OSDN Git Service

Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[uclinux-h8/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int link_bw;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { DP_LINK_BW_1_62,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { DP_LINK_BW_2_7,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { DP_LINK_BW_1_62,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { DP_LINK_BW_2_7,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { DP_LINK_BW_1_62,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { DP_LINK_BW_2_7,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int skl_rates[] = { 162000, 216000, 270000,
95                                   324000, 432000, 540000 };
96 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
97                                  243000, 270000, 324000, 405000,
98                                  420000, 432000, 540000 };
99 static const int default_rates[] = { 162000, 270000, 540000 };
100
101 /**
102  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
103  * @intel_dp: DP struct
104  *
105  * If a CPU or PCH DP output is attached to an eDP panel, this function
106  * will return true, and false otherwise.
107  */
108 static bool is_edp(struct intel_dp *intel_dp)
109 {
110         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
111
112         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
113 }
114
115 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
116 {
117         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
118
119         return intel_dig_port->base.base.dev;
120 }
121
122 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
123 {
124         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
125 }
126
127 static void intel_dp_link_down(struct intel_dp *intel_dp);
128 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
129 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
130 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
131 static void vlv_steal_power_sequencer(struct drm_device *dev,
132                                       enum pipe pipe);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         struct drm_device *dev = intel_dig_port->base.base.dev;
157         u8 source_max, sink_max;
158
159         source_max = 4;
160         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
161             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
162                 source_max = 2;
163
164         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166         return min(source_max, sink_max);
167 }
168
169 /*
170  * The units on the numbers in the next two are... bizarre.  Examples will
171  * make it clearer; this one parallels an example in the eDP spec.
172  *
173  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174  *
175  *     270000 * 1 * 8 / 10 == 216000
176  *
177  * The actual data capacity of that configuration is 2.16Gbit/s, so the
178  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
179  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180  * 119000.  At 18bpp that's 2142000 kilobits per second.
181  *
182  * Thus the strange-looking division by 10 in intel_dp_link_required, to
183  * get the result in decakilobits instead of kilobits.
184  */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189         return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195         return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200                     struct drm_display_mode *mode)
201 {
202         struct intel_dp *intel_dp = intel_attached_dp(connector);
203         struct intel_connector *intel_connector = to_intel_connector(connector);
204         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205         int target_clock = mode->clock;
206         int max_rate, mode_rate, max_lanes, max_link_clock;
207
208         if (is_edp(intel_dp) && fixed_mode) {
209                 if (mode->hdisplay > fixed_mode->hdisplay)
210                         return MODE_PANEL;
211
212                 if (mode->vdisplay > fixed_mode->vdisplay)
213                         return MODE_PANEL;
214
215                 target_clock = fixed_mode->clock;
216         }
217
218         max_link_clock = intel_dp_max_link_rate(intel_dp);
219         max_lanes = intel_dp_max_lane_count(intel_dp);
220
221         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
222         mode_rate = intel_dp_link_required(target_clock, 18);
223
224         if (mode_rate > max_rate)
225                 return MODE_CLOCK_HIGH;
226
227         if (mode->clock < 10000)
228                 return MODE_CLOCK_LOW;
229
230         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231                 return MODE_H_ILLEGAL;
232
233         return MODE_OK;
234 }
235
236 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
237 {
238         int     i;
239         uint32_t v = 0;
240
241         if (src_bytes > 4)
242                 src_bytes = 4;
243         for (i = 0; i < src_bytes; i++)
244                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
245         return v;
246 }
247
248 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
249 {
250         int i;
251         if (dst_bytes > 4)
252                 dst_bytes = 4;
253         for (i = 0; i < dst_bytes; i++)
254                 dst[i] = src >> ((3-i) * 8);
255 }
256
257 /* hrawclock is 1/4 the FSB frequency */
258 static int
259 intel_hrawclk(struct drm_device *dev)
260 {
261         struct drm_i915_private *dev_priv = dev->dev_private;
262         uint32_t clkcfg;
263
264         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
265         if (IS_VALLEYVIEW(dev))
266                 return 200;
267
268         clkcfg = I915_READ(CLKCFG);
269         switch (clkcfg & CLKCFG_FSB_MASK) {
270         case CLKCFG_FSB_400:
271                 return 100;
272         case CLKCFG_FSB_533:
273                 return 133;
274         case CLKCFG_FSB_667:
275                 return 166;
276         case CLKCFG_FSB_800:
277                 return 200;
278         case CLKCFG_FSB_1067:
279                 return 266;
280         case CLKCFG_FSB_1333:
281                 return 333;
282         /* these two are just a guess; one of them might be right */
283         case CLKCFG_FSB_1600:
284         case CLKCFG_FSB_1600_ALT:
285                 return 400;
286         default:
287                 return 133;
288         }
289 }
290
291 static void
292 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
293                                     struct intel_dp *intel_dp);
294 static void
295 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
296                                               struct intel_dp *intel_dp);
297
298 static void pps_lock(struct intel_dp *intel_dp)
299 {
300         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301         struct intel_encoder *encoder = &intel_dig_port->base;
302         struct drm_device *dev = encoder->base.dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         enum intel_display_power_domain power_domain;
305
306         /*
307          * See vlv_power_sequencer_reset() why we need
308          * a power domain reference here.
309          */
310         power_domain = intel_display_port_power_domain(encoder);
311         intel_display_power_get(dev_priv, power_domain);
312
313         mutex_lock(&dev_priv->pps_mutex);
314 }
315
316 static void pps_unlock(struct intel_dp *intel_dp)
317 {
318         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
319         struct intel_encoder *encoder = &intel_dig_port->base;
320         struct drm_device *dev = encoder->base.dev;
321         struct drm_i915_private *dev_priv = dev->dev_private;
322         enum intel_display_power_domain power_domain;
323
324         mutex_unlock(&dev_priv->pps_mutex);
325
326         power_domain = intel_display_port_power_domain(encoder);
327         intel_display_power_put(dev_priv, power_domain);
328 }
329
330 static void
331 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         enum pipe pipe = intel_dp->pps_pipe;
337         bool pll_enabled;
338         uint32_t DP;
339
340         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
341                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
342                  pipe_name(pipe), port_name(intel_dig_port->port)))
343                 return;
344
345         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
346                       pipe_name(pipe), port_name(intel_dig_port->port));
347
348         /* Preserve the BIOS-computed detected bit. This is
349          * supposed to be read-only.
350          */
351         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
352         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
353         DP |= DP_PORT_WIDTH(1);
354         DP |= DP_LINK_TRAIN_PAT_1;
355
356         if (IS_CHERRYVIEW(dev))
357                 DP |= DP_PIPE_SELECT_CHV(pipe);
358         else if (pipe == PIPE_B)
359                 DP |= DP_PIPEB_SELECT;
360
361         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
362
363         /*
364          * The DPLL for the pipe must be enabled for this to work.
365          * So enable temporarily it if it's not already enabled.
366          */
367         if (!pll_enabled)
368                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
369                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
370
371         /*
372          * Similar magic as in intel_dp_enable_port().
373          * We _must_ do this port enable + disable trick
374          * to make this power seqeuencer lock onto the port.
375          * Otherwise even VDD force bit won't work.
376          */
377         I915_WRITE(intel_dp->output_reg, DP);
378         POSTING_READ(intel_dp->output_reg);
379
380         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
381         POSTING_READ(intel_dp->output_reg);
382
383         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
384         POSTING_READ(intel_dp->output_reg);
385
386         if (!pll_enabled)
387                 vlv_force_pll_off(dev, pipe);
388 }
389
390 static enum pipe
391 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
392 {
393         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394         struct drm_device *dev = intel_dig_port->base.base.dev;
395         struct drm_i915_private *dev_priv = dev->dev_private;
396         struct intel_encoder *encoder;
397         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
398         enum pipe pipe;
399
400         lockdep_assert_held(&dev_priv->pps_mutex);
401
402         /* We should never land here with regular DP ports */
403         WARN_ON(!is_edp(intel_dp));
404
405         if (intel_dp->pps_pipe != INVALID_PIPE)
406                 return intel_dp->pps_pipe;
407
408         /*
409          * We don't have power sequencer currently.
410          * Pick one that's not used by other ports.
411          */
412         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
413                             base.head) {
414                 struct intel_dp *tmp;
415
416                 if (encoder->type != INTEL_OUTPUT_EDP)
417                         continue;
418
419                 tmp = enc_to_intel_dp(&encoder->base);
420
421                 if (tmp->pps_pipe != INVALID_PIPE)
422                         pipes &= ~(1 << tmp->pps_pipe);
423         }
424
425         /*
426          * Didn't find one. This should not happen since there
427          * are two power sequencers and up to two eDP ports.
428          */
429         if (WARN_ON(pipes == 0))
430                 pipe = PIPE_A;
431         else
432                 pipe = ffs(pipes) - 1;
433
434         vlv_steal_power_sequencer(dev, pipe);
435         intel_dp->pps_pipe = pipe;
436
437         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
438                       pipe_name(intel_dp->pps_pipe),
439                       port_name(intel_dig_port->port));
440
441         /* init power sequencer on this pipe and port */
442         intel_dp_init_panel_power_sequencer(dev, intel_dp);
443         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
444
445         /*
446          * Even vdd force doesn't work until we've made
447          * the power sequencer lock in on the port.
448          */
449         vlv_power_sequencer_kick(intel_dp);
450
451         return intel_dp->pps_pipe;
452 }
453
454 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
455                                enum pipe pipe);
456
457 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
458                                enum pipe pipe)
459 {
460         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
461 }
462
463 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
464                                 enum pipe pipe)
465 {
466         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
467 }
468
469 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
470                          enum pipe pipe)
471 {
472         return true;
473 }
474
475 static enum pipe
476 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
477                      enum port port,
478                      vlv_pipe_check pipe_check)
479 {
480         enum pipe pipe;
481
482         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
483                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
484                         PANEL_PORT_SELECT_MASK;
485
486                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
487                         continue;
488
489                 if (!pipe_check(dev_priv, pipe))
490                         continue;
491
492                 return pipe;
493         }
494
495         return INVALID_PIPE;
496 }
497
498 static void
499 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
500 {
501         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
502         struct drm_device *dev = intel_dig_port->base.base.dev;
503         struct drm_i915_private *dev_priv = dev->dev_private;
504         enum port port = intel_dig_port->port;
505
506         lockdep_assert_held(&dev_priv->pps_mutex);
507
508         /* try to find a pipe with this port selected */
509         /* first pick one where the panel is on */
510         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
511                                                   vlv_pipe_has_pp_on);
512         /* didn't find one? pick one where vdd is on */
513         if (intel_dp->pps_pipe == INVALID_PIPE)
514                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
515                                                           vlv_pipe_has_vdd_on);
516         /* didn't find one? pick one with just the correct port */
517         if (intel_dp->pps_pipe == INVALID_PIPE)
518                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
519                                                           vlv_pipe_any);
520
521         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
522         if (intel_dp->pps_pipe == INVALID_PIPE) {
523                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
524                               port_name(port));
525                 return;
526         }
527
528         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
529                       port_name(port), pipe_name(intel_dp->pps_pipe));
530
531         intel_dp_init_panel_power_sequencer(dev, intel_dp);
532         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
533 }
534
535 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
536 {
537         struct drm_device *dev = dev_priv->dev;
538         struct intel_encoder *encoder;
539
540         if (WARN_ON(!IS_VALLEYVIEW(dev)))
541                 return;
542
543         /*
544          * We can't grab pps_mutex here due to deadlock with power_domain
545          * mutex when power_domain functions are called while holding pps_mutex.
546          * That also means that in order to use pps_pipe the code needs to
547          * hold both a power domain reference and pps_mutex, and the power domain
548          * reference get/put must be done while _not_ holding pps_mutex.
549          * pps_{lock,unlock}() do these steps in the correct order, so one
550          * should use them always.
551          */
552
553         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
554                 struct intel_dp *intel_dp;
555
556                 if (encoder->type != INTEL_OUTPUT_EDP)
557                         continue;
558
559                 intel_dp = enc_to_intel_dp(&encoder->base);
560                 intel_dp->pps_pipe = INVALID_PIPE;
561         }
562 }
563
564 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
565 {
566         struct drm_device *dev = intel_dp_to_dev(intel_dp);
567
568         if (HAS_PCH_SPLIT(dev))
569                 return PCH_PP_CONTROL;
570         else
571                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
572 }
573
574 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
575 {
576         struct drm_device *dev = intel_dp_to_dev(intel_dp);
577
578         if (HAS_PCH_SPLIT(dev))
579                 return PCH_PP_STATUS;
580         else
581                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
582 }
583
584 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
585    This function only applicable when panel PM state is not to be tracked */
586 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
587                               void *unused)
588 {
589         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
590                                                  edp_notifier);
591         struct drm_device *dev = intel_dp_to_dev(intel_dp);
592         struct drm_i915_private *dev_priv = dev->dev_private;
593         u32 pp_div;
594         u32 pp_ctrl_reg, pp_div_reg;
595
596         if (!is_edp(intel_dp) || code != SYS_RESTART)
597                 return 0;
598
599         pps_lock(intel_dp);
600
601         if (IS_VALLEYVIEW(dev)) {
602                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
605                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
606                 pp_div = I915_READ(pp_div_reg);
607                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
608
609                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
610                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
611                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
612                 msleep(intel_dp->panel_power_cycle_delay);
613         }
614
615         pps_unlock(intel_dp);
616
617         return 0;
618 }
619
620 static bool edp_have_panel_power(struct intel_dp *intel_dp)
621 {
622         struct drm_device *dev = intel_dp_to_dev(intel_dp);
623         struct drm_i915_private *dev_priv = dev->dev_private;
624
625         lockdep_assert_held(&dev_priv->pps_mutex);
626
627         if (IS_VALLEYVIEW(dev) &&
628             intel_dp->pps_pipe == INVALID_PIPE)
629                 return false;
630
631         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
632 }
633
634 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
635 {
636         struct drm_device *dev = intel_dp_to_dev(intel_dp);
637         struct drm_i915_private *dev_priv = dev->dev_private;
638
639         lockdep_assert_held(&dev_priv->pps_mutex);
640
641         if (IS_VALLEYVIEW(dev) &&
642             intel_dp->pps_pipe == INVALID_PIPE)
643                 return false;
644
645         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
646 }
647
648 static void
649 intel_dp_check_edp(struct intel_dp *intel_dp)
650 {
651         struct drm_device *dev = intel_dp_to_dev(intel_dp);
652         struct drm_i915_private *dev_priv = dev->dev_private;
653
654         if (!is_edp(intel_dp))
655                 return;
656
657         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
658                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
659                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
660                               I915_READ(_pp_stat_reg(intel_dp)),
661                               I915_READ(_pp_ctrl_reg(intel_dp)));
662         }
663 }
664
665 static uint32_t
666 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
667 {
668         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
669         struct drm_device *dev = intel_dig_port->base.base.dev;
670         struct drm_i915_private *dev_priv = dev->dev_private;
671         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
672         uint32_t status;
673         bool done;
674
675 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
676         if (has_aux_irq)
677                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
678                                           msecs_to_jiffies_timeout(10));
679         else
680                 done = wait_for_atomic(C, 10) == 0;
681         if (!done)
682                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
683                           has_aux_irq);
684 #undef C
685
686         return status;
687 }
688
689 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
690 {
691         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
692         struct drm_device *dev = intel_dig_port->base.base.dev;
693
694         /*
695          * The clock divider is based off the hrawclk, and would like to run at
696          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
697          */
698         return index ? 0 : intel_hrawclk(dev) / 2;
699 }
700
701 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
702 {
703         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
704         struct drm_device *dev = intel_dig_port->base.base.dev;
705         struct drm_i915_private *dev_priv = dev->dev_private;
706
707         if (index)
708                 return 0;
709
710         if (intel_dig_port->port == PORT_A) {
711                 return DIV_ROUND_UP(dev_priv->display.get_display_clock_speed(dev), 2000);
712         } else {
713                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
714         }
715 }
716
717 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
718 {
719         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720         struct drm_device *dev = intel_dig_port->base.base.dev;
721         struct drm_i915_private *dev_priv = dev->dev_private;
722
723         if (intel_dig_port->port == PORT_A) {
724                 if (index)
725                         return 0;
726                 return DIV_ROUND_CLOSEST(dev_priv->display.get_display_clock_speed(dev), 2000);
727         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
728                 /* Workaround for non-ULT HSW */
729                 switch (index) {
730                 case 0: return 63;
731                 case 1: return 72;
732                 default: return 0;
733                 }
734         } else  {
735                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
736         }
737 }
738
739 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741         return index ? 0 : 100;
742 }
743
744 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
745 {
746         /*
747          * SKL doesn't need us to program the AUX clock divider (Hardware will
748          * derive the clock from CDCLK automatically). We still implement the
749          * get_aux_clock_divider vfunc to plug-in into the existing code.
750          */
751         return index ? 0 : 1;
752 }
753
754 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
755                                       bool has_aux_irq,
756                                       int send_bytes,
757                                       uint32_t aux_clock_divider)
758 {
759         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760         struct drm_device *dev = intel_dig_port->base.base.dev;
761         uint32_t precharge, timeout;
762
763         if (IS_GEN6(dev))
764                 precharge = 3;
765         else
766                 precharge = 5;
767
768         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
769                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
770         else
771                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
772
773         return DP_AUX_CH_CTL_SEND_BUSY |
774                DP_AUX_CH_CTL_DONE |
775                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
776                DP_AUX_CH_CTL_TIME_OUT_ERROR |
777                timeout |
778                DP_AUX_CH_CTL_RECEIVE_ERROR |
779                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
780                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
781                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
782 }
783
784 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
785                                       bool has_aux_irq,
786                                       int send_bytes,
787                                       uint32_t unused)
788 {
789         return DP_AUX_CH_CTL_SEND_BUSY |
790                DP_AUX_CH_CTL_DONE |
791                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
792                DP_AUX_CH_CTL_TIME_OUT_ERROR |
793                DP_AUX_CH_CTL_TIME_OUT_1600us |
794                DP_AUX_CH_CTL_RECEIVE_ERROR |
795                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
796                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
797 }
798
799 static int
800 intel_dp_aux_ch(struct intel_dp *intel_dp,
801                 const uint8_t *send, int send_bytes,
802                 uint8_t *recv, int recv_size)
803 {
804         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
805         struct drm_device *dev = intel_dig_port->base.base.dev;
806         struct drm_i915_private *dev_priv = dev->dev_private;
807         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
808         uint32_t ch_data = ch_ctl + 4;
809         uint32_t aux_clock_divider;
810         int i, ret, recv_bytes;
811         uint32_t status;
812         int try, clock = 0;
813         bool has_aux_irq = HAS_AUX_IRQ(dev);
814         bool vdd;
815
816         pps_lock(intel_dp);
817
818         /*
819          * We will be called with VDD already enabled for dpcd/edid/oui reads.
820          * In such cases we want to leave VDD enabled and it's up to upper layers
821          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
822          * ourselves.
823          */
824         vdd = edp_panel_vdd_on(intel_dp);
825
826         /* dp aux is extremely sensitive to irq latency, hence request the
827          * lowest possible wakeup latency and so prevent the cpu from going into
828          * deep sleep states.
829          */
830         pm_qos_update_request(&dev_priv->pm_qos, 0);
831
832         intel_dp_check_edp(intel_dp);
833
834         intel_aux_display_runtime_get(dev_priv);
835
836         /* Try to wait for any previous AUX channel activity */
837         for (try = 0; try < 3; try++) {
838                 status = I915_READ_NOTRACE(ch_ctl);
839                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
840                         break;
841                 msleep(1);
842         }
843
844         if (try == 3) {
845                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
846                      I915_READ(ch_ctl));
847                 ret = -EBUSY;
848                 goto out;
849         }
850
851         /* Only 5 data registers! */
852         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
853                 ret = -E2BIG;
854                 goto out;
855         }
856
857         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
858                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
859                                                           has_aux_irq,
860                                                           send_bytes,
861                                                           aux_clock_divider);
862
863                 /* Must try at least 3 times according to DP spec */
864                 for (try = 0; try < 5; try++) {
865                         /* Load the send data into the aux channel data registers */
866                         for (i = 0; i < send_bytes; i += 4)
867                                 I915_WRITE(ch_data + i,
868                                            intel_dp_pack_aux(send + i,
869                                                              send_bytes - i));
870
871                         /* Send the command and wait for it to complete */
872                         I915_WRITE(ch_ctl, send_ctl);
873
874                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
875
876                         /* Clear done status and any errors */
877                         I915_WRITE(ch_ctl,
878                                    status |
879                                    DP_AUX_CH_CTL_DONE |
880                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
881                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
882
883                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
884                                 continue;
885
886                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
887                          *   400us delay required for errors and timeouts
888                          *   Timeout errors from the HW already meet this
889                          *   requirement so skip to next iteration
890                          */
891                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
892                                 usleep_range(400, 500);
893                                 continue;
894                         }
895                         if (status & DP_AUX_CH_CTL_DONE)
896                                 goto done;
897                 }
898         }
899
900         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
901                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
902                 ret = -EBUSY;
903                 goto out;
904         }
905
906 done:
907         /* Check for timeout or receive error.
