OSDN Git Service

Merge tag 'spdx-5.2-rc3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[uclinux-h8/linux.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35
36 #include "hyperv_net.h"
37
38 #define RING_SIZE_MIN   64
39 #define RETRY_US_LO     5000
40 #define RETRY_US_HI     10000
41 #define RETRY_MAX       2000    /* >10 sec */
42
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54                                 NETIF_MSG_TX_ERR;
55
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static LIST_HEAD(netvsc_dev_list);
61
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64         struct net_device_context *ndev_ctx = netdev_priv(net);
65         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66         int inc;
67
68         if (!vf_netdev)
69                 return;
70
71         if (change & IFF_PROMISC) {
72                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73                 dev_set_promiscuity(vf_netdev, inc);
74         }
75
76         if (change & IFF_ALLMULTI) {
77                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78                 dev_set_allmulti(vf_netdev, inc);
79         }
80 }
81
82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84         struct net_device_context *ndev_ctx = netdev_priv(net);
85         struct net_device *vf_netdev;
86         struct netvsc_device *nvdev;
87
88         rcu_read_lock();
89         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90         if (vf_netdev) {
91                 dev_uc_sync(vf_netdev, net);
92                 dev_mc_sync(vf_netdev, net);
93         }
94
95         nvdev = rcu_dereference(ndev_ctx->nvdev);
96         if (nvdev)
97                 rndis_filter_update(nvdev);
98         rcu_read_unlock();
99 }
100
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102                              struct net_device *ndev)
103 {
104         nvscdev->tx_disable = false;
105         virt_wmb(); /* ensure queue wake up mechanism is on */
106
107         netif_tx_wake_all_queues(ndev);
108 }
109
110 static int netvsc_open(struct net_device *net)
111 {
112         struct net_device_context *ndev_ctx = netdev_priv(net);
113         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115         struct rndis_device *rdev;
116         int ret = 0;
117
118         netif_carrier_off(net);
119
120         /* Open up the device */
121         ret = rndis_filter_open(nvdev);
122         if (ret != 0) {
123                 netdev_err(net, "unable to open device (ret %d).\n", ret);
124                 return ret;
125         }
126
127         rdev = nvdev->extension;
128         if (!rdev->link_state) {
129                 netif_carrier_on(net);
130                 netvsc_tx_enable(nvdev, net);
131         }
132
133         if (vf_netdev) {
134                 /* Setting synthetic device up transparently sets
135                  * slave as up. If open fails, then slave will be
136                  * still be offline (and not used).
137                  */
138                 ret = dev_open(vf_netdev, NULL);
139                 if (ret)
140                         netdev_warn(net,
141                                     "unable to open slave: %s: %d\n",
142                                     vf_netdev->name, ret);
143         }
144         return 0;
145 }
146
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149         unsigned int retry = 0;
150         int i;
151
152         /* Ensure pending bytes in ring are read */
153         for (;;) {
154                 u32 aread = 0;
155
156                 for (i = 0; i < nvdev->num_chn; i++) {
157                         struct vmbus_channel *chn
158                                 = nvdev->chan_table[i].channel;
159
160                         if (!chn)
161                                 continue;
162
163                         /* make sure receive not running now */
164                         napi_synchronize(&nvdev->chan_table[i].napi);
165
166                         aread = hv_get_bytes_to_read(&chn->inbound);
167                         if (aread)
168                                 break;
169
170                         aread = hv_get_bytes_to_read(&chn->outbound);
171                         if (aread)
172                                 break;
173                 }
174
175                 if (aread == 0)
176                         return 0;
177
178                 if (++retry > RETRY_MAX)
179                         return -ETIMEDOUT;
180
181                 usleep_range(RETRY_US_LO, RETRY_US_HI);
182         }
183 }
184
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186                               struct net_device *ndev)
187 {
188         if (nvscdev) {
189                 nvscdev->tx_disable = true;
190                 virt_wmb(); /* ensure txq will not wake up after stop */
191         }
192
193         netif_tx_disable(ndev);
194 }
195
196 static int netvsc_close(struct net_device *net)
197 {
198         struct net_device_context *net_device_ctx = netdev_priv(net);
199         struct net_device *vf_netdev
200                 = rtnl_dereference(net_device_ctx->vf_netdev);
201         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202         int ret;
203
204         netvsc_tx_disable(nvdev, net);
205
206         /* No need to close rndis filter if it is removed already */
207         if (!nvdev)
208                 return 0;
209
210         ret = rndis_filter_close(nvdev);
211         if (ret != 0) {
212                 netdev_err(net, "unable to close device (ret %d).\n", ret);
213                 return ret;
214         }
215
216         ret = netvsc_wait_until_empty(nvdev);
217         if (ret)
218                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220         if (vf_netdev)
221                 dev_close(vf_netdev);
222
223         return ret;
224 }
225
226 static inline void *init_ppi_data(struct rndis_message *msg,
227                                   u32 ppi_size, u32 pkt_type)
228 {
229         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230         struct rndis_per_packet_info *ppi;
231
232         rndis_pkt->data_offset += ppi_size;
233         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234                 + rndis_pkt->per_pkt_info_len;
235
236         ppi->size = ppi_size;
237         ppi->type = pkt_type;
238         ppi->internal = 0;
239         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241         rndis_pkt->per_pkt_info_len += ppi_size;
242
243         return ppi + 1;
244 }
245
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247  * packets. We can use ethtool to change UDP hash level when necessary.
248  */
249 static inline u32 netvsc_get_hash(
250         struct sk_buff *skb,
251         const struct net_device_context *ndc)
252 {
253         struct flow_keys flow;
254         u32 hash, pkt_proto = 0;
255         static u32 hashrnd __read_mostly;
256
257         net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260                 return 0;
261
262         switch (flow.basic.ip_proto) {
263         case IPPROTO_TCP:
264                 if (flow.basic.n_proto == htons(ETH_P_IP))
265                         pkt_proto = HV_TCP4_L4HASH;
266                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267                         pkt_proto = HV_TCP6_L4HASH;
268
269                 break;
270
271         case IPPROTO_UDP:
272                 if (flow.basic.n_proto == htons(ETH_P_IP))
273                         pkt_proto = HV_UDP4_L4HASH;
274                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275                         pkt_proto = HV_UDP6_L4HASH;
276
277                 break;
278         }
279
280         if (pkt_proto & ndc->l4_hash) {
281                 return skb_get_hash(skb);
282         } else {
283                 if (flow.basic.n_proto == htons(ETH_P_IP))
284                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287                 else
288                         hash = 0;
289
290                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291         }
292
293         return hash;
294 }
295
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297                                       struct sk_buff *skb, int old_idx)
298 {
299         const struct net_device_context *ndc = netdev_priv(ndev);
300         struct sock *sk = skb->sk;
301         int q_idx;
302
303         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304                               (VRSS_SEND_TAB_SIZE - 1)];
305
306         /* If queue index changed record the new value */
307         if (q_idx != old_idx &&
308             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309                 sk_tx_queue_set(sk, q_idx);
310
311         return q_idx;
312 }
313
314 /*
315  * Select queue for transmit.
316  *
317  * If a valid queue has already been assigned, then use that.
318  * Otherwise compute tx queue based on hash and the send table.
319  *
320  * This is basically similar to default (netdev_pick_tx) with the added step
321  * of using the host send_table when no other queue has been assigned.
322  *
323  * TODO support XPS - but get_xps_queue not exported
324  */
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327         int q_idx = sk_tx_queue_get(skb->sk);
328
329         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330                 /* If forwarding a packet, we use the recorded queue when
331                  * available for better cache locality.
332                  */
333                 if (skb_rx_queue_recorded(skb))
334                         q_idx = skb_get_rx_queue(skb);
335                 else
336                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337         }
338
339         return q_idx;
340 }
341
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343                                struct net_device *sb_dev)
344 {
345         struct net_device_context *ndc = netdev_priv(ndev);
346         struct net_device *vf_netdev;
347         u16 txq;
348
349         rcu_read_lock();
350         vf_netdev = rcu_dereference(ndc->vf_netdev);
351         if (vf_netdev) {
352                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354                 if (vf_ops->ndo_select_queue)
355                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356                 else
357                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359                 /* Record the queue selected by VF so that it can be
360                  * used for common case where VF has more queues than
361                  * the synthetic device.
362                  */
363                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364         } else {
365                 txq = netvsc_pick_tx(ndev, skb);
366         }
367         rcu_read_unlock();
368
369         while (unlikely(txq >= ndev->real_num_tx_queues))
370                 txq -= ndev->real_num_tx_queues;
371
372         return txq;
373 }
374
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376                        struct hv_page_buffer *pb)
377 {
378         int j = 0;
379
380         /* Deal with compound pages by ignoring unused part
381          * of the page.
