479                       pipe_config->has_pch_encoder,
11480                       pipe_config->fdi_lanes,
11481                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11482                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11483                       pipe_config->fdi_m_n.tu);
11484         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11485                       pipe_config->has_dp_encoder,
11486                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11487                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11488                       pipe_config->dp_m_n.tu);
11489
11490         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11491                       pipe_config->has_dp_encoder,
11492                       pipe_config->dp_m2_n2.gmch_m,
11493                       pipe_config->dp_m2_n2.gmch_n,
11494                       pipe_config->dp_m2_n2.link_m,
11495                       pipe_config->dp_m2_n2.link_n,
11496                       pipe_config->dp_m2_n2.tu);
11497
11498         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11499                       pipe_config->has_audio,
11500                       pipe_config->has_infoframe);
11501
11502         DRM_DEBUG_KMS("requested mode:\n");
11503         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11504         DRM_DEBUG_KMS("adjusted mode:\n");
11505         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11506         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11507         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11508         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11509                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11510         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11511                       crtc->num_scalers,
11512                       pipe_config->scaler_state.scaler_users,
11513                       pipe_config->scaler_state.scaler_id);
11514         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11515                       pipe_config->gmch_pfit.control,
11516                       pipe_config->gmch_pfit.pgm_ratios,
11517                       pipe_config->gmch_pfit.lvds_border_bits);
11518         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11519                       pipe_config->pch_pfit.pos,
11520                       pipe_config->pch_pfit.size,
11521                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11522         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11523         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11524
11525         if (IS_BROXTON(dev)) {
11526                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11527                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11528                               "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11529                               pipe_config->ddi_pll_sel,
11530                               pipe_config->dpll_hw_state.ebb0,
11531                               pipe_config->dpll_hw_state.pll0,
11532                               pipe_config->dpll_hw_state.pll1,
11533                               pipe_config->dpll_hw_state.pll2,
11534                               pipe_config->dpll_hw_state.pll3,
11535                               pipe_config->dpll_hw_state.pll6,
11536                               pipe_config->dpll_hw_state.pll8,
11537                               pipe_config->dpll_hw_state.pcsdw12);
11538         } else if (IS_SKYLAKE(dev)) {
11539                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11540                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11541                               pipe_config->ddi_pll_sel,
11542                               pipe_config->dpll_hw_state.ctrl1,
11543                               pipe_config->dpll_hw_state.cfgcr1,
11544                               pipe_config->dpll_hw_state.cfgcr2);
11545         } else if (HAS_DDI(dev)) {
11546                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11547                               pipe_config->ddi_pll_sel,
11548                               pipe_config->dpll_hw_state.wrpll);
11549         } else {
11550                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11551                               "fp0: 0x%x, fp1: 0x%x\n",
11552                               pipe_config->dpll_hw_state.dpll,
11553                               pipe_config->dpll_hw_state.dpll_md,
11554                               pipe_config->dpll_hw_state.fp0,
11555                               pipe_config->dpll_hw_state.fp1);
11556         }
11557
11558         DRM_DEBUG_KMS("planes on this crtc\n");
11559         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11560                 intel_plane = to_intel_plane(plane);
11561                 if (intel_plane->pipe != crtc->pipe)
11562                         continue;
11563
11564                 state = to_intel_plane_state(plane->state);
11565                 fb = state->base.fb;
11566                 if (!fb) {
11567                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11568                                 "disabled, scaler_id = %d\n",
11569                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11570                                 plane->base.id, intel_plane->pipe,
11571                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11572                                 drm_plane_index(plane), state->scaler_id);
11573                         continue;
11574                 }
11575
11576                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11577                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11578                         plane->base.id, intel_plane->pipe,
11579                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11580                         drm_plane_index(plane));
11581                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11582                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11583                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11584                         state->scaler_id,
11585                         state->src.x1 >> 16, state->src.y1 >> 16,
11586                         drm_rect_width(&state->src) >> 16,
11587                         drm_rect_height(&state->src) >> 16,
11588                         state->dst.x1, state->dst.y1,
11589                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11590         }
11591 }
11592
11593 static bool encoders_cloneable(const struct intel_encoder *a,
11594                                const struct intel_encoder *b)
11595 {
11596         /* masks could be asymmetric, so check both ways */
11597         return a == b || (a->cloneable & (1 << b->type) &&
11598                           b->cloneable & (1 << a->type));
11599 }
11600
11601 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11602                                          struct intel_crtc *crtc,
11603                                          struct intel_encoder *encoder)
11604 {
11605         struct intel_encoder *source_encoder;
11606         struct drm_connector *connector;
11607         struct drm_connector_state *connector_state;
11608         int i;
11609
11610         for_each_connector_in_state(state, connector, connector_state, i) {
11611                 if (connector_state->crtc != &crtc->base)
11612                         continue;
11613
11614                 source_encoder =
11615                         to_intel_encoder(connector_state->best_encoder);
11616                 if (!encoders_cloneable(encoder, source_encoder))
11617                         return false;
11618         }
11619
11620         return true;
11621 }
11622
11623 static bool check_encoder_cloning(struct drm_atomic_state *state,
11624                                   struct intel_crtc *crtc)
11625 {
11626         struct intel_encoder *encoder;
11627         struct drm_connector *connector;
11628         struct drm_connector_state *connector_state;
11629         int i;
11630
11631         for_each_connector_in_state(state, connector, connector_state, i) {
11632                 if (connector_state->crtc != &crtc->base)
11633                         continue;
11634
11635                 encoder = to_intel_encoder(connector_state->best_encoder);
11636                 if (!check_single_encoder_cloning(state, crtc, encoder))
11637                         return false;
11638         }
11639
11640         return true;
11641 }
11642
11643 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11644 {
11645         struct drm_device *dev = state->dev;
11646         struct intel_encoder *encoder;
11647         struct drm_connector *connector;
11648         struct drm_connector_state *connector_state;
11649         unsigned int used_ports = 0;
11650         int i;
11651
11652         /*
11653          * Walk the connector list instead of the encoder
11654          * list to detect the problem on ddi platforms
11655          * where there's just one encoder per digital port.
11656          */
11657         for_each_connector_in_state(state, connector, connector_state, i) {
11658                 if (!connector_state->best_encoder)
11659                         continue;
11660
11661                 encoder = to_intel_encoder(connector_state->best_encoder);
11662
11663                 WARN_ON(!connector_state->crtc);
11664
11665                 switch (encoder->type) {
11666                         unsigned int port_mask;
11667                 case INTEL_OUTPUT_UNKNOWN:
11668                         if (WARN_ON(!HAS_DDI(dev)))
11669                                 break;
11670                 case INTEL_OUTPUT_DISPLAYPORT:
11671                 case INTEL_OUTPUT_HDMI:
11672                 case INTEL_OUTPUT_EDP:
11673                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11674
11675                         /* the same port mustn't appear more than once */
11676                         if (used_ports & port_mask)
11677                                 return false;
11678
11679                         used_ports |= port_mask;
11680                 default:
11681                         break;
11682                 }
11683         }
11684
11685         return true;
11686 }
11687
11688 static void
11689 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11690 {
11691         struct drm_crtc_state tmp_state;
11692         struct intel_crtc_scaler_state scaler_state;
11693         struct intel_dpll_hw_state dpll_hw_state;
11694         enum intel_dpll_id shared_dpll;
11695         uint32_t ddi_pll_sel;
11696
11697         /* FIXME: before the switch to atomic started, a new pipe_config was
11698          * kzalloc'd. Code that depends on any field being zero should be
11699          * fixed, so that the crtc_state can be safely duplicated. For now,
11700          * only fields that are know to not cause problems are preserved. */
11701
11702         tmp_state = crtc_state->base;
11703         scaler_state = crtc_state->scaler_state;
11704         shared_dpll = crtc_state->shared_dpll;
11705         dpll_hw_state = crtc_state->dpll_hw_state;
11706         ddi_pll_sel = crtc_state->ddi_pll_sel;
11707
11708         memset(crtc_state, 0, sizeof *crtc_state);
11709
11710         crtc_state->base = tmp_state;
11711         crtc_state->scaler_state = scaler_state;
11712         crtc_state->shared_dpll = shared_dpll;
11713         crtc_state->dpll_hw_state = dpll_hw_state;
11714         crtc_state->ddi_pll_sel = ddi_pll_sel;
11715 }
11716
11717 static int
11718 intel_modeset_pipe_config(struct drm_crtc *crtc,
11719                           struct drm_atomic_state *state,
11720                           struct intel_crtc_state *pipe_config)
11721 {
11722         struct intel_encoder *encoder;
11723         struct drm_connector *connector;
11724         struct drm_connector_state *connector_state;
11725         int base_bpp, ret = -EINVAL;
11726         int i;
11727         bool retry = true;
11728
11729         if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11730                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11731                 return -EINVAL;
11732         }
11733
11734         if (!check_digital_port_conflicts(state)) {
11735                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11736                 return -EINVAL;
11737         }
11738
11739         clear_intel_crtc_state(pipe_config);
11740
11741         pipe_config->cpu_transcoder =
11742                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11743
11744         /*
11745          * Sanitize sync polarity flags based on requested ones. If neither
11746          * positive or negative polarity is requested, treat this as meaning
11747          * negative polarity.
11748          */
11749         if (!(pipe_config->base.adjusted_mode.flags &
11750               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11751                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11752
11753         if (!(pipe_config->base.adjusted_mode.flags &
11754               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11755                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11756
11757         /* Compute a starting value for pipe_config->pipe_bpp taking the source
11758          * plane pixel format and any sink constraints into account. Returns the
11759          * source plane bpp so that dithering can be selected on mismatches
11760          * after encoders and crtc also have had their say. */
11761         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11762                                              pipe_config);
11763         if (base_bpp < 0)
11764                 goto fail;
11765
11766         /*
11767          * Determine the real pipe dimensions. Note that stereo modes can
11768          * increase the actual pipe size due to the frame doubling and
11769          * insertion of additional space for blanks between the frame. This
11770          * is stored in the crtc timings. We use the requested mode to do this
11771          * computation to clearly distinguish it from the adjusted mode, which
11772          * can be changed by the connectors in the below retry loop.
11773          */
11774         drm_crtc_get_hv_timing(&pipe_config->base.mode,
11775                                &pipe_config->pipe_src_w,
11776                                &pipe_config->pipe_src_h);
11777
11778 encoder_retry:
11779         /* Ensure the port clock defaults are reset when retrying. */
11780         pipe_config->port_clock = 0;
11781         pipe_config->pixel_multiplier = 1;
11782
11783         /* Fill in default crtc timings, allow encoders to overwrite them. */
11784         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11785                               CRTC_STEREO_DOUBLE);
11786
11787         /* Pass our mode to the connectors and the CRTC to give them a chance to
11788          * adjust it according to limitations or connector properties, and also
11789          * a chance to reject the mode entirely.
11790          */
11791         for_each_connector_in_state(state, connector, connector_state, i) {
11792                 if (connector_state->crtc != crtc)
11793                         continue;
11794
11795                 encoder = to_intel_encoder(connector_state->best_encoder);
11796
11797                 if (!(encoder->compute_config(encoder, pipe_config))) {
11798                         DRM_DEBUG_KMS("Encoder config failure\n");
11799                         goto fail;
11800                 }
11801         }
11802
11803         /* Set default port clock if not overwritten by the encoder. Needs to be
11804          * done afterwards in case the encoder adjusts the mode. */
11805         if (!pipe_config->port_clock)
11806                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11807                         * pipe_config->pixel_multiplier;
11808
11809         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11810         if (ret < 0) {
11811                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11812                 goto fail;
11813         }
11814
11815         if (ret == RETRY) {
11816                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11817                         ret = -EINVAL;
11818                         goto fail;
11819                 }
11820
11821                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11822                 retry = false;
11823                 goto encoder_retry;
11824         }
11825
11826         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11827         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11828                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11829
11830         return 0;
11831 fail:
11832         return ret;
11833 }
11834
11835 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11836 {
11837         struct drm_encoder *encoder;
11838         struct drm_device *dev = crtc->dev;
11839
11840         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11841                 if (encoder->crtc == crtc)
11842                         return true;
11843
11844         return false;
11845 }
11846
11847 static bool
11848 needs_modeset(struct drm_crtc_state *state)
11849 {
11850         return state->mode_changed || state->active_changed;
11851 }
11852
11853 static void
11854 intel_modeset_update_state(struct drm_atomic_state *state)
11855 {
11856         struct drm_device *dev = state->dev;
11857         struct drm_i915_private *dev_priv = dev->dev_private;
11858         struct intel_encoder *intel_encoder;
11859         struct drm_crtc *crtc;
11860         struct drm_crtc_state *crtc_state;
11861         struct drm_connector *connector;
11862         int i;
11863
11864         intel_shared_dpll_commit(dev_priv);
11865
11866         for_each_intel_encoder(dev, intel_encoder) {
11867                 if (!intel_encoder->base.crtc)
11868                         continue;
11869
11870                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11871                         if (crtc != intel_encoder->base.crtc)
11872                                 continue;
11873
11874                         if (crtc_state->enable && needs_modeset(crtc_state))
11875                                 intel_encoder->connectors_active = false;
11876
11877                         break;
11878                 }
11879         }
11880
11881         drm_atomic_helper_swap_state(state->dev, state);
11882         intel_modeset_fixup_state(state);
11883
11884         /* Double check state. */
11885         for_each_crtc(dev, crtc) {
11886                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
11887         }
11888
11889         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11890                 if (!connector->encoder || !connector->encoder->crtc)
11891                         continue;
11892
11893                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11894                         if (crtc != connector->encoder->crtc)
11895                                 continue;
11896
11897                         if (crtc->state->enable && needs_modeset(crtc->state)) {
11898                                 struct drm_property *dpms_property =
11899                                         dev->mode_config.dpms_property;
11900
11901                                 connector->dpms = DRM_MODE_DPMS_ON;
11902                                 drm_object_property_set_value(&connector->base,
11903                                                                  dpms_property,
11904                                                                  DRM_MODE_DPMS_ON);
11905
11906                                 intel_encoder = to_intel_encoder(connector->encoder);
11907                                 intel_encoder->connectors_active = true;
11908                         }
11909
11910                         break;
11911                 }
11912         }
11913
11914 }
11915
11916 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11917 {
11918         int diff;
11919
11920         if (clock1 == clock2)
11921                 return true;
11922
11923         if (!clock1 || !clock2)
11924                 return false;
11925
11926         diff = abs(clock1 - clock2);
11927
11928         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11929                 return true;
11930
11931         return false;
11932 }
11933
11934 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11935         list_for_each_entry((intel_crtc), \
11936                             &(dev)->mode_config.crtc_list, \
11937                             base.head) \
11938                 if (mask & (1 <<(intel_crtc)->pipe))
11939
11940 static bool
11941 intel_pipe_config_compare(struct drm_device *dev,
11942                           struct intel_crtc_state *current_config,
11943                           struct intel_crtc_state *pipe_config)
11944 {
11945 #define PIPE_CONF_CHECK_X(name) \
11946         if (current_config->name != pipe_config->name) { \
11947                 DRM_ERROR("mismatch in " #name " " \
11948                           "(expected 0x%08x, found 0x%08x)\n", \
11949                           current_config->name, \
11950                           pipe_config->name); \
11951                 return false; \
11952         }
11953
11954 #define PIPE_CONF_CHECK_I(name) \
11955         if (current_config->name != pipe_config->name) { \
11956                 DRM_ERROR("mismatch in " #name " " \
11957                           "(expected %i, found %i)\n", \
11958                           current_config->name, \
11959                           pipe_config->name); \
11960                 return false; \
11961         }
11962
11963 /* This is required for BDW+ where there is only one set of registers for
11964  * switching between high and low RR.
11965  * This macro can be used whenever a comparison has to be made between one
11966  * hw state and multiple sw state variables.