908          * Timeouts occur when the sink is not connected
909          */
910         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
911                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
912                 ret = -EIO;
913                 goto out;
914         }
915
916         /* Timeouts occur when the device isn't connected, so they're
917          * "normal" -- don't fill the kernel log with these */
918         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
919                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
920                 ret = -ETIMEDOUT;
921                 goto out;
922         }
923
924         /* Unload any bytes sent back from the other side */
925         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
926                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
927         if (recv_bytes > recv_size)
928                 recv_bytes = recv_size;
929
930         for (i = 0; i < recv_bytes; i += 4)
931                 intel_dp_unpack_aux(I915_READ(ch_data + i),
932                                     recv + i, recv_bytes - i);
933
934         ret = recv_bytes;
935 out:
936         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
937         intel_aux_display_runtime_put(dev_priv);
938
939         if (vdd)
940                 edp_panel_vdd_off(intel_dp, false);
941
942         pps_unlock(intel_dp);
943
944         return ret;
945 }
946
947 #define BARE_ADDRESS_SIZE       3
948 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
949 static ssize_t
950 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
951 {
952         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
953         uint8_t txbuf[20], rxbuf[20];
954         size_t txsize, rxsize;
955         int ret;
956
957         txbuf[0] = (msg->request << 4) |
958                 ((msg->address >> 16) & 0xf);
959         txbuf[1] = (msg->address >> 8) & 0xff;
960         txbuf[2] = msg->address & 0xff;
961         txbuf[3] = msg->size - 1;
962
963         switch (msg->request & ~DP_AUX_I2C_MOT) {
964         case DP_AUX_NATIVE_WRITE:
965         case DP_AUX_I2C_WRITE:
966                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
967                 rxsize = 2; /* 0 or 1 data bytes */
968
969                 if (WARN_ON(txsize > 20))
970                         return -E2BIG;
971
972                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
973
974                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
975                 if (ret > 0) {
976                         msg->reply = rxbuf[0] >> 4;
977
978                         if (ret > 1) {
979                                 /* Number of bytes written in a short write. */
980                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
981                         } else {
982                                 /* Return payload size. */
983                                 ret = msg->size;
984                         }
985                 }
986                 break;
987
988         case DP_AUX_NATIVE_READ:
989         case DP_AUX_I2C_READ:
990                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
991                 rxsize = msg->size + 1;
992
993                 if (WARN_ON(rxsize > 20))
994                         return -E2BIG;
995
996                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
997                 if (ret > 0) {
998                         msg->reply = rxbuf[0] >> 4;
999                         /*
1000                          * Assume happy day, and copy the data. The caller is
1001                          * expected to check msg->reply before touching it.
1002                          *
1003                          * Return payload size.
1004                          */
1005                         ret--;
1006                         memcpy(msg->buffer, rxbuf + 1, ret);
1007                 }
1008                 break;
1009
1010         default:
1011                 ret = -EINVAL;
1012                 break;
1013         }
1014
1015         return ret;
1016 }
1017
1018 static void
1019 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1020 {
1021         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1022         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1023         enum port port = intel_dig_port->port;
1024         const char *name = NULL;
1025         int ret;
1026
1027         switch (port) {
1028         case PORT_A:
1029                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1030                 name = "DPDDC-A";
1031                 break;
1032         case PORT_B:
1033                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1034                 name = "DPDDC-B";
1035                 break;
1036         case PORT_C:
1037                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1038                 name = "DPDDC-C";
1039                 break;
1040         case PORT_D:
1041                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1042                 name = "DPDDC-D";
1043                 break;
1044         default:
1045                 BUG();
1046         }
1047
1048         /*
1049          * The AUX_CTL register is usually DP_CTL + 0x10.
1050          *
1051          * On Haswell and Broadwell though:
1052          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1053          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1054          *
1055          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1056          */
1057         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1058                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1059
1060         intel_dp->aux.name = name;
1061         intel_dp->aux.dev = dev->dev;
1062         intel_dp->aux.transfer = intel_dp_aux_transfer;
1063
1064         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1065                       connector->base.kdev->kobj.name);
1066
1067         ret = drm_dp_aux_register(&intel_dp->aux);
1068         if (ret < 0) {
1069                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1070                           name, ret);
1071                 return;
1072         }
1073
1074         ret = sysfs_create_link(&connector->base.kdev->kobj,
1075                                 &intel_dp->aux.ddc.dev.kobj,
1076                                 intel_dp->aux.ddc.dev.kobj.name);
1077         if (ret < 0) {
1078                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1079                 drm_dp_aux_unregister(&intel_dp->aux);
1080         }
1081 }
1082
1083 static void
1084 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1085 {
1086         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1087
1088         if (!intel_connector->mst_port)
1089                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1090                                   intel_dp->aux.ddc.dev.kobj.name);
1091         intel_connector_unregister(intel_connector);
1092 }
1093
1094 static void
1095 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1096 {
1097         u32 ctrl1;
1098
1099         memset(&pipe_config->dpll_hw_state, 0,
1100                sizeof(pipe_config->dpll_hw_state));
1101
1102         pipe_config->ddi_pll_sel = SKL_DPLL0;
1103         pipe_config->dpll_hw_state.cfgcr1 = 0;
1104         pipe_config->dpll_hw_state.cfgcr2 = 0;
1105
1106         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1107         switch (link_clock / 2) {
1108         case 81000:
1109                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1110                                               SKL_DPLL0);
1111                 break;
1112         case 135000:
1113                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1114                                               SKL_DPLL0);
1115                 break;
1116         case 270000:
1117                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1118                                               SKL_DPLL0);
1119                 break;
1120         case 162000:
1121                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1122                                               SKL_DPLL0);
1123                 break;
1124         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1125         results in CDCLK change. Need to handle the change of CDCLK by
1126         disabling pipes and re-enabling them */
1127         case 108000:
1128                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1129                                               SKL_DPLL0);
1130                 break;
1131         case 216000:
1132                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1133                                               SKL_DPLL0);
1134                 break;
1135
1136         }
1137         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1138 }
1139
1140 static void
1141 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1142 {
1143         switch (link_bw) {
1144         case DP_LINK_BW_1_62:
1145                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1146                 break;
1147         case DP_LINK_BW_2_7:
1148                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1149                 break;
1150         case DP_LINK_BW_5_4:
1151                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1152                 break;
1153         }
1154 }
1155
1156 static int
1157 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1158 {
1159         if (intel_dp->num_sink_rates) {
1160                 *sink_rates = intel_dp->sink_rates;
1161                 return intel_dp->num_sink_rates;
1162         }
1163
1164         *sink_rates = default_rates;
1165
1166         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1167 }
1168
1169 static int
1170 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1171 {
1172         if (IS_SKYLAKE(dev)) {
1173                 *source_rates = skl_rates;
1174                 return ARRAY_SIZE(skl_rates);
1175         } else if (IS_CHERRYVIEW(dev)) {
1176                 *source_rates = chv_rates;
1177                 return ARRAY_SIZE(chv_rates);
1178         }
1179
1180         *source_rates = default_rates;
1181
1182         if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1183                 /* WaDisableHBR2:skl */
1184                 return (DP_LINK_BW_2_7 >> 3) + 1;
1185         else if (INTEL_INFO(dev)->gen >= 8 ||
1186             (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1187                 return (DP_LINK_BW_5_4 >> 3) + 1;
1188         else
1189                 return (DP_LINK_BW_2_7 >> 3) + 1;
1190 }
1191
1192 static void
1193 intel_dp_set_clock(struct intel_encoder *encoder,
1194                    struct intel_crtc_state *pipe_config, int link_bw)
1195 {
1196         struct drm_device *dev = encoder->base.dev;
1197         const struct dp_link_dpll *divisor = NULL;
1198         int i, count = 0;
1199
1200         if (IS_G4X(dev)) {
1201                 divisor = gen4_dpll;
1202                 count = ARRAY_SIZE(gen4_dpll);
1203         } else if (HAS_PCH_SPLIT(dev)) {
1204                 divisor = pch_dpll;
1205                 count = ARRAY_SIZE(pch_dpll);
1206         } else if (IS_CHERRYVIEW(dev)) {
1207                 divisor = chv_dpll;
1208                 count = ARRAY_SIZE(chv_dpll);
1209         } else if (IS_VALLEYVIEW(dev)) {
1210                 divisor = vlv_dpll;
1211                 count = ARRAY_SIZE(vlv_dpll);
1212         }
1213
1214         if (divisor && count) {
1215                 for (i = 0; i < count; i++) {
1216                         if (link_bw == divisor[i].link_bw) {
1217                                 pipe_config->dpll = divisor[i].dpll;
1218                                 pipe_config->clock_set = true;
1219                                 break;
1220                         }
1221                 }
1222         }
1223 }
1224
1225 static int intersect_rates(const int *source_rates, int source_len,
1226                            const int *sink_rates, int sink_len,
1227                            int *common_rates)
1228 {
1229         int i = 0, j = 0, k = 0;
1230
1231         while (i < source_len && j < sink_len) {
1232                 if (source_rates[i] == sink_rates[j]) {
1233                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1234                                 return k;
1235                         common_rates[k] = source_rates[i];
1236                         ++k;
1237                         ++i;
1238                         ++j;
1239                 } else if (source_rates[i] < sink_rates[j]) {
1240                         ++i;
1241                 } else {
1242                         ++j;
1243                 }
1244         }
1245         return k;
1246 }
1247
1248 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1249                                  int *common_rates)
1250 {
1251         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1252         const int *source_rates, *sink_rates;
1253         int source_len, sink_len;
1254
1255         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1256         source_len = intel_dp_source_rates(dev, &source_rates);
1257
1258         return intersect_rates(source_rates, source_len,
1259                                sink_rates, sink_len,
1260                                common_rates);
1261 }
1262
1263 static void snprintf_int_array(char *str, size_t len,
1264                                const int *array, int nelem)
1265 {
1266         int i;
1267
1268         str[0] = '\0';
1269
1270         for (i = 0; i < nelem; i++) {
1271                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1272                 if (r >= len)
1273                         return;
1274                 str += r;
1275                 len -= r;
1276         }
1277 }
1278
1279 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1280 {
1281         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1282         const int *source_rates, *sink_rates;
1283         int source_len, sink_len, common_len;
1284         int common_rates[DP_MAX_SUPPORTED_RATES];
1285         char str[128]; /* FIXME: too big for stack? */
1286
1287         if ((drm_debug & DRM_UT_KMS) == 0)
1288                 return;
1289
1290         source_len = intel_dp_source_rates(dev, &source_rates);
1291         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1292         DRM_DEBUG_KMS("source rates: %s\n", str);
1293
1294         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1295         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1296         DRM_DEBUG_KMS("sink rates: %s\n", str);
1297
1298         common_len = intel_dp_common_rates(intel_dp, common_rates);
1299         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1300         DRM_DEBUG_KMS("common rates: %s\n", str);
1301 }
1302
1303 static int rate_to_index(int find, const int *rates)
1304 {
1305         int i = 0;
1306
1307         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1308                 if (find == rates[i])
1309                         break;
1310
1311         return i;
1312 }
1313
1314 int
1315 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1316 {
1317         int rates[DP_MAX_SUPPORTED_RATES] = {};
1318         int len;
1319
1320         len = intel_dp_common_rates(intel_dp, rates);
1321         if (WARN_ON(len <= 0))
1322                 return 162000;
1323
1324         return rates[rate_to_index(0, rates) - 1];
1325 }
1326
1327 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1328 {
1329         return rate_to_index(rate, intel_dp->sink_rates);
1330 }
1331
1332 bool
1333 intel_dp_compute_config(struct intel_encoder *encoder,
1334                         struct intel_crtc_state *pipe_config)
1335 {
1336         struct drm_device *dev = encoder->base.dev;
1337         struct drm_i915_private *dev_priv = dev->dev_private;
1338         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1339         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1340         enum port port = dp_to_dig_port(intel_dp)->port;
1341         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1342         struct intel_connector *intel_connector = intel_dp->attached_connector;
1343         int lane_count, clock;
1344         int min_lane_count = 1;
1345         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1346         /* Conveniently, the link BW constants become indices with a shift...*/
1347         int min_clock = 0;
1348         int max_clock;
1349         int bpp, mode_rate;
1350         int link_avail, link_clock;
1351         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1352         int common_len;
1353
1354         common_len = intel_dp_common_rates(intel_dp, common_rates);
1355
1356         /* No common link rates between source and sink */
1357         WARN_ON(common_len <= 0);
1358
1359         max_clock = common_len - 1;
1360
1361         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1362                 pipe_config->has_pch_encoder = true;
1363
1364         pipe_config->has_dp_encoder = true;
1365         pipe_config->has_drrs = false;
1366         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1367
1368         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1369                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1370                                        adjusted_mode);
1371
1372                 if (INTEL_INFO(dev)->gen >= 9) {
1373                         int ret;
1374                         ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1375                         if (ret)
1376                                 return ret;
1377                 }
1378
1379                 if (!HAS_PCH_SPLIT(dev))
1380                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1381                                                  intel_connector->panel.fitting_mode);
1382                 else
1383                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1384                                                 intel_connector->panel.fitting_mode);
1385         }
1386
1387         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1388                 return false;
1389
1390         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1391                       "max bw %d pixel clock %iKHz\n",
1392                       max_lane_count, common_rates[max_clock],
1393                       adjusted_mode->crtc_clock);
1394
1395         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1396          * bpc in between. */
1397         bpp = pipe_config->pipe_bpp;
1398         if (is_edp(intel_dp)) {
1399                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1400                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1401                                       dev_priv->vbt.edp_bpp);
1402                         bpp = dev_priv->vbt.edp_bpp;
1403                 }
1404
1405                 /*
1406                  * Use the maximum clock and number of lanes the eDP panel
1407                  * advertizes being capable of. The panels are generally
1408                  * designed to support only a single clock and lane
1409                  * configuration, and typically these values correspond to the
1410                  * native resolution of the panel.
1411                  */
1412                 min_lane_count = max_lane_count;
1413                 min_clock = max_clock;
1414         }
1415
1416         for (; bpp >= 6*3; bpp -= 2*3) {
1417                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1418                                                    bpp);
1419
1420                 for (clock = min_clock; clock <= max_clock; clock++) {
1421                         for (lane_count = min_lane_count;
1422                                 lane_count <= max_lane_count;
1423                                 lane_count <<= 1) {
1424
1425                                 link_clock = common_rates[clock];
1426                                 link_avail = intel_dp_max_data_rate(link_clock,
1427                                                                     lane_count);
1428
1429                                 if (mode_rate <= link_avail) {
1430                                         goto found;
1431                                 }
1432                         }
1433                 }
1434         }
1435
1436         return false;
1437
1438 found:
1439         if (intel_dp->color_range_auto) {
1440                 /*
1441                  * See:
1442                  * CEA-861-E - 5.1 Default Encoding Parameters
1443                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1444                  */
1445                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1446                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
1447                 else
1448                         intel_dp->color_range = 0;
1449         }
1450
1451         if (intel_dp->color_range)
1452                 pipe_config->limited_color_range = true;
1453
1454         intel_dp->lane_count = lane_count;
1455
1456         if (intel_dp->num_sink_rates) {
1457                 intel_dp->link_bw = 0;
1458                 intel_dp->rate_select =
1459                         intel_dp_rate_select(intel_dp, common_rates[clock]);
1460         } else {
1461                 intel_dp->link_bw =
1462                         drm_dp_link_rate_to_bw_code(common_rates[clock]);
1463                 intel_dp->rate_select = 0;
1464         }
1465
1466         pipe_config->pipe_bpp = bpp;
1467         pipe_config->port_clock = common_rates[clock];
1468
1469         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1470                       intel_dp->link_bw, intel_dp->lane_count,
1471                       pipe_config->port_clock, bpp);
1472         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1473                       mode_rate, link_avail);
1474
1475         intel_link_compute_m_n(bpp, lane_count,
1476                                adjusted_mode->crtc_clock,
1477                                pipe_config->port_clock,
1478                                &pipe_config->dp_m_n);
1479
1480         if (intel_connector->panel.downclock_mode != NULL &&
1481                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1482                         pipe_config->has_drrs = true;
1483                         intel_link_compute_m_n(bpp, lane_count,
1484                                 intel_connector->panel.downclock_mode->clock,
1485                                 pipe_config->port_clock,
1486                                 &pipe_config->dp_m2_n2);
1487         }
1488
1489         if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1490                 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1491         else if (IS_BROXTON(dev))
1492                 /* handled in ddi */;
1493         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1494                 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1495         else
1496                 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1497
1498         return true;
1499 }
1500
1501 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1502 {
1503         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1504         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1505         struct drm_device *dev = crtc->base.dev;
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         u32 dpa_ctl;
1508
1509         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1510                       crtc->config->port_clock);
1511         dpa_ctl = I915_READ(DP_A);
1512         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1513
1514         if (crtc->config->port_clock == 162000) {
1515                 /* For a long time we've carried around a ILK-DevA w/a for the
1516                  * 160MHz clock. If we're really unlucky, it's still required.
1517                  */
1518                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1519                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1520                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1521         } else {
1522                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1523                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1524         }
1525
1526         I915_WRITE(DP_A, dpa_ctl);
1527
1528         POSTING_READ(DP_A);
1529         udelay(500);
1530 }
1531
1532 static void intel_dp_prepare(struct intel_encoder *encoder)
1533 {
1534         struct drm_device *dev = encoder->base.dev;
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1537         enum port port = dp_to_dig_port(intel_dp)->port;
1538         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1539         struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1540
1541         /*
1542          * There are four kinds of DP registers:
1543          *
1544          *      IBX PCH
1545          *      SNB CPU
1546          *      IVB CPU
1547          *      CPT PCH
1548          *
1549          * IBX PCH and CPU are the same for almost everything,
1550          * except that the CPU DP PLL is configured in this
1551          * register
1552          *
1553          * CPT PCH is quite different, having many bits moved
1554          * to the TRANS_DP_CTL register instead. That
1555          * configuration happens (oddly) in ironlake_pch_enable
1556          */
1557
1558         /* Preserve the BIOS-computed detected bit. This is
1559          * supposed to be read-only.
1560          */
1561         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1562
1563         /* Handle DP bits in common between all three register formats */
1564         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1565         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1566
1567         if (crtc->config->has_audio)
1568                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1569
1570         /* Split out the IBX/CPU vs CPT settings */
1571
1572         if (IS_GEN7(dev) && port == PORT_A) {
1573                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1574                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1575                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1576                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1577                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1578
1579                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1580                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1581
1582                 intel_dp->DP |= crtc->pipe << 29;
1583         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1584                 u32 trans_dp;
1585
1586                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1587
1588                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1589                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1590                         trans_dp |= TRANS_DP_ENH_FRAMING;
1591                 else
1592                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1593                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1594         } else {
1595                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1596                         intel_dp->DP |= intel_dp->color_range;
1597
1598                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1599                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1600                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1601                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1602                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1603
1604                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1605                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1606
1607                 if (IS_CHERRYVIEW(dev))
1608                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1609                 else if (crtc->pipe == PIPE_B)
1610                         intel_dp->DP |= DP_PIPEB_SELECT;
1611         }
1612 }
1613
1614 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1615 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1616
1617 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1618 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1619
1620 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1621 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1622
1623 static void wait_panel_status(struct intel_dp *intel_dp,
1624                                        u32 mask,
1625                                        u32 value)
1626 {
1627         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         u32 pp_stat_reg, pp_ctrl_reg;
1630
1631         lockdep_assert_held(&dev_priv->pps_mutex);
1632
1633         pp_stat_reg = _pp_stat_reg(intel_dp);
1634         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1635
1636         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1637                         mask, value,
1638                         I915_READ(pp_stat_reg),
1639                         I915_READ(pp_ctrl_reg));
1640
1641         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1642                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1643                                 I915_READ(pp_stat_reg),
1644                                 I915_READ(pp_ctrl_reg));
1645         }
1646
1647         DRM_DEBUG_KMS("Wait complete\n");
1648 }
1649
1650 static void wait_panel_on(struct intel_dp *intel_dp)
1651 {
1652         DRM_DEBUG_KMS("Wait for panel power on\n");
1653         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1654 }
1655
1656 static void wait_panel_off(struct intel_dp *intel_dp)
1657 {
1658         DRM_DEBUG_KMS("Wait for panel power off time\n");
1659         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1660 }
1661
1662 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1663 {
1664         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1665
1666         /* When we disable the VDD override bit last we have to do the manual
1667          * wait. */
1668         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1669                                        intel_dp->panel_power_cycle_delay);
1670
1671         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1672 }
1673
1674 static void wait_backlight_on(struct intel_dp *intel_dp)
1675 {
1676         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1677                                        intel_dp->backlight_on_delay);
1678 }
1679
1680 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1681 {
1682         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1683                                        intel_dp->backlight_off_delay);
1684 }
1685
1686 /* Read the current pp_control value, unlocking the register if it
1687  * is locked
1688  */
1689
1690 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1691 {
1692         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1693         struct drm_i915_private *dev_priv = dev->dev_private;
1694         u32 control;
1695
1696         lockdep_assert_held(&dev_priv->pps_mutex);
1697
1698         control = I915_READ(_pp_ctrl_reg(intel_dp));
1699         control &= ~PANEL_UNLOCK_MASK;
1700         control |= PANEL_UNLOCK_REGS;
1701         return control;
1702 }
1703
1704 /*
1705  * Must be paired with edp_panel_vdd_off().