382          */
383         page += (offset >> PAGE_SHIFT);
384         offset &= ~PAGE_MASK;
385
386         while (len > 0) {
387                 unsigned long bytes;
388
389                 bytes = PAGE_SIZE - offset;
390                 if (bytes > len)
391                         bytes = len;
392                 pb[j].pfn = page_to_pfn(page);
393                 pb[j].offset = offset;
394                 pb[j].len = bytes;
395
396                 offset += bytes;
397                 len -= bytes;
398
399                 if (offset == PAGE_SIZE && len) {
400                         page++;
401                         offset = 0;
402                         j++;
403                 }
404         }
405
406         return j + 1;
407 }
408
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410                            struct hv_netvsc_packet *packet,
411                            struct hv_page_buffer *pb)
412 {
413         u32 slots_used = 0;
414         char *data = skb->data;
415         int frags = skb_shinfo(skb)->nr_frags;
416         int i;
417
418         /* The packet is laid out thus:
419          * 1. hdr: RNDIS header and PPI
420          * 2. skb linear data
421          * 3. skb fragment data
422          */
423         slots_used += fill_pg_buf(virt_to_page(hdr),
424                                   offset_in_page(hdr),
425                                   len, &pb[slots_used]);
426
427         packet->rmsg_size = len;
428         packet->rmsg_pgcnt = slots_used;
429
430         slots_used += fill_pg_buf(virt_to_page(data),
431                                 offset_in_page(data),
432                                 skb_headlen(skb), &pb[slots_used]);
433
434         for (i = 0; i < frags; i++) {
435                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437                 slots_used += fill_pg_buf(skb_frag_page(frag),
438                                         frag->page_offset,
439                                         skb_frag_size(frag), &pb[slots_used]);
440         }
441         return slots_used;
442 }
443
444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446         int i, frags = skb_shinfo(skb)->nr_frags;
447         int pages = 0;
448
449         for (i = 0; i < frags; i++) {
450                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451                 unsigned long size = skb_frag_size(frag);
452                 unsigned long offset = frag->page_offset;
453
454                 /* Skip unused frames from start of page */
455                 offset &= ~PAGE_MASK;
456                 pages += PFN_UP(offset + size);
457         }
458         return pages;
459 }
460
461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463         char *data = skb->data;
464         unsigned int offset = offset_in_page(data);
465         unsigned int len = skb_headlen(skb);
466         int slots;
467         int frag_slots;
468
469         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470         frag_slots = count_skb_frag_slots(skb);
471         return slots + frag_slots;
472 }
473
474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476         if (skb->protocol == htons(ETH_P_IP)) {
477                 struct iphdr *ip = ip_hdr(skb);
478
479                 if (ip->protocol == IPPROTO_TCP)
480                         return TRANSPORT_INFO_IPV4_TCP;
481                 else if (ip->protocol == IPPROTO_UDP)
482                         return TRANSPORT_INFO_IPV4_UDP;
483         } else {
484                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486                 if (ip6->nexthdr == IPPROTO_TCP)
487                         return TRANSPORT_INFO_IPV6_TCP;
488                 else if (ip6->nexthdr == IPPROTO_UDP)
489                         return TRANSPORT_INFO_IPV6_UDP;
490         }
491
492         return TRANSPORT_INFO_NOT_IP;
493 }
494
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497                           struct sk_buff *skb)
498 {
499         struct net_device_context *ndev_ctx = netdev_priv(net);
500         unsigned int len = skb->len;
501         int rc;
502
503         skb->dev = vf_netdev;
504         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506         rc = dev_queue_xmit(skb);
507         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508                 struct netvsc_vf_pcpu_stats *pcpu_stats
509                         = this_cpu_ptr(ndev_ctx->vf_stats);
510
511                 u64_stats_update_begin(&pcpu_stats->syncp);
512                 pcpu_stats->tx_packets++;
513                 pcpu_stats->tx_bytes += len;
514                 u64_stats_update_end(&pcpu_stats->syncp);
515         } else {
516                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517         }
518
519         return rc;
520 }
521
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524         struct net_device_context *net_device_ctx = netdev_priv(net);
525         struct hv_netvsc_packet *packet = NULL;
526         int ret;
527         unsigned int num_data_pgs;
528         struct rndis_message *rndis_msg;
529         struct net_device *vf_netdev;
530         u32 rndis_msg_size;
531         u32 hash;
532         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534         /* if VF is present and up then redirect packets
535          * already called with rcu_read_lock_bh
536          */
537         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538         if (vf_netdev && netif_running(vf_netdev) &&
539             !netpoll_tx_running(net))
540                 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542         /* We will atmost need two pages to describe the rndis
543          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544          * of pages in a single packet. If skb is scattered around
545          * more pages we try linearizing it.
546          */
547
548         num_data_pgs = netvsc_get_slots(skb) + 2;
549
550         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551                 ++net_device_ctx->eth_stats.tx_scattered;
552
553                 if (skb_linearize(skb))
554                         goto no_memory;
555
556                 num_data_pgs = netvsc_get_slots(skb) + 2;
557                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558                         ++net_device_ctx->eth_stats.tx_too_big;
559                         goto drop;
560                 }
561         }
562
563         /*
564          * Place the rndis header in the skb head room and
565          * the skb->cb will be used for hv_netvsc_packet
566          * structure.
567          */
568         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569         if (ret)
570                 goto no_memory;
571
572         /* Use the skb control buffer for building up the packet */
573         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574                         FIELD_SIZEOF(struct sk_buff, cb));
575         packet = (struct hv_netvsc_packet *)skb->cb;
576
577         packet->q_idx = skb_get_queue_mapping(skb);
578
579         packet->total_data_buflen = skb->len;
580         packet->total_bytes = skb->len;
581         packet->total_packets = 1;
582
583         rndis_msg = (struct rndis_message *)skb->head;
584
585         /* Add the rndis header */
586         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587         rndis_msg->msg_len = packet->total_data_buflen;
588
589         rndis_msg->msg.pkt = (struct rndis_packet) {
590                 .data_offset = sizeof(struct rndis_packet),
591                 .data_len = packet->total_data_buflen,
592                 .per_pkt_info_offset = sizeof(struct rndis_packet),
593         };
594
595         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597         hash = skb_get_hash_raw(skb);
598         if (hash != 0 && net->real_num_tx_queues > 1) {
599                 u32 *hash_info;
600
601                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603                                           NBL_HASH_VALUE);
604                 *hash_info = hash;
605         }
606
607         if (skb_vlan_tag_present(skb)) {
608                 struct ndis_pkt_8021q_info *vlan;
609
610                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612                                      IEEE_8021Q_INFO);
613
614                 vlan->value = 0;
615                 vlan->vlanid = skb_vlan_tag_get_id(skb);
616                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617                 vlan->pri = skb_vlan_tag_get_prio(skb);
618         }
619
620         if (skb_is_gso(skb)) {
621                 struct ndis_tcp_lso_info *lso_info;
622
623                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625                                          TCP_LARGESEND_PKTINFO);
626
627                 lso_info->value = 0;
628                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629                 if (skb->protocol == htons(ETH_P_IP)) {
630                         lso_info->lso_v2_transmit.ip_version =
631                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632                         ip_hdr(skb)->tot_len = 0;
633                         ip_hdr(skb)->check = 0;
634                         tcp_hdr(skb)->check =
635                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637                 } else {
638                         lso_info->lso_v2_transmit.ip_version =
639                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640                         ipv6_hdr(skb)->payload_len = 0;
641                         tcp_hdr(skb)->check =
642                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644                 }
645                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649                         struct ndis_tcp_ip_checksum_info *csum_info;
650
651                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653                                                   TCPIP_CHKSUM_PKTINFO);
654
655                         csum_info->value = 0;
656                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658                         if (skb->protocol == htons(ETH_P_IP)) {
659                                 csum_info->transmit.is_ipv4 = 1;
660
661                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662                                         csum_info->transmit.tcp_checksum = 1;
663                                 else
664                                         csum_info->transmit.udp_checksum = 1;
665                         } else {
666                                 csum_info->transmit.is_ipv6 = 1;
667
668                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669                                         csum_info->transmit.tcp_checksum = 1;
670                                 else
671                                         csum_info->transmit.udp_checksum = 1;
672                         }
673                 } else {
674                         /* Can't do offload of this type of checksum */
675                         if (skb_checksum_help(skb))
676                                 goto drop;
677                 }
678         }
679
680         /* Start filling in the page buffers with the rndis hdr */
681         rndis_msg->msg_len += rndis_msg_size;
682         packet->total_data_buflen = rndis_msg->msg_len;
683         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684                                                skb, packet, pb);
685
686         /* timestamp packet in software */
687         skb_tx_timestamp(skb);
688
689         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690         if (likely(ret == 0))
691                 return NETDEV_TX_OK;
692
693         if (ret == -EAGAIN) {
694                 ++net_device_ctx->eth_stats.tx_busy;
695                 return NETDEV_TX_BUSY;
696         }
697
698         if (ret == -ENOSPC)
699                 ++net_device_ctx->eth_stats.tx_no_space;
700
701 drop:
702         dev_kfree_skb_any(skb);
703         net->stats.tx_dropped++;
704
705         return NETDEV_TX_OK;
706
707 no_memory:
708         ++net_device_ctx->eth_stats.tx_no_memory;
709         goto drop;
710 }
711
712 /*
713  * netvsc_linkstatus_callback - Link up/down notification
714  */
715 void netvsc_linkstatus_callback(struct net_device *net,
716                                 struct rndis_message *resp)
717 {
718         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719         struct net_device_context *ndev_ctx = netdev_priv(net);
720         struct netvsc_reconfig *event;
721         unsigned long flags;
722
723         /* Update the physical link speed when changing to another vSwitch */
724         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725                 u32 speed;
726
727                 speed = *(u32 *)((void *)indicate
728                                  + indicate->status_buf_offset) / 10000;
729                 ndev_ctx->speed = speed;
730                 return;
731         }
732
733         /* Handle these link change statuses below */
734         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737                 return;
738
739         if (net->reg_state != NETREG_REGISTERED)
740                 return;
741
742         event = kzalloc(sizeof(*event), GFP_ATOMIC);
743         if (!event)
744                 return;
745         event->event = indicate->status;
746
747         spin_lock_irqsave(&ndev_ctx->lock, flags);
748         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751         schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756         struct iphdr *iph = (struct iphdr *)skb->data;
757
758         iph->check = 0;
759         iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763                                              struct netvsc_channel *nvchan)
764 {
765         struct napi_struct *napi = &nvchan->napi;
766         const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767         const struct ndis_tcp_ip_checksum_info *csum_info =
768                                                 nvchan->rsc.csum_info;
769         struct sk_buff *skb;
770         int i;
771
772         skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773         if (!skb)
774                 return skb;
775
776         /*
777          * Copy to skb. This copy is needed here since the memory pointed by
778          * hv_netvsc_packet cannot be deallocated
779          */
780         for (i = 0; i < nvchan->rsc.cnt; i++)
781                 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783         skb->protocol = eth_type_trans(skb, net);
784
785         /* skb is already created with CHECKSUM_NONE */
786         skb_checksum_none_assert(skb);
787
788         /* Incoming packets may have IP header checksum verified by the host.