11967  */
11968 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11969         if ((current_config->name != pipe_config->name) && \
11970                 (current_config->alt_name != pipe_config->name)) { \
11971                         DRM_ERROR("mismatch in " #name " " \
11972                                   "(expected %i or %i, found %i)\n", \
11973                                   current_config->name, \
11974                                   current_config->alt_name, \
11975                                   pipe_config->name); \
11976                         return false; \
11977         }
11978
11979 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11980         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11981                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
11982                           "(expected %i, found %i)\n", \
11983                           current_config->name & (mask), \
11984                           pipe_config->name & (mask)); \
11985                 return false; \
11986         }
11987
11988 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11989         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11990                 DRM_ERROR("mismatch in " #name " " \
11991                           "(expected %i, found %i)\n", \
11992                           current_config->name, \
11993                           pipe_config->name); \
11994                 return false; \
11995         }
11996
11997 #define PIPE_CONF_QUIRK(quirk)  \
11998         ((current_config->quirks | pipe_config->quirks) & (quirk))
11999
12000         PIPE_CONF_CHECK_I(cpu_transcoder);
12001
12002         PIPE_CONF_CHECK_I(has_pch_encoder);
12003         PIPE_CONF_CHECK_I(fdi_lanes);
12004         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12005         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12006         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12007         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12008         PIPE_CONF_CHECK_I(fdi_m_n.tu);
12009
12010         PIPE_CONF_CHECK_I(has_dp_encoder);
12011
12012         if (INTEL_INFO(dev)->gen < 8) {
12013                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12014                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12015                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12016                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12017                 PIPE_CONF_CHECK_I(dp_m_n.tu);
12018
12019                 if (current_config->has_drrs) {
12020                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12021                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12022                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12023                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12024                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12025                 }
12026         } else {
12027                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12028                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12029                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12030                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12031                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12032         }
12033
12034         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12035         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12036         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12037         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12038         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12039         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12040
12041         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12042         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12043         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12044         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12045         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12046         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12047
12048         PIPE_CONF_CHECK_I(pixel_multiplier);
12049         PIPE_CONF_CHECK_I(has_hdmi_sink);
12050         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12051             IS_VALLEYVIEW(dev))
12052                 PIPE_CONF_CHECK_I(limited_color_range);
12053         PIPE_CONF_CHECK_I(has_infoframe);
12054
12055         PIPE_CONF_CHECK_I(has_audio);
12056
12057         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12058                               DRM_MODE_FLAG_INTERLACE);
12059
12060         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12061                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12062                                       DRM_MODE_FLAG_PHSYNC);
12063                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12064                                       DRM_MODE_FLAG_NHSYNC);
12065                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12066                                       DRM_MODE_FLAG_PVSYNC);
12067                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12068                                       DRM_MODE_FLAG_NVSYNC);
12069         }
12070
12071         PIPE_CONF_CHECK_I(pipe_src_w);
12072         PIPE_CONF_CHECK_I(pipe_src_h);
12073
12074         /*
12075          * FIXME: BIOS likes to set up a cloned config with lvds+external
12076          * screen. Since we don't yet re-compute the pipe config when moving
12077          * just the lvds port away to another pipe the sw tracking won't match.
12078          *
12079          * Proper atomic modesets with recomputed global state will fix this.
12080          * Until then just don't check gmch state for inherited modes.
12081          */
12082         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12083                 PIPE_CONF_CHECK_I(gmch_pfit.control);
12084                 /* pfit ratios are autocomputed by the hw on gen4+ */
12085                 if (INTEL_INFO(dev)->gen < 4)
12086                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12087                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12088         }
12089
12090         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12091         if (current_config->pch_pfit.enabled) {
12092                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12093                 PIPE_CONF_CHECK_I(pch_pfit.size);
12094         }
12095
12096         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12097
12098         /* BDW+ don't expose a synchronous way to read the state */
12099         if (IS_HASWELL(dev))
12100                 PIPE_CONF_CHECK_I(ips_enabled);
12101
12102         PIPE_CONF_CHECK_I(double_wide);
12103
12104         PIPE_CONF_CHECK_X(ddi_pll_sel);
12105
12106         PIPE_CONF_CHECK_I(shared_dpll);
12107         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12108         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12109         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12110         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12111         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12112         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12113         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12114         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12115
12116         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12117                 PIPE_CONF_CHECK_I(pipe_bpp);
12118
12119         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12120         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12121
12122 #undef PIPE_CONF_CHECK_X
12123 #undef PIPE_CONF_CHECK_I
12124 #undef PIPE_CONF_CHECK_I_ALT
12125 #undef PIPE_CONF_CHECK_FLAGS
12126 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12127 #undef PIPE_CONF_QUIRK
12128
12129         return true;
12130 }
12131
12132 static void check_wm_state(struct drm_device *dev)
12133 {
12134         struct drm_i915_private *dev_priv = dev->dev_private;
12135         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12136         struct intel_crtc *intel_crtc;
12137         int plane;
12138
12139         if (INTEL_INFO(dev)->gen < 9)
12140                 return;
12141
12142         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12143         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12144
12145         for_each_intel_crtc(dev, intel_crtc) {
12146                 struct skl_ddb_entry *hw_entry, *sw_entry;
12147                 const enum pipe pipe = intel_crtc->pipe;
12148
12149                 if (!intel_crtc->active)
12150                         continue;
12151
12152                 /* planes */
12153                 for_each_plane(dev_priv, pipe, plane) {
12154                         hw_entry = &hw_ddb.plane[pipe][plane];
12155                         sw_entry = &sw_ddb->plane[pipe][plane];
12156
12157                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12158                                 continue;
12159
12160                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12161                                   "(expected (%u,%u), found (%u,%u))\n",
12162                                   pipe_name(pipe), plane + 1,
12163                                   sw_entry->start, sw_entry->end,
12164                                   hw_entry->start, hw_entry->end);
12165                 }
12166
12167                 /* cursor */
12168                 hw_entry = &hw_ddb.cursor[pipe];
12169                 sw_entry = &sw_ddb->cursor[pipe];
12170
12171                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12172                         continue;
12173
12174                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12175                           "(expected (%u,%u), found (%u,%u))\n",
12176                           pipe_name(pipe),
12177                           sw_entry->start, sw_entry->end,
12178                           hw_entry->start, hw_entry->end);
12179         }
12180 }
12181
12182 static void
12183 check_connector_state(struct drm_device *dev)
12184 {
12185         struct intel_connector *connector;
12186
12187         for_each_intel_connector(dev, connector) {
12188                 /* This also checks the encoder/connector hw state with the
12189                  * ->get_hw_state callbacks. */
12190                 intel_connector_check_state(connector);
12191
12192                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12193                      "connector's staged encoder doesn't match current encoder\n");
12194         }
12195 }
12196
12197 static void
12198 check_encoder_state(struct drm_device *dev)
12199 {
12200         struct intel_encoder *encoder;
12201         struct intel_connector *connector;
12202
12203         for_each_intel_encoder(dev, encoder) {
12204                 bool enabled = false;
12205                 bool active = false;
12206                 enum pipe pipe, tracked_pipe;
12207
12208                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12209                               encoder->base.base.id,
12210                               encoder->base.name);
12211
12212                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12213                      "encoder's stage crtc doesn't match current crtc\n");
12214                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12215                      "encoder's active_connectors set, but no crtc\n");
12216
12217                 for_each_intel_connector(dev, connector) {
12218                         if (connector->base.encoder != &encoder->base)
12219                                 continue;
12220                         enabled = true;
12221                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12222                                 active = true;
12223                 }
12224                 /*
12225                  * for MST connectors if we unplug the connector is gone
12226                  * away but the encoder is still connected to a crtc
12227                  * until a modeset happens in response to the hotplug.
12228                  */
12229                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12230                         continue;
12231
12232                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12233                      "encoder's enabled state mismatch "
12234                      "(expected %i, found %i)\n",
12235                      !!encoder->base.crtc, enabled);
12236                 I915_STATE_WARN(active && !encoder->base.crtc,
12237                      "active encoder with no crtc\n");
12238
12239                 I915_STATE_WARN(encoder->connectors_active != active,
12240                      "encoder's computed active state doesn't match tracked active state "
12241                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12242
12243                 active = encoder->get_hw_state(encoder, &pipe);
12244                 I915_STATE_WARN(active != encoder->connectors_active,
12245                      "encoder's hw state doesn't match sw tracking "
12246                      "(expected %i, found %i)\n",
12247                      encoder->connectors_active, active);
12248
12249                 if (!encoder->base.crtc)
12250                         continue;
12251
12252                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12253                 I915_STATE_WARN(active && pipe != tracked_pipe,
12254                      "active encoder's pipe doesn't match"
12255                      "(expected %i, found %i)\n",
12256                      tracked_pipe, pipe);
12257
12258         }
12259 }
12260
12261 static void
12262 check_crtc_state(struct drm_device *dev)
12263 {
12264         struct drm_i915_private *dev_priv = dev->dev_private;
12265         struct intel_crtc *crtc;
12266         struct intel_encoder *encoder;
12267         struct intel_crtc_state pipe_config;
12268
12269         for_each_intel_crtc(dev, crtc) {
12270                 bool enabled = false;
12271                 bool active = false;
12272
12273                 memset(&pipe_config, 0, sizeof(pipe_config));
12274
12275                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12276                               crtc->base.base.id);
12277
12278                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12279                      "active crtc, but not enabled in sw tracking\n");
12280
12281                 for_each_intel_encoder(dev, encoder) {
12282                         if (encoder->base.crtc != &crtc->base)
12283                                 continue;
12284                         enabled = true;
12285                         if (encoder->connectors_active)
12286                                 active = true;
12287                 }
12288
12289                 I915_STATE_WARN(active != crtc->active,
12290                      "crtc's computed active state doesn't match tracked active state "
12291                      "(expected %i, found %i)\n", active, crtc->active);
12292                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12293                      "crtc's computed enabled state doesn't match tracked enabled state "
12294                      "(expected %i, found %i)\n", enabled,
12295                                 crtc->base.state->enable);
12296
12297                 active = dev_priv->display.get_pipe_config(crtc,
12298                                                            &pipe_config);
12299
12300                 /* hw state is inconsistent with the pipe quirk */
12301                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12302                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12303                         active = crtc->active;
12304
12305                 for_each_intel_encoder(dev, encoder) {
12306                         enum pipe pipe;
12307                         if (encoder->base.crtc != &crtc->base)
12308                                 continue;
12309                         if (encoder->get_hw_state(encoder, &pipe))
12310                                 encoder->get_config(encoder, &pipe_config);
12311                 }
12312
12313                 I915_STATE_WARN(crtc->active != active,
12314                      "crtc active state doesn't match with hw state "
12315                      "(expected %i, found %i)\n", crtc->active, active);
12316
12317                 if (active &&
12318                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12319                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12320                         intel_dump_pipe_config(crtc, &pipe_config,
12321                                                "[hw state]");
12322                         intel_dump_pipe_config(crtc, crtc->config,
12323                                                "[sw state]");
12324                 }
12325         }
12326 }
12327
12328 static void
12329 check_shared_dpll_state(struct drm_device *dev)
12330 {
12331         struct drm_i915_private *dev_priv = dev->dev_private;
12332         struct intel_crtc *crtc;
12333         struct intel_dpll_hw_state dpll_hw_state;
12334         int i;
12335
12336         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12337                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12338                 int enabled_crtcs = 0, active_crtcs = 0;
12339                 bool active;
12340
12341                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12342
12343                 DRM_DEBUG_KMS("%s\n", pll->name);
12344
12345                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12346
12347                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12348                      "more active pll users than references: %i vs %i\n",
12349                      pll->active, hweight32(pll->config.crtc_mask));
12350                 I915_STATE_WARN(pll->active && !pll->on,
12351                      "pll in active use but not on in sw tracking\n");
12352                 I915_STATE_WARN(pll->on && !pll->active,
12353                      "pll in on but not on in use in sw tracking\n");
12354                 I915_STATE_WARN(pll->on != active,
12355                      "pll on state mismatch (expected %i, found %i)\n",
12356                      pll->on, active);
12357
12358                 for_each_intel_crtc(dev, crtc) {
12359                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12360                                 enabled_crtcs++;
12361                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12362                                 active_crtcs++;
12363                 }
12364                 I915_STATE_WARN(pll->active != active_crtcs,
12365                      "pll active crtcs mismatch (expected %i, found %i)\n",
12366                      pll->active, active_crtcs);
12367                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12368                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12369                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12370
12371                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12372                                        sizeof(dpll_hw_state)),
12373                      "pll hw state mismatch\n");
12374         }
12375 }
12376
12377 void
12378 intel_modeset_check_state(struct drm_device *dev)
12379 {
12380         check_wm_state(dev);
12381         check_connector_state(dev);
12382         check_encoder_state(dev);
12383         check_crtc_state(dev);
12384         check_shared_dpll_state(dev);
12385 }
12386
12387 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12388                                      int dotclock)
12389 {
12390         /*
12391          * FDI already provided one idea for the dotclock.
12392          * Yell if the encoder disagrees.
12393          */
12394         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12395              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12396              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12397 }
12398
12399 static void update_scanline_offset(struct intel_crtc *crtc)
12400 {
12401         struct drm_device *dev = crtc->base.dev;
12402
12403         /*
12404          * The scanline counter increments at the leading edge of hsync.
12405          *
12406          * On most platforms it starts counting from vtotal-1 on the
12407          * first active line. That means the scanline counter value is
12408          * always one less than what we would expect. Ie. just after
12409          * start of vblank, which also occurs at start of hsync (on the
12410          * last active line), the scanline counter will read vblank_start-1.
12411          *
12412          * On gen2 the scanline counter starts counting from 1 instead
12413          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12414          * to keep the value positive), instead of adding one.
12415          *
12416          * On HSW+ the behaviour of the scanline counter depends on the output
12417          * type. For DP ports it behaves like most other platforms, but on HDMI
12418          * there's an extra 1 line difference. So we need to add two instead of
12419          * one to the value.
12420          */
12421         if (IS_GEN2(dev)) {
12422                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12423                 int vtotal;
12424
12425                 vtotal = mode->crtc_vtotal;
12426                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12427                         vtotal /= 2;
12428
12429                 crtc->scanline_offset = vtotal - 1;
12430         } else if (HAS_DDI(dev) &&
12431                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12432                 crtc->scanline_offset = 2;
12433         } else
12434                 crtc->scanline_offset = 1;
12435 }
12436
12437 static struct intel_crtc_state *
12438 intel_modeset_compute_config(struct drm_crtc *crtc,
12439                              struct drm_atomic_state *state)
12440 {
12441         struct intel_crtc_state *pipe_config;
12442         int ret = 0;
12443
12444         ret = drm_atomic_add_affected_connectors(state, crtc);
12445         if (ret)
12446                 return ERR_PTR(ret);
12447
12448         ret = drm_atomic_helper_check_modeset(state->dev, state);
12449         if (ret)
12450                 return ERR_PTR(ret);
12451
12452         /*
12453          * Note this needs changes when we start tracking multiple modes
12454          * and crtcs.  At that point we'll need to compute the whole config
12455          * (i.e. one pipe_config for each crtc) rather than just the one
12456          * for this crtc.
12457          */
12458         pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12459         if (IS_ERR(pipe_config))
12460                 return pipe_config;
12461
12462         if (!pipe_config->base.enable)
12463                 return pipe_config;
12464
12465         ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12466         if (ret)
12467                 return ERR_PTR(ret);
12468
12469         /* Check things that can only be changed through modeset */
12470         if (pipe_config->has_audio !=
12471             to_intel_crtc(crtc)->config->has_audio)
12472                 pipe_config->base.mode_changed = true;
12473
12474         /*
12475          * Note we have an issue here with infoframes: current code
12476          * only updates them on the full mode set path per hw
12477          * requirements.  So here we should be checking for any
12478          * required changes and forcing a mode set.