1706  * Must hold pps_mutex around the whole on/off sequence.
1707  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1708  */
1709 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1710 {
1711         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1712         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1713         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         enum intel_display_power_domain power_domain;
1716         u32 pp;
1717         u32 pp_stat_reg, pp_ctrl_reg;
1718         bool need_to_disable = !intel_dp->want_panel_vdd;
1719
1720         lockdep_assert_held(&dev_priv->pps_mutex);
1721
1722         if (!is_edp(intel_dp))
1723                 return false;
1724
1725         cancel_delayed_work(&intel_dp->panel_vdd_work);
1726         intel_dp->want_panel_vdd = true;
1727
1728         if (edp_have_panel_vdd(intel_dp))
1729                 return need_to_disable;
1730
1731         power_domain = intel_display_port_power_domain(intel_encoder);
1732         intel_display_power_get(dev_priv, power_domain);
1733
1734         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1735                       port_name(intel_dig_port->port));
1736
1737         if (!edp_have_panel_power(intel_dp))
1738                 wait_panel_power_cycle(intel_dp);
1739
1740         pp = ironlake_get_pp_control(intel_dp);
1741         pp |= EDP_FORCE_VDD;
1742
1743         pp_stat_reg = _pp_stat_reg(intel_dp);
1744         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1745
1746         I915_WRITE(pp_ctrl_reg, pp);
1747         POSTING_READ(pp_ctrl_reg);
1748         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1749                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1750         /*
1751          * If the panel wasn't on, delay before accessing aux channel
1752          */
1753         if (!edp_have_panel_power(intel_dp)) {
1754                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1755                               port_name(intel_dig_port->port));
1756                 msleep(intel_dp->panel_power_up_delay);
1757         }
1758
1759         return need_to_disable;
1760 }
1761
1762 /*
1763  * Must be paired with intel_edp_panel_vdd_off() or
1764  * intel_edp_panel_off().
1765  * Nested calls to these functions are not allowed since
1766  * we drop the lock. Caller must use some higher level
1767  * locking to prevent nested calls from other threads.
1768  */
1769 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1770 {
1771         bool vdd;
1772
1773         if (!is_edp(intel_dp))
1774                 return;
1775
1776         pps_lock(intel_dp);
1777         vdd = edp_panel_vdd_on(intel_dp);
1778         pps_unlock(intel_dp);
1779
1780         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1781              port_name(dp_to_dig_port(intel_dp)->port));
1782 }
1783
1784 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1785 {
1786         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1787         struct drm_i915_private *dev_priv = dev->dev_private;
1788         struct intel_digital_port *intel_dig_port =
1789                 dp_to_dig_port(intel_dp);
1790         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1791         enum intel_display_power_domain power_domain;
1792         u32 pp;
1793         u32 pp_stat_reg, pp_ctrl_reg;
1794
1795         lockdep_assert_held(&dev_priv->pps_mutex);
1796
1797         WARN_ON(intel_dp->want_panel_vdd);
1798
1799         if (!edp_have_panel_vdd(intel_dp))
1800                 return;
1801
1802         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1803                       port_name(intel_dig_port->port));
1804
1805         pp = ironlake_get_pp_control(intel_dp);
1806         pp &= ~EDP_FORCE_VDD;
1807
1808         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1809         pp_stat_reg = _pp_stat_reg(intel_dp);
1810
1811         I915_WRITE(pp_ctrl_reg, pp);
1812         POSTING_READ(pp_ctrl_reg);
1813
1814         /* Make sure sequencer is idle before allowing subsequent activity */
1815         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1816         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1817
1818         if ((pp & POWER_TARGET_ON) == 0)
1819                 intel_dp->last_power_cycle = jiffies;
1820
1821         power_domain = intel_display_port_power_domain(intel_encoder);
1822         intel_display_power_put(dev_priv, power_domain);
1823 }
1824
1825 static void edp_panel_vdd_work(struct work_struct *__work)
1826 {
1827         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1828                                                  struct intel_dp, panel_vdd_work);
1829
1830         pps_lock(intel_dp);
1831         if (!intel_dp->want_panel_vdd)
1832                 edp_panel_vdd_off_sync(intel_dp);
1833         pps_unlock(intel_dp);
1834 }
1835
1836 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1837 {
1838         unsigned long delay;
1839
1840         /*
1841          * Queue the timer to fire a long time from now (relative to the power
1842          * down delay) to keep the panel power up across a sequence of
1843          * operations.
1844          */
1845         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1846         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1847 }
1848
1849 /*
1850  * Must be paired with edp_panel_vdd_on().
1851  * Must hold pps_mutex around the whole on/off sequence.
1852  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1853  */
1854 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1855 {
1856         struct drm_i915_private *dev_priv =
1857                 intel_dp_to_dev(intel_dp)->dev_private;
1858
1859         lockdep_assert_held(&dev_priv->pps_mutex);
1860
1861         if (!is_edp(intel_dp))
1862                 return;
1863
1864         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1865              port_name(dp_to_dig_port(intel_dp)->port));
1866
1867         intel_dp->want_panel_vdd = false;
1868
1869         if (sync)
1870                 edp_panel_vdd_off_sync(intel_dp);
1871         else
1872                 edp_panel_vdd_schedule_off(intel_dp);
1873 }
1874
1875 static void edp_panel_on(struct intel_dp *intel_dp)
1876 {
1877         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1878         struct drm_i915_private *dev_priv = dev->dev_private;
1879         u32 pp;
1880         u32 pp_ctrl_reg;
1881
1882         lockdep_assert_held(&dev_priv->pps_mutex);
1883
1884         if (!is_edp(intel_dp))
1885                 return;
1886
1887         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1888                       port_name(dp_to_dig_port(intel_dp)->port));
1889
1890         if (WARN(edp_have_panel_power(intel_dp),
1891                  "eDP port %c panel power already on\n",
1892                  port_name(dp_to_dig_port(intel_dp)->port)))
1893                 return;
1894
1895         wait_panel_power_cycle(intel_dp);
1896
1897         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1898         pp = ironlake_get_pp_control(intel_dp);
1899         if (IS_GEN5(dev)) {
1900                 /* ILK workaround: disable reset around power sequence */
1901                 pp &= ~PANEL_POWER_RESET;
1902                 I915_WRITE(pp_ctrl_reg, pp);
1903                 POSTING_READ(pp_ctrl_reg);
1904         }
1905
1906         pp |= POWER_TARGET_ON;
1907         if (!IS_GEN5(dev))
1908                 pp |= PANEL_POWER_RESET;
1909
1910         I915_WRITE(pp_ctrl_reg, pp);
1911         POSTING_READ(pp_ctrl_reg);
1912
1913         wait_panel_on(intel_dp);
1914         intel_dp->last_power_on = jiffies;
1915
1916         if (IS_GEN5(dev)) {
1917                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1918                 I915_WRITE(pp_ctrl_reg, pp);
1919                 POSTING_READ(pp_ctrl_reg);
1920         }
1921 }
1922
1923 void intel_edp_panel_on(struct intel_dp *intel_dp)
1924 {
1925         if (!is_edp(intel_dp))
1926                 return;
1927
1928         pps_lock(intel_dp);
1929         edp_panel_on(intel_dp);
1930         pps_unlock(intel_dp);
1931 }
1932
1933
1934 static void edp_panel_off(struct intel_dp *intel_dp)
1935 {
1936         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1937         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1938         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1939         struct drm_i915_private *dev_priv = dev->dev_private;
1940         enum intel_display_power_domain power_domain;
1941         u32 pp;
1942         u32 pp_ctrl_reg;
1943
1944         lockdep_assert_held(&dev_priv->pps_mutex);
1945
1946         if (!is_edp(intel_dp))
1947                 return;
1948
1949         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1950                       port_name(dp_to_dig_port(intel_dp)->port));
1951
1952         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1953              port_name(dp_to_dig_port(intel_dp)->port));
1954
1955         pp = ironlake_get_pp_control(intel_dp);
1956         /* We need to switch off panel power _and_ force vdd, for otherwise some
1957          * panels get very unhappy and cease to work. */
1958         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1959                 EDP_BLC_ENABLE);
1960
1961         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1962
1963         intel_dp->want_panel_vdd = false;
1964
1965         I915_WRITE(pp_ctrl_reg, pp);
1966         POSTING_READ(pp_ctrl_reg);
1967
1968         intel_dp->last_power_cycle = jiffies;
1969         wait_panel_off(intel_dp);
1970
1971         /* We got a reference when we enabled the VDD. */
1972         power_domain = intel_display_port_power_domain(intel_encoder);
1973         intel_display_power_put(dev_priv, power_domain);
1974 }
1975
1976 void intel_edp_panel_off(struct intel_dp *intel_dp)
1977 {
1978         if (!is_edp(intel_dp))
1979                 return;
1980
1981         pps_lock(intel_dp);
1982         edp_panel_off(intel_dp);
1983         pps_unlock(intel_dp);
1984 }
1985
1986 /* Enable backlight in the panel power control. */
1987 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1988 {
1989         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1990         struct drm_device *dev = intel_dig_port->base.base.dev;
1991         struct drm_i915_private *dev_priv = dev->dev_private;
1992         u32 pp;
1993         u32 pp_ctrl_reg;
1994
1995         /*
1996          * If we enable the backlight right away following a panel power
1997          * on, we may see slight flicker as the panel syncs with the eDP
1998          * link.  So delay a bit to make sure the image is solid before
1999          * allowing it to appear.
2000          */
2001         wait_backlight_on(intel_dp);
2002
2003         pps_lock(intel_dp);
2004
2005         pp = ironlake_get_pp_control(intel_dp);
2006         pp |= EDP_BLC_ENABLE;
2007
2008         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2009
2010         I915_WRITE(pp_ctrl_reg, pp);
2011         POSTING_READ(pp_ctrl_reg);
2012
2013         pps_unlock(intel_dp);
2014 }
2015
2016 /* Enable backlight PWM and backlight PP control. */
2017 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2018 {
2019         if (!is_edp(intel_dp))
2020                 return;
2021
2022         DRM_DEBUG_KMS("\n");
2023
2024         intel_panel_enable_backlight(intel_dp->attached_connector);
2025         _intel_edp_backlight_on(intel_dp);
2026 }
2027
2028 /* Disable backlight in the panel power control. */
2029 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2030 {
2031         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2032         struct drm_i915_private *dev_priv = dev->dev_private;
2033         u32 pp;
2034         u32 pp_ctrl_reg;
2035
2036         if (!is_edp(intel_dp))
2037                 return;
2038
2039         pps_lock(intel_dp);
2040
2041         pp = ironlake_get_pp_control(intel_dp);
2042         pp &= ~EDP_BLC_ENABLE;
2043
2044         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2045
2046         I915_WRITE(pp_ctrl_reg, pp);
2047         POSTING_READ(pp_ctrl_reg);
2048
2049         pps_unlock(intel_dp);
2050
2051         intel_dp->last_backlight_off = jiffies;
2052         edp_wait_backlight_off(intel_dp);
2053 }
2054
2055 /* Disable backlight PP control and backlight PWM. */
2056 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2057 {
2058         if (!is_edp(intel_dp))
2059                 return;
2060
2061         DRM_DEBUG_KMS("\n");
2062
2063         _intel_edp_backlight_off(intel_dp);
2064         intel_panel_disable_backlight(intel_dp->attached_connector);
2065 }
2066
2067 /*
2068  * Hook for controlling the panel power control backlight through the bl_power
2069  * sysfs attribute. Take care to handle multiple calls.
2070  */
2071 static void intel_edp_backlight_power(struct intel_connector *connector,
2072                                       bool enable)
2073 {
2074         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2075         bool is_enabled;
2076
2077         pps_lock(intel_dp);
2078         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2079         pps_unlock(intel_dp);
2080
2081         if (is_enabled == enable)
2082                 return;
2083
2084         DRM_DEBUG_KMS("panel power control backlight %s\n",
2085                       enable ? "enable" : "disable");
2086
2087         if (enable)
2088                 _intel_edp_backlight_on(intel_dp);
2089         else
2090                 _intel_edp_backlight_off(intel_dp);
2091 }
2092
2093 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2094 {
2095         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2096         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2097         struct drm_device *dev = crtc->dev;
2098         struct drm_i915_private *dev_priv = dev->dev_private;
2099         u32 dpa_ctl;
2100
2101         assert_pipe_disabled(dev_priv,
2102                              to_intel_crtc(crtc)->pipe);
2103
2104         DRM_DEBUG_KMS("\n");
2105         dpa_ctl = I915_READ(DP_A);
2106         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2107         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2108
2109         /* We don't adjust intel_dp->DP while tearing down the link, to
2110          * facilitate link retraining (e.g. after hotplug). Hence clear all
2111          * enable bits here to ensure that we don't enable too much. */
2112         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2113         intel_dp->DP |= DP_PLL_ENABLE;
2114         I915_WRITE(DP_A, intel_dp->DP);
2115         POSTING_READ(DP_A);
2116         udelay(200);
2117 }
2118
2119 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2120 {
2121         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2122         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2123         struct drm_device *dev = crtc->dev;
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         u32 dpa_ctl;
2126
2127         assert_pipe_disabled(dev_priv,
2128                              to_intel_crtc(crtc)->pipe);
2129
2130         dpa_ctl = I915_READ(DP_A);
2131         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2132              "dp pll off, should be on\n");
2133         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2134
2135         /* We can't rely on the value tracked for the DP register in
2136          * intel_dp->DP because link_down must not change that (otherwise link
2137          * re-training will fail. */
2138         dpa_ctl &= ~DP_PLL_ENABLE;
2139         I915_WRITE(DP_A, dpa_ctl);
2140         POSTING_READ(DP_A);
2141         udelay(200);
2142 }
2143
2144 /* If the sink supports it, try to set the power state appropriately */
2145 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2146 {
2147         int ret, i;
2148
2149         /* Should have a valid DPCD by this point */
2150         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2151                 return;
2152
2153         if (mode != DRM_MODE_DPMS_ON) {
2154                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2155                                          DP_SET_POWER_D3);
2156         } else {
2157                 /*
2158                  * When turning on, we need to retry for 1ms to give the sink
2159                  * time to wake up.
2160                  */
2161                 for (i = 0; i < 3; i++) {
2162                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2163                                                  DP_SET_POWER_D0);
2164                         if (ret == 1)
2165                                 break;
2166                         msleep(1);
2167                 }
2168         }
2169
2170         if (ret != 1)
2171                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2172                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2173 }
2174
2175 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2176                                   enum pipe *pipe)
2177 {
2178         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2179         enum port port = dp_to_dig_port(intel_dp)->port;
2180         struct drm_device *dev = encoder->base.dev;
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         enum intel_display_power_domain power_domain;
2183         u32 tmp;
2184
2185         power_domain = intel_display_port_power_domain(encoder);
2186         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2187                 return false;
2188
2189         tmp = I915_READ(intel_dp->output_reg);
2190
2191         if (!(tmp & DP_PORT_EN))
2192                 return false;
2193
2194         if (IS_GEN7(dev) && port == PORT_A) {
2195                 *pipe = PORT_TO_PIPE_CPT(tmp);
2196         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2197                 enum pipe p;
2198
2199                 for_each_pipe(dev_priv, p) {
2200                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2201                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2202                                 *pipe = p;
2203                                 return true;
2204                         }
2205                 }
2206
2207                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2208                               intel_dp->output_reg);
2209         } else if (IS_CHERRYVIEW(dev)) {
2210                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2211         } else {
2212                 *pipe = PORT_TO_PIPE(tmp);
2213         }
2214
2215         return true;
2216 }
2217
2218 static void intel_dp_get_config(struct intel_encoder *encoder,
2219                                 struct intel_crtc_state *pipe_config)
2220 {
2221         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2222         u32 tmp, flags = 0;
2223         struct drm_device *dev = encoder->base.dev;
2224         struct drm_i915_private *dev_priv = dev->dev_private;
2225         enum port port = dp_to_dig_port(intel_dp)->port;
2226         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2227         int dotclock;
2228
2229         tmp = I915_READ(intel_dp->output_reg);
2230
2231         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2232
2233         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2234                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2235                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2236                         flags |= DRM_MODE_FLAG_PHSYNC;
2237                 else
2238                         flags |= DRM_MODE_FLAG_NHSYNC;
2239
2240                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2241                         flags |= DRM_MODE_FLAG_PVSYNC;
2242                 else
2243                         flags |= DRM_MODE_FLAG_NVSYNC;
2244         } else {
2245                 if (tmp & DP_SYNC_HS_HIGH)
2246                         flags |= DRM_MODE_FLAG_PHSYNC;
2247                 else
2248                         flags |= DRM_MODE_FLAG_NHSYNC;
2249
2250                 if (tmp & DP_SYNC_VS_HIGH)
2251                         flags |= DRM_MODE_FLAG_PVSYNC;
2252                 else
2253                         flags |= DRM_MODE_FLAG_NVSYNC;
2254         }
2255
2256         pipe_config->base.adjusted_mode.flags |= flags;
2257
2258         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2259             tmp & DP_COLOR_RANGE_16_235)
2260                 pipe_config->limited_color_range = true;
2261
2262         pipe_config->has_dp_encoder = true;
2263
2264         intel_dp_get_m_n(crtc, pipe_config);
2265
2266         if (port == PORT_A) {
2267                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2268                         pipe_config->port_clock = 162000;
2269                 else
2270                         pipe_config->port_clock = 270000;
2271         }
2272
2273         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2274                                             &pipe_config->dp_m_n);
2275
2276         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2277                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2278
2279         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2280
2281         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2282             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2283                 /*
2284                  * This is a big fat ugly hack.
2285                  *
2286                  * Some machines in UEFI boot mode provide us a VBT that has 18
2287                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2288                  * unknown we fail to light up. Yet the same BIOS boots up with
2289                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2290                  * max, not what it tells us to use.
2291                  *
2292                  * Note: This will still be broken if the eDP panel is not lit
2293                  * up by the BIOS, and thus we can't get the mode at module
2294                  * load.