789          * They may not have IP header checksum computed after coalescing.
790          * We compute it here if the flags are set, because on Linux, the IP
791          * checksum is always checked.
792          */
793         if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794             csum_info->receive.ip_checksum_succeeded &&
795             skb->protocol == htons(ETH_P_IP))
796                 netvsc_comp_ipcsum(skb);
797
798         /* Do L4 checksum offload if enabled and present.
799          */
800         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801                 if (csum_info->receive.tcp_checksum_succeeded ||
802                     csum_info->receive.udp_checksum_succeeded)
803                         skb->ip_summed = CHECKSUM_UNNECESSARY;
804         }
805
806         if (vlan) {
807                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808                         (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811                                        vlan_tci);
812         }
813
814         return skb;
815 }
816
817 /*
818  * netvsc_recv_callback -  Callback when we receive a packet from the
819  * "wire" on the specified device.
820  */
821 int netvsc_recv_callback(struct net_device *net,
822                          struct netvsc_device *net_device,
823                          struct netvsc_channel *nvchan)
824 {
825         struct net_device_context *net_device_ctx = netdev_priv(net);
826         struct vmbus_channel *channel = nvchan->channel;
827         u16 q_idx = channel->offermsg.offer.sub_channel_index;
828         struct sk_buff *skb;
829         struct netvsc_stats *rx_stats;
830
831         if (net->reg_state != NETREG_REGISTERED)
832                 return NVSP_STAT_FAIL;
833
834         /* Allocate a skb - TODO direct I/O to pages? */
835         skb = netvsc_alloc_recv_skb(net, nvchan);
836
837         if (unlikely(!skb)) {
838                 ++net_device_ctx->eth_stats.rx_no_memory;
839                 rcu_read_unlock();
840                 return NVSP_STAT_FAIL;
841         }
842
843         skb_record_rx_queue(skb, q_idx);
844
845         /*
846          * Even if injecting the packet, record the statistics
847          * on the synthetic device because modifying the VF device
848          * statistics will not work correctly.
849          */
850         rx_stats = &nvchan->rx_stats;
851         u64_stats_update_begin(&rx_stats->syncp);
852         rx_stats->packets++;
853         rx_stats->bytes += nvchan->rsc.pktlen;
854
855         if (skb->pkt_type == PACKET_BROADCAST)
856                 ++rx_stats->broadcast;
857         else if (skb->pkt_type == PACKET_MULTICAST)
858                 ++rx_stats->multicast;
859         u64_stats_update_end(&rx_stats->syncp);
860
861         napi_gro_receive(&nvchan->napi, skb);
862         return NVSP_STAT_SUCCESS;
863 }
864
865 static void netvsc_get_drvinfo(struct net_device *net,
866                                struct ethtool_drvinfo *info)
867 {
868         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
869         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
870 }
871
872 static void netvsc_get_channels(struct net_device *net,
873                                 struct ethtool_channels *channel)
874 {
875         struct net_device_context *net_device_ctx = netdev_priv(net);
876         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
877
878         if (nvdev) {
879                 channel->max_combined   = nvdev->max_chn;
880                 channel->combined_count = nvdev->num_chn;
881         }
882 }
883
884 /* Alloc struct netvsc_device_info, and initialize it from either existing
885  * struct netvsc_device, or from default values.
886  */
887 static struct netvsc_device_info *netvsc_devinfo_get
888                         (struct netvsc_device *nvdev)
889 {
890         struct netvsc_device_info *dev_info;
891
892         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
893
894         if (!dev_info)
895                 return NULL;
896
897         if (nvdev) {
898                 dev_info->num_chn = nvdev->num_chn;
899                 dev_info->send_sections = nvdev->send_section_cnt;
900                 dev_info->send_section_size = nvdev->send_section_size;
901                 dev_info->recv_sections = nvdev->recv_section_cnt;
902                 dev_info->recv_section_size = nvdev->recv_section_size;
903
904                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
905                        NETVSC_HASH_KEYLEN);
906         } else {
907                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
908                 dev_info->send_sections = NETVSC_DEFAULT_TX;
909                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
910                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
911                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
912         }
913
914         return dev_info;
915 }
916
917 static int netvsc_detach(struct net_device *ndev,
918                          struct netvsc_device *nvdev)
919 {
920         struct net_device_context *ndev_ctx = netdev_priv(ndev);
921         struct hv_device *hdev = ndev_ctx->device_ctx;
922         int ret;
923
924         /* Don't try continuing to try and setup sub channels */
925         if (cancel_work_sync(&nvdev->subchan_work))
926                 nvdev->num_chn = 1;
927
928         /* If device was up (receiving) then shutdown */
929         if (netif_running(ndev)) {
930                 netvsc_tx_disable(nvdev, ndev);
931
932                 ret = rndis_filter_close(nvdev);
933                 if (ret) {
934                         netdev_err(ndev,
935                                    "unable to close device (ret %d).\n", ret);
936                         return ret;
937                 }
938
939                 ret = netvsc_wait_until_empty(nvdev);
940                 if (ret) {
941                         netdev_err(ndev,
942                                    "Ring buffer not empty after closing rndis\n");
943                         return ret;
944                 }
945         }
946
947         netif_device_detach(ndev);
948
949         rndis_filter_device_remove(hdev, nvdev);
950
951         return 0;
952 }
953
954 static int netvsc_attach(struct net_device *ndev,
955                          struct netvsc_device_info *dev_info)
956 {
957         struct net_device_context *ndev_ctx = netdev_priv(ndev);
958         struct hv_device *hdev = ndev_ctx->device_ctx;
959         struct netvsc_device *nvdev;
960         struct rndis_device *rdev;
961         int ret;
962
963         nvdev = rndis_filter_device_add(hdev, dev_info);
964         if (IS_ERR(nvdev))
965                 return PTR_ERR(nvdev);
966
967         if (nvdev->num_chn > 1) {
968                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
969
970                 /* if unavailable, just proceed with one queue */
971                 if (ret) {
972                         nvdev->max_chn = 1;
973                         nvdev->num_chn = 1;
974                 }
975         }
976
977         /* In any case device is now ready */
978         netif_device_attach(ndev);
979
980         /* Note: enable and attach happen when sub-channels setup */
981         netif_carrier_off(ndev);
982
983         if (netif_running(ndev)) {
984                 ret = rndis_filter_open(nvdev);
985                 if (ret)
986                         return ret;
987
988                 rdev = nvdev->extension;
989                 if (!rdev->link_state)
990                         netif_carrier_on(ndev);
991         }
992
993         return 0;
994 }
995
996 static int netvsc_set_channels(struct net_device *net,
997                                struct ethtool_channels *channels)
998 {
999         struct net_device_context *net_device_ctx = netdev_priv(net);
1000         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1001         unsigned int orig, count = channels->combined_count;
1002         struct netvsc_device_info *device_info;
1003         int ret;
1004
1005         /* We do not support separate count for rx, tx, or other */
1006         if (count == 0 ||
1007             channels->rx_count || channels->tx_count || channels->other_count)
1008                 return -EINVAL;
1009
1010         if (!nvdev || nvdev->destroy)
1011                 return -ENODEV;
1012
1013         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1014                 return -EINVAL;
1015
1016         if (count > nvdev->max_chn)
1017                 return -EINVAL;
1018
1019         orig = nvdev->num_chn;
1020
1021         device_info = netvsc_devinfo_get(nvdev);
1022
1023         if (!device_info)
1024                 return -ENOMEM;
1025
1026         device_info->num_chn = count;
1027
1028         ret = netvsc_detach(net, nvdev);
1029         if (ret)
1030                 goto out;
1031
1032         ret = netvsc_attach(net, device_info);
1033         if (ret) {
1034                 device_info->num_chn = orig;
1035                 if (netvsc_attach(net, device_info))
1036                         netdev_err(net, "restoring channel setting failed\n");
1037         }
1038
1039 out:
1040         kfree(device_info);
1041         return ret;
1042 }
1043
1044 static bool
1045 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1046 {
1047         struct ethtool_link_ksettings diff1 = *cmd;
1048         struct ethtool_link_ksettings diff2 = {};
1049
1050         diff1.base.speed = 0;
1051         diff1.base.duplex = 0;
1052         /* advertising and cmd are usually set */
1053         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1054         diff1.base.cmd = 0;
1055         /* We set port to PORT_OTHER */
1056         diff2.base.port = PORT_OTHER;
1057
1058         return !memcmp(&diff1, &diff2, sizeof(diff1));
1059 }
1060
1061 static void netvsc_init_settings(struct net_device *dev)
1062 {
1063         struct net_device_context *ndc = netdev_priv(dev);
1064
1065         ndc->l4_hash = HV_DEFAULT_L4HASH;
1066
1067         ndc->speed = SPEED_UNKNOWN;
1068         ndc->duplex = DUPLEX_FULL;
1069
1070         dev->features = NETIF_F_LRO;
1071 }
1072
1073 static int netvsc_get_link_ksettings(struct net_device *dev,
1074                                      struct ethtool_link_ksettings *cmd)
1075 {
1076         struct net_device_context *ndc = netdev_priv(dev);
1077
1078         cmd->base.speed = ndc->speed;
1079         cmd->base.duplex = ndc->duplex;
1080         cmd->base.port = PORT_OTHER;
1081
1082         return 0;
1083 }
1084
1085 static int netvsc_set_link_ksettings(struct net_device *dev,
1086                                      const struct ethtool_link_ksettings *cmd)
1087 {
1088         struct net_device_context *ndc = netdev_priv(dev);
1089         u32 speed;
1090
1091         speed = cmd->base.speed;
1092         if (!ethtool_validate_speed(speed) ||
1093             !ethtool_validate_duplex(cmd->base.duplex) ||
1094             !netvsc_validate_ethtool_ss_cmd(cmd))
1095                 return -EINVAL;
1096
1097         ndc->speed = speed;
1098         ndc->duplex = cmd->base.duplex;
1099
1100         return 0;
1101 }
1102