12479          */
12480
12481         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12482
12483         ret = drm_atomic_helper_check_planes(state->dev, state);
12484         if (ret)
12485                 return ERR_PTR(ret);
12486
12487         return pipe_config;
12488 }
12489
12490 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12491 {
12492         struct drm_device *dev = state->dev;
12493         struct drm_i915_private *dev_priv = to_i915(dev);
12494         unsigned clear_pipes = 0;
12495         struct intel_crtc *intel_crtc;
12496         struct intel_crtc_state *intel_crtc_state;
12497         struct drm_crtc *crtc;
12498         struct drm_crtc_state *crtc_state;
12499         int ret = 0;
12500         int i;
12501
12502         if (!dev_priv->display.crtc_compute_clock)
12503                 return 0;
12504
12505         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12506                 intel_crtc = to_intel_crtc(crtc);
12507                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12508
12509                 if (needs_modeset(crtc_state)) {
12510                         clear_pipes |= 1 << intel_crtc->pipe;
12511                         intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12512                 }
12513         }
12514
12515         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12516         if (ret)
12517                 goto done;
12518
12519         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12520                 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12521                         continue;
12522
12523                 intel_crtc = to_intel_crtc(crtc);
12524                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12525
12526                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12527                                                            intel_crtc_state);
12528                 if (ret) {
12529                         intel_shared_dpll_abort_config(dev_priv);
12530                         goto done;
12531                 }
12532         }
12533
12534 done:
12535         return ret;
12536 }
12537
12538 /* Code that should eventually be part of atomic_check() */
12539 static int __intel_set_mode_checks(struct drm_atomic_state *state)
12540 {
12541         struct drm_device *dev = state->dev;
12542         int ret;
12543
12544         /*
12545          * See if the config requires any additional preparation, e.g.
12546          * to adjust global state with pipes off.  We need to do this
12547          * here so we can get the modeset_pipe updated config for the new
12548          * mode set on this crtc.  For other crtcs we need to use the
12549          * adjusted_mode bits in the crtc directly.
12550          */
12551         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12552                 ret = valleyview_modeset_global_pipes(state);
12553                 if (ret)
12554                         return ret;
12555         }
12556
12557         ret = __intel_set_mode_setup_plls(state);
12558         if (ret)
12559                 return ret;
12560
12561         return 0;
12562 }
12563
12564 static int __intel_set_mode(struct drm_crtc *modeset_crtc,
12565                             struct intel_crtc_state *pipe_config)
12566 {
12567         struct drm_device *dev = modeset_crtc->dev;
12568         struct drm_i915_private *dev_priv = dev->dev_private;
12569         struct drm_atomic_state *state = pipe_config->base.state;
12570         struct drm_crtc *crtc;
12571         struct drm_crtc_state *crtc_state;
12572         int ret = 0;
12573         int i;
12574
12575         ret = __intel_set_mode_checks(state);
12576         if (ret < 0)
12577                 return ret;
12578
12579         ret = drm_atomic_helper_prepare_planes(dev, state);
12580         if (ret)
12581                 return ret;
12582
12583         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12584                 if (!needs_modeset(crtc_state))
12585                         continue;
12586
12587                 if (!crtc_state->enable) {
12588                         intel_crtc_disable(crtc);
12589                 } else if (crtc->state->enable) {
12590                         intel_crtc_disable_planes(crtc);
12591                         dev_priv->display.crtc_disable(crtc);
12592                 }
12593         }
12594
12595         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12596          * to set it here already despite that we pass it down the callchain.
12597          *
12598          * Note we'll need to fix this up when we start tracking multiple
12599          * pipes; here we assume a single modeset_pipe and only track the
12600          * single crtc and mode.
12601          */
12602         if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
12603                 modeset_crtc->mode = pipe_config->base.mode;
12604
12605                 /*
12606                  * Calculate and store various constants which
12607                  * are later needed by vblank and swap-completion
12608                  * timestamping. They are derived from true hwmode.
12609                  */
12610                 drm_calc_timestamping_constants(modeset_crtc,
12611                                                 &pipe_config->base.adjusted_mode);
12612         }
12613
12614         /* Only after disabling all output pipelines that will be changed can we
12615          * update the the output configuration. */
12616         intel_modeset_update_state(state);
12617
12618         /* The state has been swaped above, so state actually contains the
12619          * old state now. */
12620
12621         modeset_update_crtc_power_domains(state);
12622
12623         drm_atomic_helper_commit_planes(dev, state);
12624
12625         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12626         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12627                 if (!needs_modeset(crtc->state) || !crtc->state->enable)
12628                         continue;
12629
12630                 update_scanline_offset(to_intel_crtc(crtc));
12631
12632                 dev_priv->display.crtc_enable(crtc);
12633                 intel_crtc_enable_planes(crtc);
12634         }
12635
12636         /* FIXME: add subpixel order */
12637
12638         drm_atomic_helper_cleanup_planes(dev, state);
12639
12640         drm_atomic_state_free(state);
12641
12642         return 0;
12643 }
12644
12645 static int intel_set_mode_with_config(struct drm_crtc *crtc,
12646                                       struct intel_crtc_state *pipe_config,
12647                                       bool force_restore)
12648 {
12649         int ret;
12650
12651         ret = __intel_set_mode(crtc, pipe_config);
12652
12653         if (ret == 0 && force_restore) {
12654                 intel_modeset_update_staged_output_state(crtc->dev);
12655                 intel_modeset_check_state(crtc->dev);
12656         }
12657
12658         return ret;
12659 }
12660
12661 static int intel_set_mode(struct drm_crtc *crtc,
12662                           struct drm_atomic_state *state,
12663                           bool force_restore)
12664 {
12665         struct intel_crtc_state *pipe_config;
12666         int ret = 0;
12667
12668         pipe_config = intel_modeset_compute_config(crtc, state);
12669         if (IS_ERR(pipe_config)) {
12670                 ret = PTR_ERR(pipe_config);
12671                 goto out;
12672         }
12673
12674         ret = intel_set_mode_with_config(crtc, pipe_config, force_restore);
12675         if (ret)
12676                 goto out;
12677
12678 out:
12679         return ret;
12680 }
12681
12682 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12683 {
12684         struct drm_device *dev = crtc->dev;
12685         struct drm_atomic_state *state;
12686         struct intel_encoder *encoder;
12687         struct intel_connector *connector;
12688         struct drm_connector_state *connector_state;
12689         struct intel_crtc_state *crtc_state;
12690         int ret;
12691
12692         state = drm_atomic_state_alloc(dev);
12693         if (!state) {
12694                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12695                               crtc->base.id);
12696                 return;
12697         }
12698
12699         state->acquire_ctx = dev->mode_config.acquire_ctx;
12700
12701         /* The force restore path in the HW readout code relies on the staged
12702          * config still keeping the user requested config while the actual
12703          * state has been overwritten by the configuration read from HW. We
12704          * need to copy the staged config to the atomic state, otherwise the
12705          * mode set will just reapply the state the HW is already in. */
12706         for_each_intel_encoder(dev, encoder) {
12707                 if (&encoder->new_crtc->base != crtc)
12708                         continue;
12709
12710                 for_each_intel_connector(dev, connector) {
12711                         if (connector->new_encoder != encoder)
12712                                 continue;
12713
12714                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
12715                         if (IS_ERR(connector_state)) {
12716                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12717                                               connector->base.base.id,
12718                                               connector->base.name,
12719                                               PTR_ERR(connector_state));
12720                                 continue;
12721                         }
12722
12723                         connector_state->crtc = crtc;
12724                         connector_state->best_encoder = &encoder->base;
12725                 }
12726         }
12727
12728         crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12729         if (IS_ERR(crtc_state)) {
12730                 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12731                               crtc->base.id, PTR_ERR(crtc_state));
12732                 drm_atomic_state_free(state);
12733                 return;
12734         }
12735
12736         crtc_state->base.active = crtc_state->base.enable =
12737                 to_intel_crtc(crtc)->new_enabled;
12738
12739         drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
12740
12741         intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12742                                         crtc->primary->fb, crtc->x, crtc->y);
12743
12744         ret = intel_set_mode(crtc, state, false);
12745         if (ret)
12746                 drm_atomic_state_free(state);
12747 }
12748
12749 #undef for_each_intel_crtc_masked
12750
12751 static bool intel_connector_in_mode_set(struct intel_connector *connector,
12752                                         struct drm_mode_set *set)
12753 {
12754         int ro;
12755
12756         for (ro = 0; ro < set->num_connectors; ro++)
12757                 if (set->connectors[ro] == &connector->base)
12758                         return true;
12759
12760         return false;
12761 }
12762
12763 static int
12764 intel_modeset_stage_output_state(struct drm_device *dev,
12765                                  struct drm_mode_set *set,
12766                                  struct drm_atomic_state *state)
12767 {
12768         struct intel_connector *connector;
12769         struct drm_connector *drm_connector;
12770         struct drm_connector_state *connector_state;
12771         struct drm_crtc *crtc;
12772         struct drm_crtc_state *crtc_state;
12773         int i, ret;
12774
12775         /* The upper layers ensure that we either disable a crtc or have a list
12776          * of connectors. For paranoia, double-check this. */
12777         WARN_ON(!set->fb && (set->num_connectors != 0));
12778         WARN_ON(set->fb && (set->num_connectors == 0));
12779
12780         for_each_intel_connector(dev, connector) {
12781                 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12782
12783                 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12784                         continue;
12785
12786                 connector_state =
12787                         drm_atomic_get_connector_state(state, &connector->base);
12788                 if (IS_ERR(connector_state))
12789                         return PTR_ERR(connector_state);
12790
12791                 if (in_mode_set) {
12792                         int pipe = to_intel_crtc(set->crtc)->pipe;
12793                         connector_state->best_encoder =
12794                                 &intel_find_encoder(connector, pipe)->base;
12795                 }
12796
12797                 if (connector->base.state->crtc != set->crtc)
12798                         continue;
12799
12800                 /* If we disable the crtc, disable all its connectors. Also, if
12801                  * the connector is on the changing crtc but not on the new
12802                  * connector list, disable it. */
12803                 if (!set->fb || !in_mode_set) {
12804                         connector_state->best_encoder = NULL;
12805
12806                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12807                                 connector->base.base.id,
12808                                 connector->base.name);
12809                 }
12810         }
12811         /* connector->new_encoder is now updated for all connectors. */
12812
12813         for_each_connector_in_state(state, drm_connector, connector_state, i) {
12814                 connector = to_intel_connector(drm_connector);
12815
12816                 if (!connector_state->best_encoder) {
12817                         ret = drm_atomic_set_crtc_for_connector(connector_state,
12818                                                                 NULL);
12819                         if (ret)
12820                                 return ret;
12821
12822                         continue;
12823                 }
12824
12825                 if (intel_connector_in_mode_set(connector, set)) {
12826                         struct drm_crtc *crtc = connector->base.state->crtc;
12827
12828                         /* If this connector was in a previous crtc, add it
12829                          * to the state. We might need to disable it. */
12830                         if (crtc) {
12831                                 crtc_state =
12832                                         drm_atomic_get_crtc_state(state, crtc);
12833                                 if (IS_ERR(crtc_state))
12834                                         return PTR_ERR(crtc_state);
12835                         }
12836
12837                         ret = drm_atomic_set_crtc_for_connector(connector_state,
12838                                                                 set->crtc);
12839                         if (ret)
12840                                 return ret;
12841                 }
12842
12843                 /* Make sure the new CRTC will work with the encoder */
12844                 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12845                                          connector_state->crtc)) {
12846                         return -EINVAL;
12847                 }
12848
12849                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12850                         connector->base.base.id,
12851                         connector->base.name,
12852                         connector_state->crtc->base.id);
12853
12854                 if (connector_state->best_encoder != &connector->encoder->base)
12855                         connector->encoder =
12856                                 to_intel_encoder(connector_state->best_encoder);
12857         }
12858
12859         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12860                 bool has_connectors;
12861
12862                 ret = drm_atomic_add_affected_connectors(state, crtc);
12863                 if (ret)
12864                         return ret;
12865
12866                 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12867                 if (has_connectors != crtc_state->enable)
12868                         crtc_state->enable =
12869                         crtc_state->active = has_connectors;
12870         }
12871
12872         ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12873                                               set->fb, set->x, set->y);
12874         if (ret)
12875                 return ret;
12876
12877         crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12878         if (IS_ERR(crtc_state))
12879                 return PTR_ERR(crtc_state);
12880
12881         if (set->mode)
12882                 drm_mode_copy(&crtc_state->mode, set->mode);
12883
12884         if (set->num_connectors)
12885                 crtc_state->active = true;
12886
12887         return 0;
12888 }
12889
12890 static bool primary_plane_visible(struct drm_crtc *crtc)
12891 {
12892         struct intel_plane_state *plane_state =
12893                 to_intel_plane_state(crtc->primary->state);
12894
12895         return plane_state->visible;
12896 }
12897
12898 static int intel_crtc_set_config(struct drm_mode_set *set)
12899 {
12900         struct drm_device *dev;
12901         struct drm_atomic_state *state = NULL;
12902         struct intel_crtc_state *pipe_config;
12903         bool primary_plane_was_visible;
12904         int ret;
12905
12906         BUG_ON(!set);
12907         BUG_ON(!set->crtc);
12908         BUG_ON(!set->crtc->helper_private);
12909
12910         /* Enforce sane interface api - has been abused by the fb helper. */
12911         BUG_ON(!set->mode && set->fb);
12912         BUG_ON(set->fb && set->num_connectors == 0);
12913
12914         if (set->fb) {
12915                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12916                                 set->crtc->base.id, set->fb->base.id,
12917                                 (int)set->num_connectors, set->x, set->y);
12918         } else {
12919                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12920         }
12921
12922         dev = set->crtc->dev;
12923
12924         state = drm_atomic_state_alloc(dev);
12925         if (!state)
12926                 return -ENOMEM;
12927
12928         state->acquire_ctx = dev->mode_config.acquire_ctx;
12929
12930         ret = intel_modeset_stage_output_state(dev, set, state);
12931         if (ret)
12932                 goto out;
12933
12934         pipe_config = intel_modeset_compute_config(set->crtc, state);
12935         if (IS_ERR(pipe_config)) {
12936                 ret = PTR_ERR(pipe_config);
12937                 goto out;
12938         }
12939
12940         intel_update_pipe_size(to_intel_crtc(set->crtc));
12941
12942         primary_plane_was_visible = primary_plane_visible(set->crtc);
12943
12944         ret = intel_set_mode_with_config(set->crtc, pipe_config, true);
12945
12946         if (ret == 0 &&
12947             pipe_config->base.enable &&
12948             pipe_config->base.planes_changed &&
12949             !needs_modeset(&pipe_config->base)) {
12950                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12951
12952                 /*
12953                  * We need to make sure the primary plane is re-enabled if it
12954                  * has previously been turned off.
12955                  */
12956                 if (ret == 0 && !primary_plane_was_visible &&
12957                     primary_plane_visible(set->crtc)) {
12958                         WARN_ON(!intel_crtc->active);
12959                         intel_post_enable_primary(set->crtc);
12960                 }
12961
12962                 /*
12963                  * In the fastboot case this may be our only check of the
12964                  * state after boot.  It would be better to only do it on
12965                  * the first update, but we don't have a nice way of doing that
12966                  * (and really, set_config isn't used much for high freq page
12967                  * flipping, so increasing its cost here shouldn't be a big
12968                  * deal).
