OSDN Git Service

4b438b4c8c9195b3aaf11519339719efbef7b21b
[uclinux-h8/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57         return &fs_uuids;
58 }
59
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62         struct btrfs_fs_devices *fs_devs;
63
64         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65         if (!fs_devs)
66                 return ERR_PTR(-ENOMEM);
67
68         mutex_init(&fs_devs->device_list_mutex);
69
70         INIT_LIST_HEAD(&fs_devs->devices);
71         INIT_LIST_HEAD(&fs_devs->resized_devices);
72         INIT_LIST_HEAD(&fs_devs->alloc_list);
73         INIT_LIST_HEAD(&fs_devs->list);
74
75         return fs_devs;
76 }
77
78 /**
79  * alloc_fs_devices - allocate struct btrfs_fs_devices
80  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
81  *              generated.
82  *
83  * Return: a pointer to a new &struct btrfs_fs_devices on success;
84  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
85  * can be destroyed with kfree() right away.
86  */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89         struct btrfs_fs_devices *fs_devs;
90
91         fs_devs = __alloc_fs_devices();
92         if (IS_ERR(fs_devs))
93                 return fs_devs;
94
95         if (fsid)
96                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97         else
98                 generate_random_uuid(fs_devs->fsid);
99
100         return fs_devs;
101 }
102
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105         struct btrfs_device *device;
106         WARN_ON(fs_devices->opened);
107         while (!list_empty(&fs_devices->devices)) {
108                 device = list_entry(fs_devices->devices.next,
109                                     struct btrfs_device, dev_list);
110                 list_del(&device->dev_list);
111                 rcu_string_free(device->name);
112                 kfree(device);
113         }
114         kfree(fs_devices);
115 }
116
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118                                  enum kobject_action action)
119 {
120         int ret;
121
122         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123         if (ret)
124                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125                         action,
126                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127                         &disk_to_dev(bdev->bd_disk)->kobj);
128 }
129
130 void btrfs_cleanup_fs_uuids(void)
131 {
132         struct btrfs_fs_devices *fs_devices;
133
134         while (!list_empty(&fs_uuids)) {
135                 fs_devices = list_entry(fs_uuids.next,
136                                         struct btrfs_fs_devices, list);
137                 list_del(&fs_devices->list);
138                 free_fs_devices(fs_devices);
139         }
140 }
141
142 static struct btrfs_device *__alloc_device(void)
143 {
144         struct btrfs_device *dev;
145
146         dev = kzalloc(sizeof(*dev), GFP_NOFS);
147         if (!dev)
148                 return ERR_PTR(-ENOMEM);
149
150         INIT_LIST_HEAD(&dev->dev_list);
151         INIT_LIST_HEAD(&dev->dev_alloc_list);
152         INIT_LIST_HEAD(&dev->resized_list);
153
154         spin_lock_init(&dev->io_lock);
155
156         spin_lock_init(&dev->reada_lock);
157         atomic_set(&dev->reada_in_flight, 0);
158         atomic_set(&dev->dev_stats_ccnt, 0);
159         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161
162         return dev;
163 }
164
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166                                                    u64 devid, u8 *uuid)
167 {
168         struct btrfs_device *dev;
169
170         list_for_each_entry(dev, head, dev_list) {
171                 if (dev->devid == devid &&
172                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173                         return dev;
174                 }
175         }
176         return NULL;
177 }
178
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181         struct btrfs_fs_devices *fs_devices;
182
183         list_for_each_entry(fs_devices, &fs_uuids, list) {
184                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185                         return fs_devices;
186         }
187         return NULL;
188 }
189
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192                       int flush, struct block_device **bdev,
193                       struct buffer_head **bh)
194 {
195         int ret;
196
197         *bdev = blkdev_get_by_path(device_path, flags, holder);
198
199         if (IS_ERR(*bdev)) {
200                 ret = PTR_ERR(*bdev);
201                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202                 goto error;
203         }
204
205         if (flush)
206                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207         ret = set_blocksize(*bdev, 4096);
208         if (ret) {
209                 blkdev_put(*bdev, flags);
210                 goto error;
211         }
212         invalidate_bdev(*bdev);
213         *bh = btrfs_read_dev_super(*bdev);
214         if (!*bh) {
215                 ret = -EINVAL;
216                 blkdev_put(*bdev, flags);
217                 goto error;
218         }
219
220         return 0;
221
222 error:
223         *bdev = NULL;
224         *bh = NULL;
225         return ret;
226 }
227
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229                         struct bio *head, struct bio *tail)
230 {
231
232         struct bio *old_head;
233
234         old_head = pending_bios->head;
235         pending_bios->head = head;
236         if (pending_bios->tail)
237                 tail->bi_next = old_head;
238         else
239                 pending_bios->tail = tail;
240 }
241
242 /*
243  * we try to collect pending bios for a device so we don't get a large
244  * number of procs sending bios down to the same device.  This greatly
245  * improves the schedulers ability to collect and merge the bios.