1103 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1104 {
1105         struct net_device_context *ndevctx = netdev_priv(ndev);
1106         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1107         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1108         int orig_mtu = ndev->mtu;
1109         struct netvsc_device_info *device_info;
1110         int ret = 0;
1111
1112         if (!nvdev || nvdev->destroy)
1113                 return -ENODEV;
1114
1115         device_info = netvsc_devinfo_get(nvdev);
1116
1117         if (!device_info)
1118                 return -ENOMEM;
1119
1120         /* Change MTU of underlying VF netdev first. */
1121         if (vf_netdev) {
1122                 ret = dev_set_mtu(vf_netdev, mtu);
1123                 if (ret)
1124                         goto out;
1125         }
1126
1127         ret = netvsc_detach(ndev, nvdev);
1128         if (ret)
1129                 goto rollback_vf;
1130
1131         ndev->mtu = mtu;
1132
1133         ret = netvsc_attach(ndev, device_info);
1134         if (!ret)
1135                 goto out;
1136
1137         /* Attempt rollback to original MTU */
1138         ndev->mtu = orig_mtu;
1139
1140         if (netvsc_attach(ndev, device_info))
1141                 netdev_err(ndev, "restoring mtu failed\n");
1142 rollback_vf:
1143         if (vf_netdev)
1144                 dev_set_mtu(vf_netdev, orig_mtu);
1145
1146 out:
1147         kfree(device_info);
1148         return ret;
1149 }
1150
1151 static void netvsc_get_vf_stats(struct net_device *net,
1152                                 struct netvsc_vf_pcpu_stats *tot)
1153 {
1154         struct net_device_context *ndev_ctx = netdev_priv(net);
1155         int i;
1156
1157         memset(tot, 0, sizeof(*tot));
1158
1159         for_each_possible_cpu(i) {
1160                 const struct netvsc_vf_pcpu_stats *stats
1161                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1162                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1163                 unsigned int start;
1164
1165                 do {
1166                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1167                         rx_packets = stats->rx_packets;
1168                         tx_packets = stats->tx_packets;
1169                         rx_bytes = stats->rx_bytes;
1170                         tx_bytes = stats->tx_bytes;
1171                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1172
1173                 tot->rx_packets += rx_packets;
1174                 tot->tx_packets += tx_packets;
1175                 tot->rx_bytes   += rx_bytes;
1176                 tot->tx_bytes   += tx_bytes;
1177                 tot->tx_dropped += stats->tx_dropped;
1178         }
1179 }
1180
1181 static void netvsc_get_pcpu_stats(struct net_device *net,
1182                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1183 {
1184         struct net_device_context *ndev_ctx = netdev_priv(net);
1185         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1186         int i;
1187
1188         /* fetch percpu stats of vf */
1189         for_each_possible_cpu(i) {
1190                 const struct netvsc_vf_pcpu_stats *stats =
1191                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1192                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1193                 unsigned int start;
1194
1195                 do {
1196                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1197                         this_tot->vf_rx_packets = stats->rx_packets;
1198                         this_tot->vf_tx_packets = stats->tx_packets;
1199                         this_tot->vf_rx_bytes = stats->rx_bytes;
1200                         this_tot->vf_tx_bytes = stats->tx_bytes;
1201                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1202                 this_tot->rx_packets = this_tot->vf_rx_packets;
1203                 this_tot->tx_packets = this_tot->vf_tx_packets;
1204                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1205                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1206         }
1207
1208         /* fetch percpu stats of netvsc */
1209         for (i = 0; i < nvdev->num_chn; i++) {
1210                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1211                 const struct netvsc_stats *stats;
1212                 struct netvsc_ethtool_pcpu_stats *this_tot =
1213                         &pcpu_tot[nvchan->channel->target_cpu];
1214                 u64 packets, bytes;
1215                 unsigned int start;
1216
1217                 stats = &nvchan->tx_stats;
1218                 do {
1219                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1220                         packets = stats->packets;
1221                         bytes = stats->bytes;
1222                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1223
1224                 this_tot->tx_bytes      += bytes;
1225                 this_tot->tx_packets    += packets;
1226
1227                 stats = &nvchan->rx_stats;
1228                 do {
1229                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1230                         packets = stats->packets;
1231                         bytes = stats->bytes;
1232                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1233
1234                 this_tot->rx_bytes      += bytes;
1235                 this_tot->rx_packets    += packets;
1236         }
1237 }
1238
1239 static void netvsc_get_stats64(struct net_device *net,
1240                                struct rtnl_link_stats64 *t)
1241 {
1242         struct net_device_context *ndev_ctx = netdev_priv(net);
1243         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1244         struct netvsc_vf_pcpu_stats vf_tot;
1245         int i;
1246
1247         if (!nvdev)
1248                 return;
1249
1250         netdev_stats_to_stats64(t, &net->stats);
1251
1252         netvsc_get_vf_stats(net, &vf_tot);
1253         t->rx_packets += vf_tot.rx_packets;
1254         t->tx_packets += vf_tot.tx_packets;
1255         t->rx_bytes   += vf_tot.rx_bytes;
1256         t->tx_bytes   += vf_tot.tx_bytes;
1257         t->tx_dropped += vf_tot.tx_dropped;
1258
1259         for (i = 0; i < nvdev->num_chn; i++) {
1260                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1261                 const struct netvsc_stats *stats;
1262                 u64 packets, bytes, multicast;
1263                 unsigned int start;
1264
1265                 stats = &nvchan->tx_stats;
1266                 do {
1267                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1268                         packets = stats->packets;
1269                         bytes = stats->bytes;
1270                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1271
1272                 t->tx_bytes     += bytes;
1273                 t->tx_packets   += packets;
1274
1275                 stats = &nvchan->rx_stats;
1276                 do {
1277                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1278                         packets = stats->packets;
1279                         bytes = stats->bytes;
1280                         multicast = stats->multicast + stats->broadcast;
1281                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1282
1283                 t->rx_bytes     += bytes;
1284                 t->rx_packets   += packets;
1285                 t->multicast    += multicast;
1286         }
1287 }
1288
1289 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1290 {
1291         struct net_device_context *ndc = netdev_priv(ndev);
1292         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1293         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1294         struct sockaddr *addr = p;
1295         int err;
1296
1297         err = eth_prepare_mac_addr_change(ndev, p);
1298         if (err)
1299                 return err;
1300
1301         if (!nvdev)
1302                 return -ENODEV;
1303
1304         if (vf_netdev) {
1305                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1306                 if (err)
1307                         return err;
1308         }
1309
1310         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1311         if (!err) {
1312                 eth_commit_mac_addr_change(ndev, p);
1313         } else if (vf_netdev) {
1314                 /* rollback change on VF */
1315                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1316                 dev_set_mac_address(vf_netdev, addr, NULL);
1317         }
1318
1319         return err;
1320 }
1321
1322 static const struct {
1323         char name[ETH_GSTRING_LEN];
1324         u16 offset;
1325 } netvsc_stats[] = {
1326         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1327         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1328         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1329         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1330         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1331         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1332         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1333         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1334         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1335         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1336 }, pcpu_stats[] = {
1337         { "cpu%u_rx_packets",
1338                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1339         { "cpu%u_rx_bytes",
1340                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1341         { "cpu%u_tx_packets",
1342                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1343         { "cpu%u_tx_bytes",
1344                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1345         { "cpu%u_vf_rx_packets",
1346                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1347         { "cpu%u_vf_rx_bytes",
1348                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1349         { "cpu%u_vf_tx_packets",
1350                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1351         { "cpu%u_vf_tx_bytes",
1352                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1353 }, vf_stats[] = {
1354         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1355         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1356         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1357         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1358         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1359 };
1360
1361 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1362 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1363
1364 /* statistics per queue (rx/tx packets/bytes) */
1365 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1366
1367 /* 4 statistics per queue (rx/tx packets/bytes) */
1368 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1369
1370 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1371 {
1372         struct net_device_context *ndc = netdev_priv(dev);
1373         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1374