12969                  */
12970                 if (i915.fastboot && ret == 0)
12971                         intel_modeset_check_state(set->crtc->dev);
12972         }
12973
12974         if (ret) {
12975                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12976                               set->crtc->base.id, ret);
12977         }
12978
12979 out:
12980         if (ret)
12981                 drm_atomic_state_free(state);
12982         return ret;
12983 }
12984
12985 static const struct drm_crtc_funcs intel_crtc_funcs = {
12986         .gamma_set = intel_crtc_gamma_set,
12987         .set_config = intel_crtc_set_config,
12988         .destroy = intel_crtc_destroy,
12989         .page_flip = intel_crtc_page_flip,
12990         .atomic_duplicate_state = intel_crtc_duplicate_state,
12991         .atomic_destroy_state = intel_crtc_destroy_state,
12992 };
12993
12994 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12995                                       struct intel_shared_dpll *pll,
12996                                       struct intel_dpll_hw_state *hw_state)
12997 {
12998         uint32_t val;
12999
13000         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13001                 return false;
13002
13003         val = I915_READ(PCH_DPLL(pll->id));
13004         hw_state->dpll = val;
13005         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13006         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13007
13008         return val & DPLL_VCO_ENABLE;
13009 }
13010
13011 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13012                                   struct intel_shared_dpll *pll)
13013 {
13014         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13015         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13016 }
13017
13018 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13019                                 struct intel_shared_dpll *pll)
13020 {
13021         /* PCH refclock must be enabled first */
13022         ibx_assert_pch_refclk_enabled(dev_priv);
13023
13024         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13025
13026         /* Wait for the clocks to stabilize. */
13027         POSTING_READ(PCH_DPLL(pll->id));
13028         udelay(150);
13029
13030         /* The pixel multiplier can only be updated once the
13031          * DPLL is enabled and the clocks are stable.
13032          *
13033          * So write it again.
13034          */
13035         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13036         POSTING_READ(PCH_DPLL(pll->id));
13037         udelay(200);
13038 }
13039
13040 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13041                                  struct intel_shared_dpll *pll)
13042 {
13043         struct drm_device *dev = dev_priv->dev;
13044         struct intel_crtc *crtc;
13045
13046         /* Make sure no transcoder isn't still depending on us. */
13047         for_each_intel_crtc(dev, crtc) {
13048                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13049                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13050         }
13051
13052         I915_WRITE(PCH_DPLL(pll->id), 0);
13053         POSTING_READ(PCH_DPLL(pll->id));
13054         udelay(200);
13055 }
13056
13057 static char *ibx_pch_dpll_names[] = {
13058         "PCH DPLL A",
13059         "PCH DPLL B",
13060 };
13061
13062 static void ibx_pch_dpll_init(struct drm_device *dev)
13063 {
13064         struct drm_i915_private *dev_priv = dev->dev_private;
13065         int i;
13066
13067         dev_priv->num_shared_dpll = 2;
13068
13069         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13070                 dev_priv->shared_dplls[i].id = i;
13071                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13072                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13073                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13074                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13075                 dev_priv->shared_dplls[i].get_hw_state =
13076                         ibx_pch_dpll_get_hw_state;
13077         }
13078 }
13079
13080 static void intel_shared_dpll_init(struct drm_device *dev)
13081 {
13082         struct drm_i915_private *dev_priv = dev->dev_private;
13083
13084         if (HAS_DDI(dev))
13085                 intel_ddi_pll_init(dev);
13086         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13087                 ibx_pch_dpll_init(dev);
13088         else
13089                 dev_priv->num_shared_dpll = 0;
13090
13091         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13092 }
13093
13094 /**
13095  * intel_wm_need_update - Check whether watermarks need updating
13096  * @plane: drm plane
13097  * @state: new plane state
13098  *
13099  * Check current plane state versus the new one to determine whether
13100  * watermarks need to be recalculated.
13101  *
13102  * Returns true or false.
13103  */
13104 bool intel_wm_need_update(struct drm_plane *plane,
13105                           struct drm_plane_state *state)
13106 {
13107         /* Update watermarks on tiling changes. */
13108         if (!plane->state->fb || !state->fb ||
13109             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13110             plane->state->rotation != state->rotation)
13111                 return true;
13112
13113         return false;
13114 }
13115
13116 /**
13117  * intel_prepare_plane_fb - Prepare fb for usage on plane
13118  * @plane: drm plane to prepare for
13119  * @fb: framebuffer to prepare for presentation
13120  *
13121  * Prepares a framebuffer for usage on a display plane.  Generally this
13122  * involves pinning the underlying object and updating the frontbuffer tracking
13123  * bits.  Some older platforms need special physical address handling for
13124  * cursor planes.
13125  *
13126  * Returns 0 on success, negative error code on failure.
13127  */
13128 int
13129 intel_prepare_plane_fb(struct drm_plane *plane,
13130                        struct drm_framebuffer *fb,
13131                        const struct drm_plane_state *new_state)
13132 {
13133         struct drm_device *dev = plane->dev;
13134         struct intel_plane *intel_plane = to_intel_plane(plane);
13135         enum pipe pipe = intel_plane->pipe;
13136         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13137         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13138         unsigned frontbuffer_bits = 0;
13139         int ret = 0;
13140
13141         if (!obj)
13142                 return 0;
13143
13144         switch (plane->type) {
13145         case DRM_PLANE_TYPE_PRIMARY:
13146                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13147                 break;
13148         case DRM_PLANE_TYPE_CURSOR:
13149                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13150                 break;
13151         case DRM_PLANE_TYPE_OVERLAY:
13152                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13153                 break;
13154         }
13155
13156         mutex_lock(&dev->struct_mutex);
13157
13158         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13159             INTEL_INFO(dev)->cursor_needs_physical) {
13160                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13161                 ret = i915_gem_object_attach_phys(obj, align);
13162                 if (ret)
13163                         DRM_DEBUG_KMS("failed to attach phys object\n");
13164         } else {
13165                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13166         }
13167
13168         if (ret == 0)
13169                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13170
13171         mutex_unlock(&dev->struct_mutex);
13172
13173         return ret;
13174 }
13175
13176 /**
13177  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13178  * @plane: drm plane to clean up for
13179  * @fb: old framebuffer that was on plane
13180  *
13181  * Cleans up a framebuffer that has just been removed from a plane.
13182  */
13183 void
13184 intel_cleanup_plane_fb(struct drm_plane *plane,
13185                        struct drm_framebuffer *fb,
13186                        const struct drm_plane_state *old_state)
13187 {
13188         struct drm_device *dev = plane->dev;
13189         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13190
13191         if (WARN_ON(!obj))
13192                 return;
13193
13194         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13195             !INTEL_INFO(dev)->cursor_needs_physical) {
13196                 mutex_lock(&dev->struct_mutex);
13197                 intel_unpin_fb_obj(fb, old_state);
13198                 mutex_unlock(&dev->struct_mutex);
13199         }
13200 }
13201
13202 int
13203 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13204 {
13205         int max_scale;
13206         struct drm_device *dev;
13207         struct drm_i915_private *dev_priv;
13208         int crtc_clock, cdclk;
13209
13210         if (!intel_crtc || !crtc_state)
13211                 return DRM_PLANE_HELPER_NO_SCALING;
13212
13213         dev = intel_crtc->base.dev;
13214         dev_priv = dev->dev_private;
13215         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13216         cdclk = dev_priv->display.get_display_clock_speed(dev);
13217
13218         if (!crtc_clock || !cdclk)
13219                 return DRM_PLANE_HELPER_NO_SCALING;
13220
13221         /*
13222          * skl max scale is lower of:
13223          *    close to 3 but not 3, -1 is for that purpose
13224          *            or
13225          *    cdclk/crtc_clock
13226          */
13227         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13228
13229         return max_scale;
13230 }
13231
13232 static int
13233 intel_check_primary_plane(struct drm_plane *plane,
13234                           struct intel_plane_state *state)
13235 {
13236         struct drm_device *dev = plane->dev;
13237         struct drm_i915_private *dev_priv = dev->dev_private;
13238         struct drm_crtc *crtc = state->base.crtc;
13239         struct intel_crtc *intel_crtc;
13240         struct intel_crtc_state *crtc_state;
13241         struct drm_framebuffer *fb = state->base.fb;
13242         struct drm_rect *dest = &state->dst;
13243         struct drm_rect *src = &state->src;
13244         const struct drm_rect *clip = &state->clip;
13245         bool can_position = false;
13246         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13247         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13248         int ret;
13249
13250         crtc = crtc ? crtc : plane->crtc;
13251         intel_crtc = to_intel_crtc(crtc);
13252         crtc_state = state->base.state ?
13253                 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13254
13255         if (INTEL_INFO(dev)->gen >= 9) {
13256                 /* use scaler when colorkey is not required */
13257                 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13258                         min_scale = 1;
13259                         max_scale = skl_max_scale(intel_crtc, crtc_state);
13260                 }
13261                 can_position = true;
13262         }
13263
13264         ret = drm_plane_helper_check_update(plane, crtc, fb,
13265                                             src, dest, clip,
13266                                             min_scale,
13267                                             max_scale,
13268                                             can_position, true,
13269                                             &state->visible);
13270         if (ret)
13271                 return ret;
13272
13273         if (intel_crtc->active) {
13274                 struct intel_plane_state *old_state =
13275                         to_intel_plane_state(plane->state);
13276
13277                 intel_crtc->atomic.wait_for_flips = true;
13278
13279                 /*
13280                  * FBC does not work on some platforms for rotated
13281                  * planes, so disable it when rotation is not 0 and
13282                  * update it when rotation is set back to 0.
13283                  *
13284                  * FIXME: This is redundant with the fbc update done in
13285                  * the primary plane enable function except that that
13286                  * one is done too late. We eventually need to unify
13287                  * this.
13288                  */
13289                 if (state->visible &&
13290                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13291                     dev_priv->fbc.crtc == intel_crtc &&
13292                     state->base.rotation != BIT(DRM_ROTATE_0)) {
13293                         intel_crtc->atomic.disable_fbc = true;
13294                 }
13295
13296                 if (state->visible && !old_state->visible) {
13297                         /*
13298                          * BDW signals flip done immediately if the plane
13299                          * is disabled, even if the plane enable is already
13300                          * armed to occur at the next vblank :(
13301                          */
13302                         if (IS_BROADWELL(dev))
13303                                 intel_crtc->atomic.wait_vblank = true;
13304                 }
13305
13306                 /*
13307                  * FIXME: Actually if we will still have any other plane enabled
13308                  * on the pipe we could let IPS enabled still, but for
13309                  * now lets consider that when we make primary invisible
13310                  * by setting DSPCNTR to 0 on update_primary_plane function
13311                  * IPS needs to be disable.
13312                  */
13313                 if (!state->visible || !fb)
13314                         intel_crtc->atomic.disable_ips = true;
13315
13316                 intel_crtc->atomic.fb_bits |=
13317                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13318
13319                 intel_crtc->atomic.update_fbc = true;
13320
13321                 if (intel_wm_need_update(plane, &state->base))
13322                         intel_crtc->atomic.update_wm = true;
13323         }
13324
13325         if (INTEL_INFO(dev)->gen >= 9) {
13326                 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13327                         to_intel_plane(plane), state, 0);
13328                 if (ret)
13329                         return ret;
13330         }
13331
13332         return 0;
13333 }
13334
13335 static void
13336 intel_commit_primary_plane(struct drm_plane *plane,
13337                            struct intel_plane_state *state)
13338 {
13339         struct drm_crtc *crtc = state->base.crtc;
13340         struct drm_framebuffer *fb = state->base.fb;
13341         struct drm_device *dev = plane->dev;
13342         struct drm_i915_private *dev_priv = dev->dev_private;
13343         struct intel_crtc *intel_crtc;
13344         struct drm_rect *src = &state->src;
13345
13346         crtc = crtc ? crtc : plane->crtc;
13347         intel_crtc = to_intel_crtc(crtc);
13348
13349         plane->fb = fb;
13350         crtc->x = src->x1 >> 16;
13351         crtc->y = src->y1 >> 16;
13352
13353         if (intel_crtc->active) {
13354                 if (state->visible)
13355                         /* FIXME: kill this fastboot hack */
13356                         intel_update_pipe_size(intel_crtc);
13357
13358                 dev_priv->display.update_primary_plane(crtc, plane->fb,
13359                                                        crtc->x, crtc->y);
13360         }
13361 }
13362
13363 static void
13364 intel_disable_primary_plane(struct drm_plane *plane,
13365                             struct drm_crtc *crtc,
13366                             bool force)
13367 {
13368         struct drm_device *dev = plane->dev;
13369         struct drm_i915_private *dev_priv = dev->dev_private;
13370
13371         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13372 }
13373
13374 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13375 {
13376         struct drm_device *dev = crtc->dev;
13377         struct drm_i915_private *dev_priv = dev->dev_private;
13378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13379         struct intel_plane *intel_plane;
13380         struct drm_plane *p;
13381         unsigned fb_bits = 0;
13382
13383         /* Track fb's for any planes being disabled */
13384         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13385                 intel_plane = to_intel_plane(p);
13386
13387                 if (intel_crtc->atomic.disabled_planes &
13388                     (1 << drm_plane_index(p))) {
13389                         switch (p->type) {
13390                         case DRM_PLANE_TYPE_PRIMARY:
13391                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13392                                 break;
13393                         case DRM_PLANE_TYPE_CURSOR:
13394                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13395                                 break;
13396                         case DRM_PLANE_TYPE_OVERLAY:
13397                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13398                                 break;
13399                         }
13400
13401                         mutex_lock(&dev->struct_mutex);
13402                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13403                         mutex_unlock(&dev->struct_mutex);
13404                 }
13405         }
13406
13407         if (intel_crtc->atomic.wait_for_flips)
13408                 intel_crtc_wait_for_pending_flips(crtc);
13409
13410         if (intel_crtc->atomic.disable_fbc)
13411                 intel_fbc_disable(dev);
13412
13413         if (intel_crtc->atomic.disable_ips)
13414                 hsw_disable_ips(intel_crtc);
13415
13416         if (intel_crtc->atomic.pre_disable_primary)
13417                 intel_pre_disable_primary(crtc);
13418
13419         if (intel_crtc->atomic.update_wm)
13420                 intel_update_watermarks(crtc);
13421
13422         intel_runtime_pm_get(dev_priv);
13423
13424         /* Perform vblank evasion around commit operation */
13425         if (intel_crtc->active)
13426                 intel_crtc->atomic.evade =
13427                         intel_pipe_update_start(intel_crtc,
13428                                                 &intel_crtc->atomic.start_vbl_count);
13429 }
13430
13431 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13432 {
13433         struct drm_device *dev = crtc->dev;
13434         struct drm_i915_private *dev_priv = dev->dev_private;
13435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13436         struct drm_plane *p;
13437
13438         if (intel_crtc->atomic.evade)
13439                 intel_pipe_update_end(intel_crtc,
13440                                       intel_crtc->atomic.start_vbl_count);
13441
13442         intel_runtime_pm_put(dev_priv);
13443
13444         if (intel_crtc->atomic.wait_vblank)
13445                 intel_wait_for_vblank(dev, intel_crtc->pipe);
13446
13447         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13448
13449         if (intel_crtc->atomic.update_fbc) {
13450                 mutex_lock(&dev->struct_mutex);
13451                 intel_fbc_update(dev);
13452                 mutex_unlock(&dev->struct_mutex);
13453         }
13454
13455         if (intel_crtc->atomic.post_enable_primary)
13456                 intel_post_enable_primary(crtc);
13457
13458         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13459                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13460                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13461                                                        false, false);
13462
13463         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13464 }
13465
13466 /**
13467  * intel_plane_destroy - destroy a plane
13468  * @plane: plane to destroy
13469  *
13470  * Common destruction function for all types of planes (primary, cursor,
13471  * sprite).