246  *
247  * But, it also turns into a long list of bios to process and that is sure
248  * to eventually make the worker thread block.  The solution here is to
249  * make some progress and then put this work struct back at the end of
250  * the list if the block device is congested.  This way, multiple devices
251  * can make progress from a single worker thread.
252  */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255         struct bio *pending;
256         struct backing_dev_info *bdi;
257         struct btrfs_fs_info *fs_info;
258         struct btrfs_pending_bios *pending_bios;
259         struct bio *tail;
260         struct bio *cur;
261         int again = 0;
262         unsigned long num_run;
263         unsigned long batch_run = 0;
264         unsigned long limit;
265         unsigned long last_waited = 0;
266         int force_reg = 0;
267         int sync_pending = 0;
268         struct blk_plug plug;
269
270         /*
271          * this function runs all the bios we've collected for
272          * a particular device.  We don't want to wander off to
273          * another device without first sending all of these down.
274          * So, setup a plug here and finish it off before we return
275          */
276         blk_start_plug(&plug);
277
278         bdi = blk_get_backing_dev_info(device->bdev);
279         fs_info = device->dev_root->fs_info;
280         limit = btrfs_async_submit_limit(fs_info);
281         limit = limit * 2 / 3;
282
283 loop:
284         spin_lock(&device->io_lock);
285
286 loop_lock:
287         num_run = 0;
288
289         /* take all the bios off the list at once and process them
290          * later on (without the lock held).  But, remember the
291          * tail and other pointers so the bios can be properly reinserted
292          * into the list if we hit congestion
293          */
294         if (!force_reg && device->pending_sync_bios.head) {
295                 pending_bios = &device->pending_sync_bios;
296                 force_reg = 1;
297         } else {
298                 pending_bios = &device->pending_bios;
299                 force_reg = 0;
300         }
301
302         pending = pending_bios->head;
303         tail = pending_bios->tail;
304         WARN_ON(pending && !tail);
305
306         /*
307          * if pending was null this time around, no bios need processing
308          * at all and we can stop.  Otherwise it'll loop back up again
309          * and do an additional check so no bios are missed.
310          *
311          * device->running_pending is used to synchronize with the
312          * schedule_bio code.
313          */
314         if (device->pending_sync_bios.head == NULL &&
315             device->pending_bios.head == NULL) {
316                 again = 0;
317                 device->running_pending = 0;
318         } else {
319                 again = 1;
320                 device->running_pending = 1;
321         }
322
323         pending_bios->head = NULL;
324         pending_bios->tail = NULL;
325
326         spin_unlock(&device->io_lock);
327
328         while (pending) {
329
330                 rmb();
331                 /* we want to work on both lists, but do more bios on the
332                  * sync list than the regular list
333                  */
334                 if ((num_run > 32 &&
335                     pending_bios != &device->pending_sync_bios &&
336                     device->pending_sync_bios.head) ||
337                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338                     device->pending_bios.head)) {
339                         spin_lock(&device->io_lock);
340                         requeue_list(pending_bios, pending, tail);
341                         goto loop_lock;
342                 }
343
344                 cur = pending;
345                 pending = pending->bi_next;
346                 cur->bi_next = NULL;
347
348                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349                     waitqueue_active(&fs_info->async_submit_wait))
350                         wake_up(&fs_info->async_submit_wait);
351
352                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353
354                 /*
355                  * if we're doing the sync list, record that our
356                  * plug has some sync requests on it
357                  *
358                  * If we're doing the regular list and there are
359                  * sync requests sitting around, unplug before
360                  * we add more
361                  */
362                 if (pending_bios == &device->pending_sync_bios) {
363                         sync_pending = 1;
364                 } else if (sync_pending) {
365                         blk_finish_plug(&plug);
366                         blk_start_plug(&plug);
367                         sync_pending = 0;
368                 }
369
370                 btrfsic_submit_bio(cur->bi_rw, cur);
371                 num_run++;
372                 batch_run++;
373
374                 cond_resched();
375
376                 /*
377                  * we made progress, there is more work to do and the bdi
378                  * is now congested.  Back off and let other work structs
379                  * run instead
380                  */
381                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382                     fs_info->fs_devices->open_devices > 1) {
383                         struct io_context *ioc;
384
385                         ioc = current->io_context;
386
387                         /*
388                          * the main goal here is that we don't want to
389                          * block if we're going to be able to submit
390                          * more requests without blocking.