1375         if (!nvdev)
1376                 return -ENODEV;
1377
1378         switch (string_set) {
1379         case ETH_SS_STATS:
1380                 return NETVSC_GLOBAL_STATS_LEN
1381                         + NETVSC_VF_STATS_LEN
1382                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1383                         + NETVSC_PCPU_STATS_LEN;
1384         default:
1385                 return -EINVAL;
1386         }
1387 }
1388
1389 static void netvsc_get_ethtool_stats(struct net_device *dev,
1390                                      struct ethtool_stats *stats, u64 *data)
1391 {
1392         struct net_device_context *ndc = netdev_priv(dev);
1393         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1394         const void *nds = &ndc->eth_stats;
1395         const struct netvsc_stats *qstats;
1396         struct netvsc_vf_pcpu_stats sum;
1397         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1398         unsigned int start;
1399         u64 packets, bytes;
1400         int i, j, cpu;
1401
1402         if (!nvdev)
1403                 return;
1404
1405         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1406                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1407
1408         netvsc_get_vf_stats(dev, &sum);
1409         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1410                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1411
1412         for (j = 0; j < nvdev->num_chn; j++) {
1413                 qstats = &nvdev->chan_table[j].tx_stats;
1414
1415                 do {
1416                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1417                         packets = qstats->packets;
1418                         bytes = qstats->bytes;
1419                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1420                 data[i++] = packets;
1421                 data[i++] = bytes;
1422
1423                 qstats = &nvdev->chan_table[j].rx_stats;
1424                 do {
1425                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1426                         packets = qstats->packets;
1427                         bytes = qstats->bytes;
1428                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1429                 data[i++] = packets;
1430                 data[i++] = bytes;
1431         }
1432
1433         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1434                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1435                                   GFP_KERNEL);
1436         netvsc_get_pcpu_stats(dev, pcpu_sum);
1437         for_each_present_cpu(cpu) {
1438                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1439
1440                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1441                         data[i++] = *(u64 *)((void *)this_sum
1442                                              + pcpu_stats[j].offset);
1443         }
1444         kvfree(pcpu_sum);
1445 }
1446
1447 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1448 {
1449         struct net_device_context *ndc = netdev_priv(dev);
1450         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1451         u8 *p = data;
1452         int i, cpu;
1453
1454         if (!nvdev)
1455                 return;
1456
1457         switch (stringset) {
1458         case ETH_SS_STATS:
1459                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1460                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1461                         p += ETH_GSTRING_LEN;
1462                 }
1463
1464                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1465                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1466                         p += ETH_GSTRING_LEN;
1467                 }
1468
1469                 for (i = 0; i < nvdev->num_chn; i++) {
1470                         sprintf(p, "tx_queue_%u_packets", i);
1471                         p += ETH_GSTRING_LEN;
1472                         sprintf(p, "tx_queue_%u_bytes", i);
1473                         p += ETH_GSTRING_LEN;
1474                         sprintf(p, "rx_queue_%u_packets", i);
1475                         p += ETH_GSTRING_LEN;
1476                         sprintf(p, "rx_queue_%u_bytes", i);
1477                         p += ETH_GSTRING_LEN;
1478                 }
1479
1480                 for_each_present_cpu(cpu) {
1481                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1482                                 sprintf(p, pcpu_stats[i].name, cpu);
1483                                 p += ETH_GSTRING_LEN;
1484                         }
1485                 }
1486
1487                 break;
1488         }
1489 }
1490
1491 static int
1492 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1493                          struct ethtool_rxnfc *info)
1494 {
1495         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1496
1497         info->data = RXH_IP_SRC | RXH_IP_DST;
1498
1499         switch (info->flow_type) {
1500         case TCP_V4_FLOW:
1501                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1502                         info->data |= l4_flag;
1503
1504                 break;
1505
1506         case TCP_V6_FLOW:
1507                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1508                         info->data |= l4_flag;
1509
1510                 break;
1511
1512         case UDP_V4_FLOW:
1513                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1514                         info->data |= l4_flag;
1515
1516                 break;
1517
1518         case UDP_V6_FLOW:
1519                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1520                         info->data |= l4_flag;
1521
1522                 break;
1523
1524         case IPV4_FLOW:
1525         case IPV6_FLOW:
1526                 break;
1527         default:
1528                 info->data = 0;
1529                 break;
1530         }
1531
1532         return 0;
1533 }
1534
1535 static int
1536 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1537                  u32 *rules)
1538 {
1539         struct net_device_context *ndc = netdev_priv(dev);
1540         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1541
1542         if (!nvdev)
1543                 return -ENODEV;
1544
1545         switch (info->cmd) {
1546         case ETHTOOL_GRXRINGS:
1547                 info->data = nvdev->num_chn;
1548                 return 0;
1549
1550         case ETHTOOL_GRXFH:
1551                 return netvsc_get_rss_hash_opts(ndc, info);
1552         }
1553         return -EOPNOTSUPP;
1554 }
1555
1556 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1557                                     struct ethtool_rxnfc *info)
1558 {
1559         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1560                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1561                 switch (info->flow_type) {
1562                 case TCP_V4_FLOW:
1563                         ndc->l4_hash |= HV_TCP4_L4HASH;
1564                         break;
1565
1566                 case TCP_V6_FLOW:
1567                         ndc->l4_hash |= HV_TCP6_L4HASH;
1568                         break;
1569
1570                 case UDP_V4_FLOW:
1571                         ndc->l4_hash |= HV_UDP4_L4HASH;
1572                         break;
1573
1574                 case UDP_V6_FLOW:
1575                         ndc->l4_hash |= HV_UDP6_L4HASH;
1576                         break;
1577
1578                 default:
1579                         return -EOPNOTSUPP;
1580                 }
1581
1582                 return 0;
1583         }
1584
1585         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1586                 switch (info->flow_type) {
1587                 case TCP_V4_FLOW:
1588                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1589                         break;
1590
1591                 case TCP_V6_FLOW:
1592                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1593                         break;
1594
1595                 case UDP_V4_FLOW:
1596                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1597                         break;
1598
1599                 case UDP_V6_FLOW:
1600                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1601                         break;
1602
1603                 default:
1604                         return -EOPNOTSUPP;
1605                 }
1606
1607                 return 0;
1608         }
1609
1610         return -EOPNOTSUPP;
1611 }
1612
1613 static int
1614 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1615 {
1616         struct net_device_context *ndc = netdev_priv(ndev);
1617
1618         if (info->cmd == ETHTOOL_SRXFH)
1619                 return netvsc_set_rss_hash_opts(ndc, info);
1620
1621         return -EOPNOTSUPP;
1622 }
1623
1624 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1625 {
1626         return NETVSC_HASH_KEYLEN;
1627 }
1628
1629 static u32 netvsc_rss_indir_size(struct net_device *dev)
1630 {
1631         return ITAB_NUM;
1632 }
1633
1634 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1635                            u8 *hfunc)
1636 {
1637         struct net_device_context *ndc = netdev_priv(dev);
1638         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1639         struct rndis_device *rndis_dev;
1640         int i;
1641
1642         if (!ndev)
1643                 return -ENODEV;
1644
1645         if (hfunc)
1646                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1647
1648         rndis_dev = ndev->extension;
1649         if (indir) {
1650                 for (i = 0; i < ITAB_NUM; i++)
1651                         indir[i] = rndis_dev->rx_table[i];
1652         }
1653
1654         if (key)
1655                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1656
1657         return 0;
1658 }
1659
1660 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1661                            const u8 *key, const u8 hfunc)
1662 {
1663         struct net_device_context *ndc = netdev_priv(dev);
1664         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1665         struct rndis_device *rndis_dev;
1666         int i;
1667
1668         if (!ndev)
1669                 return -ENODEV;
1670
1671         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1672                 return -EOPNOTSUPP;
1673
1674         rndis_dev = ndev->extension;
1675         if (indir) {
1676                 for (i = 0; i < ITAB_NUM; i++)
1677                         if (indir[i] >= ndev->num_chn)
1678                                 return -EINVAL;
1679
1680                 for (i = 0; i < ITAB_NUM; i++)
1681                         rndis_dev->rx_table[i] = indir[i];
1682         }
1683
1684         if (!key) {
1685                 if (!indir)
1686                         return 0;
1687
1688                 key = rndis_dev->rss_key;
1689         }
1690
1691         return rndis_filter_set_rss_param(rndis_dev, key);
1692 }
1693
1694 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1695  * It does have pre-allocated receive area which is divided into sections.