2295                  */
2296                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2297                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2298                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2299         }
2300 }
2301
2302 static void intel_disable_dp(struct intel_encoder *encoder)
2303 {
2304         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2305         struct drm_device *dev = encoder->base.dev;
2306         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2307
2308         if (crtc->config->has_audio)
2309                 intel_audio_codec_disable(encoder);
2310
2311         if (HAS_PSR(dev) && !HAS_DDI(dev))
2312                 intel_psr_disable(intel_dp);
2313
2314         /* Make sure the panel is off before trying to change the mode. But also
2315          * ensure that we have vdd while we switch off the panel. */
2316         intel_edp_panel_vdd_on(intel_dp);
2317         intel_edp_backlight_off(intel_dp);
2318         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2319         intel_edp_panel_off(intel_dp);
2320
2321         /* disable the port before the pipe on g4x */
2322         if (INTEL_INFO(dev)->gen < 5)
2323                 intel_dp_link_down(intel_dp);
2324 }
2325
2326 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2327 {
2328         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2329         enum port port = dp_to_dig_port(intel_dp)->port;
2330
2331         intel_dp_link_down(intel_dp);
2332         if (port == PORT_A)
2333                 ironlake_edp_pll_off(intel_dp);
2334 }
2335
2336 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2337 {
2338         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2339
2340         intel_dp_link_down(intel_dp);
2341 }
2342
2343 static void chv_post_disable_dp(struct intel_encoder *encoder)
2344 {
2345         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2346         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2347         struct drm_device *dev = encoder->base.dev;
2348         struct drm_i915_private *dev_priv = dev->dev_private;
2349         struct intel_crtc *intel_crtc =
2350                 to_intel_crtc(encoder->base.crtc);
2351         enum dpio_channel ch = vlv_dport_to_channel(dport);
2352         enum pipe pipe = intel_crtc->pipe;
2353         u32 val;
2354
2355         intel_dp_link_down(intel_dp);
2356
2357         mutex_lock(&dev_priv->sb_lock);
2358
2359         /* Propagate soft reset to data lane reset */
2360         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2361         val |= CHV_PCS_REQ_SOFTRESET_EN;
2362         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2363
2364         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2365         val |= CHV_PCS_REQ_SOFTRESET_EN;
2366         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2367
2368         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2369         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2370         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2371
2372         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2373         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2374         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2375
2376         mutex_unlock(&dev_priv->sb_lock);
2377 }
2378
2379 static void
2380 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2381                          uint32_t *DP,
2382                          uint8_t dp_train_pat)
2383 {
2384         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2385         struct drm_device *dev = intel_dig_port->base.base.dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         enum port port = intel_dig_port->port;
2388
2389         if (HAS_DDI(dev)) {
2390                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2391
2392                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2393                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2394                 else
2395                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2396
2397                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2398                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2399                 case DP_TRAINING_PATTERN_DISABLE:
2400                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2401
2402                         break;
2403                 case DP_TRAINING_PATTERN_1:
2404                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2405                         break;
2406                 case DP_TRAINING_PATTERN_2:
2407                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2408                         break;
2409                 case DP_TRAINING_PATTERN_3:
2410                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2411                         break;
2412                 }
2413                 I915_WRITE(DP_TP_CTL(port), temp);
2414
2415         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2416                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2417                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2418
2419                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2420                 case DP_TRAINING_PATTERN_DISABLE:
2421                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2422                         break;
2423                 case DP_TRAINING_PATTERN_1:
2424                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2425                         break;
2426                 case DP_TRAINING_PATTERN_2:
2427                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2428                         break;
2429                 case DP_TRAINING_PATTERN_3:
2430                         DRM_ERROR("DP training pattern 3 not supported\n");
2431                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2432                         break;
2433                 }
2434
2435         } else {
2436                 if (IS_CHERRYVIEW(dev))
2437                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2438                 else
2439                         *DP &= ~DP_LINK_TRAIN_MASK;
2440
2441                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2442                 case DP_TRAINING_PATTERN_DISABLE:
2443                         *DP |= DP_LINK_TRAIN_OFF;
2444                         break;
2445                 case DP_TRAINING_PATTERN_1:
2446                         *DP |= DP_LINK_TRAIN_PAT_1;
2447                         break;
2448                 case DP_TRAINING_PATTERN_2:
2449                         *DP |= DP_LINK_TRAIN_PAT_2;
2450                         break;
2451                 case DP_TRAINING_PATTERN_3:
2452                         if (IS_CHERRYVIEW(dev)) {
2453                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2454                         } else {
2455                                 DRM_ERROR("DP training pattern 3 not supported\n");
2456                                 *DP |= DP_LINK_TRAIN_PAT_2;
2457                         }
2458                         break;
2459                 }
2460         }
2461 }
2462
2463 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2464 {
2465         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2466         struct drm_i915_private *dev_priv = dev->dev_private;
2467
2468         /* enable with pattern 1 (as per spec) */
2469         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2470                                  DP_TRAINING_PATTERN_1);
2471
2472         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2473         POSTING_READ(intel_dp->output_reg);
2474
2475         /*
2476          * Magic for VLV/CHV. We _must_ first set up the register
2477          * without actually enabling the port, and then do another
2478          * write to enable the port. Otherwise link training will
2479          * fail when the power sequencer is freshly used for this port.
2480          */
2481         intel_dp->DP |= DP_PORT_EN;
2482
2483         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2484         POSTING_READ(intel_dp->output_reg);
2485 }
2486
2487 static void intel_enable_dp(struct intel_encoder *encoder)
2488 {
2489         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490         struct drm_device *dev = encoder->base.dev;
2491         struct drm_i915_private *dev_priv = dev->dev_private;
2492         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2493         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2494         unsigned int lane_mask = 0x0;
2495
2496         if (WARN_ON(dp_reg & DP_PORT_EN))
2497                 return;
2498
2499         pps_lock(intel_dp);
2500
2501         if (IS_VALLEYVIEW(dev))
2502                 vlv_init_panel_power_sequencer(intel_dp);
2503
2504         intel_dp_enable_port(intel_dp);
2505
2506         edp_panel_vdd_on(intel_dp);
2507         edp_panel_on(intel_dp);
2508         edp_panel_vdd_off(intel_dp, true);
2509
2510         pps_unlock(intel_dp);
2511
2512         if (IS_VALLEYVIEW(dev))
2513                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2514                                     lane_mask);
2515
2516         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2517         intel_dp_start_link_train(intel_dp);
2518         intel_dp_complete_link_train(intel_dp);
2519         intel_dp_stop_link_train(intel_dp);
2520
2521         if (crtc->config->has_audio) {
2522                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2523                                  pipe_name(crtc->pipe));
2524                 intel_audio_codec_enable(encoder);
2525         }
2526 }
2527
2528 static void g4x_enable_dp(struct intel_encoder *encoder)
2529 {
2530         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2531
2532         intel_enable_dp(encoder);
2533         intel_edp_backlight_on(intel_dp);
2534 }
2535
2536 static void vlv_enable_dp(struct intel_encoder *encoder)
2537 {
2538         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2539
2540         intel_edp_backlight_on(intel_dp);
2541         intel_psr_enable(intel_dp);
2542 }
2543
2544 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2545 {
2546         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2547         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2548
2549         intel_dp_prepare(encoder);
2550
2551         /* Only ilk+ has port A */
2552         if (dport->port == PORT_A) {
2553                 ironlake_set_pll_cpu_edp(intel_dp);
2554                 ironlake_edp_pll_on(intel_dp);
2555         }
2556 }
2557
2558 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2559 {
2560         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2561         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2562         enum pipe pipe = intel_dp->pps_pipe;
2563         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2564
2565         edp_panel_vdd_off_sync(intel_dp);
2566
2567         /*
2568          * VLV seems to get confused when multiple power seqeuencers
2569          * have the same port selected (even if only one has power/vdd
2570          * enabled). The failure manifests as vlv_wait_port_ready() failing
2571          * CHV on the other hand doesn't seem to mind having the same port
2572          * selected in multiple power seqeuencers, but let's clear the
2573          * port select always when logically disconnecting a power sequencer
2574          * from a port.
2575          */
2576         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2577                       pipe_name(pipe), port_name(intel_dig_port->port));
2578         I915_WRITE(pp_on_reg, 0);
2579         POSTING_READ(pp_on_reg);
2580
2581         intel_dp->pps_pipe = INVALID_PIPE;
2582 }
2583
2584 static void vlv_steal_power_sequencer(struct drm_device *dev,
2585                                       enum pipe pipe)
2586 {
2587         struct drm_i915_private *dev_priv = dev->dev_private;
2588         struct intel_encoder *encoder;
2589
2590         lockdep_assert_held(&dev_priv->pps_mutex);
2591
2592         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2593                 return;
2594
2595         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2596                             base.head) {
2597                 struct intel_dp *intel_dp;
2598                 enum port port;
2599
2600                 if (encoder->type != INTEL_OUTPUT_EDP)
2601                         continue;
2602
2603                 intel_dp = enc_to_intel_dp(&encoder->base);
2604                 port = dp_to_dig_port(intel_dp)->port;
2605
2606                 if (intel_dp->pps_pipe != pipe)
2607                         continue;
2608
2609                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2610                               pipe_name(pipe), port_name(port));
2611
2612                 WARN(encoder->connectors_active,
2613                      "stealing pipe %c power sequencer from active eDP port %c\n",
2614                      pipe_name(pipe), port_name(port));
2615
2616                 /* make sure vdd is off before we steal it */
2617                 vlv_detach_power_sequencer(intel_dp);
2618         }
2619 }
2620
2621 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2622 {
2623         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2624         struct intel_encoder *encoder = &intel_dig_port->base;
2625         struct drm_device *dev = encoder->base.dev;
2626         struct drm_i915_private *dev_priv = dev->dev_private;
2627         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2628
2629         lockdep_assert_held(&dev_priv->pps_mutex);
2630
2631         if (!is_edp(intel_dp))
2632                 return;
2633
2634         if (intel_dp->pps_pipe == crtc->pipe)
2635                 return;
2636
2637         /*
2638          * If another power sequencer was being used on this
2639          * port previously make sure to turn off vdd there while
2640          * we still have control of it.
2641          */
2642         if (intel_dp->pps_pipe != INVALID_PIPE)
2643                 vlv_detach_power_sequencer(intel_dp);
2644
2645         /*
2646          * We may be stealing the power
2647          * sequencer from another port.
2648          */
2649         vlv_steal_power_sequencer(dev, crtc->pipe);
2650
2651         /* now it's all ours */
2652         intel_dp->pps_pipe = crtc->pipe;
2653
2654         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2655                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2656
2657         /* init power sequencer on this pipe and port */
2658         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2659         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2660 }
2661
2662 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2663 {
2664         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2665         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2666         struct drm_device *dev = encoder->base.dev;
2667         struct drm_i915_private *dev_priv = dev->dev_private;
2668         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2669         enum dpio_channel port = vlv_dport_to_channel(dport);
2670         int pipe = intel_crtc->pipe;
2671         u32 val;
2672
2673         mutex_lock(&dev_priv->sb_lock);
2674
2675         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2676         val = 0;
2677         if (pipe)
2678                 val |= (1<<21);
2679         else
2680                 val &= ~(1<<21);
2681         val |= 0x001000c4;
2682         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2683         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2684         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2685
2686         mutex_unlock(&dev_priv->sb_lock);
2687
2688         intel_enable_dp(encoder);
2689 }
2690
2691 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2692 {
2693         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2694         struct drm_device *dev = encoder->base.dev;
2695         struct drm_i915_private *dev_priv = dev->dev_private;
2696         struct intel_crtc *intel_crtc =
2697                 to_intel_crtc(encoder->base.crtc);
2698         enum dpio_channel port = vlv_dport_to_channel(dport);
2699         int pipe = intel_crtc->pipe;
2700
2701         intel_dp_prepare(encoder);
2702
2703         /* Program Tx lane resets to default */
2704         mutex_lock(&dev_priv->sb_lock);
2705         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2706                          DPIO_PCS_TX_LANE2_RESET |
2707                          DPIO_PCS_TX_LANE1_RESET);
2708         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2709                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2710                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2711                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2712                                  DPIO_PCS_CLK_SOFT_RESET);
2713
2714         /* Fix up inter-pair skew failure */
2715         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2716         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2717         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2718         mutex_unlock(&dev_priv->sb_lock);
2719 }
2720
2721 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2722 {
2723         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2724         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2725         struct drm_device *dev = encoder->base.dev;
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727         struct intel_crtc *intel_crtc =
2728                 to_intel_crtc(encoder->base.crtc);
2729         enum dpio_channel ch = vlv_dport_to_channel(dport);
2730         int pipe = intel_crtc->pipe;
2731         int data, i, stagger;
2732         u32 val;
2733
2734         mutex_lock(&dev_priv->sb_lock);
2735
2736         /* allow hardware to manage TX FIFO reset source */
2737         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2738         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2739         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2740
2741         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2742         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2743         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2744
2745         /* Deassert soft data lane reset*/
2746         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2747         val |= CHV_PCS_REQ_SOFTRESET_EN;
2748         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2749
2750         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2751         val |= CHV_PCS_REQ_SOFTRESET_EN;
2752         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2753
2754         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2755         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2756         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2757
2758         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2759         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2760         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2761
2762         /* Program Tx lane latency optimal setting*/
2763         for (i = 0; i < 4; i++) {
2764                 /* Set the upar bit */
2765                 data = (i == 1) ? 0x0 : 0x1;
2766                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2767                                 data << DPIO_UPAR_SHIFT);
2768         }
2769
2770         /* Data lane stagger programming */
2771         if (intel_crtc->config->port_clock > 270000)
2772                 stagger = 0x18;
2773         else if (intel_crtc->config->port_clock > 135000)
2774                 stagger = 0xd;
2775         else if (intel_crtc->config->port_clock > 67500)
2776                 stagger = 0x7;
2777         else if (intel_crtc->config->port_clock > 33750)
2778                 stagger = 0x4;
2779         else
2780                 stagger = 0x2;
2781
2782         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2783         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2784         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2785
2786         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2787         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2788         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2789
2790         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2791                        DPIO_LANESTAGGER_STRAP(stagger) |
2792                        DPIO_LANESTAGGER_STRAP_OVRD |
2793                        DPIO_TX1_STAGGER_MASK(0x1f) |
2794                        DPIO_TX1_STAGGER_MULT(6) |
2795                        DPIO_TX2_STAGGER_MULT(0));
2796
2797         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2798                        DPIO_LANESTAGGER_STRAP(stagger) |
2799                        DPIO_LANESTAGGER_STRAP_OVRD |
2800                        DPIO_TX1_STAGGER_MASK(0x1f) |
2801                        DPIO_TX1_STAGGER_MULT(7) |
2802                        DPIO_TX2_STAGGER_MULT(5));
2803
2804         mutex_unlock(&dev_priv->sb_lock);
2805
2806         intel_enable_dp(encoder);
2807 }
2808
2809 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2810 {
2811         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2812         struct drm_device *dev = encoder->base.dev;
2813         struct drm_i915_private *dev_priv = dev->dev_private;
2814         struct intel_crtc *intel_crtc =
2815                 to_intel_crtc(encoder->base.crtc);
2816         enum dpio_channel ch = vlv_dport_to_channel(dport);
2817         enum pipe pipe = intel_crtc->pipe;
2818         u32 val;
2819
2820         intel_dp_prepare(encoder);
2821
2822         mutex_lock(&dev_priv->sb_lock);
2823
2824         /* program left/right clock distribution */
2825         if (pipe != PIPE_B) {
2826                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2827                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2828                 if (ch == DPIO_CH0)
2829                         val |= CHV_BUFLEFTENA1_FORCE;
2830                 if (ch == DPIO_CH1)
2831                         val |= CHV_BUFRIGHTENA1_FORCE;
2832                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2833         } else {
2834                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2835                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2836                 if (ch == DPIO_CH0)
2837                         val |= CHV_BUFLEFTENA2_FORCE;
2838                 if (ch == DPIO_CH1)
2839                         val |= CHV_BUFRIGHTENA2_FORCE;
2840                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2841         }
2842
2843         /* program clock channel usage */
2844         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2845         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2846         if (pipe != PIPE_B)
2847                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2848         else
2849                 val |= CHV_PCS_USEDCLKCHANNEL;
2850         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2851
2852         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2853         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2854         if (pipe != PIPE_B)
2855                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2856         else
2857                 val |= CHV_PCS_USEDCLKCHANNEL;
2858         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2859
2860         /*
2861          * This a a bit weird since generally CL
2862          * matches the pipe, but here we need to
2863          * pick the CL based on the port.
2864          */
2865         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2866         if (pipe != PIPE_B)
2867                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2868         else
2869                 val |= CHV_CMN_USEDCLKCHANNEL;
2870         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2871
2872         mutex_unlock(&dev_priv->sb_lock);
2873 }
2874
2875 /*
2876  * Native read with retry for link status and receiver capability reads for
2877  * cases where the sink may still be asleep.
2878  *
2879  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2880  * supposed to retry 3 times per the spec.
2881  */
2882 static ssize_t
2883 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2884                         void *buffer, size_t size)
2885 {
2886         ssize_t ret;
2887         int i;
2888
2889         /*
2890          * Sometime we just get the same incorrect byte repeated
2891          * over the entire buffer. Doing just one throw away read
2892          * initially seems to "solve" it.
2893          */
2894         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2895
2896         for (i = 0; i < 3; i++) {
2897                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2898                 if (ret == size)
2899                         return ret;
2900                 msleep(1);
2901         }
2902
2903         return ret;
2904 }
2905
2906 /*
2907  * Fetch AUX CH registers 0x202 - 0x207 which contain
2908  * link status information
2909  */
2910 static bool
2911 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2912 {
2913         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2914                                        DP_LANE0_1_STATUS,
2915                                        link_status,
2916                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2917 }
2918
2919 /* These are source-specific values. */
2920 static uint8_t
2921 intel_dp_voltage_max(struct intel_dp *intel_dp)
2922 {
2923         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925         enum port port = dp_to_dig_port(intel_dp)->port;
2926
2927         if (IS_BROXTON(dev))
2928                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2929         else if (INTEL_INFO(dev)->gen >= 9) {
2930                 if (dev_priv->edp_low_vswing && port == PORT_A)
2931                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2932                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2933         } else if (IS_VALLEYVIEW(dev))
2934                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2935         else if (IS_GEN7(dev) && port == PORT_A)
2936                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2937         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2938                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2939         else
2940                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2941 }
2942
2943 static uint8_t
2944 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2945 {
2946         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2947         enum port port = dp_to_dig_port(intel_dp)->port;
2948
2949         if (INTEL_INFO(dev)->gen >= 9) {
2950                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2951                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2952                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2953                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2954                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2955                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2956                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2957                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2958                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2959                 default:
2960                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2961                 }
2962         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2963                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2964                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2965                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2966                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2967                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2968                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2969                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2970                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2971                 default:
2972                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2973                 }
2974         } else if (IS_VALLEYVIEW(dev)) {
2975                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2976                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2977                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2978                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2979                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2980                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2981                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2982                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2983                 default:
2984                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2985                 }
2986         } else if (IS_GEN7(dev) && port == PORT_A) {
2987                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2988                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2989                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2990                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2991                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2992                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2993                 default:
2994                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2995                 }
2996         } else {
2997                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2998                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2999                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3000                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3001                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3002                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3003                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3004                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3005                 default:
3006                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3007                 }
3008         }
3009 }
3010
3011 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3012 {
3013         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3014         struct drm_i915_private *dev_priv = dev->dev_private;
3015         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3016         struct intel_crtc *intel_crtc =
3017                 to_intel_crtc(dport->base.base.crtc);
3018         unsigned long demph_reg_value, preemph_reg_value,
3019                 uniqtranscale_reg_value;
3020         uint8_t train_set = intel_dp->train_set[0];
3021         enum dpio_channel port = vlv_dport_to_channel(dport);
3022         int pipe = intel_crtc->pipe;
3023
3024         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3025         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3026                 preemph_reg_value = 0x0004000;
3027                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3028                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3029                         demph_reg_value = 0x2B405555;
3030                         uniqtranscale_reg_value = 0x552AB83A;
3031                         break;
3032                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3033                         demph_reg_value = 0x2B404040;
3034                         uniqtranscale_reg_value = 0x5548B83A;
3035                         break;
3036                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3037                         demph_reg_value = 0x2B245555;
3038                         uniqtranscale_reg_value = 0x5560B83A;
3039                         break;
3040                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3041                         demph_reg_value = 0x2B405555;
3042                         uniqtranscale_reg_value = 0x5598DA3A;
3043                         break;
3044                 default:
3045                         return 0;
3046                 }
3047                 break;
3048         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3049                 preemph_reg_value = 0x0002000;
3050                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3051                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3052                         demph_reg_value = 0x2B404040;
3053                         uniqtranscale_reg_value = 0x5552B83A;
3054                         break;
3055                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056                         demph_reg_value = 0x2B404848;
3057                         uniqtranscale_reg_value = 0x5580B83A;
3058                         break;
3059                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3060                         demph_reg_value = 0x2B404040;
3061                         uniqtranscale_reg_value = 0x55ADDA3A;
3062                         break;
3063                 default:
3064                         return 0;
3065                 }
3066                 break;
3067         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3068                 preemph_reg_value = 0x0000000;
3069                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3070                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3071                         demph_reg_value = 0x2B305555;
3072                         uniqtranscale_reg_value = 0x5570B83A;
3073                         break;
3074                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3075                         demph_reg_value = 0x2B2B4040;
3076                         uniqtranscale_reg_value = 0x55ADDA3A;
3077                         break;
3078                 default:
3079                         return 0;
3080                 }
3081                 break;
3082         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3083                 preemph_reg_value = 0x0006000;
3084                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3085                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3086                         demph_reg_value = 0x1B405555;
3087                         uniqtranscale_reg_value = 0x55ADDA3A;
3088                         break;
3089                 default:
3090                         return 0;
3091                 }
3092                 break;
3093         default:
3094                 return 0;
3095         }
3096
3097         mutex_lock(&dev_priv->sb_lock);
3098         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3099         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3100         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3101                          uniqtranscale_reg_value);
3102         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3103         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3104         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3105         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3106         mutex_unlock(&dev_priv->sb_lock);
3107
3108         return 0;
3109 }
3110
3111 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3112 {
3113         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3116         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3117         u32 deemph_reg_value, margin_reg_value, val;
3118         uint8_t train_set = intel_dp->train_set[0];
3119         enum dpio_channel ch = vlv_dport_to_channel(dport);
3120         enum pipe pipe = intel_crtc->pipe;
3121         int i;
3122
3123         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3124         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3125                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3126                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3127                         deemph_reg_value = 128;
3128                         margin_reg_value = 52;
3129                         break;
3130                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3131                         deemph_reg_value = 128;
3132                         margin_reg_value = 77;
3133                         break;
3134                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3135                         deemph_reg_value = 128;
3136                         margin_reg_value = 102;
3137                         break;
3138                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3139                         deemph_reg_value = 128;
3140                         margin_reg_value = 154;
3141                         /* FIXME extra to set for 1200 */
3142                         break;
3143                 default:
3144                         return 0;
3145                 }
3146                 break;
3147         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3148                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3149                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3150                         deemph_reg_value = 85;
3151                         margin_reg_value = 78;
3152                         break;
3153                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3154                         deemph_reg_value = 85;
3155                         margin_reg_value = 116;
3156                         break;
3157                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3158                         deemph_reg_value = 85;
3159                         margin_reg_value = 154;
3160                         break;
3161                 default:
3162                         return 0;
3163                 }
3164                 break;
3165         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3166                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3167                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3168                         deemph_reg_value = 64;
3169                         margin_reg_value = 104;
3170                         break;
3171                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3172                         deemph_reg_value = 64;
3173                         margin_reg_value = 154;
3174                         break;
3175                 default:
3176                         return 0;
3177                 }
3178                 break;
3179         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3180                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3181                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3182                         deemph_reg_value = 43;
3183                         margin_reg_value = 154;
3184                         break;
3185                 default:
3186                         return 0;
3187                 }
3188                 break;
3189         default:
3190                 return 0;
3191         }
3192
3193         mutex_lock(&dev_priv->sb_lock);
3194
3195         /* Clear calc init */
3196         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3197         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3198         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3199         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3200         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3201
3202         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3203         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3204         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3205         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3206         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3207
3208         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3209         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3210         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3211         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3212
3213         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3214         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3215         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3216         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3217
3218         /* Program swing deemph */
3219         for (i = 0; i < 4; i++) {
3220                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3221                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3222                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3223                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3224         }
3225
3226         /* Program swing margin */
3227         for (i = 0; i < 4; i++) {
3228                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3229                 val &= ~DPIO_SWING_MARGIN000_MASK;
3230                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3231                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3232         }
3233
3234         /* Disable unique transition scale */
3235         for (i = 0; i < 4; i++) {
3236                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3237                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3238                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3239         }
3240
3241         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3242                         == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3243                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3244                         == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3245
3246                 /*
3247                  * The document said it needs to set bit 27 for ch0 and bit 26
3248                  * for ch1. Might be a typo in the doc.