391                          *
392                          * This code does two great things, it pokes into
393                          * the elevator code from a filesystem _and_
394                          * it makes assumptions about how batching works.
395                          */
396                         if (ioc && ioc->nr_batch_requests > 0 &&
397                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398                             (last_waited == 0 ||
399                              ioc->last_waited == last_waited)) {
400                                 /*
401                                  * we want to go through our batch of
402                                  * requests and stop.  So, we copy out
403                                  * the ioc->last_waited time and test
404                                  * against it before looping
405                                  */
406                                 last_waited = ioc->last_waited;
407                                 cond_resched();
408                                 continue;
409                         }
410                         spin_lock(&device->io_lock);
411                         requeue_list(pending_bios, pending, tail);
412                         device->running_pending = 1;
413
414                         spin_unlock(&device->io_lock);
415                         btrfs_queue_work(fs_info->submit_workers,
416                                          &device->work);
417                         goto done;
418                 }
419                 /* unplug every 64 requests just for good measure */
420                 if (batch_run % 64 == 0) {
421                         blk_finish_plug(&plug);
422                         blk_start_plug(&plug);
423                         sync_pending = 0;
424                 }
425         }
426
427         cond_resched();
428         if (again)
429                 goto loop;
430
431         spin_lock(&device->io_lock);
432         if (device->pending_bios.head || device->pending_sync_bios.head)
433                 goto loop_lock;
434         spin_unlock(&device->io_lock);
435
436 done:
437         blk_finish_plug(&plug);
438 }
439
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442         struct btrfs_device *device;
443
444         device = container_of(work, struct btrfs_device, work);
445         run_scheduled_bios(device);
446 }
447
448
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451         struct btrfs_fs_devices *fs_devs;
452         struct btrfs_device *dev;
453
454         if (!cur_dev->name)
455                 return;
456
457         list_for_each_entry(fs_devs, &fs_uuids, list) {
458                 int del = 1;
459
460                 if (fs_devs->opened)
461                         continue;
462                 if (fs_devs->seeding)
463                         continue;
464
465                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466
467                         if (dev == cur_dev)
468                                 continue;
469                         if (!dev->name)
470                                 continue;
471
472                         /*
473                          * Todo: This won't be enough. What if the same device
474                          * comes back (with new uuid and) with its mapper path?
475                          * But for now, this does help as mostly an admin will
476                          * either use mapper or non mapper path throughout.
477                          */
478                         rcu_read_lock();
479                         del = strcmp(rcu_str_deref(dev->name),
480                                                 rcu_str_deref(cur_dev->name));
481                         rcu_read_unlock();
482                         if (!del)
483                                 break;
484                 }
485
486                 if (!del) {
487                         /* delete the stale device */
488                         if (fs_devs->num_devices == 1) {
489                                 btrfs_sysfs_remove_fsid(fs_devs);
490                                 list_del(&fs_devs->list);
491                                 free_fs_devices(fs_devs);
492                         } else {
493                                 fs_devs->num_devices--;
494                                 list_del(&dev->dev_list);
495                                 rcu_string_free(dev->name);
496                                 kfree(dev);
497                         }
498                         break;
499                 }
500         }
501 }
502
503 /*
504  * Add new device to list of registered devices
505  *
506  * Returns:
507  * 1   - first time device is seen
508  * 0   - device already known
509  * < 0 - error
510  */
511 static noinline int device_list_add(const char *path,
512                            struct btrfs_super_block *disk_super,
513                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515         struct btrfs_device *device;
516         struct btrfs_fs_devices *fs_devices;
517         struct rcu_string *name;
518         int ret = 0;
519         u64 found_transid = btrfs_super_generation(disk_super);
520
521         fs_devices = find_fsid(disk_super->fsid);
522         if (!fs_devices) {
523                 fs_devices = alloc_fs_devices(disk_super->fsid);
524                 if (IS_ERR(fs_devices))
525                         return PTR_ERR(fs_devices);
526
527                 list_add(&fs_devices->list, &fs_uuids);
528
529                 device = NULL;
530         } else {
531                 device = __find_device(&fs_devices->devices, devid,
532                                        disk_super->dev_item.uuid);
533         }
534
535         if (!device) {
536                 if (fs_devices->opened)
537                         return -EBUSY;
538
539                 device = btrfs_alloc_device(NULL, &devid,
540                                             disk_super->dev_item.uuid);
541                 if (IS_ERR(device)) {
542                         /* we can safely leave the fs_devices entry around */
543                         return PTR_ERR(device);
544                 }
545
546                 name = rcu_string_strdup(path, GFP_NOFS);
547                 if (!name) {
548                         kfree(device);
549                         return -ENOMEM;
550                 }
551                 rcu_assign_pointer(device->name, name);
552
553                 mutex_lock(&fs_devices->device_list_mutex);
554                 list_add_rcu(&device->dev_list, &fs_devices->devices);
555                 fs_devices->num_devices++;
556                 mutex_unlock(&fs_devices->device_list_mutex);
557
558                 ret = 1;
559                 device->fs_devices = fs_devices;
560         } else if (!device->name || strcmp(device->name->str, path)) {
561                 /*
562                  * When FS is already mounted.