13472  */
13473 void intel_plane_destroy(struct drm_plane *plane)
13474 {
13475         struct intel_plane *intel_plane = to_intel_plane(plane);
13476         drm_plane_cleanup(plane);
13477         kfree(intel_plane);
13478 }
13479
13480 const struct drm_plane_funcs intel_plane_funcs = {
13481         .update_plane = drm_atomic_helper_update_plane,
13482         .disable_plane = drm_atomic_helper_disable_plane,
13483         .destroy = intel_plane_destroy,
13484         .set_property = drm_atomic_helper_plane_set_property,
13485         .atomic_get_property = intel_plane_atomic_get_property,
13486         .atomic_set_property = intel_plane_atomic_set_property,
13487         .atomic_duplicate_state = intel_plane_duplicate_state,
13488         .atomic_destroy_state = intel_plane_destroy_state,
13489
13490 };
13491
13492 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13493                                                     int pipe)
13494 {
13495         struct intel_plane *primary;
13496         struct intel_plane_state *state;
13497         const uint32_t *intel_primary_formats;
13498         int num_formats;
13499
13500         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13501         if (primary == NULL)
13502                 return NULL;
13503
13504         state = intel_create_plane_state(&primary->base);
13505         if (!state) {
13506                 kfree(primary);
13507                 return NULL;
13508         }
13509         primary->base.state = &state->base;
13510
13511         primary->can_scale = false;
13512         primary->max_downscale = 1;
13513         if (INTEL_INFO(dev)->gen >= 9) {
13514                 primary->can_scale = true;
13515                 state->scaler_id = -1;
13516         }
13517         primary->pipe = pipe;
13518         primary->plane = pipe;
13519         primary->check_plane = intel_check_primary_plane;
13520         primary->commit_plane = intel_commit_primary_plane;
13521         primary->disable_plane = intel_disable_primary_plane;
13522         primary->ckey.flags = I915_SET_COLORKEY_NONE;
13523         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13524                 primary->plane = !pipe;
13525
13526         if (INTEL_INFO(dev)->gen >= 9) {
13527                 intel_primary_formats = skl_primary_formats;
13528                 num_formats = ARRAY_SIZE(skl_primary_formats);
13529         } else if (INTEL_INFO(dev)->gen >= 4) {
13530                 intel_primary_formats = i965_primary_formats;
13531                 num_formats = ARRAY_SIZE(i965_primary_formats);
13532         } else {
13533                 intel_primary_formats = i8xx_primary_formats;
13534                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13535         }
13536
13537         drm_universal_plane_init(dev, &primary->base, 0,
13538                                  &intel_plane_funcs,
13539                                  intel_primary_formats, num_formats,
13540                                  DRM_PLANE_TYPE_PRIMARY);
13541
13542         if (INTEL_INFO(dev)->gen >= 4)
13543                 intel_create_rotation_property(dev, primary);
13544
13545         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13546
13547         return &primary->base;
13548 }
13549
13550 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13551 {
13552         if (!dev->mode_config.rotation_property) {
13553                 unsigned long flags = BIT(DRM_ROTATE_0) |
13554                         BIT(DRM_ROTATE_180);
13555
13556                 if (INTEL_INFO(dev)->gen >= 9)
13557                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13558
13559                 dev->mode_config.rotation_property =
13560                         drm_mode_create_rotation_property(dev, flags);
13561         }
13562         if (dev->mode_config.rotation_property)
13563                 drm_object_attach_property(&plane->base.base,
13564                                 dev->mode_config.rotation_property,
13565                                 plane->base.state->rotation);
13566 }
13567
13568 static int
13569 intel_check_cursor_plane(struct drm_plane *plane,
13570                          struct intel_plane_state *state)
13571 {
13572         struct drm_crtc *crtc = state->base.crtc;
13573         struct drm_device *dev = plane->dev;
13574         struct drm_framebuffer *fb = state->base.fb;
13575         struct drm_rect *dest = &state->dst;
13576         struct drm_rect *src = &state->src;
13577         const struct drm_rect *clip = &state->clip;
13578         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13579         struct intel_crtc *intel_crtc;
13580         unsigned stride;
13581         int ret;
13582
13583         crtc = crtc ? crtc : plane->crtc;
13584         intel_crtc = to_intel_crtc(crtc);
13585
13586         ret = drm_plane_helper_check_update(plane, crtc, fb,
13587                                             src, dest, clip,
13588                                             DRM_PLANE_HELPER_NO_SCALING,
13589                                             DRM_PLANE_HELPER_NO_SCALING,
13590                                             true, true, &state->visible);
13591         if (ret)
13592                 return ret;
13593
13594
13595         /* if we want to turn off the cursor ignore width and height */
13596         if (!obj)
13597                 goto finish;
13598
13599         /* Check for which cursor types we support */
13600         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13601                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13602                           state->base.crtc_w, state->base.crtc_h);
13603                 return -EINVAL;
13604         }
13605
13606         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13607         if (obj->base.size < stride * state->base.crtc_h) {
13608                 DRM_DEBUG_KMS("buffer is too small\n");
13609                 return -ENOMEM;
13610         }
13611
13612         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13613                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13614                 ret = -EINVAL;
13615         }
13616
13617 finish:
13618         if (intel_crtc->active) {
13619                 if (plane->state->crtc_w != state->base.crtc_w)
13620                         intel_crtc->atomic.update_wm = true;
13621
13622                 intel_crtc->atomic.fb_bits |=
13623                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13624         }
13625
13626         return ret;
13627 }
13628
13629 static void
13630 intel_disable_cursor_plane(struct drm_plane *plane,
13631                            struct drm_crtc *crtc,
13632                            bool force)
13633 {
13634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13635
13636         if (!force) {
13637                 plane->fb = NULL;
13638                 intel_crtc->cursor_bo = NULL;
13639                 intel_crtc->cursor_addr = 0;
13640         }
13641
13642         intel_crtc_update_cursor(crtc, false);
13643 }
13644
13645 static void
13646 intel_commit_cursor_plane(struct drm_plane *plane,
13647                           struct intel_plane_state *state)
13648 {
13649         struct drm_crtc *crtc = state->base.crtc;
13650         struct drm_device *dev = plane->dev;
13651         struct intel_crtc *intel_crtc;
13652         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13653         uint32_t addr;
13654
13655         crtc = crtc ? crtc : plane->crtc;
13656         intel_crtc = to_intel_crtc(crtc);
13657
13658         plane->fb = state->base.fb;
13659         crtc->cursor_x = state->base.crtc_x;
13660         crtc->cursor_y = state->base.crtc_y;
13661
13662         if (intel_crtc->cursor_bo == obj)
13663                 goto update;
13664
13665         if (!obj)
13666                 addr = 0;
13667         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13668                 addr = i915_gem_obj_ggtt_offset(obj);
13669         else
13670                 addr = obj->phys_handle->busaddr;
13671
13672         intel_crtc->cursor_addr = addr;
13673         intel_crtc->cursor_bo = obj;
13674 update:
13675
13676         if (intel_crtc->active)
13677                 intel_crtc_update_cursor(crtc, state->visible);
13678 }
13679
13680 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13681                                                    int pipe)
13682 {
13683         struct intel_plane *cursor;
13684         struct intel_plane_state *state;
13685
13686         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13687         if (cursor == NULL)
13688                 return NULL;
13689
13690         state = intel_create_plane_state(&cursor->base);
13691         if (!state) {
13692                 kfree(cursor);
13693                 return NULL;
13694         }
13695         cursor->base.state = &state->base;
13696
13697         cursor->can_scale = false;
13698         cursor->max_downscale = 1;
13699         cursor->pipe = pipe;
13700         cursor->plane = pipe;
13701         cursor->check_plane = intel_check_cursor_plane;
13702         cursor->commit_plane = intel_commit_cursor_plane;
13703         cursor->disable_plane = intel_disable_cursor_plane;
13704
13705         drm_universal_plane_init(dev, &cursor->base, 0,
13706                                  &intel_plane_funcs,
13707                                  intel_cursor_formats,
13708                                  ARRAY_SIZE(intel_cursor_formats),
13709                                  DRM_PLANE_TYPE_CURSOR);
13710
13711         if (INTEL_INFO(dev)->gen >= 4) {
13712                 if (!dev->mode_config.rotation_property)
13713                         dev->mode_config.rotation_property =
13714                                 drm_mode_create_rotation_property(dev,
13715                                                         BIT(DRM_ROTATE_0) |
13716                                                         BIT(DRM_ROTATE_180));
13717                 if (dev->mode_config.rotation_property)
13718                         drm_object_attach_property(&cursor->base.base,
13719                                 dev->mode_config.rotation_property,
13720                                 state->base.rotation);
13721         }
13722
13723         if (INTEL_INFO(dev)->gen >=9)
13724                 state->scaler_id = -1;
13725
13726         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13727
13728         return &cursor->base;
13729 }
13730
13731 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13732         struct intel_crtc_state *crtc_state)
13733 {
13734         int i;
13735         struct intel_scaler *intel_scaler;
13736         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13737
13738         for (i = 0; i < intel_crtc->num_scalers; i++) {
13739                 intel_scaler = &scaler_state->scalers[i];
13740                 intel_scaler->in_use = 0;
13741                 intel_scaler->id = i;
13742
13743                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13744         }
13745
13746         scaler_state->scaler_id = -1;
13747 }
13748
13749 static void intel_crtc_init(struct drm_device *dev, int pipe)
13750 {
13751         struct drm_i915_private *dev_priv = dev->dev_private;
13752         struct intel_crtc *intel_crtc;
13753         struct intel_crtc_state *crtc_state = NULL;
13754         struct drm_plane *primary = NULL;
13755         struct drm_plane *cursor = NULL;
13756         int i, ret;
13757
13758         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13759         if (intel_crtc == NULL)
13760                 return;
13761
13762         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13763         if (!crtc_state)
13764                 goto fail;
13765         intel_crtc->config = crtc_state;
13766         intel_crtc->base.state = &crtc_state->base;
13767         crtc_state->base.crtc = &intel_crtc->base;
13768
13769         /* initialize shared scalers */
13770         if (INTEL_INFO(dev)->gen >= 9) {
13771                 if (pipe == PIPE_C)
13772                         intel_crtc->num_scalers = 1;
13773                 else
13774                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13775
13776                 skl_init_scalers(dev, intel_crtc, crtc_state);
13777         }
13778
13779         primary = intel_primary_plane_create(dev, pipe);
13780         if (!primary)
13781                 goto fail;
13782
13783         cursor = intel_cursor_plane_create(dev, pipe);
13784         if (!cursor)
13785                 goto fail;
13786
13787         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13788                                         cursor, &intel_crtc_funcs);
13789         if (ret)
13790                 goto fail;
13791
13792         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13793         for (i = 0; i < 256; i++) {
13794                 intel_crtc->lut_r[i] = i;
13795                 intel_crtc->lut_g[i] = i;
13796                 intel_crtc->lut_b[i] = i;
13797         }
13798
13799         /*
13800          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13801          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13802          */
13803         intel_crtc->pipe = pipe;
13804         intel_crtc->plane = pipe;
13805         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13806                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13807                 intel_crtc->plane = !pipe;
13808         }
13809
13810         intel_crtc->cursor_base = ~0;
13811         intel_crtc->cursor_cntl = ~0;
13812         intel_crtc->cursor_size = ~0;
13813
13814         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13815                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13816         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13817         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13818
13819         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13820
13821         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13822         return;
13823
13824 fail:
13825         if (primary)
13826                 drm_plane_cleanup(primary);
13827         if (cursor)
13828                 drm_plane_cleanup(cursor);
13829         kfree(crtc_state);
13830         kfree(intel_crtc);
13831 }
13832
13833 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13834 {
13835         struct drm_encoder *encoder = connector->base.encoder;
13836         struct drm_device *dev = connector->base.dev;
13837
13838         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13839
13840         if (!encoder || WARN_ON(!encoder->crtc))
13841                 return INVALID_PIPE;
13842
13843         return to_intel_crtc(encoder->crtc)->pipe;
13844 }
13845
13846 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13847                                 struct drm_file *file)
13848 {
13849         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13850         struct drm_crtc *drmmode_crtc;
13851         struct intel_crtc *crtc;
13852
13853         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13854
13855         if (!drmmode_crtc) {
13856                 DRM_ERROR("no such CRTC id\n");
13857                 return -ENOENT;
13858         }
13859
13860         crtc = to_intel_crtc(drmmode_crtc);
13861         pipe_from_crtc_id->pipe = crtc->pipe;
13862
13863         return 0;
13864 }
13865
13866 static int intel_encoder_clones(struct intel_encoder *encoder)
13867 {
13868         struct drm_device *dev = encoder->base.dev;
13869         struct intel_encoder *source_encoder;
13870         int index_mask = 0;
13871         int entry = 0;
13872
13873         for_each_intel_encoder(dev, source_encoder) {
13874                 if (encoders_cloneable(encoder, source_encoder))
13875                         index_mask |= (1 << entry);
13876
13877                 entry++;
13878         }
13879
13880         return index_mask;
13881 }
13882
13883 static bool has_edp_a(struct drm_device *dev)
13884 {
13885         struct drm_i915_private *dev_priv = dev->dev_private;
13886
13887         if (!IS_MOBILE(dev))
13888                 return false;
13889
13890         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13891                 return false;
13892
13893         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13894                 return false;
13895
13896         return true;
13897 }
13898
13899 static bool intel_crt_present(struct drm_device *dev)
13900 {
13901         struct drm_i915_private *dev_priv = dev->dev_private;
13902
13903         if (INTEL_INFO(dev)->gen >= 9)
13904                 return false;
13905
13906         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13907                 return false;
13908
13909         if (IS_CHERRYVIEW(dev))
13910                 return false;
13911
13912         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13913                 return false;
13914
13915         return true;
13916 }
13917
13918 static void intel_setup_outputs(struct drm_device *dev)
13919 {
13920         struct drm_i915_private *dev_priv = dev->dev_private;
13921         struct intel_encoder *encoder;
13922         bool dpd_is_edp = false;
13923
13924         intel_lvds_init(dev);
13925
13926         if (intel_crt_present(dev))
13927                 intel_crt_init(dev);
13928
13929         if (IS_BROXTON(dev)) {
13930                 /*
13931                  * FIXME: Broxton doesn't support port detection via the
13932                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13933                  * detect the ports.
13934                  */
13935                 intel_ddi_init(dev, PORT_A);
13936                 intel_ddi_init(dev, PORT_B);
13937                 intel_ddi_init(dev, PORT_C);
13938         } else if (HAS_DDI(dev)) {
13939                 int found;
13940
13941                 /*
13942                  * Haswell uses DDI functions to detect digital outputs.
13943                  * On SKL pre-D0 the strap isn't connected, so we assume
13944                  * it's there.
13945                  */
13946                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13947                 /* WaIgnoreDDIAStrap: skl */
13948                 if (found ||
13949                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13950                         intel_ddi_init(dev, PORT_A);
13951
13952                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13953                  * register */
13954                 found = I915_READ(SFUSE_STRAP);
13955
13956                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13957                         intel_ddi_init(dev, PORT_B);
13958                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13959                         intel_ddi_init(dev, PORT_C);
13960                 if (found & SFUSE_STRAP_DDID_DETECTED)
13961                         intel_ddi_init(dev, PORT_D);
13962         } else if (HAS_PCH_SPLIT(dev)) {
13963                 int found;
13964                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13965
13966                 if (has_edp_a(dev))
13967                         intel_dp_init(dev, DP_A, PORT_A);
13968
13969                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13970                         /* PCH SDVOB multiplex with HDMIB */
13971                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
13972                         if (!found)
13973                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13974                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13975                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
13976                 }
13977
13978                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13979                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13980
13981                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13982                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13983
13984                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13985                         intel_dp_init(dev, PCH_DP_C, PORT_C);
13986
13987                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13988                         intel_dp_init(dev, PCH_DP_D, PORT_D);
13989         } else if (IS_VALLEYVIEW(dev)) {
13990                 /*
13991                  * The DP_DETECTED bit is the latched state of the DDC
13992                  * SDA pin at boot. However since eDP doesn't require DDC
13993                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
13994                  * eDP ports may have been muxed to an alternate function.
13995                  * Thus we can't rely on the DP_DETECTED bit alone to detect
13996                  * eDP ports. Consult the VBT as well as DP_DETECTED to
13997                  * detect eDP ports.