1696  */
1697 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1698                                    struct ethtool_ringparam *ring)
1699 {
1700         u32 max_buf_size;
1701
1702         ring->rx_pending = nvdev->recv_section_cnt;
1703         ring->tx_pending = nvdev->send_section_cnt;
1704
1705         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1706                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1707         else
1708                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1709
1710         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1711         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1712                 / nvdev->send_section_size;
1713 }
1714
1715 static void netvsc_get_ringparam(struct net_device *ndev,
1716                                  struct ethtool_ringparam *ring)
1717 {
1718         struct net_device_context *ndevctx = netdev_priv(ndev);
1719         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1720
1721         if (!nvdev)
1722                 return;
1723
1724         __netvsc_get_ringparam(nvdev, ring);
1725 }
1726
1727 static int netvsc_set_ringparam(struct net_device *ndev,
1728                                 struct ethtool_ringparam *ring)
1729 {
1730         struct net_device_context *ndevctx = netdev_priv(ndev);
1731         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1732         struct netvsc_device_info *device_info;
1733         struct ethtool_ringparam orig;
1734         u32 new_tx, new_rx;
1735         int ret = 0;
1736
1737         if (!nvdev || nvdev->destroy)
1738                 return -ENODEV;
1739
1740         memset(&orig, 0, sizeof(orig));
1741         __netvsc_get_ringparam(nvdev, &orig);
1742
1743         new_tx = clamp_t(u32, ring->tx_pending,
1744                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1745         new_rx = clamp_t(u32, ring->rx_pending,
1746                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1747
1748         if (new_tx == orig.tx_pending &&
1749             new_rx == orig.rx_pending)
1750                 return 0;        /* no change */
1751
1752         device_info = netvsc_devinfo_get(nvdev);
1753
1754         if (!device_info)
1755                 return -ENOMEM;
1756
1757         device_info->send_sections = new_tx;
1758         device_info->recv_sections = new_rx;
1759
1760         ret = netvsc_detach(ndev, nvdev);
1761         if (ret)
1762                 goto out;
1763
1764         ret = netvsc_attach(ndev, device_info);
1765         if (ret) {
1766                 device_info->send_sections = orig.tx_pending;
1767                 device_info->recv_sections = orig.rx_pending;
1768
1769                 if (netvsc_attach(ndev, device_info))
1770                         netdev_err(ndev, "restoring ringparam failed");
1771         }
1772
1773 out:
1774         kfree(device_info);
1775         return ret;
1776 }
1777
1778 static int netvsc_set_features(struct net_device *ndev,
1779                                netdev_features_t features)
1780 {
1781         netdev_features_t change = features ^ ndev->features;
1782         struct net_device_context *ndevctx = netdev_priv(ndev);
1783         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1784         struct ndis_offload_params offloads;
1785
1786         if (!nvdev || nvdev->destroy)
1787                 return -ENODEV;
1788
1789         if (!(change & NETIF_F_LRO))
1790                 return 0;
1791
1792         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1793
1794         if (features & NETIF_F_LRO) {
1795                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1796                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1797         } else {
1798                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1799                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1800         }
1801
1802         return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1803 }
1804
1805 static u32 netvsc_get_msglevel(struct net_device *ndev)
1806 {
1807         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1808
1809         return ndev_ctx->msg_enable;
1810 }
1811
1812 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1813 {
1814         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815
1816         ndev_ctx->msg_enable = val;
1817 }
1818
1819 static const struct ethtool_ops ethtool_ops = {
1820         .get_drvinfo    = netvsc_get_drvinfo,
1821         .get_msglevel   = netvsc_get_msglevel,
1822         .set_msglevel   = netvsc_set_msglevel,
1823         .get_link       = ethtool_op_get_link,
1824         .get_ethtool_stats = netvsc_get_ethtool_stats,
1825         .get_sset_count = netvsc_get_sset_count,
1826         .get_strings    = netvsc_get_strings,
1827         .get_channels   = netvsc_get_channels,
1828         .set_channels   = netvsc_set_channels,
1829         .get_ts_info    = ethtool_op_get_ts_info,
1830         .get_rxnfc      = netvsc_get_rxnfc,
1831         .set_rxnfc      = netvsc_set_rxnfc,
1832         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1833         .get_rxfh_indir_size = netvsc_rss_indir_size,
1834         .get_rxfh       = netvsc_get_rxfh,
1835         .set_rxfh       = netvsc_set_rxfh,
1836         .get_link_ksettings = netvsc_get_link_ksettings,
1837         .set_link_ksettings = netvsc_set_link_ksettings,
1838         .get_ringparam  = netvsc_get_ringparam,
1839         .set_ringparam  = netvsc_set_ringparam,
1840 };
1841
1842 static const struct net_device_ops device_ops = {
1843         .ndo_open =                     netvsc_open,
1844         .ndo_stop =                     netvsc_close,
1845         .ndo_start_xmit =               netvsc_start_xmit,
1846         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1847         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1848         .ndo_set_features =             netvsc_set_features,
1849         .ndo_change_mtu =               netvsc_change_mtu,
1850         .ndo_validate_addr =            eth_validate_addr,
1851         .ndo_set_mac_address =          netvsc_set_mac_addr,
1852         .ndo_select_queue =             netvsc_select_queue,
1853         .ndo_get_stats64 =              netvsc_get_stats64,
1854 };
1855
1856 /*
1857  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1858  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1859  * present send GARP packet to network peers with netif_notify_peers().
1860  */
1861 static void netvsc_link_change(struct work_struct *w)
1862 {
1863         struct net_device_context *ndev_ctx =
1864                 container_of(w, struct net_device_context, dwork.work);
1865         struct hv_device *device_obj = ndev_ctx->device_ctx;
1866         struct net_device *net = hv_get_drvdata(device_obj);
1867         struct netvsc_device *net_device;
1868         struct rndis_device *rdev;
1869         struct netvsc_reconfig *event = NULL;
1870         bool notify = false, reschedule = false;
1871         unsigned long flags, next_reconfig, delay;
1872
1873         /* if changes are happening, comeback later */
1874         if (!rtnl_trylock()) {
1875                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1876                 return;
1877         }
1878
1879         net_device = rtnl_dereference(ndev_ctx->nvdev);
1880         if (!net_device)
1881                 goto out_unlock;
1882
1883         rdev = net_device->extension;
1884
1885         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1886         if (time_is_after_jiffies(next_reconfig)) {
1887                 /* link_watch only sends one notification with current state
1888                  * per second, avoid doing reconfig more frequently. Handle
1889                  * wrap around.