563                  * 1. If you are here and if the device->name is NULL that
564                  *    means this device was missing at time of FS mount.
565                  * 2. If you are here and if the device->name is different
566                  *    from 'path' that means either
567                  *      a. The same device disappeared and reappeared with
568                  *         different name. or
569                  *      b. The missing-disk-which-was-replaced, has
570                  *         reappeared now.
571                  *
572                  * We must allow 1 and 2a above. But 2b would be a spurious
573                  * and unintentional.
574                  *
575                  * Further in case of 1 and 2a above, the disk at 'path'
576                  * would have missed some transaction when it was away and
577                  * in case of 2a the stale bdev has to be updated as well.
578                  * 2b must not be allowed at all time.
579                  */
580
581                 /*
582                  * For now, we do allow update to btrfs_fs_device through the
583                  * btrfs dev scan cli after FS has been mounted.  We're still
584                  * tracking a problem where systems fail mount by subvolume id
585                  * when we reject replacement on a mounted FS.
586                  */
587                 if (!fs_devices->opened && found_transid < device->generation) {
588                         /*
589                          * That is if the FS is _not_ mounted and if you
590                          * are here, that means there is more than one
591                          * disk with same uuid and devid.We keep the one
592                          * with larger generation number or the last-in if
593                          * generation are equal.
594                          */
595                         return -EEXIST;
596                 }
597
598                 name = rcu_string_strdup(path, GFP_NOFS);
599                 if (!name)
600                         return -ENOMEM;
601                 rcu_string_free(device->name);
602                 rcu_assign_pointer(device->name, name);
603                 if (device->missing) {
604                         fs_devices->missing_devices--;
605                         device->missing = 0;
606                 }
607         }
608
609         /*
610          * Unmount does not free the btrfs_device struct but would zero
611          * generation along with most of the other members. So just update
612          * it back. We need it to pick the disk with largest generation
613          * (as above).
614          */
615         if (!fs_devices->opened)
616                 device->generation = found_transid;
617
618         /*
619          * if there is new btrfs on an already registered device,
620          * then remove the stale device entry.
621          */
622         btrfs_free_stale_device(device);
623
624         *fs_devices_ret = fs_devices;
625
626         return ret;
627 }
628
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631         struct btrfs_fs_devices *fs_devices;
632         struct btrfs_device *device;
633         struct btrfs_device *orig_dev;
634
635         fs_devices = alloc_fs_devices(orig->fsid);
636         if (IS_ERR(fs_devices))
637                 return fs_devices;
638
639         mutex_lock(&orig->device_list_mutex);
640         fs_devices->total_devices = orig->total_devices;
641
642         /* We have held the volume lock, it is safe to get the devices. */
643         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644                 struct rcu_string *name;
645
646                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
647                                             orig_dev->uuid);
648                 if (IS_ERR(device))
649                         goto error;
650
651                 /*
652                  * This is ok to do without rcu read locked because we hold the
653                  * uuid mutex so nothing we touch in here is going to disappear.