3249                  * For now, for this unique transition scale selection, set bit
3250                  * 27 for ch0 and ch1.
3251                  */
3252                 for (i = 0; i < 4; i++) {
3253                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3254                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3255                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3256                 }
3257
3258                 for (i = 0; i < 4; i++) {
3259                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3260                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3261                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3262                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3263                 }
3264         }
3265
3266         /* Start swing calculation */
3267         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3268         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3269         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3270
3271         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3272         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3273         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3274
3275         /* LRC Bypass */
3276         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3277         val |= DPIO_LRC_BYPASS;
3278         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3279
3280         mutex_unlock(&dev_priv->sb_lock);
3281
3282         return 0;
3283 }
3284
3285 static void
3286 intel_get_adjust_train(struct intel_dp *intel_dp,
3287                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
3288 {
3289         uint8_t v = 0;
3290         uint8_t p = 0;
3291         int lane;
3292         uint8_t voltage_max;
3293         uint8_t preemph_max;
3294
3295         for (lane = 0; lane < intel_dp->lane_count; lane++) {
3296                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3297                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3298
3299                 if (this_v > v)
3300                         v = this_v;
3301                 if (this_p > p)
3302                         p = this_p;
3303         }
3304
3305         voltage_max = intel_dp_voltage_max(intel_dp);
3306         if (v >= voltage_max)
3307                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3308
3309         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3310         if (p >= preemph_max)
3311                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3312
3313         for (lane = 0; lane < 4; lane++)
3314                 intel_dp->train_set[lane] = v | p;
3315 }
3316
3317 static uint32_t
3318 gen4_signal_levels(uint8_t train_set)
3319 {
3320         uint32_t        signal_levels = 0;
3321
3322         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3323         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3324         default:
3325                 signal_levels |= DP_VOLTAGE_0_4;
3326                 break;
3327         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3328                 signal_levels |= DP_VOLTAGE_0_6;
3329                 break;
3330         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3331                 signal_levels |= DP_VOLTAGE_0_8;
3332                 break;
3333         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3334                 signal_levels |= DP_VOLTAGE_1_2;
3335                 break;
3336         }
3337         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3338         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3339         default:
3340                 signal_levels |= DP_PRE_EMPHASIS_0;
3341                 break;
3342         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3343                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3344                 break;
3345         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3346                 signal_levels |= DP_PRE_EMPHASIS_6;
3347                 break;
3348         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3349                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3350                 break;
3351         }
3352         return signal_levels;
3353 }
3354
3355 /* Gen6's DP voltage swing and pre-emphasis control */
3356 static uint32_t
3357 gen6_edp_signal_levels(uint8_t train_set)
3358 {
3359         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3360                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3361         switch (signal_levels) {
3362         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3363         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3364                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3365         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3366                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3367         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3368         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3369                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3370         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3371         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3372                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3373         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3374         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3375                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3376         default:
3377                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3378                               "0x%x\n", signal_levels);
3379                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3380         }
3381 }
3382
3383 /* Gen7's DP voltage swing and pre-emphasis control */
3384 static uint32_t
3385 gen7_edp_signal_levels(uint8_t train_set)
3386 {
3387         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3388                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3389         switch (signal_levels) {
3390         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3391                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3392         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3393                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3394         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3395                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3396
3397         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3398                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3399         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3400                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3401
3402         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3403                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3404         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3405                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3406
3407         default:
3408                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3409                               "0x%x\n", signal_levels);
3410                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3411         }
3412 }
3413
3414 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3415 static uint32_t
3416 hsw_signal_levels(uint8_t train_set)
3417 {
3418         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3419                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3420         switch (signal_levels) {
3421         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3422                 return DDI_BUF_TRANS_SELECT(0);
3423         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3424                 return DDI_BUF_TRANS_SELECT(1);
3425         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3426                 return DDI_BUF_TRANS_SELECT(2);
3427         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3428                 return DDI_BUF_TRANS_SELECT(3);
3429
3430         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3431                 return DDI_BUF_TRANS_SELECT(4);
3432         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3433                 return DDI_BUF_TRANS_SELECT(5);
3434         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3435                 return DDI_BUF_TRANS_SELECT(6);
3436
3437         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3438                 return DDI_BUF_TRANS_SELECT(7);
3439         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3440                 return DDI_BUF_TRANS_SELECT(8);
3441
3442         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3443                 return DDI_BUF_TRANS_SELECT(9);
3444         default:
3445                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3446                               "0x%x\n", signal_levels);
3447                 return DDI_BUF_TRANS_SELECT(0);
3448         }
3449 }
3450
3451 static void bxt_signal_levels(struct intel_dp *intel_dp)
3452 {
3453         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3454         enum port port = dport->port;
3455         struct drm_device *dev = dport->base.base.dev;
3456         struct intel_encoder *encoder = &dport->base;
3457         uint8_t train_set = intel_dp->train_set[0];
3458         uint32_t level = 0;
3459
3460         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3461                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3462         switch (signal_levels) {
3463         default:
3464                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3465         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3466                 level = 0;
3467                 break;
3468         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3469                 level = 1;
3470                 break;
3471         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3472                 level = 2;
3473                 break;
3474         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3475                 level = 3;
3476                 break;
3477         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3478                 level = 4;
3479                 break;
3480         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3481                 level = 5;
3482                 break;
3483         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3484                 level = 6;
3485                 break;
3486         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3487                 level = 7;
3488                 break;
3489         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3490                 level = 8;
3491                 break;
3492         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3493                 level = 9;
3494                 break;
3495         }
3496
3497         bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3498 }
3499
3500 /* Properly updates "DP" with the correct signal levels. */
3501 static void
3502 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3503 {
3504         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3505         enum port port = intel_dig_port->port;
3506         struct drm_device *dev = intel_dig_port->base.base.dev;
3507         uint32_t signal_levels, mask;
3508         uint8_t train_set = intel_dp->train_set[0];
3509
3510         if (IS_BROXTON(dev)) {
3511                 signal_levels = 0;
3512                 bxt_signal_levels(intel_dp);
3513                 mask = 0;
3514         } else if (HAS_DDI(dev)) {
3515                 signal_levels = hsw_signal_levels(train_set);
3516                 mask = DDI_BUF_EMP_MASK;
3517         } else if (IS_CHERRYVIEW(dev)) {
3518                 signal_levels = chv_signal_levels(intel_dp);
3519                 mask = 0;
3520         } else if (IS_VALLEYVIEW(dev)) {
3521                 signal_levels = vlv_signal_levels(intel_dp);
3522                 mask = 0;
3523         } else if (IS_GEN7(dev) && port == PORT_A) {
3524                 signal_levels = gen7_edp_signal_levels(train_set);
3525                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3526         } else if (IS_GEN6(dev) && port == PORT_A) {
3527                 signal_levels = gen6_edp_signal_levels(train_set);
3528                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3529         } else {
3530                 signal_levels = gen4_signal_levels(train_set);
3531                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3532         }
3533
3534         if (mask)
3535                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3536
3537         DRM_DEBUG_KMS("Using vswing level %d\n",
3538                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3539         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3540                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3541                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3542
3543         *DP = (*DP & ~mask) | signal_levels;
3544 }
3545
3546 static bool
3547 intel_dp_set_link_train(struct intel_dp *intel_dp,
3548                         uint32_t *DP,
3549                         uint8_t dp_train_pat)
3550 {
3551         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3552         struct drm_device *dev = intel_dig_port->base.base.dev;
3553         struct drm_i915_private *dev_priv = dev->dev_private;
3554         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3555         int ret, len;
3556
3557         _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3558
3559         I915_WRITE(intel_dp->output_reg, *DP);
3560         POSTING_READ(intel_dp->output_reg);
3561
3562         buf[0] = dp_train_pat;
3563         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3564             DP_TRAINING_PATTERN_DISABLE) {
3565                 /* don't write DP_TRAINING_LANEx_SET on disable */
3566                 len = 1;
3567         } else {
3568                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3569                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3570                 len = intel_dp->lane_count + 1;
3571         }
3572
3573         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3574                                 buf, len);
3575
3576         return ret == len;
3577 }
3578
3579 static bool
3580 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3581                         uint8_t dp_train_pat)
3582 {
3583         if (!intel_dp->train_set_valid)
3584                 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3585         intel_dp_set_signal_levels(intel_dp, DP);
3586         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3587 }
3588
3589 static bool
3590 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3591                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3592 {
3593         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3594         struct drm_device *dev = intel_dig_port->base.base.dev;
3595         struct drm_i915_private *dev_priv = dev->dev_private;
3596         int ret;
3597
3598         intel_get_adjust_train(intel_dp, link_status);
3599         intel_dp_set_signal_levels(intel_dp, DP);
3600
3601         I915_WRITE(intel_dp->output_reg, *DP);
3602         POSTING_READ(intel_dp->output_reg);
3603
3604         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3605                                 intel_dp->train_set, intel_dp->lane_count);
3606
3607         return ret == intel_dp->lane_count;
3608 }
3609
3610 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3611 {
3612         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3613         struct drm_device *dev = intel_dig_port->base.base.dev;
3614         struct drm_i915_private *dev_priv = dev->dev_private;
3615         enum port port = intel_dig_port->port;
3616         uint32_t val;
3617
3618         if (!HAS_DDI(dev))
3619                 return;
3620
3621         val = I915_READ(DP_TP_CTL(port));
3622         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3623         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3624         I915_WRITE(DP_TP_CTL(port), val);
3625
3626         /*
3627          * On PORT_A we can have only eDP in SST mode. There the only reason
3628          * we need to set idle transmission mode is to work around a HW issue
3629          * where we enable the pipe while not in idle link-training mode.
3630          * In this case there is requirement to wait for a minimum number of
3631          * idle patterns to be sent.
3632          */
3633         if (port == PORT_A)
3634                 return;
3635
3636         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3637                      1))
3638                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3639 }
3640
3641 /* Enable corresponding port and start training pattern 1 */
3642 void
3643 intel_dp_start_link_train(struct intel_dp *intel_dp)
3644 {
3645         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3646         struct drm_device *dev = encoder->dev;
3647         int i;
3648         uint8_t voltage;
3649         int voltage_tries, loop_tries;
3650         uint32_t DP = intel_dp->DP;
3651         uint8_t link_config[2];
3652
3653         if (HAS_DDI(dev))
3654                 intel_ddi_prepare_link_retrain(encoder);
3655
3656         /* Write the link configuration data */
3657         link_config[0] = intel_dp->link_bw;
3658         link_config[1] = intel_dp->lane_count;
3659         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3660                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3661         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3662         if (intel_dp->num_sink_rates)
3663                 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3664                                 &intel_dp->rate_select, 1);
3665
3666         link_config[0] = 0;
3667         link_config[1] = DP_SET_ANSI_8B10B;
3668         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3669
3670         DP |= DP_PORT_EN;
3671
3672         /* clock recovery */
3673         if (!intel_dp_reset_link_train(intel_dp, &DP,
3674                                        DP_TRAINING_PATTERN_1 |
3675                                        DP_LINK_SCRAMBLING_DISABLE)) {
3676                 DRM_ERROR("failed to enable link training\n");
3677                 return;
3678         }
3679
3680         voltage = 0xff;
3681         voltage_tries = 0;
3682         loop_tries = 0;
3683         for (;;) {
3684                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3685
3686                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3687                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3688                         DRM_ERROR("failed to get link status\n");
3689                         break;
3690                 }
3691
3692                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3693                         DRM_DEBUG_KMS("clock recovery OK\n");
3694                         break;
3695                 }
3696
3697                 /*
3698                  * if we used previously trained voltage and pre-emphasis values
3699                  * and we don't get clock recovery, reset link training values
3700                  */
3701                 if (intel_dp->train_set_valid) {
3702                         DRM_DEBUG_KMS("clock recovery not ok, reset");
3703                         /* clear the flag as we are not reusing train set */
3704                         intel_dp->train_set_valid = false;
3705                         if (!intel_dp_reset_link_train(intel_dp, &DP,
3706                                                        DP_TRAINING_PATTERN_1 |
3707                                                        DP_LINK_SCRAMBLING_DISABLE)) {
3708                                 DRM_ERROR("failed to enable link training\n");
3709                                 return;
3710                         }
3711                         continue;
3712                 }
3713
3714                 /* Check to see if we've tried the max voltage */
3715                 for (i = 0; i < intel_dp->lane_count; i++)
3716                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3717                                 break;
3718                 if (i == intel_dp->lane_count) {
3719                         ++loop_tries;
3720                         if (loop_tries == 5) {
3721                                 DRM_ERROR("too many full retries, give up\n");
3722                                 break;
3723                         }
3724                         intel_dp_reset_link_train(intel_dp, &DP,
3725                                                   DP_TRAINING_PATTERN_1 |
3726                                                   DP_LINK_SCRAMBLING_DISABLE);
3727                         voltage_tries = 0;
3728                         continue;
3729                 }
3730
3731                 /* Check to see if we've tried the same voltage 5 times */
3732                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3733                         ++voltage_tries;
3734                         if (voltage_tries == 5) {
3735                                 DRM_ERROR("too many voltage retries, give up\n");
3736                                 break;
3737                         }
3738                 } else
3739                         voltage_tries = 0;
3740                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3741
3742                 /* Update training set as requested by target */
3743                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3744                         DRM_ERROR("failed to update link training\n");
3745                         break;
3746                 }
3747         }
3748
3749         intel_dp->DP = DP;
3750 }
3751
3752 void
3753 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3754 {
3755         bool channel_eq = false;
3756         int tries, cr_tries;
3757         uint32_t DP = intel_dp->DP;
3758         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3759
3760         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3761         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3762                 training_pattern = DP_TRAINING_PATTERN_3;
3763
3764         /* channel equalization */
3765         if (!intel_dp_set_link_train(intel_dp, &DP,
3766                                      training_pattern |
3767                                      DP_LINK_SCRAMBLING_DISABLE)) {
3768                 DRM_ERROR("failed to start channel equalization\n");
3769                 return;
3770         }
3771
3772         tries = 0;
3773         cr_tries = 0;
3774         channel_eq = false;
3775         for (;;) {
3776                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3777
3778                 if (cr_tries > 5) {
3779                         DRM_ERROR("failed to train DP, aborting\n");
3780                         break;
3781                 }
3782
3783                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3784                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3785                         DRM_ERROR("failed to get link status\n");
3786                         break;
3787                 }
3788
3789                 /* Make sure clock is still ok */
3790                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3791                         intel_dp->train_set_valid = false;
3792                         intel_dp_start_link_train(intel_dp);
3793                         intel_dp_set_link_train(intel_dp, &DP,
3794                                                 training_pattern |
3795                                                 DP_LINK_SCRAMBLING_DISABLE);
3796                         cr_tries++;
3797                         continue;
3798                 }
3799
3800                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3801                         channel_eq = true;
3802                         break;
3803                 }
3804
3805                 /* Try 5 times, then try clock recovery if that fails */
3806                 if (tries > 5) {
3807                         intel_dp->train_set_valid = false;
3808                         intel_dp_start_link_train(intel_dp);
3809                         intel_dp_set_link_train(intel_dp, &DP,
3810                                                 training_pattern |
3811                                                 DP_LINK_SCRAMBLING_DISABLE);
3812                         tries = 0;
3813                         cr_tries++;
3814                         continue;
3815                 }
3816
3817                 /* Update training set as requested by target */
3818                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3819                         DRM_ERROR("failed to update link training\n");
3820                         break;
3821                 }
3822                 ++tries;
3823         }
3824
3825         intel_dp_set_idle_link_train(intel_dp);
3826
3827         intel_dp->DP = DP;
3828
3829         if (channel_eq) {
3830                 intel_dp->train_set_valid = true;
3831                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3832         }
3833 }
3834
3835 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3836 {
3837         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3838                                 DP_TRAINING_PATTERN_DISABLE);
3839 }
3840
3841 static void
3842 intel_dp_link_down(struct intel_dp *intel_dp)
3843 {
3844         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3845         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3846         enum port port = intel_dig_port->port;
3847         struct drm_device *dev = intel_dig_port->base.base.dev;
3848         struct drm_i915_private *dev_priv = dev->dev_private;
3849         uint32_t DP = intel_dp->DP;
3850
3851         if (WARN_ON(HAS_DDI(dev)))
3852                 return;
3853
3854         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3855                 return;
3856
3857         DRM_DEBUG_KMS("\n");
3858
3859         if ((IS_GEN7(dev) && port == PORT_A) ||
3860             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3861                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3862                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3863         } else {
3864                 if (IS_CHERRYVIEW(dev))
3865                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3866                 else
3867                         DP &= ~DP_LINK_TRAIN_MASK;
3868                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3869         }
3870         I915_WRITE(intel_dp->output_reg, DP);
3871         POSTING_READ(intel_dp->output_reg);
3872
3873         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3874         I915_WRITE(intel_dp->output_reg, DP);
3875         POSTING_READ(intel_dp->output_reg);
3876
3877         /*
3878          * HW workaround for IBX, we need to move the port
3879          * to transcoder A after disabling it to allow the
3880          * matching HDMI port to be enabled on transcoder A.