13998                  */
13999                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14000                     !intel_dp_is_edp(dev, PORT_B))
14001                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14002                                         PORT_B);
14003                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14004                     intel_dp_is_edp(dev, PORT_B))
14005                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14006
14007                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14008                     !intel_dp_is_edp(dev, PORT_C))
14009                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14010                                         PORT_C);
14011                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14012                     intel_dp_is_edp(dev, PORT_C))
14013                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14014
14015                 if (IS_CHERRYVIEW(dev)) {
14016                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14017                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14018                                                 PORT_D);
14019                         /* eDP not supported on port D, so don't check VBT */
14020                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14021                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14022                 }
14023
14024                 intel_dsi_init(dev);
14025         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14026                 bool found = false;
14027
14028                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14029                         DRM_DEBUG_KMS("probing SDVOB\n");
14030                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14031                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14032                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14033                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14034                         }
14035
14036                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
14037                                 intel_dp_init(dev, DP_B, PORT_B);
14038                 }
14039
14040                 /* Before G4X SDVOC doesn't have its own detect register */
14041
14042                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14043                         DRM_DEBUG_KMS("probing SDVOC\n");
14044                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14045                 }
14046
14047                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14048
14049                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14050                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14051                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14052                         }
14053                         if (SUPPORTS_INTEGRATED_DP(dev))
14054                                 intel_dp_init(dev, DP_C, PORT_C);
14055                 }
14056
14057                 if (SUPPORTS_INTEGRATED_DP(dev) &&
14058                     (I915_READ(DP_D) & DP_DETECTED))
14059                         intel_dp_init(dev, DP_D, PORT_D);
14060         } else if (IS_GEN2(dev))
14061                 intel_dvo_init(dev);
14062
14063         if (SUPPORTS_TV(dev))
14064                 intel_tv_init(dev);
14065
14066         intel_psr_init(dev);
14067
14068         for_each_intel_encoder(dev, encoder) {
14069                 encoder->base.possible_crtcs = encoder->crtc_mask;
14070                 encoder->base.possible_clones =
14071                         intel_encoder_clones(encoder);
14072         }
14073
14074         intel_init_pch_refclk(dev);
14075
14076         drm_helper_move_panel_connectors_to_head(dev);
14077 }
14078
14079 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14080 {
14081         struct drm_device *dev = fb->dev;
14082         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14083
14084         drm_framebuffer_cleanup(fb);
14085         mutex_lock(&dev->struct_mutex);
14086         WARN_ON(!intel_fb->obj->framebuffer_references--);
14087         drm_gem_object_unreference(&intel_fb->obj->base);
14088         mutex_unlock(&dev->struct_mutex);
14089         kfree(intel_fb);
14090 }
14091
14092 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14093                                                 struct drm_file *file,
14094                                                 unsigned int *handle)
14095 {
14096         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14097         struct drm_i915_gem_object *obj = intel_fb->obj;
14098
14099         return drm_gem_handle_create(file, &obj->base, handle);
14100 }
14101
14102 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14103         .destroy = intel_user_framebuffer_destroy,
14104         .create_handle = intel_user_framebuffer_create_handle,
14105 };
14106
14107 static
14108 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14109                          uint32_t pixel_format)
14110 {
14111         u32 gen = INTEL_INFO(dev)->gen;
14112
14113         if (gen >= 9) {
14114                 /* "The stride in bytes must not exceed the of the size of 8K
14115                  *  pixels and 32K bytes."
14116                  */
14117                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14118         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14119                 return 32*1024;
14120         } else if (gen >= 4) {
14121                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14122                         return 16*1024;
14123                 else
14124                         return 32*1024;
14125         } else if (gen >= 3) {
14126                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14127                         return 8*1024;
14128                 else
14129                         return 16*1024;
14130         } else {
14131                 /* XXX DSPC is limited to 4k tiled */
14132                 return 8*1024;
14133         }
14134 }
14135
14136 static int intel_framebuffer_init(struct drm_device *dev,
14137                                   struct intel_framebuffer *intel_fb,
14138                                   struct drm_mode_fb_cmd2 *mode_cmd,
14139                                   struct drm_i915_gem_object *obj)
14140 {
14141         unsigned int aligned_height;
14142         int ret;
14143         u32 pitch_limit, stride_alignment;
14144
14145         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14146
14147         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14148                 /* Enforce that fb modifier and tiling mode match, but only for
14149                  * X-tiled. This is needed for FBC. */
14150                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14151                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14152                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14153                         return -EINVAL;
14154                 }
14155         } else {
14156                 if (obj->tiling_mode == I915_TILING_X)
14157                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14158                 else if (obj->tiling_mode == I915_TILING_Y) {
14159                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14160                         return -EINVAL;
14161                 }
14162         }
14163
14164         /* Passed in modifier sanity checking. */
14165         switch (mode_cmd->modifier[0]) {
14166         case I915_FORMAT_MOD_Y_TILED:
14167         case I915_FORMAT_MOD_Yf_TILED:
14168                 if (INTEL_INFO(dev)->gen < 9) {
14169                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14170                                   mode_cmd->modifier[0]);
14171                         return -EINVAL;
14172                 }
14173         case DRM_FORMAT_MOD_NONE:
14174         case I915_FORMAT_MOD_X_TILED:
14175                 break;
14176         default:
14177                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14178                           mode_cmd->modifier[0]);
14179                 return -EINVAL;
14180         }
14181
14182         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14183                                                      mode_cmd->pixel_format);
14184         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14185                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14186                           mode_cmd->pitches[0], stride_alignment);
14187                 return -EINVAL;
14188         }
14189
14190         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14191                                            mode_cmd->pixel_format);
14192         if (mode_cmd->pitches[0] > pitch_limit) {
14193                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14194                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14195                           "tiled" : "linear",
14196                           mode_cmd->pitches[0], pitch_limit);
14197                 return -EINVAL;
14198         }
14199
14200         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14201             mode_cmd->pitches[0] != obj->stride) {
14202                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14203                           mode_cmd->pitches[0], obj->stride);
14204                 return -EINVAL;
14205         }
14206
14207         /* Reject formats not supported by any plane early. */
14208         switch (mode_cmd->pixel_format) {
14209         case DRM_FORMAT_C8:
14210         case DRM_FORMAT_RGB565:
14211         case DRM_FORMAT_XRGB8888:
14212         case DRM_FORMAT_ARGB8888:
14213                 break;
14214         case DRM_FORMAT_XRGB1555:
14215                 if (INTEL_INFO(dev)->gen > 3) {
14216                         DRM_DEBUG("unsupported pixel format: %s\n",
14217                                   drm_get_format_name(mode_cmd->pixel_format));
14218                         return -EINVAL;
14219                 }
14220                 break;
14221         case DRM_FORMAT_ABGR8888:
14222                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14223                         DRM_DEBUG("unsupported pixel format: %s\n",
14224                                   drm_get_format_name(mode_cmd->pixel_format));
14225                         return -EINVAL;
14226                 }
14227                 break;
14228         case DRM_FORMAT_XBGR8888:
14229         case DRM_FORMAT_XRGB2101010:
14230         case DRM_FORMAT_XBGR2101010:
14231                 if (INTEL_INFO(dev)->gen < 4) {
14232                         DRM_DEBUG("unsupported pixel format: %s\n",
14233                                   drm_get_format_name(mode_cmd->pixel_format));
14234                         return -EINVAL;
14235                 }
14236                 break;
14237         case DRM_FORMAT_ABGR2101010:
14238                 if (!IS_VALLEYVIEW(dev)) {
14239                         DRM_DEBUG("unsupported pixel format: %s\n",
14240                                   drm_get_format_name(mode_cmd->pixel_format));
14241                         return -EINVAL;
14242                 }
14243                 break;
14244         case DRM_FORMAT_YUYV:
14245         case DRM_FORMAT_UYVY:
14246         case DRM_FORMAT_YVYU:
14247         case DRM_FORMAT_VYUY:
14248                 if (INTEL_INFO(dev)->gen < 5) {
14249                         DRM_DEBUG("unsupported pixel format: %s\n",
14250                                   drm_get_format_name(mode_cmd->pixel_format));
14251                         return -EINVAL;
14252                 }
14253                 break;
14254         default:
14255                 DRM_DEBUG("unsupported pixel format: %s\n",
14256                           drm_get_format_name(mode_cmd->pixel_format));
14257                 return -EINVAL;
14258         }
14259
14260         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14261         if (mode_cmd->offsets[0] != 0)
14262                 return -EINVAL;
14263
14264         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14265                                                mode_cmd->pixel_format,
14266                                                mode_cmd->modifier[0]);
14267         /* FIXME drm helper for size checks (especially planar formats)? */
14268         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14269                 return -EINVAL;
14270
14271         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14272         intel_fb->obj = obj;
14273         intel_fb->obj->framebuffer_references++;
14274
14275         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14276         if (ret) {
14277                 DRM_ERROR("framebuffer init failed %d\n", ret);
14278                 return ret;
14279         }
14280
14281         return 0;
14282 }
14283
14284 static struct drm_framebuffer *
14285 intel_user_framebuffer_create(struct drm_device *dev,
14286                               struct drm_file *filp,
14287                               struct drm_mode_fb_cmd2 *mode_cmd)
14288 {
14289         struct drm_i915_gem_object *obj;
14290
14291         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14292                                                 mode_cmd->handles[0]));
14293         if (&obj->base == NULL)
14294                 return ERR_PTR(-ENOENT);
14295
14296         return intel_framebuffer_create(dev, mode_cmd, obj);
14297 }
14298
14299 #ifndef CONFIG_DRM_I915_FBDEV
14300 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14301 {
14302 }
14303 #endif
14304
14305 static const struct drm_mode_config_funcs intel_mode_funcs = {
14306         .fb_create = intel_user_framebuffer_create,
14307         .output_poll_changed = intel_fbdev_output_poll_changed,
14308         .atomic_check = intel_atomic_check,
14309         .atomic_commit = intel_atomic_commit,
14310 };
14311
14312 /* Set up chip specific display functions */
14313 static void intel_init_display(struct drm_device *dev)
14314 {
14315         struct drm_i915_private *dev_priv = dev->dev_private;
14316
14317         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14318                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14319         else if (IS_CHERRYVIEW(dev))
14320                 dev_priv->display.find_dpll = chv_find_best_dpll;
14321         else if (IS_VALLEYVIEW(dev))
14322                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14323         else if (IS_PINEVIEW(dev))
14324                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14325         else
14326                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14327
14328         if (INTEL_INFO(dev)->gen >= 9) {
14329                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14330                 dev_priv->display.get_initial_plane_config =
14331                         skylake_get_initial_plane_config;
14332                 dev_priv->display.crtc_compute_clock =
14333                         haswell_crtc_compute_clock;
14334                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14335                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14336                 dev_priv->display.off = ironlake_crtc_off;
14337                 dev_priv->display.update_primary_plane =
14338                         skylake_update_primary_plane;
14339         } else if (HAS_DDI(dev)) {
14340                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14341                 dev_priv->display.get_initial_plane_config =
14342                         ironlake_get_initial_plane_config;
14343                 dev_priv->display.crtc_compute_clock =
14344                         haswell_crtc_compute_clock;
14345                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14346                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14347                 dev_priv->display.off = ironlake_crtc_off;
14348                 dev_priv->display.update_primary_plane =
14349                         ironlake_update_primary_plane;
14350         } else if (HAS_PCH_SPLIT(dev)) {
14351                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14352                 dev_priv->display.get_initial_plane_config =
14353                         ironlake_get_initial_plane_config;
14354                 dev_priv->display.crtc_compute_clock =
14355                         ironlake_crtc_compute_clock;
14356                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14357                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14358                 dev_priv->display.off = ironlake_crtc_off;
14359                 dev_priv->display.update_primary_plane =
14360                         ironlake_update_primary_plane;
14361         } else if (IS_VALLEYVIEW(dev)) {
14362                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14363                 dev_priv->display.get_initial_plane_config =
14364                         i9xx_get_initial_plane_config;
14365                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14366                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14367                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14368                 dev_priv->display.off = i9xx_crtc_off;
14369                 dev_priv->display.update_primary_plane =
14370                         i9xx_update_primary_plane;
14371         } else {
14372                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14373                 dev_priv->display.get_initial_plane_config =
14374                         i9xx_get_initial_plane_config;
14375                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14376                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14377                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14378                 dev_priv->display.off = i9xx_crtc_off;
14379                 dev_priv->display.update_primary_plane =
14380                         i9xx_update_primary_plane;
14381         }
14382
14383         /* Returns the core display clock speed */
14384         if (IS_SKYLAKE(dev))
14385                 dev_priv->display.get_display_clock_speed =
14386                         skylake_get_display_clock_speed;
14387         else if (IS_BROADWELL(dev))
14388                 dev_priv->display.get_display_clock_speed =
14389                         broadwell_get_display_clock_speed;
14390         else if (IS_HASWELL(dev))
14391                 dev_priv->display.get_display_clock_speed =
14392                         haswell_get_display_clock_speed;
14393         else if (IS_VALLEYVIEW(dev))
14394                 dev_priv->display.get_display_clock_speed =
14395                         valleyview_get_display_clock_speed;
14396         else if (IS_GEN5(dev))
14397                 dev_priv->display.get_display_clock_speed =
14398                         ilk_get_display_clock_speed;
14399         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14400                  IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14401                 dev_priv->display.get_display_clock_speed =
14402                         i945_get_display_clock_speed;
14403         else if (IS_I915G(dev))
14404                 dev_priv->display.get_display_clock_speed =
14405                         i915_get_display_clock_speed;
14406         else if (IS_I945GM(dev) || IS_845G(dev))
14407                 dev_priv->display.get_display_clock_speed =
14408                         i9xx_misc_get_display_clock_speed;
14409         else if (IS_PINEVIEW(dev))
14410                 dev_priv->display.get_display_clock_speed =
14411                         pnv_get_display_clock_speed;
14412         else if (IS_I915GM(dev))
14413                 dev_priv->display.get_display_clock_speed =
14414                         i915gm_get_display_clock_speed;
14415         else if (IS_I865G(dev))
14416                 dev_priv->display.get_display_clock_speed =
14417                         i865_get_display_clock_speed;
14418         else if (IS_I85X(dev))
14419                 dev_priv->display.get_display_clock_speed =
14420                         i855_get_display_clock_speed;
14421         else /* 852, 830 */
14422                 dev_priv->display.get_display_clock_speed =
14423                         i830_get_display_clock_speed;
14424
14425         if (IS_GEN5(dev)) {
14426                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14427         } else if (IS_GEN6(dev)) {
14428                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14429         } else if (IS_IVYBRIDGE(dev)) {
14430                 /* FIXME: detect B0+ stepping and use auto training */
14431                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14432         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14433                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14434         } else if (IS_VALLEYVIEW(dev)) {
14435                 dev_priv->display.modeset_global_resources =
14436                         valleyview_modeset_global_resources;
14437         } else if (IS_BROXTON(dev)) {
14438                 dev_priv->display.modeset_global_resources =
14439                         broxton_modeset_global_resources;
14440         }
14441
14442         switch (INTEL_INFO(dev)->gen) {
14443         case 2:
14444                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14445                 break;
14446
14447         case 3:
14448                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14449                 break;
14450
14451         case 4:
14452         case 5:
14453                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14454                 break;
14455
14456         case 6:
14457                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14458                 break;
14459         case 7:
14460         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14461                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14462                 break;
14463         case 9:
14464                 /* Drop through - unsupported since execlist only. */
14465         default:
14466                 /* Default just returns -ENODEV to indicate unsupported */
14467                 dev_priv->display.queue_flip = intel_default_queue_flip;
14468         }
14469
14470         intel_panel_init_backlight_funcs(dev);
14471
14472         mutex_init(&dev_priv->pps_mutex);
14473 }
14474
14475 /*
14476  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14477  * resume, or other times.  This quirk makes sure that's the case for
14478  * affected systems.