654                  */
655                 if (orig_dev->name) {
656                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657                         if (!name) {
658                                 kfree(device);
659                                 goto error;
660                         }
661                         rcu_assign_pointer(device->name, name);
662                 }
663
664                 list_add(&device->dev_list, &fs_devices->devices);
665                 device->fs_devices = fs_devices;
666                 fs_devices->num_devices++;
667         }
668         mutex_unlock(&orig->device_list_mutex);
669         return fs_devices;
670 error:
671         mutex_unlock(&orig->device_list_mutex);
672         free_fs_devices(fs_devices);
673         return ERR_PTR(-ENOMEM);
674 }
675
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678         struct btrfs_device *device, *next;
679         struct btrfs_device *latest_dev = NULL;
680
681         mutex_lock(&uuid_mutex);
682 again:
683         /* This is the initialized path, it is safe to release the devices. */
684         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685                 if (device->in_fs_metadata) {
686                         if (!device->is_tgtdev_for_dev_replace &&
687                             (!latest_dev ||
688                              device->generation > latest_dev->generation)) {
689                                 latest_dev = device;
690                         }
691                         continue;
692                 }
693
694                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695                         /*
696                          * In the first step, keep the device which has
697                          * the correct fsid and the devid that is used
698                          * for the dev_replace procedure.
699                          * In the second step, the dev_replace state is
700                          * read from the device tree and it is known
701                          * whether the procedure is really active or
702                          * not, which means whether this device is
703                          * used or whether it should be removed.
704                          */
705                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
706                                 continue;
707                         }
708                 }
709                 if (device->bdev) {
710                         blkdev_put(device->bdev, device->mode);
711                         device->bdev = NULL;
712                         fs_devices->open_devices--;
713                 }
714                 if (device->writeable) {
715                         list_del_init(&device->dev_alloc_list);
716                         device->writeable = 0;
717                         if (!device->is_tgtdev_for_dev_replace)
718                                 fs_devices->rw_devices--;
719                 }
720                 list_del_init(&device->dev_list);
721                 fs_devices->num_devices--;
722                 rcu_string_free(device->name);
723                 kfree(device);
724         }
725
726         if (fs_devices->seed) {
727                 fs_devices = fs_devices->seed;
728                 goto again;
729         }
730
731         fs_devices->latest_bdev = latest_dev->bdev;
732
733         mutex_unlock(&uuid_mutex);
734 }
735
736 static void __free_device(struct work_struct *work)
737 {
738         struct btrfs_device *device;
739
740         device = container_of(work, struct btrfs_device, rcu_work);
741
742         if (device->bdev)
743                 blkdev_put(device->bdev, device->mode);
744
745         rcu_string_free(device->name);
746         kfree(device);
747 }
748
749 static void free_device(struct rcu_head *head)
750 {
751         struct btrfs_device *device;
752
753         device = container_of(head, struct btrfs_device, rcu);
754
755         INIT_WORK(&device->rcu_work, __free_device);
756         schedule_work(&device->rcu_work);
757 }
758
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761         struct btrfs_device *device, *tmp;
762
763         if (--fs_devices->opened > 0)
764                 return 0;
765
766         mutex_lock(&fs_devices->device_list_mutex);
767         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768                 struct btrfs_device *new_device;
769                 struct rcu_string *name;
770
771                 if (device->bdev)
772                         fs_devices->open_devices--;
773
774                 if (device->writeable &&
775                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
776                         list_del_init(&device->dev_alloc_list);
777                         fs_devices->rw_devices--;
778                 }
779
780                 if (device->missing)
781                         fs_devices->missing_devices--;
782
783                 new_device = btrfs_alloc_device(NULL, &device->devid,
784                                                 device->uuid);
785                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786
787                 /* Safe because we are under uuid_mutex */
788                 if (device->name) {
789                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
790                         BUG_ON(!name); /* -ENOMEM */
791                         rcu_assign_pointer(new_device->name, name);
792                 }
793
794                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
795                 new_device->fs_devices = device->fs_devices;
796
797                 call_rcu(&device->rcu, free_device);
798         }
799         mutex_unlock(&fs_devices->device_list_mutex);
800
801         WARN_ON(fs_devices->open_devices);
802         WARN_ON(fs_devices->rw_devices);
803         fs_devices->opened = 0;
804         fs_devices->seeding = 0;
805
806         return 0;
807 }
808
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811         struct btrfs_fs_devices *seed_devices = NULL;
812         int ret;
813
814         mutex_lock(&uuid_mutex);
815         ret = __btrfs_close_devices(fs_devices);
816         if (!fs_devices->opened) {
817                 seed_devices = fs_devices->seed;
818                 fs_devices->seed = NULL;
819         }
820         mutex_unlock(&uuid_mutex);
821
822         while (seed_devices) {
823                 fs_devices = seed_devices;
824                 seed_devices = fs_devices->seed;
825                 __btrfs_close_devices(fs_devices);
826                 free_fs_devices(fs_devices);
827         }
828         /*
829          * Wait for rcu kworkers under __btrfs_close_devices
830          * to finish all blkdev_puts so device is really
831          * free when umount is done.