3881          */
3882         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3883                 /* always enable with pattern 1 (as per spec) */
3884                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3885                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3886                 I915_WRITE(intel_dp->output_reg, DP);
3887                 POSTING_READ(intel_dp->output_reg);
3888
3889                 DP &= ~DP_PORT_EN;
3890                 I915_WRITE(intel_dp->output_reg, DP);
3891                 POSTING_READ(intel_dp->output_reg);
3892         }
3893
3894         msleep(intel_dp->panel_power_down_delay);
3895 }
3896
3897 static bool
3898 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3899 {
3900         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3901         struct drm_device *dev = dig_port->base.base.dev;
3902         struct drm_i915_private *dev_priv = dev->dev_private;
3903         uint8_t rev;
3904
3905         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3906                                     sizeof(intel_dp->dpcd)) < 0)
3907                 return false; /* aux transfer failed */
3908
3909         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3910
3911         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3912                 return false; /* DPCD not present */
3913
3914         /* Check if the panel supports PSR */
3915         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3916         if (is_edp(intel_dp)) {
3917                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3918                                         intel_dp->psr_dpcd,
3919                                         sizeof(intel_dp->psr_dpcd));
3920                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3921                         dev_priv->psr.sink_support = true;
3922                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3923                 }
3924
3925                 if (INTEL_INFO(dev)->gen >= 9 &&
3926                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3927                         uint8_t frame_sync_cap;
3928
3929                         dev_priv->psr.sink_support = true;
3930                         intel_dp_dpcd_read_wake(&intel_dp->aux,
3931                                         DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3932                                         &frame_sync_cap, 1);
3933                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3934                         /* PSR2 needs frame sync as well */
3935                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3936                         DRM_DEBUG_KMS("PSR2 %s on sink",
3937                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3938                 }
3939         }
3940
3941         /* Training Pattern 3 support, both source and sink */
3942         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3943             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3944             (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3945                 intel_dp->use_tps3 = true;
3946                 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3947         } else
3948                 intel_dp->use_tps3 = false;
3949
3950         /* Intermediate frequency support */
3951         if (is_edp(intel_dp) &&
3952             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3953             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3954             (rev >= 0x03)) { /* eDp v1.4 or higher */
3955                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3956                 int i;
3957
3958                 intel_dp_dpcd_read_wake(&intel_dp->aux,
3959                                 DP_SUPPORTED_LINK_RATES,
3960                                 sink_rates,
3961                                 sizeof(sink_rates));
3962
3963                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3964                         int val = le16_to_cpu(sink_rates[i]);
3965
3966                         if (val == 0)
3967                                 break;
3968
3969                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3970                         intel_dp->sink_rates[i] = (val * 200) / 10;
3971                 }
3972                 intel_dp->num_sink_rates = i;
3973         }
3974
3975         intel_dp_print_rates(intel_dp);
3976
3977         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3978               DP_DWN_STRM_PORT_PRESENT))
3979                 return true; /* native DP sink */
3980
3981         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3982                 return true; /* no per-port downstream info */
3983
3984         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3985                                     intel_dp->downstream_ports,
3986                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3987                 return false; /* downstream port status fetch failed */
3988
3989         return true;
3990 }
3991
3992 static void
3993 intel_dp_probe_oui(struct intel_dp *intel_dp)
3994 {
3995         u8 buf[3];
3996
3997         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3998                 return;
3999
4000         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4001                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4002                               buf[0], buf[1], buf[2]);
4003
4004         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4005                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4006                               buf[0], buf[1], buf[2]);
4007 }
4008
4009 static bool
4010 intel_dp_probe_mst(struct intel_dp *intel_dp)
4011 {
4012         u8 buf[1];
4013
4014         if (!intel_dp->can_mst)
4015                 return false;
4016
4017         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4018                 return false;
4019
4020         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4021                 if (buf[0] & DP_MST_CAP) {
4022                         DRM_DEBUG_KMS("Sink is MST capable\n");
4023                         intel_dp->is_mst = true;
4024                 } else {
4025                         DRM_DEBUG_KMS("Sink is not MST capable\n");
4026                         intel_dp->is_mst = false;
4027                 }
4028         }
4029
4030         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4031         return intel_dp->is_mst;
4032 }
4033
4034 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4035 {
4036         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4037         struct drm_device *dev = intel_dig_port->base.base.dev;
4038         struct intel_crtc *intel_crtc =
4039                 to_intel_crtc(intel_dig_port->base.base.crtc);
4040         u8 buf;
4041         int test_crc_count;
4042         int attempts = 6;
4043         int ret = 0;
4044
4045         hsw_disable_ips(intel_crtc);
4046
4047         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4048                 ret = -EIO;
4049                 goto out;
4050         }
4051
4052         if (!(buf & DP_TEST_CRC_SUPPORTED)) {
4053                 ret = -ENOTTY;
4054                 goto out;
4055         }
4056
4057         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4058                 ret = -EIO;
4059                 goto out;
4060         }
4061
4062         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4063                                 buf | DP_TEST_SINK_START) < 0) {
4064                 ret = -EIO;
4065                 goto out;
4066         }
4067
4068         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4069                 ret = -EIO;
4070                 goto out;
4071         }
4072
4073         test_crc_count = buf & DP_TEST_COUNT_MASK;
4074
4075         do {
4076                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4077                                       DP_TEST_SINK_MISC, &buf) < 0) {
4078                         ret = -EIO;
4079                         goto out;
4080                 }
4081                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4082         } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4083
4084         if (attempts == 0) {
4085                 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4086                 ret = -ETIMEDOUT;
4087                 goto out;
4088         }
4089
4090         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4091                 ret = -EIO;
4092                 goto out;
4093         }
4094
4095         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4096                 ret = -EIO;
4097                 goto out;
4098         }
4099         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4100                                buf & ~DP_TEST_SINK_START) < 0) {
4101                 ret = -EIO;
4102                 goto out;
4103         }
4104 out:
4105         hsw_enable_ips(intel_crtc);
4106         return ret;
4107 }
4108
4109 static bool
4110 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4111 {
4112         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4113                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4114                                        sink_irq_vector, 1) == 1;
4115 }
4116
4117 static bool
4118 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4119 {
4120         int ret;
4121
4122         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4123                                              DP_SINK_COUNT_ESI,
4124                                              sink_irq_vector, 14);
4125         if (ret != 14)
4126                 return false;
4127
4128         return true;
4129 }
4130
4131 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4132 {
4133         uint8_t test_result = DP_TEST_ACK;
4134         return test_result;
4135 }
4136
4137 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4138 {
4139         uint8_t test_result = DP_TEST_NAK;
4140         return test_result;
4141 }
4142
4143 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4144 {
4145         uint8_t test_result = DP_TEST_NAK;
4146         struct intel_connector *intel_connector = intel_dp->attached_connector;
4147         struct drm_connector *connector = &intel_connector->base;
4148
4149         if (intel_connector->detect_edid == NULL ||
4150             connector->edid_corrupt ||
4151             intel_dp->aux.i2c_defer_count > 6) {
4152                 /* Check EDID read for NACKs, DEFERs and corruption
4153                  * (DP CTS 1.2 Core r1.1)
4154                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4155                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4156                  *    4.2.2.6 : EDID corruption detected
4157                  * Use failsafe mode for all cases
4158                  */
4159                 if (intel_dp->aux.i2c_nack_count > 0 ||
4160                         intel_dp->aux.i2c_defer_count > 0)
4161                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4162                                       intel_dp->aux.i2c_nack_count,
4163                                       intel_dp->aux.i2c_defer_count);
4164                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4165         } else {
4166                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4167                                         DP_TEST_EDID_CHECKSUM,
4168                                         &intel_connector->detect_edid->checksum,
4169                                         1))
4170                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4171
4172                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4173                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4174         }
4175
4176         /* Set test active flag here so userspace doesn't interrupt things */
4177         intel_dp->compliance_test_active = 1;
4178
4179         return test_result;
4180 }
4181
4182 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4183 {
4184         uint8_t test_result = DP_TEST_NAK;
4185         return test_result;
4186 }
4187
4188 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4189 {
4190         uint8_t response = DP_TEST_NAK;
4191         uint8_t rxdata = 0;
4192         int status = 0;
4193
4194         intel_dp->compliance_test_active = 0;
4195         intel_dp->compliance_test_type = 0;
4196         intel_dp->compliance_test_data = 0;
4197
4198         intel_dp->aux.i2c_nack_count = 0;
4199         intel_dp->aux.i2c_defer_count = 0;
4200
4201         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4202         if (status <= 0) {
4203                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4204                 goto update_status;
4205         }
4206
4207         switch (rxdata) {
4208         case DP_TEST_LINK_TRAINING:
4209                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4210                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4211                 response = intel_dp_autotest_link_training(intel_dp);
4212                 break;
4213         case DP_TEST_LINK_VIDEO_PATTERN:
4214                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4215                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4216                 response = intel_dp_autotest_video_pattern(intel_dp);
4217                 break;
4218         case DP_TEST_LINK_EDID_READ:
4219                 DRM_DEBUG_KMS("EDID test requested\n");
4220                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4221                 response = intel_dp_autotest_edid(intel_dp);
4222                 break;
4223         case DP_TEST_LINK_PHY_TEST_PATTERN:
4224                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4225                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4226                 response = intel_dp_autotest_phy_pattern(intel_dp);
4227                 break;
4228         default:
4229                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4230                 break;
4231         }
4232
4233 update_status:
4234         status = drm_dp_dpcd_write(&intel_dp->aux,
4235                                    DP_TEST_RESPONSE,
4236                                    &response, 1);
4237         if (status <= 0)
4238                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4239 }
4240
4241 static int
4242 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4243 {
4244         bool bret;
4245
4246         if (intel_dp->is_mst) {
4247                 u8 esi[16] = { 0 };
4248                 int ret = 0;
4249                 int retry;
4250                 bool handled;
4251                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4252 go_again:
4253                 if (bret == true) {
4254
4255                         /* check link status - esi[10] = 0x200c */
4256                         if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4257                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4258                                 intel_dp_start_link_train(intel_dp);
4259                                 intel_dp_complete_link_train(intel_dp);
4260                                 intel_dp_stop_link_train(intel_dp);
4261                         }
4262
4263                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4264                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4265
4266                         if (handled) {
4267                                 for (retry = 0; retry < 3; retry++) {
4268                                         int wret;
4269                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4270                                                                  DP_SINK_COUNT_ESI+1,
4271                                                                  &esi[1], 3);
4272                                         if (wret == 3) {
4273                                                 break;
4274                                         }
4275                                 }
4276
4277                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4278                                 if (bret == true) {
4279                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4280                                         goto go_again;
4281                                 }
4282                         } else
4283                                 ret = 0;
4284
4285                         return ret;
4286                 } else {
4287                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4288                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4289                         intel_dp->is_mst = false;
4290                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4291                         /* send a hotplug event */
4292                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4293                 }
4294         }
4295         return -EINVAL;
4296 }
4297
4298 /*
4299  * According to DP spec
4300  * 5.1.2:
4301  *  1. Read DPCD
4302  *  2. Configure link according to Receiver Capabilities
4303  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4304  *  4. Check link status on receipt of hot-plug interrupt
4305  */
4306 static void
4307 intel_dp_check_link_status(struct intel_dp *intel_dp)
4308 {
4309         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4310         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4311         u8 sink_irq_vector;
4312         u8 link_status[DP_LINK_STATUS_SIZE];
4313
4314         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4315
4316         if (!intel_encoder->connectors_active)
4317                 return;
4318
4319         if (WARN_ON(!intel_encoder->base.crtc))
4320                 return;
4321
4322         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4323                 return;
4324
4325         /* Try to read receiver status if the link appears to be up */
4326         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4327                 return;
4328         }
4329
4330         /* Now read the DPCD to see if it's actually running */
4331         if (!intel_dp_get_dpcd(intel_dp)) {
4332                 return;
4333         }
4334
4335         /* Try to read the source of the interrupt */
4336         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4337             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4338                 /* Clear interrupt source */
4339                 drm_dp_dpcd_writeb(&intel_dp->aux,
4340                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4341                                    sink_irq_vector);
4342
4343                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4344                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4345                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4346                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4347         }
4348
4349         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4350                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4351                               intel_encoder->base.name);
4352                 intel_dp_start_link_train(intel_dp);
4353                 intel_dp_complete_link_train(intel_dp);
4354                 intel_dp_stop_link_train(intel_dp);
4355         }
4356 }
4357
4358 /* XXX this is probably wrong for multiple downstream ports */
4359 static enum drm_connector_status
4360 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4361 {
4362         uint8_t *dpcd = intel_dp->dpcd;
4363         uint8_t type;
4364
4365         if (!intel_dp_get_dpcd(intel_dp))
4366                 return connector_status_disconnected;
4367
4368         /* if there's no downstream port, we're done */
4369         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4370                 return connector_status_connected;
4371
4372         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4373         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4374             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4375                 uint8_t reg;
4376
4377                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4378                                             &reg, 1) < 0)
4379                         return connector_status_unknown;
4380
4381                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4382                                               : connector_status_disconnected;
4383         }
4384
4385         /* If no HPD, poke DDC gently */
4386         if (drm_probe_ddc(&intel_dp->aux.ddc))
4387                 return connector_status_connected;
4388
4389         /* Well we tried, say unknown for unreliable port types */
4390         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4391                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4392                 if (type == DP_DS_PORT_TYPE_VGA ||
4393                     type == DP_DS_PORT_TYPE_NON_EDID)
4394                         return connector_status_unknown;
4395         } else {
4396                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4397                         DP_DWN_STRM_PORT_TYPE_MASK;
4398                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4399                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4400                         return connector_status_unknown;
4401         }
4402
4403         /* Anything else is out of spec, warn and ignore */
4404         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4405         return connector_status_disconnected;
4406 }
4407
4408 static enum drm_connector_status
4409 edp_detect(struct intel_dp *intel_dp)
4410 {
4411         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4412         enum drm_connector_status status;
4413
4414         status = intel_panel_detect(dev);
4415         if (status == connector_status_unknown)
4416                 status = connector_status_connected;
4417
4418         return status;
4419 }
4420
4421 static enum drm_connector_status
4422 ironlake_dp_detect(struct intel_dp *intel_dp)
4423 {
4424         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4425         struct drm_i915_private *dev_priv = dev->dev_private;
4426         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4427
4428         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4429                 return connector_status_disconnected;
4430
4431         return intel_dp_detect_dpcd(intel_dp);
4432 }
4433
4434 static int g4x_digital_port_connected(struct drm_device *dev,
4435                                        struct intel_digital_port *intel_dig_port)
4436 {
4437         struct drm_i915_private *dev_priv = dev->dev_private;
4438         uint32_t bit;
4439
4440         if (IS_VALLEYVIEW(dev)) {
4441                 switch (intel_dig_port->port) {
4442                 case PORT_B:
4443                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4444                         break;
4445                 case PORT_C:
4446                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4447                         break;
4448                 case PORT_D:
4449                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4450                         break;
4451                 default:
4452                         return -EINVAL;
4453                 }
4454         } else {
4455                 switch (intel_dig_port->port) {
4456                 case PORT_B:
4457                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4458                         break;
4459                 case PORT_C:
4460                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4461                         break;
4462                 case PORT_D:
4463                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4464                         break;
4465                 default:
4466                         return -EINVAL;
4467                 }
4468         }
4469
4470         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4471                 return 0;
4472         return 1;
4473 }
4474
4475 static enum drm_connector_status
4476 g4x_dp_detect(struct intel_dp *intel_dp)
4477 {
4478         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4479         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4480         int ret;
4481
4482         /* Can't disconnect eDP, but you can close the lid... */
4483         if (is_edp(intel_dp)) {
4484                 enum drm_connector_status status;
4485
4486                 status = intel_panel_detect(dev);
4487                 if (status == connector_status_unknown)
4488                         status = connector_status_connected;
4489                 return status;
4490         }
4491
4492         ret = g4x_digital_port_connected(dev, intel_dig_port);
4493         if (ret == -EINVAL)
4494                 return connector_status_unknown;
4495         else if (ret == 0)
4496                 return connector_status_disconnected;
4497
4498         return intel_dp_detect_dpcd(intel_dp);
4499 }
4500
4501 static struct edid *
4502 intel_dp_get_edid(struct intel_dp *intel_dp)
4503 {
4504         struct intel_connector *intel_connector = intel_dp->attached_connector;
4505
4506         /* use cached edid if we have one */
4507         if (intel_connector->edid) {
4508                 /* invalid edid */
4509                 if (IS_ERR(intel_connector->edid))
4510                         return NULL;
4511
4512                 return drm_edid_duplicate(intel_connector->edid);
4513         } else
4514                 return drm_get_edid(&intel_connector->base,
4515                                     &intel_dp->aux.ddc);
4516 }
4517
4518 static void
4519 intel_dp_set_edid(struct intel_dp *intel_dp)
4520 {
4521         struct intel_connector *intel_connector = intel_dp->attached_connector;
4522         struct edid *edid;
4523
4524         edid = intel_dp_get_edid(intel_dp);
4525         intel_connector->detect_edid = edid;
4526
4527         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4528                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4529         else
4530                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4531 }
4532
4533 static void
4534 intel_dp_unset_edid(struct intel_dp *intel_dp)
4535 {
4536         struct intel_connector *intel_connector = intel_dp->attached_connector;
4537
4538         kfree(intel_connector->detect_edid);
4539         intel_connector->detect_edid = NULL;
4540
4541         intel_dp->has_audio = false;
4542 }
4543
4544 static enum intel_display_power_domain
4545 intel_dp_power_get(struct intel_dp *dp)
4546 {
4547         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4548         enum intel_display_power_domain power_domain;
4549
4550         power_domain = intel_display_port_power_domain(encoder);
4551         intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4552
4553         return power_domain;
4554 }
4555
4556 static void
4557 intel_dp_power_put(struct intel_dp *dp,
4558                    enum intel_display_power_domain power_domain)
4559 {
4560         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4561         intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4562 }
4563
4564 static enum drm_connector_status
4565 intel_dp_detect(struct drm_connector *connector, bool force)
4566 {
4567         struct intel_dp *intel_dp = intel_attached_dp(connector);
4568         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4569         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4570         struct drm_device *dev = connector->dev;
4571         enum drm_connector_status status;
4572         enum intel_display_power_domain power_domain;
4573         bool ret;
4574         u8 sink_irq_vector;
4575
4576         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4577                       connector->base.id, connector->name);
4578         intel_dp_unset_edid(intel_dp);
4579
4580         if (intel_dp->is_mst) {
4581                 /* MST devices are disconnected from a monitor POV */
4582                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4583                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4584                 return connector_status_disconnected;
4585         }
4586
4587         power_domain = intel_dp_power_get(intel_dp);
4588
4589         /* Can't disconnect eDP, but you can close the lid... */
4590         if (is_edp(intel_dp))
4591                 status = edp_detect(intel_dp);
4592         else if (HAS_PCH_SPLIT(dev))
4593                 status = ironlake_dp_detect(intel_dp);
4594         else
4595                 status = g4x_dp_detect(intel_dp);
4596         if (status != connector_status_connected)
4597                 goto out;
4598
4599         intel_dp_probe_oui(intel_dp);
4600
4601         ret = intel_dp_probe_mst(intel_dp);
4602         if (ret) {
4603                 /* if we are in MST mode then this connector
4604                    won't appear connected or have anything with EDID on it */
4605                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4606                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4607                 status = connector_status_disconnected;
4608                 goto out;
4609         }
4610
4611         intel_dp_set_edid(intel_dp);
4612
4613         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4614                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4615         status = connector_status_connected;
4616
4617         /* Try to read the source of the interrupt */
4618         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4619             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4620                 /* Clear interrupt source */
4621                 drm_dp_dpcd_writeb(&intel_dp->aux,
4622                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4623                                    sink_irq_vector);
4624
4625                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4626                         intel_dp_handle_test_request(intel_dp);
4627                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4628                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4629         }
4630
4631 out:
4632         intel_dp_power_put(intel_dp, power_domain);
4633         return status;
4634 }
4635
4636 static void
4637 intel_dp_force(struct drm_connector *connector)
4638 {
4639         struct intel_dp *intel_dp = intel_attached_dp(connector);
4640         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4641         enum intel_display_power_domain power_domain;
4642
4643         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4644                       connector->base.id, connector->name);
4645         intel_dp_unset_edid(intel_dp);
4646
4647         if (connector->status != connector_status_connected)
4648                 return;
4649
4650         power_domain = intel_dp_power_get(intel_dp);
4651
4652         intel_dp_set_edid(intel_dp);
4653
4654         intel_dp_power_put(intel_dp, power_domain);
4655
4656         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4657                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4658 }
4659
4660 static int intel_dp_get_modes(struct drm_connector *connector)
4661 {
4662         struct intel_connector *intel_connector = to_intel_connector(connector);
4663         struct edid *edid;
4664
4665         edid = intel_connector->detect_edid;
4666         if (edid) {
4667                 int ret = intel_connector_update_modes(connector, edid);
4668                 if (ret)
4669                         return ret;
4670         }
4671
4672         /* if eDP has no EDID, fall back to fixed mode */
4673         if (is_edp(intel_attached_dp(connector)) &&
4674             intel_connector->panel.fixed_mode) {
4675                 struct drm_display_mode *mode;
4676
4677                 mode = drm_mode_duplicate(connector->dev,
4678                                           intel_connector->panel.fixed_mode);
4679                 if (mode) {
4680                         drm_mode_probed_add(connector, mode);
4681                         return 1;
4682                 }
4683         }
4684
4685         return 0;
4686 }
4687
4688 static bool
4689 intel_dp_detect_audio(struct drm_connector *connector)
4690 {
4691         bool has_audio = false;
4692         struct edid *edid;
4693
4694         edid = to_intel_connector(connector)->detect_edid;
4695         if (edid)
4696                 has_audio = drm_detect_monitor_audio(edid);
4697
4698         return has_audio;
4699 }
4700
4701 static int
4702 intel_dp_set_property(struct drm_connector *connector,
4703                       struct drm_property *property,
4704                       uint64_t val)
4705 {
4706         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4707         struct intel_connector *intel_connector = to_intel_connector(connector);
4708         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4709         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4710         int ret;
4711
4712         ret = drm_object_property_set_value(&connector->base, property, val);
4713         if (ret)
4714                 return ret;
4715
4716         if (property == dev_priv->force_audio_property) {
4717                 int i = val;
4718                 bool has_audio;
4719
4720                 if (i == intel_dp->force_audio)
4721                         return 0;
4722
4723                 intel_dp->force_audio = i;
4724
4725                 if (i == HDMI_AUDIO_AUTO)
4726                         has_audio = intel_dp_detect_audio(connector);
4727                 else
4728                         has_audio = (i == HDMI_AUDIO_ON);
4729
4730                 if (has_audio == intel_dp->has_audio)
4731                         return 0;
4732
4733                 intel_dp->has_audio = has_audio;
4734                 goto done;
4735         }
4736
4737         if (property == dev_priv->broadcast_rgb_property) {
4738                 bool old_auto = intel_dp->color_range_auto;
4739                 uint32_t old_range = intel_dp->color_range;
4740
4741                 switch (val) {
4742                 case INTEL_BROADCAST_RGB_AUTO:
4743                         intel_dp->color_range_auto = true;
4744                         break;
4745                 case INTEL_BROADCAST_RGB_FULL:
4746                         intel_dp->color_range_auto = false;
4747                         intel_dp->color_range = 0;
4748                         break;
4749                 case INTEL_BROADCAST_RGB_LIMITED:
4750                         intel_dp->color_range_auto = false;
4751                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
4752                         break;
4753                 default:
4754                         return -EINVAL;
4755                 }
4756
4757                 if (old_auto == intel_dp->color_range_auto &&
4758                     old_range == intel_dp->color_range)
4759                         return 0;
4760
4761                 goto done;
4762         }
4763
4764         if (is_edp(intel_dp) &&
4765             property == connector->dev->mode_config.scaling_mode_property) {
4766                 if (val == DRM_MODE_SCALE_NONE) {
4767                         DRM_DEBUG_KMS("no scaling not supported\n");
4768                         return -EINVAL;
4769                 }
4770
4771                 if (intel_connector->panel.fitting_mode == val) {
4772                         /* the eDP scaling property is not changed */
4773                         return 0;
4774                 }
4775                 intel_connector->panel.fitting_mode = val;
4776
4777                 goto done;
4778         }
4779
4780         return -EINVAL;
4781
4782 done:
4783         if (intel_encoder->base.crtc)
4784                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4785
4786         return 0;
4787 }
4788
4789 static void
4790 intel_dp_connector_destroy(struct drm_connector *connector)
4791 {
4792         struct intel_connector *intel_connector = to_intel_connector(connector);
4793
4794         kfree(intel_connector->detect_edid);
4795
4796         if (!IS_ERR_OR_NULL(intel_connector->edid))
4797                 kfree(intel_connector->edid);
4798
4799         /* Can't call is_edp() since the encoder may have been destroyed
4800          * already. */
4801         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4802                 intel_panel_fini(&intel_connector->panel);
4803
4804         drm_connector_cleanup(connector);
4805         kfree(connector);
4806 }
4807
4808 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4809 {
4810         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4811         struct intel_dp *intel_dp = &intel_dig_port->dp;
4812
4813         drm_dp_aux_unregister(&intel_dp->aux);
4814         intel_dp_mst_encoder_cleanup(intel_dig_port);
4815         if (is_edp(intel_dp)) {
4816                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4817                 /*
4818                  * vdd might still be enabled do to the delayed vdd off.