14479  */
14480 static void quirk_pipea_force(struct drm_device *dev)
14481 {
14482         struct drm_i915_private *dev_priv = dev->dev_private;
14483
14484         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14485         DRM_INFO("applying pipe a force quirk\n");
14486 }
14487
14488 static void quirk_pipeb_force(struct drm_device *dev)
14489 {
14490         struct drm_i915_private *dev_priv = dev->dev_private;
14491
14492         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14493         DRM_INFO("applying pipe b force quirk\n");
14494 }
14495
14496 /*
14497  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14498  */
14499 static void quirk_ssc_force_disable(struct drm_device *dev)
14500 {
14501         struct drm_i915_private *dev_priv = dev->dev_private;
14502         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14503         DRM_INFO("applying lvds SSC disable quirk\n");
14504 }
14505
14506 /*
14507  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14508  * brightness value
14509  */
14510 static void quirk_invert_brightness(struct drm_device *dev)
14511 {
14512         struct drm_i915_private *dev_priv = dev->dev_private;
14513         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14514         DRM_INFO("applying inverted panel brightness quirk\n");
14515 }
14516
14517 /* Some VBT's incorrectly indicate no backlight is present */
14518 static void quirk_backlight_present(struct drm_device *dev)
14519 {
14520         struct drm_i915_private *dev_priv = dev->dev_private;
14521         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14522         DRM_INFO("applying backlight present quirk\n");
14523 }
14524
14525 struct intel_quirk {
14526         int device;
14527         int subsystem_vendor;
14528         int subsystem_device;
14529         void (*hook)(struct drm_device *dev);
14530 };
14531
14532 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14533 struct intel_dmi_quirk {
14534         void (*hook)(struct drm_device *dev);
14535         const struct dmi_system_id (*dmi_id_list)[];
14536 };
14537
14538 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14539 {
14540         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14541         return 1;
14542 }
14543
14544 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14545         {
14546                 .dmi_id_list = &(const struct dmi_system_id[]) {
14547                         {
14548                                 .callback = intel_dmi_reverse_brightness,
14549                                 .ident = "NCR Corporation",
14550                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14551                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14552                                 },
14553                         },
14554                         { }  /* terminating entry */
14555                 },
14556                 .hook = quirk_invert_brightness,
14557         },
14558 };
14559
14560 static struct intel_quirk intel_quirks[] = {
14561         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14562         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14563
14564         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14565         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14566
14567         /* 830 needs to leave pipe A & dpll A up */
14568         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14569
14570         /* 830 needs to leave pipe B & dpll B up */
14571         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14572
14573         /* Lenovo U160 cannot use SSC on LVDS */
14574         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14575
14576         /* Sony Vaio Y cannot use SSC on LVDS */
14577         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14578
14579         /* Acer Aspire 5734Z must invert backlight brightness */
14580         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14581
14582         /* Acer/eMachines G725 */
14583         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14584
14585         /* Acer/eMachines e725 */
14586         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14587
14588         /* Acer/Packard Bell NCL20 */
14589         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14590
14591         /* Acer Aspire 4736Z */
14592         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14593
14594         /* Acer Aspire 5336 */
14595         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14596
14597         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14598         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14599
14600         /* Acer C720 Chromebook (Core i3 4005U) */
14601         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14602
14603         /* Apple Macbook 2,1 (Core 2 T7400) */
14604         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14605
14606         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14607         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14608
14609         /* HP Chromebook 14 (Celeron 2955U) */
14610         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14611
14612         /* Dell Chromebook 11 */
14613         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14614 };
14615
14616 static void intel_init_quirks(struct drm_device *dev)
14617 {
14618         struct pci_dev *d = dev->pdev;
14619         int i;
14620
14621         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14622                 struct intel_quirk *q = &intel_quirks[i];
14623
14624                 if (d->device == q->device &&
14625                     (d->subsystem_vendor == q->subsystem_vendor ||
14626                      q->subsystem_vendor == PCI_ANY_ID) &&
14627                     (d->subsystem_device == q->subsystem_device ||
14628                      q->subsystem_device == PCI_ANY_ID))
14629                         q->hook(dev);
14630         }
14631         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14632                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14633                         intel_dmi_quirks[i].hook(dev);
14634         }
14635 }
14636
14637 /* Disable the VGA plane that we never use */
14638 static void i915_disable_vga(struct drm_device *dev)
14639 {
14640         struct drm_i915_private *dev_priv = dev->dev_private;
14641         u8 sr1;
14642         u32 vga_reg = i915_vgacntrl_reg(dev);
14643
14644         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14645         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14646         outb(SR01, VGA_SR_INDEX);
14647         sr1 = inb(VGA_SR_DATA);
14648         outb(sr1 | 1<<5, VGA_SR_DATA);
14649         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14650         udelay(300);
14651
14652         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14653         POSTING_READ(vga_reg);
14654 }
14655
14656 void intel_modeset_init_hw(struct drm_device *dev)
14657 {
14658         intel_prepare_ddi(dev);
14659
14660         if (IS_VALLEYVIEW(dev))
14661                 vlv_update_cdclk(dev);
14662
14663         intel_init_clock_gating(dev);
14664
14665         intel_enable_gt_powersave(dev);
14666 }
14667
14668 void intel_modeset_init(struct drm_device *dev)
14669 {
14670         struct drm_i915_private *dev_priv = dev->dev_private;
14671         int sprite, ret;
14672         enum pipe pipe;
14673         struct intel_crtc *crtc;
14674
14675         drm_mode_config_init(dev);
14676
14677         dev->mode_config.min_width = 0;
14678         dev->mode_config.min_height = 0;
14679
14680         dev->mode_config.preferred_depth = 24;
14681         dev->mode_config.prefer_shadow = 1;
14682
14683         dev->mode_config.allow_fb_modifiers = true;
14684
14685         dev->mode_config.funcs = &intel_mode_funcs;
14686
14687         intel_init_quirks(dev);
14688
14689         intel_init_pm(dev);
14690
14691         if (INTEL_INFO(dev)->num_pipes == 0)
14692                 return;
14693
14694         intel_init_display(dev);
14695         intel_init_audio(dev);
14696
14697         if (IS_GEN2(dev)) {
14698                 dev->mode_config.max_width = 2048;
14699                 dev->mode_config.max_height = 2048;
14700         } else if (IS_GEN3(dev)) {
14701                 dev->mode_config.max_width = 4096;
14702                 dev->mode_config.max_height = 4096;
14703         } else {
14704                 dev->mode_config.max_width = 8192;
14705                 dev->mode_config.max_height = 8192;
14706         }
14707
14708         if (IS_845G(dev) || IS_I865G(dev)) {
14709                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14710                 dev->mode_config.cursor_height = 1023;
14711         } else if (IS_GEN2(dev)) {
14712                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14713                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14714         } else {
14715                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14716                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14717         }
14718
14719         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14720
14721         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14722                       INTEL_INFO(dev)->num_pipes,
14723                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14724
14725         for_each_pipe(dev_priv, pipe) {
14726                 intel_crtc_init(dev, pipe);
14727                 for_each_sprite(dev_priv, pipe, sprite) {
14728                         ret = intel_plane_init(dev, pipe, sprite);
14729                         if (ret)
14730                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14731                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14732                 }
14733         }
14734
14735         intel_init_dpio(dev);
14736
14737         intel_shared_dpll_init(dev);
14738
14739         /* Just disable it once at startup */
14740         i915_disable_vga(dev);
14741         intel_setup_outputs(dev);
14742
14743         /* Just in case the BIOS is doing something questionable. */
14744         intel_fbc_disable(dev);
14745
14746         drm_modeset_lock_all(dev);
14747         intel_modeset_setup_hw_state(dev, false);
14748         drm_modeset_unlock_all(dev);
14749
14750         for_each_intel_crtc(dev, crtc) {
14751                 if (!crtc->active)
14752                         continue;
14753
14754                 /*
14755                  * Note that reserving the BIOS fb up front prevents us
14756                  * from stuffing other stolen allocations like the ring
14757                  * on top.  This prevents some ugliness at boot time, and
14758                  * can even allow for smooth boot transitions if the BIOS
14759                  * fb is large enough for the active pipe configuration.
14760                  */
14761                 if (dev_priv->display.get_initial_plane_config) {
14762                         dev_priv->display.get_initial_plane_config(crtc,
14763                                                            &crtc->plane_config);
14764                         /*
14765                          * If the fb is shared between multiple heads, we'll
14766                          * just get the first one.
14767                          */
14768                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14769                 }
14770         }
14771 }
14772
14773 static void intel_enable_pipe_a(struct drm_device *dev)
14774 {
14775         struct intel_connector *connector;
14776         struct drm_connector *crt = NULL;
14777         struct intel_load_detect_pipe load_detect_temp;
14778         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14779
14780         /* We can't just switch on the pipe A, we need to set things up with a
14781          * proper mode and output configuration. As a gross hack, enable pipe A
14782          * by enabling the load detect pipe once. */
14783         for_each_intel_connector(dev, connector) {
14784                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14785                         crt = &connector->base;
14786                         break;
14787                 }
14788         }
14789
14790         if (!crt)
14791                 return;
14792
14793         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14794                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14795 }
14796
14797 static bool
14798 intel_check_plane_mapping(struct intel_crtc *crtc)
14799 {
14800         struct drm_device *dev = crtc->base.dev;
14801         struct drm_i915_private *dev_priv = dev->dev_private;
14802         u32 reg, val;
14803
14804         if (INTEL_INFO(dev)->num_pipes == 1)
14805                 return true;
14806
14807         reg = DSPCNTR(!crtc->plane);
14808         val = I915_READ(reg);
14809
14810         if ((val & DISPLAY_PLANE_ENABLE) &&
14811             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14812                 return false;
14813
14814         return true;
14815 }
14816
14817 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14818 {
14819         struct drm_device *dev = crtc->base.dev;
14820         struct drm_i915_private *dev_priv = dev->dev_private;
14821         u32 reg;
14822
14823         /* Clear any frame start delays used for debugging left by the BIOS */
14824         reg = PIPECONF(crtc->config->cpu_transcoder);
14825         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14826
14827         /* restore vblank interrupts to correct state */
14828         drm_crtc_vblank_reset(&crtc->base);
14829         if (crtc->active) {
14830                 update_scanline_offset(crtc);
14831                 drm_crtc_vblank_on(&crtc->base);
14832         }
14833
14834         /* We need to sanitize the plane -> pipe mapping first because this will
14835          * disable the crtc (and hence change the state) if it is wrong. Note
14836          * that gen4+ has a fixed plane -> pipe mapping.  */
14837         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14838                 struct intel_connector *connector;
14839                 bool plane;
14840
14841                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14842                               crtc->base.base.id);
14843
14844                 /* Pipe has the wrong plane attached and the plane is active.
14845                  * Temporarily change the plane mapping and disable everything
14846                  * ...  */
14847                 plane = crtc->plane;
14848                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14849                 crtc->plane = !plane;
14850                 intel_crtc_disable_planes(&crtc->base);
14851                 dev_priv->display.crtc_disable(&crtc->base);
14852                 crtc->plane = plane;
14853
14854                 /* ... and break all links. */
14855                 for_each_intel_connector(dev, connector) {
14856                         if (connector->encoder->base.crtc != &crtc->base)
14857                                 continue;
14858
14859                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14860                         connector->base.encoder = NULL;
14861                 }
14862                 /* multiple connectors may have the same encoder:
14863                  *  handle them and break crtc link separately */
14864                 for_each_intel_connector(dev, connector)
14865                         if (connector->encoder->base.crtc == &crtc->base) {
14866                                 connector->encoder->base.crtc = NULL;
14867                                 connector->encoder->connectors_active = false;
14868                         }
14869
14870                 WARN_ON(crtc->active);
14871                 crtc->base.state->enable = false;
14872                 crtc->base.state->active = false;
14873                 crtc->base.enabled = false;
14874         }
14875
14876         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14877             crtc->pipe == PIPE_A && !crtc->active) {
14878                 /* BIOS forgot to enable pipe A, this mostly happens after
14879                  * resume. Force-enable the pipe to fix this, the update_dpms
14880                  * call below we restore the pipe to the right state, but leave
14881                  * the required bits on. */
14882                 intel_enable_pipe_a(dev);
14883         }
14884
14885         /* Adjust the state of the output pipe according to whether we
14886          * have active connectors/encoders. */
14887         intel_crtc_update_dpms(&crtc->base);
14888
14889         if (crtc->active != crtc->base.state->enable) {
14890                 struct intel_encoder *encoder;
14891
14892                 /* This can happen either due to bugs in the get_hw_state
14893                  * functions or because the pipe is force-enabled due to the
14894                  * pipe A quirk. */
14895                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14896                               crtc->base.base.id,
14897                               crtc->base.state->enable ? "enabled" : "disabled",
14898                               crtc->active ? "enabled" : "disabled");
14899
14900                 crtc->base.state->enable = crtc->active;
14901                 crtc->base.state->active = crtc->active;
14902                 crtc->base.enabled = crtc->active;
14903
14904                 /* Because we only establish the connector -> encoder ->
14905                  * crtc links if something is active, this means the
14906                  * crtc is now deactivated. Break the links. connector
14907                  * -> encoder links are only establish when things are
14908                  *  actually up, hence no need to break them. */
14909                 WARN_ON(crtc->active);
14910
14911                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14912                         WARN_ON(encoder->connectors_active);
14913                         encoder->base.crtc = NULL;
14914                 }
14915         }
14916
14917         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14918                 /*
14919                  * We start out with underrun reporting disabled to avoid races.
14920                  * For correct bookkeeping mark this on active crtcs.
14921                  *
14922                  * Also on gmch platforms we dont have any hardware bits to
14923                  * disable the underrun reporting. Which means we need to start
14924                  * out with underrun reporting disabled also on inactive pipes,
14925                  * since otherwise we'll complain about the garbage we read when
14926                  * e.g. coming up after runtime pm.
14927                  *
14928                  * No protection against concurrent access is required - at
14929                  * worst a fifo underrun happens which also sets this to false.