832          */
833         rcu_barrier();
834         return ret;
835 }
836
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838                                 fmode_t flags, void *holder)
839 {
840         struct request_queue *q;
841         struct block_device *bdev;
842         struct list_head *head = &fs_devices->devices;
843         struct btrfs_device *device;
844         struct btrfs_device *latest_dev = NULL;
845         struct buffer_head *bh;
846         struct btrfs_super_block *disk_super;
847         u64 devid;
848         int seeding = 1;
849         int ret = 0;
850
851         flags |= FMODE_EXCL;
852
853         list_for_each_entry(device, head, dev_list) {
854                 if (device->bdev)
855                         continue;
856                 if (!device->name)
857                         continue;
858
859                 /* Just open everything we can; ignore failures here */
860                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861                                             &bdev, &bh))
862                         continue;
863
864                 disk_super = (struct btrfs_super_block *)bh->b_data;
865                 devid = btrfs_stack_device_id(&disk_super->dev_item);
866                 if (devid != device->devid)
867                         goto error_brelse;
868
869                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
870                            BTRFS_UUID_SIZE))
871                         goto error_brelse;
872
873                 device->generation = btrfs_super_generation(disk_super);
874                 if (!latest_dev ||
875                     device->generation > latest_dev->generation)
876                         latest_dev = device;
877
878                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879                         device->writeable = 0;
880                 } else {
881                         device->writeable = !bdev_read_only(bdev);
882                         seeding = 0;
883                 }
884
885                 q = bdev_get_queue(bdev);
886                 if (blk_queue_discard(q))
887                         device->can_discard = 1;
888
889                 device->bdev = bdev;
890                 device->in_fs_metadata = 0;
891                 device->mode = flags;
892
893                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894                         fs_devices->rotating = 1;
895
896                 fs_devices->open_devices++;
897                 if (device->writeable &&
898                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
899                         fs_devices->rw_devices++;
900                         list_add(&device->dev_alloc_list,
901                                  &fs_devices->alloc_list);
902                 }
903                 brelse(bh);
904                 continue;
905
906 error_brelse:
907                 brelse(bh);
908                 blkdev_put(bdev, flags);
909                 continue;
910         }
911         if (fs_devices->open_devices == 0) {
912                 ret = -EINVAL;
913                 goto out;
914         }
915         fs_devices->seeding = seeding;
916         fs_devices->opened = 1;
917         fs_devices->latest_bdev = latest_dev->bdev;
918         fs_devices->total_rw_bytes = 0;
919 out:
920         return ret;
921 }
922
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924                        fmode_t flags, void *holder)
925 {
926         int ret;
927
928         mutex_lock(&uuid_mutex);
929         if (fs_devices->opened) {
930                 fs_devices->opened++;
931                 ret = 0;
932         } else {
933                 ret = __btrfs_open_devices(fs_devices, flags, holder);
934         }
935         mutex_unlock(&uuid_mutex);
936         return ret;
937 }
938
939 /*
940  * Look for a btrfs signature on a device. This may be called out of the mount path
941  * and we are not allowed to call set_blocksize during the scan. The superblock
942  * is read via pagecache
943  */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945                           struct btrfs_fs_devices **fs_devices_ret)
946 {
947         struct btrfs_super_block *disk_super;
948         struct block_device *bdev;
949         struct page *page;
950         void *p;
951         int ret = -EINVAL;
952         u64 devid;
953         u64 transid;
954         u64 total_devices;
955         u64 bytenr;
956         pgoff_t index;
957
958         /*
959          * we would like to check all the supers, but that would make
960          * a btrfs mount succeed after a mkfs from a different FS.