1890                  */
1891                 delay = next_reconfig - jiffies;
1892                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1893                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1894                 goto out_unlock;
1895         }
1896         ndev_ctx->last_reconfig = jiffies;
1897
1898         spin_lock_irqsave(&ndev_ctx->lock, flags);
1899         if (!list_empty(&ndev_ctx->reconfig_events)) {
1900                 event = list_first_entry(&ndev_ctx->reconfig_events,
1901                                          struct netvsc_reconfig, list);
1902                 list_del(&event->list);
1903                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1904         }
1905         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1906
1907         if (!event)
1908                 goto out_unlock;
1909
1910         switch (event->event) {
1911                 /* Only the following events are possible due to the check in
1912                  * netvsc_linkstatus_callback()
1913                  */
1914         case RNDIS_STATUS_MEDIA_CONNECT:
1915                 if (rdev->link_state) {
1916                         rdev->link_state = false;
1917                         netif_carrier_on(net);
1918                         netvsc_tx_enable(net_device, net);
1919                 } else {
1920                         notify = true;
1921                 }
1922                 kfree(event);
1923                 break;
1924         case RNDIS_STATUS_MEDIA_DISCONNECT:
1925                 if (!rdev->link_state) {
1926                         rdev->link_state = true;
1927                         netif_carrier_off(net);
1928                         netvsc_tx_disable(net_device, net);
1929                 }
1930                 kfree(event);
1931                 break;
1932         case RNDIS_STATUS_NETWORK_CHANGE:
1933                 /* Only makes sense if carrier is present */
1934                 if (!rdev->link_state) {
1935                         rdev->link_state = true;
1936                         netif_carrier_off(net);
1937                         netvsc_tx_disable(net_device, net);
1938                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1939                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1940                         list_add(&event->list, &ndev_ctx->reconfig_events);
1941                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1942                         reschedule = true;
1943                 }
1944                 break;
1945         }
1946
1947         rtnl_unlock();
1948
1949         if (notify)
1950                 netdev_notify_peers(net);
1951
1952         /* link_watch only sends one notification with current state per
1953          * second, handle next reconfig event in 2 seconds.
1954          */
1955         if (reschedule)
1956                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1957
1958         return;
1959
1960 out_unlock:
1961         rtnl_unlock();
1962 }
1963
1964 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1965 {
1966         struct net_device_context *net_device_ctx;
1967         struct net_device *dev;
1968
1969         dev = netdev_master_upper_dev_get(vf_netdev);
1970         if (!dev || dev->netdev_ops != &device_ops)
1971                 return NULL;    /* not a netvsc device */
1972
1973         net_device_ctx = netdev_priv(dev);
1974         if (!rtnl_dereference(net_device_ctx->nvdev))
1975                 return NULL;    /* device is removed */
1976
1977         return dev;
1978 }
1979
1980 /* Called when VF is injecting data into network stack.
1981  * Change the associated network device from VF to netvsc.
1982  * note: already called with rcu_read_lock
1983  */
1984 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1985 {
1986         struct sk_buff *skb = *pskb;
1987         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1988         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989         struct netvsc_vf_pcpu_stats *pcpu_stats
1990                  = this_cpu_ptr(ndev_ctx->vf_stats);
1991
1992         skb = skb_share_check(skb, GFP_ATOMIC);
1993         if (unlikely(!skb))
1994                 return RX_HANDLER_CONSUMED;
1995
1996         *pskb = skb;
1997
1998         skb->dev = ndev;
1999
2000         u64_stats_update_begin(&pcpu_stats->syncp);
2001         pcpu_stats->rx_packets++;
2002         pcpu_stats->rx_bytes += skb->len;
2003         u64_stats_update_end(&pcpu_stats->syncp);
2004
2005         return RX_HANDLER_ANOTHER;
2006 }
2007
2008 static int netvsc_vf_join(struct net_device *vf_netdev,
2009                           struct net_device *ndev)
2010 {
2011         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2012         int ret;
2013
2014         ret = netdev_rx_handler_register(vf_netdev,
2015                                          netvsc_vf_handle_frame, ndev);
2016         if (ret != 0) {
2017                 netdev_err(vf_netdev,
2018                            "can not register netvsc VF receive handler (err = %d)\n",
2019                            ret);
2020                 goto rx_handler_failed;
2021         }
2022
2023         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2024                                            NULL, NULL, NULL);
2025         if (ret != 0) {
2026                 netdev_err(vf_netdev,
2027                            "can not set master device %s (err = %d)\n",
2028                            ndev->name, ret);
2029                 goto upper_link_failed;
2030         }
2031
2032         /* set slave flag before open to prevent IPv6 addrconf */
2033         vf_netdev->flags |= IFF_SLAVE;
2034
2035         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2036
2037         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2038
2039         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2040         return 0;
2041
2042 upper_link_failed:
2043         netdev_rx_handler_unregister(vf_netdev);
2044 rx_handler_failed:
2045         return ret;
2046 }
2047
2048 static void __netvsc_vf_setup(struct net_device *ndev,
2049                               struct net_device *vf_netdev)
2050 {
2051         int ret;
2052
2053         /* Align MTU of VF with master */
2054         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2055         if (ret)
2056                 netdev_warn(vf_netdev,
2057                             "unable to change mtu to %u\n", ndev->mtu);
2058
2059         /* set multicast etc flags on VF */
2060         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2061
2062         /* sync address list from ndev to VF */
2063         netif_addr_lock_bh(ndev);
2064         dev_uc_sync(vf_netdev, ndev);
2065         dev_mc_sync(vf_netdev, ndev);
2066         netif_addr_unlock_bh(ndev);
2067
2068         if (netif_running(ndev)) {
2069                 ret = dev_open(vf_netdev, NULL);
2070                 if (ret)
2071                         netdev_warn(vf_netdev,
2072                                     "unable to open: %d\n", ret);
2073         }
2074 }
2075
2076 /* Setup VF as slave of the synthetic device.
2077  * Runs in workqueue to avoid recursion in netlink callbacks.
2078  */
2079 static void netvsc_vf_setup(struct work_struct *w)
2080 {
2081         struct net_device_context *ndev_ctx
2082                 = container_of(w, struct net_device_context, vf_takeover.work);
2083         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2084         struct net_device *vf_netdev;
2085
2086         if (!rtnl_trylock()) {
2087                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2088                 return;
2089         }
2090
2091         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2092         if (vf_netdev)
2093                 __netvsc_vf_setup(ndev, vf_netdev);
2094
2095         rtnl_unlock();
2096 }
2097
2098 /* Find netvsc by VF serial number.
2099  * The PCI hyperv controller records the serial number as the slot kobj name.
2100  */
2101 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2102 {
2103         struct device *parent = vf_netdev->dev.parent;
2104         struct net_device_context *ndev_ctx;
2105         struct pci_dev *pdev;
2106         u32 serial;
2107
2108         if (!parent || !dev_is_pci(parent))
2109                 return NULL; /* not a PCI device */
2110
2111         pdev = to_pci_dev(parent);
2112         if (!pdev->slot) {
2113                 netdev_notice(vf_netdev, "no PCI slot information\n");
2114                 return NULL;
2115         }
2116
2117         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2118                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2119                               pci_slot_name(pdev->slot));
2120                 return NULL;
2121         }
2122
2123         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2124                 if (!ndev_ctx->vf_alloc)
2125                         continue;
2126
2127                 if (ndev_ctx->vf_serial == serial)
2128                         return hv_get_drvdata(ndev_ctx->device_ctx);
2129         }
2130
2131         netdev_notice(vf_netdev,
2132                       "no netdev found for vf serial:%u\n", serial);
2133         return NULL;
2134 }
2135
2136 static int netvsc_register_vf(struct net_device *vf_netdev)
2137 {
2138         struct net_device_context *net_device_ctx;
2139         struct netvsc_device *netvsc_dev;
2140         struct net_device *ndev;
2141         int ret;
2142
2143         if (vf_netdev->addr_len != ETH_ALEN)
2144                 return NOTIFY_DONE;
2145
2146         ndev = get_netvsc_byslot(vf_netdev);
2147         if (!ndev)
2148                 return NOTIFY_DONE;
2149
2150         net_device_ctx = netdev_priv(ndev);
2151         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2152         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2153                 return NOTIFY_DONE;
2154
2155         /* if synthetic interface is a different namespace,
2156          * then move the VF to that namespace; join will be
2157          * done again in that context.