4819                  * Make sure vdd is actually turned off here.
4820                  */
4821                 pps_lock(intel_dp);
4822                 edp_panel_vdd_off_sync(intel_dp);
4823                 pps_unlock(intel_dp);
4824
4825                 if (intel_dp->edp_notifier.notifier_call) {
4826                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4827                         intel_dp->edp_notifier.notifier_call = NULL;
4828                 }
4829         }
4830         drm_encoder_cleanup(encoder);
4831         kfree(intel_dig_port);
4832 }
4833
4834 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4835 {
4836         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4837
4838         if (!is_edp(intel_dp))
4839                 return;
4840
4841         /*
4842          * vdd might still be enabled do to the delayed vdd off.
4843          * Make sure vdd is actually turned off here.
4844          */
4845         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4846         pps_lock(intel_dp);
4847         edp_panel_vdd_off_sync(intel_dp);
4848         pps_unlock(intel_dp);
4849 }
4850
4851 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4852 {
4853         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4854         struct drm_device *dev = intel_dig_port->base.base.dev;
4855         struct drm_i915_private *dev_priv = dev->dev_private;
4856         enum intel_display_power_domain power_domain;
4857
4858         lockdep_assert_held(&dev_priv->pps_mutex);
4859
4860         if (!edp_have_panel_vdd(intel_dp))
4861                 return;
4862
4863         /*
4864          * The VDD bit needs a power domain reference, so if the bit is
4865          * already enabled when we boot or resume, grab this reference and
4866          * schedule a vdd off, so we don't hold on to the reference
4867          * indefinitely.
4868          */
4869         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4870         power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4871         intel_display_power_get(dev_priv, power_domain);
4872
4873         edp_panel_vdd_schedule_off(intel_dp);
4874 }
4875
4876 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4877 {
4878         struct intel_dp *intel_dp;
4879
4880         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4881                 return;
4882
4883         intel_dp = enc_to_intel_dp(encoder);
4884
4885         pps_lock(intel_dp);
4886
4887         /*
4888          * Read out the current power sequencer assignment,
4889          * in case the BIOS did something with it.
4890          */
4891         if (IS_VALLEYVIEW(encoder->dev))
4892                 vlv_initial_power_sequencer_setup(intel_dp);
4893
4894         intel_edp_panel_vdd_sanitize(intel_dp);
4895
4896         pps_unlock(intel_dp);
4897 }
4898
4899 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4900         .dpms = intel_connector_dpms,
4901         .detect = intel_dp_detect,
4902         .force = intel_dp_force,
4903         .fill_modes = drm_helper_probe_single_connector_modes,
4904         .set_property = intel_dp_set_property,
4905         .atomic_get_property = intel_connector_atomic_get_property,
4906         .destroy = intel_dp_connector_destroy,
4907         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4908         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4909 };
4910
4911 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4912         .get_modes = intel_dp_get_modes,
4913         .mode_valid = intel_dp_mode_valid,
4914         .best_encoder = intel_best_encoder,
4915 };
4916
4917 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4918         .reset = intel_dp_encoder_reset,
4919         .destroy = intel_dp_encoder_destroy,
4920 };
4921
4922 void
4923 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4924 {
4925         return;
4926 }
4927
4928 enum irqreturn
4929 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4930 {
4931         struct intel_dp *intel_dp = &intel_dig_port->dp;
4932         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4933         struct drm_device *dev = intel_dig_port->base.base.dev;
4934         struct drm_i915_private *dev_priv = dev->dev_private;
4935         enum intel_display_power_domain power_domain;
4936         enum irqreturn ret = IRQ_NONE;
4937
4938         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4939                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4940
4941         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4942                 /*
4943                  * vdd off can generate a long pulse on eDP which
4944                  * would require vdd on to handle it, and thus we
4945                  * would end up in an endless cycle of
4946                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4947                  */
4948                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4949                               port_name(intel_dig_port->port));
4950                 return IRQ_HANDLED;
4951         }
4952
4953         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4954                       port_name(intel_dig_port->port),
4955                       long_hpd ? "long" : "short");
4956
4957         power_domain = intel_display_port_power_domain(intel_encoder);
4958         intel_display_power_get(dev_priv, power_domain);
4959
4960         if (long_hpd) {
4961                 /* indicate that we need to restart link training */
4962                 intel_dp->train_set_valid = false;
4963
4964                 if (HAS_PCH_SPLIT(dev)) {
4965                         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4966                                 goto mst_fail;
4967                 } else {
4968                         if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4969                                 goto mst_fail;
4970                 }
4971
4972                 if (!intel_dp_get_dpcd(intel_dp)) {
4973                         goto mst_fail;
4974                 }
4975
4976                 intel_dp_probe_oui(intel_dp);
4977
4978                 if (!intel_dp_probe_mst(intel_dp))
4979                         goto mst_fail;
4980
4981         } else {
4982                 if (intel_dp->is_mst) {
4983                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4984                                 goto mst_fail;
4985                 }
4986
4987                 if (!intel_dp->is_mst) {
4988                         /*
4989                          * we'll check the link status via the normal hot plug path later -
4990                          * but for short hpds we should check it now
4991                          */
4992                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4993                         intel_dp_check_link_status(intel_dp);
4994                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4995                 }
4996         }
4997
4998         ret = IRQ_HANDLED;
4999
5000         goto put_power;
5001 mst_fail:
5002         /* if we were in MST mode, and device is not there get out of MST mode */
5003         if (intel_dp->is_mst) {
5004                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5005                 intel_dp->is_mst = false;
5006                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5007         }
5008 put_power:
5009         intel_display_power_put(dev_priv, power_domain);
5010
5011         return ret;
5012 }
5013
5014 /* Return which DP Port should be selected for Transcoder DP control */
5015 int
5016 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5017 {
5018         struct drm_device *dev = crtc->dev;
5019         struct intel_encoder *intel_encoder;
5020         struct intel_dp *intel_dp;
5021
5022         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5023                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5024
5025                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5026                     intel_encoder->type == INTEL_OUTPUT_EDP)
5027                         return intel_dp->output_reg;
5028         }
5029
5030         return -1;
5031 }
5032
5033 /* check the VBT to see whether the eDP is on DP-D port */
5034 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5035 {
5036         struct drm_i915_private *dev_priv = dev->dev_private;
5037         union child_device_config *p_child;
5038         int i;
5039         static const short port_mapping[] = {
5040                 [PORT_B] = PORT_IDPB,
5041                 [PORT_C] = PORT_IDPC,
5042                 [PORT_D] = PORT_IDPD,
5043         };
5044
5045         if (port == PORT_A)
5046                 return true;
5047
5048         if (!dev_priv->vbt.child_dev_num)
5049                 return false;
5050
5051         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5052                 p_child = dev_priv->vbt.child_dev + i;
5053
5054                 if (p_child->common.dvo_port == port_mapping[port] &&
5055                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5056                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5057                         return true;
5058         }
5059         return false;
5060 }
5061
5062 void
5063 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5064 {
5065         struct intel_connector *intel_connector = to_intel_connector(connector);
5066
5067         intel_attach_force_audio_property(connector);
5068         intel_attach_broadcast_rgb_property(connector);
5069         intel_dp->color_range_auto = true;
5070
5071         if (is_edp(intel_dp)) {
5072                 drm_mode_create_scaling_mode_property(connector->dev);
5073                 drm_object_attach_property(
5074                         &connector->base,
5075                         connector->dev->mode_config.scaling_mode_property,
5076                         DRM_MODE_SCALE_ASPECT);
5077                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5078         }
5079 }
5080
5081 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5082 {
5083         intel_dp->last_power_cycle = jiffies;
5084         intel_dp->last_power_on = jiffies;
5085         intel_dp->last_backlight_off = jiffies;
5086 }
5087
5088 static void
5089 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5090                                     struct intel_dp *intel_dp)
5091 {
5092         struct drm_i915_private *dev_priv = dev->dev_private;
5093         struct edp_power_seq cur, vbt, spec,
5094                 *final = &intel_dp->pps_delays;
5095         u32 pp_on, pp_off, pp_div, pp;
5096         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5097
5098         lockdep_assert_held(&dev_priv->pps_mutex);
5099
5100         /* already initialized? */
5101         if (final->t11_t12 != 0)
5102                 return;
5103
5104         if (HAS_PCH_SPLIT(dev)) {
5105                 pp_ctrl_reg = PCH_PP_CONTROL;
5106                 pp_on_reg = PCH_PP_ON_DELAYS;
5107                 pp_off_reg = PCH_PP_OFF_DELAYS;
5108                 pp_div_reg = PCH_PP_DIVISOR;
5109         } else {
5110                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5111
5112                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5113                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5114                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5115                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5116         }
5117
5118         /* Workaround: Need to write PP_CONTROL with the unlock key as
5119          * the very first thing. */
5120         pp = ironlake_get_pp_control(intel_dp);
5121         I915_WRITE(pp_ctrl_reg, pp);
5122
5123         pp_on = I915_READ(pp_on_reg);
5124         pp_off = I915_READ(pp_off_reg);
5125         pp_div = I915_READ(pp_div_reg);
5126
5127         /* Pull timing values out of registers */
5128         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5129                 PANEL_POWER_UP_DELAY_SHIFT;
5130
5131         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5132                 PANEL_LIGHT_ON_DELAY_SHIFT;
5133
5134         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5135                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5136
5137         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5138                 PANEL_POWER_DOWN_DELAY_SHIFT;
5139
5140         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5141                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5142
5143         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5144                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5145
5146         vbt = dev_priv->vbt.edp_pps;
5147
5148         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5149          * our hw here, which are all in 100usec. */
5150         spec.t1_t3 = 210 * 10;
5151         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5152         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5153         spec.t10 = 500 * 10;
5154         /* This one is special and actually in units of 100ms, but zero
5155          * based in the hw (so we need to add 100 ms). But the sw vbt
5156          * table multiplies it with 1000 to make it in units of 100usec,
5157          * too. */
5158         spec.t11_t12 = (510 + 100) * 10;
5159
5160         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5161                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5162
5163         /* Use the max of the register settings and vbt. If both are
5164          * unset, fall back to the spec limits. */
5165 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5166                                        spec.field : \
5167                                        max(cur.field, vbt.field))
5168         assign_final(t1_t3);
5169         assign_final(t8);
5170         assign_final(t9);
5171         assign_final(t10);
5172         assign_final(t11_t12);
5173 #undef assign_final
5174
5175 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5176         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5177         intel_dp->backlight_on_delay = get_delay(t8);
5178         intel_dp->backlight_off_delay = get_delay(t9);
5179         intel_dp->panel_power_down_delay = get_delay(t10);
5180         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5181 #undef get_delay
5182
5183         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5184                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5185                       intel_dp->panel_power_cycle_delay);
5186
5187         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5188                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5189 }
5190
5191 static void
5192 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5193                                               struct intel_dp *intel_dp)
5194 {
5195         struct drm_i915_private *dev_priv = dev->dev_private;
5196         u32 pp_on, pp_off, pp_div, port_sel = 0;
5197         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5198         int pp_on_reg, pp_off_reg, pp_div_reg;
5199         enum port port = dp_to_dig_port(intel_dp)->port;
5200         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5201
5202         lockdep_assert_held(&dev_priv->pps_mutex);
5203
5204         if (HAS_PCH_SPLIT(dev)) {
5205                 pp_on_reg = PCH_PP_ON_DELAYS;
5206                 pp_off_reg = PCH_PP_OFF_DELAYS;
5207                 pp_div_reg = PCH_PP_DIVISOR;
5208         } else {
5209                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5210
5211                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5212                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5213                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5214         }
5215
5216         /*
5217          * And finally store the new values in the power sequencer. The
5218          * backlight delays are set to 1 because we do manual waits on them. For
5219          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5220          * we'll end up waiting for the backlight off delay twice: once when we
5221          * do the manual sleep, and once when we disable the panel and wait for
5222          * the PP_STATUS bit to become zero.
5223          */
5224         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5225                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5226         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5227                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5228         /* Compute the divisor for the pp clock, simply match the Bspec
5229          * formula. */
5230         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5231         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5232                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
5233
5234         /* Haswell doesn't have any port selection bits for the panel
5235          * power sequencer any more. */
5236         if (IS_VALLEYVIEW(dev)) {
5237                 port_sel = PANEL_PORT_SELECT_VLV(port);
5238         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5239                 if (port == PORT_A)
5240                         port_sel = PANEL_PORT_SELECT_DPA;
5241                 else
5242                         port_sel = PANEL_PORT_SELECT_DPD;
5243         }
5244
5245         pp_on |= port_sel;
5246
5247         I915_WRITE(pp_on_reg, pp_on);
5248         I915_WRITE(pp_off_reg, pp_off);
5249         I915_WRITE(pp_div_reg, pp_div);
5250
5251         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5252                       I915_READ(pp_on_reg),
5253                       I915_READ(pp_off_reg),
5254                       I915_READ(pp_div_reg));
5255 }
5256
5257 /**
5258  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5259  * @dev: DRM device
5260  * @refresh_rate: RR to be programmed
5261  *
5262  * This function gets called when refresh rate (RR) has to be changed from
5263  * one frequency to another. Switches can be between high and low RR
5264  * supported by the panel or to any other RR based on media playback (in
5265  * this case, RR value needs to be passed from user space).
5266  *
5267  * The caller of this function needs to take a lock on dev_priv->drrs.
5268  */
5269 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5270 {
5271         struct drm_i915_private *dev_priv = dev->dev_private;
5272         struct intel_encoder *encoder;
5273         struct intel_digital_port *dig_port = NULL;
5274         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5275         struct intel_crtc_state *config = NULL;
5276         struct intel_crtc *intel_crtc = NULL;
5277         u32 reg, val;
5278         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5279
5280         if (refresh_rate <= 0) {
5281                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5282                 return;
5283         }
5284
5285         if (intel_dp == NULL) {
5286                 DRM_DEBUG_KMS("DRRS not supported.\n");
5287                 return;
5288         }
5289
5290         /*
5291          * FIXME: This needs proper synchronization with psr state for some
5292          * platforms that cannot have PSR and DRRS enabled at the same time.