961          * So, we need to add a special mount option to scan for
962          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963          */
964         bytenr = btrfs_sb_offset(0);
965         flags |= FMODE_EXCL;
966         mutex_lock(&uuid_mutex);
967
968         bdev = blkdev_get_by_path(path, flags, holder);
969
970         if (IS_ERR(bdev)) {
971                 ret = PTR_ERR(bdev);
972                 goto error;
973         }
974
975         /* make sure our super fits in the device */
976         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977                 goto error_bdev_put;
978
979         /* make sure our super fits in the page */
980         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981                 goto error_bdev_put;
982
983         /* make sure our super doesn't straddle pages on disk */
984         index = bytenr >> PAGE_CACHE_SHIFT;
985         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986                 goto error_bdev_put;
987
988         /* pull in the page with our super */
989         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990                                    index, GFP_NOFS);
991
992         if (IS_ERR_OR_NULL(page))
993                 goto error_bdev_put;
994
995         p = kmap(page);
996
997         /* align our pointer to the offset of the super block */
998         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999
1000         if (btrfs_super_bytenr(disk_super) != bytenr ||
1001             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002                 goto error_unmap;
1003
1004         devid = btrfs_stack_device_id(&disk_super->dev_item);
1005         transid = btrfs_super_generation(disk_super);
1006         total_devices = btrfs_super_num_devices(disk_super);
1007
1008         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009         if (ret > 0) {
1010                 if (disk_super->label[0]) {
1011                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014                 } else {
1015                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016                 }
1017
1018                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019                 ret = 0;
1020         }
1021         if (!ret && fs_devices_ret)
1022                 (*fs_devices_ret)->total_devices = total_devices;
1023
1024 error_unmap:
1025         kunmap(page);
1026         page_cache_release(page);
1027
1028 error_bdev_put:
1029         blkdev_put(bdev, flags);
1030 error:
1031         mutex_unlock(&uuid_mutex);
1032         return ret;
1033 }
1034
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037                                    u64 end, u64 *length)
1038 {
1039         struct btrfs_key key;
1040         struct btrfs_root *root = device->dev_root;
1041         struct btrfs_dev_extent *dev_extent;
1042         struct btrfs_path *path;
1043         u64 extent_end;
1044         int ret;
1045         int slot;
1046         struct extent_buffer *l;
1047
1048         *length = 0;
1049
1050         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051                 return 0;
1052
1053         path = btrfs_alloc_path();
1054         if (!path)
1055                 return -ENOMEM;
1056         path->reada = 2;
1057
1058         key.objectid = device->devid;
1059         key.offset = start;
1060         key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063         if (ret < 0)
1064                 goto out;
1065         if (ret > 0) {
1066                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067                 if (ret < 0)
1068                         goto out;
1069         }
1070
1071         while (1) {
1072                 l = path->nodes[0];
1073                 slot = path->slots[0];
1074                 if (slot >= btrfs_header_nritems(l)) {
1075                         ret = btrfs_next_leaf(root, path);
1076                         if (ret == 0)
1077                                 continue;
1078                         if (ret < 0)
1079                                 goto out;
1080
1081                         break;
1082                 }
1083                 btrfs_item_key_to_cpu(l, &key, slot);
1084
1085                 if (key.objectid < device->devid)
1086                         goto next;
1087
1088                 if (key.objectid > device->devid)
1089                         break;
1090
1091                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1092                         goto next;
1093
1094                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095                 extent_end = key.offset + btrfs_dev_extent_length(l,
1096                                                                   dev_extent);
1097                 if (key.offset <= start && extent_end > end) {
1098                         *length = end - start + 1;
1099                         break;
1100                 } else if (key.offset <= start && extent_end > start)
1101                         *length += extent_end - start;
1102                 else if (key.offset > start && extent_end <= end)
1103                         *length += extent_end - key.offset;
1104                 else if (key.offset > start && key.offset <= end) {
1105                         *length += end - key.offset + 1;
1106                         break;
1107                 } else if (key.offset > end)
1108                         break;
1109
1110 next:
1111                 path->slots[0]++;
1112         }
1113         ret = 0;
1114 out:
1115         btrfs_free_path(path);
1116         return ret;
1117 }
1118
1119 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1120                                    struct btrfs_device *device,
1121                                    u64 *start, u64 len)
1122 {
1123         struct extent_map *em;
1124         struct list_head *search_list = &trans->transaction->pending_chunks;
1125         int ret = 0;
1126         u64 physical_start = *start;
1127
1128 again:
1129         list_for_each_entry(em, search_list, list) {
1130                 struct map_lookup *map;
1131                 int i;
1132
1133                 map = (struct map_lookup *)em->bdev;
1134                 for (i = 0; i < map->num_stripes; i++) {
1135                         u64 end;
1136
1137                         if (map->stripes[i].dev != device)
1138                                 continue;
1139                         if (map->stripes[i].physical >= physical_start + len ||
1140                             map->stripes[i].physical + em->orig_block_len <=
1141                             physical_start)
1142                                 continue;
1143                         /*
1144                          * Make sure that while processing the pinned list we do
1145                          * not override our *start with a lower value, because
1146                          * we can have pinned chunks that fall within this
1147                          * device hole and that have lower physical addresses
1148                          * than the pending chunks we processed before. If we
1149                          * do not take this special care we can end up getting
1150                          * 2 pending chunks that start at the same physical
1151                          * device offsets because the end offset of a pinned
1152                          * chunk can be equal to the start offset of some
1153                          * pending chunk.