2158          */
2159         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2160                 ret = dev_change_net_namespace(vf_netdev,
2161                                                dev_net(ndev), "eth%d");
2162                 if (ret)
2163                         netdev_err(vf_netdev,
2164                                    "could not move to same namespace as %s: %d\n",
2165                                    ndev->name, ret);
2166                 else
2167                         netdev_info(vf_netdev,
2168                                     "VF moved to namespace with: %s\n",
2169                                     ndev->name);
2170                 return NOTIFY_DONE;
2171         }
2172
2173         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2174
2175         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2176                 return NOTIFY_DONE;
2177
2178         dev_hold(vf_netdev);
2179         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2180         return NOTIFY_OK;
2181 }
2182
2183 /* VF up/down change detected, schedule to change data path */
2184 static int netvsc_vf_changed(struct net_device *vf_netdev)
2185 {
2186         struct net_device_context *net_device_ctx;
2187         struct netvsc_device *netvsc_dev;
2188         struct net_device *ndev;
2189         bool vf_is_up = netif_running(vf_netdev);
2190
2191         ndev = get_netvsc_byref(vf_netdev);
2192         if (!ndev)
2193                 return NOTIFY_DONE;
2194
2195         net_device_ctx = netdev_priv(ndev);
2196         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2197         if (!netvsc_dev)
2198                 return NOTIFY_DONE;
2199
2200         netvsc_switch_datapath(ndev, vf_is_up);
2201         netdev_info(ndev, "Data path switched %s VF: %s\n",
2202                     vf_is_up ? "to" : "from", vf_netdev->name);
2203
2204         return NOTIFY_OK;
2205 }
2206
2207 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2208 {
2209         struct net_device *ndev;
2210         struct net_device_context *net_device_ctx;
2211
2212         ndev = get_netvsc_byref(vf_netdev);
2213         if (!ndev)
2214                 return NOTIFY_DONE;
2215
2216         net_device_ctx = netdev_priv(ndev);
2217         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2218
2219         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2220
2221         netdev_rx_handler_unregister(vf_netdev);
2222         netdev_upper_dev_unlink(vf_netdev, ndev);
2223         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2224         dev_put(vf_netdev);
2225
2226         return NOTIFY_OK;
2227 }
2228
2229 static int netvsc_probe(struct hv_device *dev,
2230                         const struct hv_vmbus_device_id *dev_id)
2231 {
2232         struct net_device *net = NULL;
2233         struct net_device_context *net_device_ctx;
2234         struct netvsc_device_info *device_info = NULL;
2235         struct netvsc_device *nvdev;
2236         int ret = -ENOMEM;
2237
2238         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2239                                 VRSS_CHANNEL_MAX);
2240         if (!net)
2241                 goto no_net;
2242
2243         netif_carrier_off(net);
2244
2245         netvsc_init_settings(net);
2246
2247         net_device_ctx = netdev_priv(net);
2248         net_device_ctx->device_ctx = dev;
2249         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2250         if (netif_msg_probe(net_device_ctx))
2251                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2252                            net_device_ctx->msg_enable);
2253
2254         hv_set_drvdata(dev, net);
2255
2256         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2257
2258         spin_lock_init(&net_device_ctx->lock);
2259         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2260         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2261
2262         net_device_ctx->vf_stats
2263                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2264         if (!net_device_ctx->vf_stats)
2265                 goto no_stats;
2266
2267         net->netdev_ops = &device_ops;
2268         net->ethtool_ops = &ethtool_ops;
2269         SET_NETDEV_DEV(net, &dev->device);
2270
2271         /* We always need headroom for rndis header */
2272         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2273
2274         /* Initialize the number of queues to be 1, we may change it if more
2275          * channels are offered later.
2276          */
2277         netif_set_real_num_tx_queues(net, 1);
2278         netif_set_real_num_rx_queues(net, 1);
2279
2280         /* Notify the netvsc driver of the new device */
2281         device_info = netvsc_devinfo_get(NULL);
2282
2283         if (!device_info) {
2284                 ret = -ENOMEM;
2285                 goto devinfo_failed;
2286         }
2287
2288         nvdev = rndis_filter_device_add(dev, device_info);
2289         if (IS_ERR(nvdev)) {
2290                 ret = PTR_ERR(nvdev);
2291                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2292                 goto rndis_failed;
2293         }
2294
2295         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2296
2297         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2298          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2299          * all subchannels to show up, but that may not happen because
2300          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2301          * -> ... -> device_add() -> ... -> __device_attach() can't get
2302          * the device lock, so all the subchannels can't be processed --
2303          * finally netvsc_subchan_work() hangs forever.
2304          */
2305         rtnl_lock();
2306
2307         if (nvdev->num_chn > 1)
2308                 schedule_work(&nvdev->subchan_work);
2309
2310         /* hw_features computed in rndis_netdev_set_hwcaps() */
2311         net->features = net->hw_features |
2312                 NETIF_F_HIGHDMA | NETIF_F_SG |
2313                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2314         net->vlan_features = net->features;
2315
2316         netdev_lockdep_set_classes(net);
2317
2318         /* MTU range: 68 - 1500 or 65521 */
2319         net->min_mtu = NETVSC_MTU_MIN;
2320         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2321                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2322         else
2323                 net->max_mtu = ETH_DATA_LEN;
2324
2325         ret = register_netdevice(net);
2326         if (ret != 0) {
2327                 pr_err("Unable to register netdev.\n");
2328                 goto register_failed;
2329         }
2330
2331         list_add(&net_device_ctx->list, &netvsc_dev_list);
2332         rtnl_unlock();
2333
2334         kfree(device_info);
2335         return 0;
2336
2337 register_failed:
2338         rtnl_unlock();
2339         rndis_filter_device_remove(dev, nvdev);
2340 rndis_failed:
2341         kfree(device_info);
2342 devinfo_failed:
2343         free_percpu(net_device_ctx->vf_stats);
2344 no_stats:
2345         hv_set_drvdata(dev, NULL);
2346         free_netdev(net);
2347 no_net:
2348         return ret;
2349 }
2350
2351 static int netvsc_remove(struct hv_device *dev)
2352 {
2353         struct net_device_context *ndev_ctx;
2354         struct net_device *vf_netdev, *net;
2355         struct netvsc_device *nvdev;
2356
2357         net = hv_get_drvdata(dev);
2358         if (net == NULL) {
2359                 dev_err(&dev->device, "No net device to remove\n");
2360                 return 0;
2361         }
2362
2363         ndev_ctx = netdev_priv(net);
2364
2365         cancel_delayed_work_sync(&ndev_ctx->dwork);
2366
2367         rtnl_lock();
2368         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2369         if (nvdev)
2370                 cancel_work_sync(&nvdev->subchan_work);
2371
2372         /*
2373          * Call to the vsc driver to let it know that the device is being
2374          * removed. Also blocks mtu and channel changes.
2375          */
2376         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2377         if (vf_netdev)
2378                 netvsc_unregister_vf(vf_netdev);
2379
2380         if (nvdev)
2381                 rndis_filter_device_remove(dev, nvdev);
2382
2383         unregister_netdevice(net);
2384         list_del(&ndev_ctx->list);
2385
2386         rtnl_unlock();
2387
2388         hv_set_drvdata(dev, NULL);
2389
2390         free_percpu(ndev_ctx->vf_stats);
2391         free_netdev(net);
2392         return 0;
2393 }
2394
2395 static const struct hv_vmbus_device_id id_table[] = {
2396         /* Network guid */
2397         { HV_NIC_GUID, },
2398         { },
2399 };
2400
2401 MODULE_DEVICE_TABLE(vmbus, id_table);
2402
2403 /* The one and only one */
2404 static struct  hv_driver netvsc_drv = {
2405         .name = KBUILD_MODNAME,
2406         .id_table = id_table,
2407         .probe = netvsc_probe,
2408         .remove = netvsc_remove,
2409         .driver = {
2410                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2411         },
2412 };
2413
2414 /*
2415  * On Hyper-V, every VF interface is matched with a corresponding
2416  * synthetic interface. The synthetic interface is presented first
2417  * to the guest. When the corresponding VF instance is registered,
2418  * we will take care of switching the data path.
2419  */
2420 static int netvsc_netdev_event(struct notifier_block *this,
2421                                unsigned long event, void *ptr)
2422 {
2423         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2424
2425         /* Skip our own events */
2426         if (event_dev->netdev_ops == &device_ops)
2427                 return NOTIFY_DONE;
2428
2429         /* Avoid non-Ethernet type devices */
2430         if (event_dev->type != ARPHRD_ETHER)
2431                 return NOTIFY_DONE;
2432
2433         /* Avoid Vlan dev with same MAC registering as VF */
2434         if (is_vlan_dev(event_dev))
2435                 return NOTIFY_DONE;
2436
2437         /* Avoid Bonding master dev with same MAC registering as VF */
2438         if ((event_dev->priv_flags & IFF_BONDING) &&
2439             (event_dev->flags & IFF_MASTER))
2440                 return NOTIFY_DONE;
2441
2442         switch (event) {
2443         case NETDEV_REGISTER:
2444                 return netvsc_register_vf(event_dev);
2445         case NETDEV_UNREGISTER:
2446                 return netvsc_unregister_vf(event_dev);
2447         case NETDEV_UP:
2448         case NETDEV_DOWN:
2449                 return netvsc_vf_changed(event_dev);
2450         default:
2451                 return NOTIFY_DONE;
2452         }
2453 }
2454
2455 static struct notifier_block netvsc_netdev_notifier = {
2456         .notifier_call = netvsc_netdev_event,
2457 };
2458
2459 static void __exit netvsc_drv_exit(void)
2460 {
2461         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2462         vmbus_driver_unregister(&netvsc_drv);
2463 }
2464
2465 static int __init netvsc_drv_init(void)
2466 {
2467         int ret;
2468
2469         if (ring_size < RING_SIZE_MIN) {
2470                 ring_size = RING_SIZE_MIN;
2471                 pr_info("Increased ring_size to %u (min allowed)\n",
2472                         ring_size);
2473         }
2474         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2475
2476         ret = vmbus_driver_register(&netvsc_drv);
2477         if (ret)
2478                 return ret;
2479
2480         register_netdevice_notifier(&netvsc_netdev_notifier);
2481         return 0;
2482 }
2483
2484 MODULE_LICENSE("GPL");
2485 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2486
2487 module_init(netvsc_drv_init);
2488 module_exit(netvsc_drv_exit);