5293          */
5294
5295         dig_port = dp_to_dig_port(intel_dp);
5296         encoder = &dig_port->base;
5297         intel_crtc = to_intel_crtc(encoder->base.crtc);
5298
5299         if (!intel_crtc) {
5300                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5301                 return;
5302         }
5303
5304         config = intel_crtc->config;
5305
5306         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5307                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5308                 return;
5309         }
5310
5311         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5312                         refresh_rate)
5313                 index = DRRS_LOW_RR;
5314
5315         if (index == dev_priv->drrs.refresh_rate_type) {
5316                 DRM_DEBUG_KMS(
5317                         "DRRS requested for previously set RR...ignoring\n");
5318                 return;
5319         }
5320
5321         if (!intel_crtc->active) {
5322                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5323                 return;
5324         }
5325
5326         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5327                 switch (index) {
5328                 case DRRS_HIGH_RR:
5329                         intel_dp_set_m_n(intel_crtc, M1_N1);
5330                         break;
5331                 case DRRS_LOW_RR:
5332                         intel_dp_set_m_n(intel_crtc, M2_N2);
5333                         break;
5334                 case DRRS_MAX_RR:
5335                 default:
5336                         DRM_ERROR("Unsupported refreshrate type\n");
5337                 }
5338         } else if (INTEL_INFO(dev)->gen > 6) {
5339                 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5340                 val = I915_READ(reg);
5341
5342                 if (index > DRRS_HIGH_RR) {
5343                         if (IS_VALLEYVIEW(dev))
5344                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5345                         else
5346                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5347                 } else {
5348                         if (IS_VALLEYVIEW(dev))
5349                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5350                         else
5351                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5352                 }
5353                 I915_WRITE(reg, val);
5354         }
5355
5356         dev_priv->drrs.refresh_rate_type = index;
5357
5358         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5359 }
5360
5361 /**
5362  * intel_edp_drrs_enable - init drrs struct if supported
5363  * @intel_dp: DP struct
5364  *
5365  * Initializes frontbuffer_bits and drrs.dp
5366  */
5367 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5368 {
5369         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5370         struct drm_i915_private *dev_priv = dev->dev_private;
5371         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5372         struct drm_crtc *crtc = dig_port->base.base.crtc;
5373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5374
5375         if (!intel_crtc->config->has_drrs) {
5376                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5377                 return;
5378         }
5379
5380         mutex_lock(&dev_priv->drrs.mutex);
5381         if (WARN_ON(dev_priv->drrs.dp)) {
5382                 DRM_ERROR("DRRS already enabled\n");
5383                 goto unlock;
5384         }
5385
5386         dev_priv->drrs.busy_frontbuffer_bits = 0;
5387
5388         dev_priv->drrs.dp = intel_dp;
5389
5390 unlock:
5391         mutex_unlock(&dev_priv->drrs.mutex);
5392 }
5393
5394 /**
5395  * intel_edp_drrs_disable - Disable DRRS
5396  * @intel_dp: DP struct
5397  *
5398  */
5399 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5400 {
5401         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5402         struct drm_i915_private *dev_priv = dev->dev_private;
5403         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5404         struct drm_crtc *crtc = dig_port->base.base.crtc;
5405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5406
5407         if (!intel_crtc->config->has_drrs)
5408                 return;
5409
5410         mutex_lock(&dev_priv->drrs.mutex);
5411         if (!dev_priv->drrs.dp) {
5412                 mutex_unlock(&dev_priv->drrs.mutex);
5413                 return;
5414         }
5415
5416         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5417                 intel_dp_set_drrs_state(dev_priv->dev,
5418                         intel_dp->attached_connector->panel.
5419                         fixed_mode->vrefresh);
5420
5421         dev_priv->drrs.dp = NULL;
5422         mutex_unlock(&dev_priv->drrs.mutex);
5423
5424         cancel_delayed_work_sync(&dev_priv->drrs.work);
5425 }
5426
5427 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5428 {
5429         struct drm_i915_private *dev_priv =
5430                 container_of(work, typeof(*dev_priv), drrs.work.work);
5431         struct intel_dp *intel_dp;
5432
5433         mutex_lock(&dev_priv->drrs.mutex);
5434
5435         intel_dp = dev_priv->drrs.dp;
5436
5437         if (!intel_dp)
5438                 goto unlock;
5439
5440         /*
5441          * The delayed work can race with an invalidate hence we need to
5442          * recheck.
5443          */
5444
5445         if (dev_priv->drrs.busy_frontbuffer_bits)
5446                 goto unlock;
5447
5448         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5449                 intel_dp_set_drrs_state(dev_priv->dev,
5450                         intel_dp->attached_connector->panel.
5451                         downclock_mode->vrefresh);
5452
5453 unlock:
5454         mutex_unlock(&dev_priv->drrs.mutex);
5455 }
5456
5457 /**
5458  * intel_edp_drrs_invalidate - Invalidate DRRS
5459  * @dev: DRM device
5460  * @frontbuffer_bits: frontbuffer plane tracking bits
5461  *
5462  * When there is a disturbance on screen (due to cursor movement/time
5463  * update etc), DRRS needs to be invalidated, i.e. need to switch to
5464  * high RR.
5465  *
5466  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5467  */
5468 void intel_edp_drrs_invalidate(struct drm_device *dev,
5469                 unsigned frontbuffer_bits)
5470 {
5471         struct drm_i915_private *dev_priv = dev->dev_private;
5472         struct drm_crtc *crtc;
5473         enum pipe pipe;
5474
5475         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5476                 return;
5477
5478         cancel_delayed_work(&dev_priv->drrs.work);
5479
5480         mutex_lock(&dev_priv->drrs.mutex);
5481         if (!dev_priv->drrs.dp) {
5482                 mutex_unlock(&dev_priv->drrs.mutex);
5483                 return;
5484         }
5485
5486         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5487         pipe = to_intel_crtc(crtc)->pipe;
5488
5489         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5490                 intel_dp_set_drrs_state(dev_priv->dev,
5491                                 dev_priv->drrs.dp->attached_connector->panel.
5492                                 fixed_mode->vrefresh);
5493         }
5494
5495         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5496
5497         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5498         mutex_unlock(&dev_priv->drrs.mutex);
5499 }
5500
5501 /**
5502  * intel_edp_drrs_flush - Flush DRRS
5503  * @dev: DRM device
5504  * @frontbuffer_bits: frontbuffer plane tracking bits
5505  *
5506  * When there is no movement on screen, DRRS work can be scheduled.
5507  * This DRRS work is responsible for setting relevant registers after a
5508  * timeout of 1 second.
5509  *
5510  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5511  */
5512 void intel_edp_drrs_flush(struct drm_device *dev,
5513                 unsigned frontbuffer_bits)
5514 {
5515         struct drm_i915_private *dev_priv = dev->dev_private;
5516         struct drm_crtc *crtc;
5517         enum pipe pipe;
5518
5519         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5520                 return;
5521
5522         cancel_delayed_work(&dev_priv->drrs.work);
5523
5524         mutex_lock(&dev_priv->drrs.mutex);
5525         if (!dev_priv->drrs.dp) {
5526                 mutex_unlock(&dev_priv->drrs.mutex);
5527                 return;
5528         }
5529
5530         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5531         pipe = to_intel_crtc(crtc)->pipe;
5532         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5533
5534         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5535                         !dev_priv->drrs.busy_frontbuffer_bits)
5536                 schedule_delayed_work(&dev_priv->drrs.work,
5537                                 msecs_to_jiffies(1000));
5538         mutex_unlock(&dev_priv->drrs.mutex);
5539 }
5540
5541 /**
5542  * DOC: Display Refresh Rate Switching (DRRS)
5543  *
5544  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5545  * which enables swtching between low and high refresh rates,
5546  * dynamically, based on the usage scenario. This feature is applicable
5547  * for internal panels.
5548  *
5549  * Indication that the panel supports DRRS is given by the panel EDID, which
5550  * would list multiple refresh rates for one resolution.
5551  *
5552  * DRRS is of 2 types - static and seamless.
5553  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5554  * (may appear as a blink on screen) and is used in dock-undock scenario.
5555  * Seamless DRRS involves changing RR without any visual effect to the user
5556  * and can be used during normal system usage. This is done by programming
5557  * certain registers.
5558  *
5559  * Support for static/seamless DRRS may be indicated in the VBT based on
5560  * inputs from the panel spec.
5561  *
5562  * DRRS saves power by switching to low RR based on usage scenarios.
5563  *
5564  * eDP DRRS:-
5565  *        The implementation is based on frontbuffer tracking implementation.
5566  * When there is a disturbance on the screen triggered by user activity or a
5567  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5568  * When there is no movement on screen, after a timeout of 1 second, a switch
5569  * to low RR is made.
5570  *        For integration with frontbuffer tracking code,
5571  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5572  *
5573  * DRRS can be further extended to support other internal panels and also
5574  * the scenario of video playback wherein RR is set based on the rate
5575  * requested by userspace.
5576  */
5577
5578 /**
5579  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5580  * @intel_connector: eDP connector
5581  * @fixed_mode: preferred mode of panel
5582  *
5583  * This function is  called only once at driver load to initialize basic
5584  * DRRS stuff.
5585  *
5586  * Returns:
5587  * Downclock mode if panel supports it, else return NULL.
5588  * DRRS support is determined by the presence of downclock mode (apart
5589  * from VBT setting).
5590  */
5591 static struct drm_display_mode *
5592 intel_dp_drrs_init(struct intel_connector *intel_connector,
5593                 struct drm_display_mode *fixed_mode)
5594 {
5595         struct drm_connector *connector = &intel_connector->base;
5596         struct drm_device *dev = connector->dev;
5597         struct drm_i915_private *dev_priv = dev->dev_private;
5598         struct drm_display_mode *downclock_mode = NULL;
5599
5600         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5601         mutex_init(&dev_priv->drrs.mutex);
5602
5603         if (INTEL_INFO(dev)->gen <= 6) {
5604                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5605                 return NULL;
5606         }
5607
5608         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5609                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5610                 return NULL;
5611         }
5612
5613         downclock_mode = intel_find_panel_downclock
5614                                         (dev, fixed_mode, connector);
5615
5616         if (!downclock_mode) {
5617                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5618                 return NULL;
5619         }
5620
5621         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5622
5623         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5624         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5625         return downclock_mode;
5626 }
5627
5628 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5629                                      struct intel_connector *intel_connector)
5630 {
5631         struct drm_connector *connector = &intel_connector->base;
5632         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5633         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5634         struct drm_device *dev = intel_encoder->base.dev;
5635         struct drm_i915_private *dev_priv = dev->dev_private;
5636         struct drm_display_mode *fixed_mode = NULL;
5637         struct drm_display_mode *downclock_mode = NULL;
5638         bool has_dpcd;
5639         struct drm_display_mode *scan;
5640         struct edid *edid;
5641         enum pipe pipe = INVALID_PIPE;
5642
5643         if (!is_edp(intel_dp))
5644                 return true;
5645
5646         pps_lock(intel_dp);
5647         intel_edp_panel_vdd_sanitize(intel_dp);
5648         pps_unlock(intel_dp);
5649
5650         /* Cache DPCD and EDID for edp. */
5651         has_dpcd = intel_dp_get_dpcd(intel_dp);
5652
5653         if (has_dpcd) {
5654                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5655                         dev_priv->no_aux_handshake =
5656                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5657                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5658         } else {
5659                 /* if this fails, presume the device is a ghost */
5660                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5661                 return false;
5662         }
5663
5664         /* We now know it's not a ghost, init power sequence regs. */
5665         pps_lock(intel_dp);
5666         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5667         pps_unlock(intel_dp);
5668
5669         mutex_lock(&dev->mode_config.mutex);
5670         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5671         if (edid) {
5672                 if (drm_add_edid_modes(connector, edid)) {
5673                         drm_mode_connector_update_edid_property(connector,
5674                                                                 edid);
5675                         drm_edid_to_eld(connector, edid);
5676                 } else {
5677                         kfree(edid);
5678                         edid = ERR_PTR(-EINVAL);
5679                 }
5680         } else {
5681                 edid = ERR_PTR(-ENOENT);
5682         }
5683         intel_connector->edid = edid;
5684
5685         /* prefer fixed mode from EDID if available */
5686         list_for_each_entry(scan, &connector->probed_modes, head) {
5687                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5688                         fixed_mode = drm_mode_duplicate(dev, scan);
5689                         downclock_mode = intel_dp_drrs_init(
5690                                                 intel_connector, fixed_mode);
5691                         break;
5692                 }
5693         }
5694
5695         /* fallback to VBT if available for eDP */
5696         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5697                 fixed_mode = drm_mode_duplicate(dev,
5698                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5699                 if (fixed_mode)
5700                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5701         }
5702         mutex_unlock(&dev->mode_config.mutex);
5703
5704         if (IS_VALLEYVIEW(dev)) {
5705                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5706                 register_reboot_notifier(&intel_dp->edp_notifier);
5707
5708                 /*
5709                  * Figure out the current pipe for the initial backlight setup.
5710                  * If the current pipe isn't valid, try the PPS pipe, and if that
5711                  * fails just assume pipe A.
5712                  */
5713                 if (IS_CHERRYVIEW(dev))
5714                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5715                 else
5716                         pipe = PORT_TO_PIPE(intel_dp->DP);
5717
5718                 if (pipe != PIPE_A && pipe != PIPE_B)
5719                         pipe = intel_dp->pps_pipe;
5720
5721                 if (pipe != PIPE_A && pipe != PIPE_B)
5722                         pipe = PIPE_A;
5723
5724                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5725                               pipe_name(pipe));
5726         }
5727
5728         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5729         intel_connector->panel.backlight_power = intel_edp_backlight_power;
5730         intel_panel_setup_backlight(connector, pipe);
5731
5732         return true;
5733 }
5734
5735 bool
5736 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5737                         struct intel_connector *intel_connector)
5738 {
5739         struct drm_connector *connector = &intel_connector->base;
5740         struct intel_dp *intel_dp = &intel_dig_port->dp;
5741         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5742         struct drm_device *dev = intel_encoder->base.dev;
5743         struct drm_i915_private *dev_priv = dev->dev_private;
5744         enum port port = intel_dig_port->port;
5745         int type;
5746
5747         intel_dp->pps_pipe = INVALID_PIPE;
5748
5749         /* intel_dp vfuncs */
5750         if (INTEL_INFO(dev)->gen >= 9)
5751                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5752         else if (IS_VALLEYVIEW(dev))
5753                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5754         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5755                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5756         else if (HAS_PCH_SPLIT(dev))
5757                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5758         else
5759                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5760
5761         if (INTEL_INFO(dev)->gen >= 9)
5762                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5763         else
5764                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5765
5766         /* Preserve the current hw state. */
5767         intel_dp->DP = I915_READ(intel_dp->output_reg);
5768         intel_dp->attached_connector = intel_connector;
5769
5770         if (intel_dp_is_edp(dev, port))
5771                 type = DRM_MODE_CONNECTOR_eDP;
5772         else
5773                 type = DRM_MODE_CONNECTOR_DisplayPort;
5774
5775         /*
5776          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5777          * for DP the encoder type can be set by the caller to
5778          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5779          */
5780         if (type == DRM_MODE_CONNECTOR_eDP)
5781                 intel_encoder->type = INTEL_OUTPUT_EDP;
5782
5783         /* eDP only on port B and/or C on vlv/chv */
5784         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5785                     port != PORT_B && port != PORT_C))
5786                 return false;
5787
5788         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5789                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5790                         port_name(port));
5791
5792         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5793         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5794
5795         connector->interlace_allowed = true;
5796         connector->doublescan_allowed = 0;
5797
5798         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5799                           edp_panel_vdd_work);
5800
5801         intel_connector_attach_encoder(intel_connector, intel_encoder);
5802         drm_connector_register(connector);
5803
5804         if (HAS_DDI(dev))
5805                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5806         else
5807                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5808         intel_connector->unregister = intel_dp_connector_unregister;
5809
5810         /* Set up the hotplug pin. */
5811         switch (port) {
5812         case PORT_A:
5813                 intel_encoder->hpd_pin = HPD_PORT_A;
5814                 break;
5815         case PORT_B:
5816                 intel_encoder->hpd_pin = HPD_PORT_B;
5817                 break;
5818         case PORT_C:
5819                 intel_encoder->hpd_pin = HPD_PORT_C;
5820                 break;
5821         case PORT_D:
5822                 intel_encoder->hpd_pin = HPD_PORT_D;
5823                 break;
5824         default:
5825                 BUG();
5826         }
5827
5828         if (is_edp(intel_dp)) {
5829                 pps_lock(intel_dp);
5830                 intel_dp_init_panel_power_timestamps(intel_dp);
5831                 if (IS_VALLEYVIEW(dev))
5832                         vlv_initial_power_sequencer_setup(intel_dp);
5833                 else
5834                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5835                 pps_unlock(intel_dp);
5836         }
5837
5838         intel_dp_aux_init(intel_dp, intel_connector);
5839
5840         /* init MST on ports that can support it */
5841         if (HAS_DP_MST(dev) &&
5842             (port == PORT_B || port == PORT_C || port == PORT_D))
5843                 intel_dp_mst_encoder_init(intel_dig_port,
5844                                           intel_connector->base.base.id);
5845
5846         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5847                 drm_dp_aux_unregister(&intel_dp->aux);
5848                 if (is_edp(intel_dp)) {
5849                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5850                         /*
5851                          * vdd might still be enabled do to the delayed vdd off.
5852                          * Make sure vdd is actually turned off here.
5853                          */
5854                         pps_lock(intel_dp);
5855                         edp_panel_vdd_off_sync(intel_dp);
5856                         pps_unlock(intel_dp);
5857                 }
5858                 drm_connector_unregister(connector);
5859                 drm_connector_cleanup(connector);
5860                 return false;
5861         }
5862
5863         intel_dp_add_properties(intel_dp, connector);
5864
5865         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5866          * 0xd.  Failure to do so will result in spurious interrupts being
5867          * generated on the port when a cable is not attached.
5868          */
5869         if (IS_G4X(dev) && !IS_GM45(dev)) {
5870                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5871                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5872         }
5873
5874         i915_debugfs_connector_add(connector);
5875
5876         return true;
5877 }
5878
5879 void
5880 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5881 {
5882         struct drm_i915_private *dev_priv = dev->dev_private;
5883         struct intel_digital_port *intel_dig_port;
5884         struct intel_encoder *intel_encoder;
5885         struct drm_encoder *encoder;
5886         struct intel_connector *intel_connector;
5887
5888         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5889         if (!intel_dig_port)
5890                 return;
5891
5892         intel_connector = intel_connector_alloc();
5893         if (!intel_connector) {
5894                 kfree(intel_dig_port);
5895                 return;
5896         }
5897
5898         intel_encoder = &intel_dig_port->base;
5899         encoder = &intel_encoder->base;
5900
5901         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5902                          DRM_MODE_ENCODER_TMDS);
5903
5904         intel_encoder->compute_config = intel_dp_compute_config;
5905         intel_encoder->disable = intel_disable_dp;
5906         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5907         intel_encoder->get_config = intel_dp_get_config;
5908         intel_encoder->suspend = intel_dp_encoder_suspend;
5909         if (IS_CHERRYVIEW(dev)) {
5910                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5911                 intel_encoder->pre_enable = chv_pre_enable_dp;
5912                 intel_encoder->enable = vlv_enable_dp;
5913                 intel_encoder->post_disable = chv_post_disable_dp;
5914         } else if (IS_VALLEYVIEW(dev)) {
5915                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5916                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5917                 intel_encoder->enable = vlv_enable_dp;
5918                 intel_encoder->post_disable = vlv_post_disable_dp;
5919         } else {
5920                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5921                 intel_encoder->enable = g4x_enable_dp;
5922                 if (INTEL_INFO(dev)->gen >= 5)
5923                         intel_encoder->post_disable = ilk_post_disable_dp;
5924         }
5925
5926         intel_dig_port->port = port;
5927         intel_dig_port->dp.output_reg = output_reg;
5928
5929         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5930         if (IS_CHERRYVIEW(dev)) {
5931                 if (port == PORT_D)
5932                         intel_encoder->crtc_mask = 1 << 2;
5933                 else
5934                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5935         } else {
5936                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5937         }
5938         intel_encoder->cloneable = 0;
5939         intel_encoder->hot_plug = intel_dp_hot_plug;
5940
5941         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5942         dev_priv->hpd_irq_port[port] = intel_dig_port;
5943
5944         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5945                 drm_encoder_cleanup(encoder);
5946                 kfree(intel_dig_port);
5947                 kfree(intel_connector);
5948         }
5949 }
5950
5951 void intel_dp_mst_suspend(struct drm_device *dev)
5952 {
5953         struct drm_i915_private *dev_priv = dev->dev_private;
5954         int i;
5955
5956         /* disable MST */
5957         for (i = 0; i < I915_MAX_PORTS; i++) {
5958                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5959                 if (!intel_dig_port)
5960                         continue;
5961
5962                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5963                         if (!intel_dig_port->dp.can_mst)
5964                                 continue;
5965                         if (intel_dig_port->dp.is_mst)
5966                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5967                 }
5968         }
5969 }
5970
5971 void intel_dp_mst_resume(struct drm_device *dev)
5972 {
5973         struct drm_i915_private *dev_priv = dev->dev_private;
5974         int i;
5975
5976         for (i = 0; i < I915_MAX_PORTS; i++) {
5977                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5978                 if (!intel_dig_port)
5979                         continue;
5980                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5981                         int ret;
5982
5983                         if (!intel_dig_port->dp.can_mst)
5984                                 continue;
5985
5986                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5987                         if (ret != 0) {
5988                                 intel_dp_check_mst_status(&intel_dig_port->dp);
5989                         }
5990                 }
5991         }
5992 }