14930                  */
14931                 crtc->cpu_fifo_underrun_disabled = true;
14932                 crtc->pch_fifo_underrun_disabled = true;
14933         }
14934 }
14935
14936 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14937 {
14938         struct intel_connector *connector;
14939         struct drm_device *dev = encoder->base.dev;
14940
14941         /* We need to check both for a crtc link (meaning that the
14942          * encoder is active and trying to read from a pipe) and the
14943          * pipe itself being active. */
14944         bool has_active_crtc = encoder->base.crtc &&
14945                 to_intel_crtc(encoder->base.crtc)->active;
14946
14947         if (encoder->connectors_active && !has_active_crtc) {
14948                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14949                               encoder->base.base.id,
14950                               encoder->base.name);
14951
14952                 /* Connector is active, but has no active pipe. This is
14953                  * fallout from our resume register restoring. Disable
14954                  * the encoder manually again. */
14955                 if (encoder->base.crtc) {
14956                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14957                                       encoder->base.base.id,
14958                                       encoder->base.name);
14959                         encoder->disable(encoder);
14960                         if (encoder->post_disable)
14961                                 encoder->post_disable(encoder);
14962                 }
14963                 encoder->base.crtc = NULL;
14964                 encoder->connectors_active = false;
14965
14966                 /* Inconsistent output/port/pipe state happens presumably due to
14967                  * a bug in one of the get_hw_state functions. Or someplace else
14968                  * in our code, like the register restore mess on resume. Clamp
14969                  * things to off as a safer default. */
14970                 for_each_intel_connector(dev, connector) {
14971                         if (connector->encoder != encoder)
14972                                 continue;
14973                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14974                         connector->base.encoder = NULL;
14975                 }
14976         }
14977         /* Enabled encoders without active connectors will be fixed in
14978          * the crtc fixup. */
14979 }
14980
14981 void i915_redisable_vga_power_on(struct drm_device *dev)
14982 {
14983         struct drm_i915_private *dev_priv = dev->dev_private;
14984         u32 vga_reg = i915_vgacntrl_reg(dev);
14985
14986         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14987                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14988                 i915_disable_vga(dev);
14989         }
14990 }
14991
14992 void i915_redisable_vga(struct drm_device *dev)
14993 {
14994         struct drm_i915_private *dev_priv = dev->dev_private;
14995
14996         /* This function can be called both from intel_modeset_setup_hw_state or
14997          * at a very early point in our resume sequence, where the power well
14998          * structures are not yet restored. Since this function is at a very
14999          * paranoid "someone might have enabled VGA while we were not looking"
15000          * level, just check if the power well is enabled instead of trying to
15001          * follow the "don't touch the power well if we don't need it" policy
15002          * the rest of the driver uses. */
15003         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15004                 return;
15005
15006         i915_redisable_vga_power_on(dev);
15007 }
15008
15009 static bool primary_get_hw_state(struct intel_crtc *crtc)
15010 {
15011         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15012
15013         if (!crtc->active)
15014                 return false;
15015
15016         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15017 }
15018
15019 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15020 {
15021         struct drm_i915_private *dev_priv = dev->dev_private;
15022         enum pipe pipe;
15023         struct intel_crtc *crtc;
15024         struct intel_encoder *encoder;
15025         struct intel_connector *connector;
15026         int i;
15027
15028         for_each_intel_crtc(dev, crtc) {
15029                 struct drm_plane *primary = crtc->base.primary;
15030                 struct intel_plane_state *plane_state;
15031
15032                 memset(crtc->config, 0, sizeof(*crtc->config));
15033
15034                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15035
15036                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15037                                                                  crtc->config);
15038
15039                 crtc->base.state->enable = crtc->active;
15040                 crtc->base.state->active = crtc->active;
15041                 crtc->base.enabled = crtc->active;
15042
15043                 plane_state = to_intel_plane_state(primary->state);
15044                 plane_state->visible = primary_get_hw_state(crtc);
15045
15046                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15047                               crtc->base.base.id,
15048                               crtc->active ? "enabled" : "disabled");
15049         }
15050
15051         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15052                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15053
15054                 pll->on = pll->get_hw_state(dev_priv, pll,
15055                                             &pll->config.hw_state);
15056                 pll->active = 0;
15057                 pll->config.crtc_mask = 0;
15058                 for_each_intel_crtc(dev, crtc) {
15059                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15060                                 pll->active++;
15061                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15062                         }
15063                 }
15064
15065                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15066                               pll->name, pll->config.crtc_mask, pll->on);
15067
15068                 if (pll->config.crtc_mask)
15069                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15070         }
15071
15072         for_each_intel_encoder(dev, encoder) {
15073                 pipe = 0;
15074
15075                 if (encoder->get_hw_state(encoder, &pipe)) {
15076                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15077                         encoder->base.crtc = &crtc->base;
15078                         encoder->get_config(encoder, crtc->config);
15079                 } else {
15080                         encoder->base.crtc = NULL;
15081                 }
15082
15083                 encoder->connectors_active = false;
15084                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15085                               encoder->base.base.id,
15086                               encoder->base.name,
15087                               encoder->base.crtc ? "enabled" : "disabled",
15088                               pipe_name(pipe));
15089         }
15090
15091         for_each_intel_connector(dev, connector) {
15092                 if (connector->get_hw_state(connector)) {
15093                         connector->base.dpms = DRM_MODE_DPMS_ON;
15094                         connector->encoder->connectors_active = true;
15095                         connector->base.encoder = &connector->encoder->base;
15096                 } else {
15097                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15098                         connector->base.encoder = NULL;
15099                 }
15100                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15101                               connector->base.base.id,
15102                               connector->base.name,
15103                               connector->base.encoder ? "enabled" : "disabled");
15104         }
15105 }
15106
15107 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15108  * and i915 state tracking structures. */
15109 void intel_modeset_setup_hw_state(struct drm_device *dev,
15110                                   bool force_restore)
15111 {
15112         struct drm_i915_private *dev_priv = dev->dev_private;
15113         enum pipe pipe;
15114         struct intel_crtc *crtc;
15115         struct intel_encoder *encoder;
15116         int i;
15117
15118         intel_modeset_readout_hw_state(dev);
15119
15120         /*
15121          * Now that we have the config, copy it to each CRTC struct
15122          * Note that this could go away if we move to using crtc_config
15123          * checking everywhere.
15124          */
15125         for_each_intel_crtc(dev, crtc) {
15126                 if (crtc->active && i915.fastboot) {
15127                         intel_mode_from_pipe_config(&crtc->base.mode,
15128                                                     crtc->config);
15129                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15130                                       crtc->base.base.id);
15131                         drm_mode_debug_printmodeline(&crtc->base.mode);
15132                 }
15133         }
15134
15135         /* HW state is read out, now we need to sanitize this mess. */
15136         for_each_intel_encoder(dev, encoder) {
15137                 intel_sanitize_encoder(encoder);
15138         }
15139
15140         for_each_pipe(dev_priv, pipe) {
15141                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15142                 intel_sanitize_crtc(crtc);
15143                 intel_dump_pipe_config(crtc, crtc->config,
15144                                        "[setup_hw_state]");
15145         }
15146
15147         intel_modeset_update_connector_atomic_state(dev);
15148
15149         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15150                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15151
15152                 if (!pll->on || pll->active)
15153                         continue;
15154
15155                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15156
15157                 pll->disable(dev_priv, pll);
15158                 pll->on = false;
15159         }
15160
15161         if (IS_GEN9(dev))
15162                 skl_wm_get_hw_state(dev);
15163         else if (HAS_PCH_SPLIT(dev))
15164                 ilk_wm_get_hw_state(dev);
15165
15166         if (force_restore) {
15167                 i915_redisable_vga(dev);
15168
15169                 /*
15170                  * We need to use raw interfaces for restoring state to avoid
15171                  * checking (bogus) intermediate states.
15172                  */
15173                 for_each_pipe(dev_priv, pipe) {
15174                         struct drm_crtc *crtc =
15175                                 dev_priv->pipe_to_crtc_mapping[pipe];
15176
15177                         intel_crtc_restore_mode(crtc);
15178                 }
15179         } else {
15180                 intel_modeset_update_staged_output_state(dev);
15181         }
15182
15183         intel_modeset_check_state(dev);
15184 }
15185
15186 void intel_modeset_gem_init(struct drm_device *dev)
15187 {
15188         struct drm_i915_private *dev_priv = dev->dev_private;
15189         struct drm_crtc *c;
15190         struct drm_i915_gem_object *obj;
15191         int ret;
15192
15193         mutex_lock(&dev->struct_mutex);
15194         intel_init_gt_powersave(dev);
15195         mutex_unlock(&dev->struct_mutex);
15196
15197         /*
15198          * There may be no VBT; and if the BIOS enabled SSC we can
15199          * just keep using it to avoid unnecessary flicker.  Whereas if the
15200          * BIOS isn't using it, don't assume it will work even if the VBT
15201          * indicates as much.
15202          */
15203         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15204                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15205                                                 DREF_SSC1_ENABLE);
15206
15207         intel_modeset_init_hw(dev);
15208
15209         intel_setup_overlay(dev);
15210
15211         /*
15212          * Make sure any fbs we allocated at startup are properly
15213          * pinned & fenced.  When we do the allocation it's too early
15214          * for this.
15215          */
15216         for_each_crtc(dev, c) {
15217                 obj = intel_fb_obj(c->primary->fb);
15218                 if (obj == NULL)
15219                         continue;
15220
15221                 mutex_lock(&dev->struct_mutex);
15222                 ret = intel_pin_and_fence_fb_obj(c->primary,
15223                                                  c->primary->fb,
15224                                                  c->primary->state,
15225                                                  NULL);
15226                 mutex_unlock(&dev->struct_mutex);
15227                 if (ret) {
15228                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15229                                   to_intel_crtc(c)->pipe);
15230                         drm_framebuffer_unreference(c->primary->fb);
15231                         c->primary->fb = NULL;
15232                         update_state_fb(c->primary);
15233                 }
15234         }
15235
15236         intel_backlight_register(dev);
15237 }
15238
15239 void intel_connector_unregister(struct intel_connector *intel_connector)
15240 {
15241         struct drm_connector *connector = &intel_connector->base;
15242
15243         intel_panel_destroy_backlight(connector);
15244         drm_connector_unregister(connector);
15245 }
15246
15247 void intel_modeset_cleanup(struct drm_device *dev)
15248 {
15249         struct drm_i915_private *dev_priv = dev->dev_private;
15250         struct drm_connector *connector;
15251
15252         intel_disable_gt_powersave(dev);
15253
15254         intel_backlight_unregister(dev);
15255
15256         /*
15257          * Interrupts and polling as the first thing to avoid creating havoc.
15258          * Too much stuff here (turning of connectors, ...) would
15259          * experience fancy races otherwise.
15260          */
15261         intel_irq_uninstall(dev_priv);
15262
15263         /*
15264          * Due to the hpd irq storm handling the hotplug work can re-arm the
15265          * poll handlers. Hence disable polling after hpd handling is shut down.
15266          */
15267         drm_kms_helper_poll_fini(dev);
15268
15269         mutex_lock(&dev->struct_mutex);
15270
15271         intel_unregister_dsm_handler();
15272
15273         intel_fbc_disable(dev);
15274
15275         mutex_unlock(&dev->struct_mutex);
15276
15277         /* flush any delayed tasks or pending work */
15278         flush_scheduled_work();
15279
15280         /* destroy the backlight and sysfs files before encoders/connectors */
15281         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15282                 struct intel_connector *intel_connector;
15283
15284                 intel_connector = to_intel_connector(connector);
15285                 intel_connector->unregister(intel_connector);
15286         }
15287
15288         drm_mode_config_cleanup(dev);
15289
15290         intel_cleanup_overlay(dev);
15291
15292         mutex_lock(&dev->struct_mutex);
15293         intel_cleanup_gt_powersave(dev);
15294         mutex_unlock(&dev->struct_mutex);
15295 }
15296
15297 /*
15298  * Return which encoder is currently attached for connector.
15299  */
15300 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15301 {
15302         return &intel_attached_encoder(connector)->base;
15303 }
15304
15305 void intel_connector_attach_encoder(struct intel_connector *connector,
15306                                     struct intel_encoder *encoder)
15307 {
15308         connector->encoder = encoder;
15309         drm_mode_connector_attach_encoder(&connector->base,
15310                                           &encoder->base);
15311 }
15312
15313 /*
15314  * set vga decode state - true == enable VGA decode
15315  */
15316 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15317 {
15318         struct drm_i915_private *dev_priv = dev->dev_private;
15319         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15320         u16 gmch_ctrl;
15321
15322         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15323                 DRM_ERROR("failed to read control word\n");
15324                 return -EIO;
15325         }
15326
15327         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15328                 return 0;
15329
15330         if (state)
15331                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15332         else
15333                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15334
15335         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15336                 DRM_ERROR("failed to write control word\n");
15337                 return -EIO;
15338         }
15339
15340         return 0;
15341 }
15342
15343 struct intel_display_error_state {
15344
15345         u32 power_well_driver;
15346
15347         int num_transcoders;
15348
15349         struct intel_cursor_error_state {
15350                 u32 control;
15351                 u32 position;
15352                 u32 base;
15353                 u32 size;
15354         } cursor[I915_MAX_PIPES];
15355
15356         struct intel_pipe_error_state {
15357                 bool power_domain_on;
15358                 u32 source;
15359                 u32 stat;
15360         } pipe[I915_MAX_PIPES];
15361
15362         struct intel_plane_error_state {
15363                 u32 control;
15364                 u32 stride;
15365                 u32 size;
15366                 u32 pos;
15367                 u32 addr;
15368                 u32 surface;
15369                 u32 tile_offset;
15370         } plane[I915_MAX_PIPES];
15371
15372         struct intel_transcoder_error_state {
15373                 bool power_domain_on;
15374                 enum transcoder cpu_transcoder;
15375
15376                 u32 conf;
15377
15378                 u32 htotal;
15379                 u32 hblank;
15380                 u32 hsync;
15381                 u32 vtotal;
15382                 u32 vblank;
15383                 u32 vsync;
15384         } transcoder[4];
15385 };
15386
15387 struct intel_display_error_state *
15388 intel_display_capture_error_state(struct drm_device *dev)
15389 {
15390         struct drm_i915_private *dev_priv = dev->dev_private;
15391         struct intel_display_error_state *error;
15392         int transcoders[] = {
15393                 TRANSCODER_A,
15394                 TRANSCODER_B,
15395                 TRANSCODER_C,
15396                 TRANSCODER_EDP,
15397         };
15398         int i;
15399
15400         if (INTEL_INFO(dev)->num_pipes == 0)
15401                 return NULL;
15402
15403         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15404         if (error == NULL)
15405                 return NULL;
15406
15407         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15408                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15409
15410         for_each_pipe(dev_priv, i) {
15411                 error->pipe[i].power_domain_on =
15412                         __intel_display_power_is_enabled(dev_priv,
15413                                                          POWER_DOMAIN_PIPE(i));
15414                 if (!error->pipe[i].power_domain_on)
15415                         continue;
15416
15417                 error->cursor[i].control = I915_READ(CURCNTR(i));
15418                 error->cursor[i].position = I915_READ(CURPOS(i));
15419                 error->cursor[i].base = I915_READ(CURBASE(i));
15420
15421                 error->plane[i].control = I915_READ(DSPCNTR(i));
15422                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15423                 if (INTEL_INFO(dev)->gen <= 3) {
15424                         error->plane[i].size = I915_READ(DSPSIZE(i));
15425                         error->plane[i].pos = I915_READ(DSPPOS(i));
15426                 }
15427                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15428                         error->plane[i].addr = I915_READ(DSPADDR(i));
15429                 if (INTEL_INFO(dev)->gen >= 4) {
15430                         error->plane[i].surface = I915_READ(DSPSURF(i));
15431                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15432                 }
15433
15434                 error->pipe[i].source = I915_READ(PIPESRC(i));
15435
15436                 if (HAS_GMCH_DISPLAY(dev))
15437                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15438         }
15439
15440         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15441         if (HAS_DDI(dev_priv->dev))
15442                 error->num_transcoders++; /* Account for eDP. */
15443
15444         for (i = 0; i < error->num_transcoders; i++) {
15445                 enum transcoder cpu_transcoder = transcoders[i];
15446
15447                 error->transcoder[i].power_domain_on =
15448                         __intel_display_power_is_enabled(dev_priv,
15449                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15450                 if (!error->transcoder[i].power_domain_on)
15451                         continue;
15452
15453                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15454
15455                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15456                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15457                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15458                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15459                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15460                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15461                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15462         }
15463
15464         return error;
15465 }
15466
15467 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15468
15469 void
15470 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15471                                 struct drm_device *dev,
15472                                 struct intel_display_error_state *error)
15473 {
15474         struct drm_i915_private *dev_priv = dev->dev_private;
15475         int i;
15476
15477         if (!error)
15478                 return;
15479
15480         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15481         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15482                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15483                            error->power_well_driver);
15484         for_each_pipe(dev_priv, i) {
15485                 err_printf(m, "Pipe [%d]:\n", i);
15486                 err_printf(m, "  Power: %s\n",
15487                            error->pipe[i].power_domain_on ? "on" : "off");
15488                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15489                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15490
15491                 err_printf(m, "Plane [%d]:\n", i);
15492                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15493                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15494                 if (INTEL_INFO(dev)->gen <= 3) {
15495                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15496                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15497                 }
15498                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15499                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15500                 if (INTEL_INFO(dev)->gen >= 4) {
15501                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15502                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15503                 }
15504
15505                 err_printf(m, "Cursor [%d]:\n", i);
15506                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15507                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15508                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15509         }
15510
15511         for (i = 0; i < error->num_transcoders; i++) {
15512                 err_printf(m, "CPU transcoder: %c\n",
15513                            transcoder_name(error->transcoder[i].cpu_transcoder));
15514                 err_printf(m, "  Power: %s\n",
15515                            error->transcoder[i].power_domain_on ? "on" : "off");
15516                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15517                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15518                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15519                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15520                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15521                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15522                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15523         }
15524 }
15525
15526 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15527 {
15528         struct intel_crtc *crtc;
15529
15530         for_each_intel_crtc(dev, crtc) {
15531                 struct intel_unpin_work *work;
15532
15533                 spin_lock_irq(&dev->event_lock);
15534
15535                 work = crtc->unpin_work;
15536
15537                 if (work && work->event &&
15538                     work->event->base.file_priv == file) {
15539                         kfree(work->event);
15540                         work->event = NULL;
15541                 }
15542
15543                 spin_unlock_irq(&dev->event_lock);
15544         }
15545 }