1154                          */
1155                         end = map->stripes[i].physical + em->orig_block_len;
1156                         if (end > *start) {
1157                                 *start = end;
1158                                 ret = 1;
1159                         }
1160                 }
1161         }
1162         if (search_list == &trans->transaction->pending_chunks) {
1163                 search_list = &trans->root->fs_info->pinned_chunks;
1164                 goto again;
1165         }
1166
1167         return ret;
1168 }
1169
1170
1171 /*
1172  * find_free_dev_extent - find free space in the specified device
1173  * @device:     the device which we search the free space in
1174  * @num_bytes:  the size of the free space that we need
1175  * @start:      store the start of the free space.
1176  * @len:        the size of the free space. that we find, or the size of the max
1177  *              free space if we don't find suitable free space
1178  *
1179  * this uses a pretty simple search, the expectation is that it is
1180  * called very infrequently and that a given device has a small number
1181  * of extents
1182  *
1183  * @start is used to store the start of the free space if we find. But if we
1184  * don't find suitable free space, it will be used to store the start position
1185  * of the max free space.
1186  *
1187  * @len is used to store the size of the free space that we find.
1188  * But if we don't find suitable free space, it is used to store the size of
1189  * the max free space.
1190  */
1191 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1192                          struct btrfs_device *device, u64 num_bytes,
1193                          u64 *start, u64 *len)
1194 {
1195         struct btrfs_key key;
1196         struct btrfs_root *root = device->dev_root;
1197         struct btrfs_dev_extent *dev_extent;
1198         struct btrfs_path *path;
1199         u64 hole_size;
1200         u64 max_hole_start;
1201         u64 max_hole_size;
1202         u64 extent_end;
1203         u64 search_start;
1204         u64 search_end = device->total_bytes;
1205         int ret;
1206         int slot;
1207         struct extent_buffer *l;
1208
1209         /* FIXME use last free of some kind */
1210
1211         /* we don't want to overwrite the superblock on the drive,
1212          * so we make sure to start at an offset of at least 1MB
1213          */
1214         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1215
1216         path = btrfs_alloc_path();
1217         if (!path)
1218                 return -ENOMEM;
1219
1220         max_hole_start = search_start;
1221         max_hole_size = 0;
1222
1223 again:
1224         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1225                 ret = -ENOSPC;
1226                 goto out;
1227         }
1228
1229         path->reada = 2;
1230         path->search_commit_root = 1;
1231         path->skip_locking = 1;
1232
1233         key.objectid = device->devid;
1234         key.offset = search_start;
1235         key.type = BTRFS_DEV_EXTENT_KEY;
1236
1237         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1238         if (ret < 0)
1239                 goto out;
1240         if (ret > 0) {
1241                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1242                 if (ret < 0)
1243                         goto out;
1244         }
1245
1246         while (1) {
1247                 l = path->nodes[0];
1248                 slot = path->slots[0];
1249                 if (slot >= btrfs_header_nritems(l)) {
1250                         ret = btrfs_next_leaf(root, path);
1251                         if (ret == 0)
1252                                 continue;
1253                         if (ret < 0)
1254                                 goto out;
1255
1256                         break;
1257                 }
1258                 btrfs_item_key_to_cpu(l, &key, slot);
1259
1260                 if (key.objectid < device->devid)
1261                         goto next;
1262
1263                 if (key.objectid > device->devid)
1264                         break;
1265
1266                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1267                         goto next;
1268
1269                 if (key.offset > search_start) {
1270                         hole_size = key.offset - search_start;
1271
1272                         /*
1273                          * Have to check before we set max_hole_start, otherwise
1274                          * we could end up sending back this offset anyway.
1275                          */
1276                         if (contains_pending_extent(trans, device,
1277                                                     &search_start,
1278                                                     hole_size)) {
1279                                 if (key.offset >= search_start) {
1280                                         hole_size = key.offset - search_start;
1281                                 } else {
1282                                         WARN_ON_ONCE(1);
1283                                         hole_size = 0;
1284                                 }
1285                         }
1286
1287                         if (hole_size > max_hole_size) {
1288                                 max_hole_start = search_start;
1289                                 max_hole_size = hole_size;
1290                         }
1291
1292                         /*
1293                          * If this free space is greater than which we need,
1294                          * it must be the max free space that we have found
1295                          * until now, so max_hole_start must point to the start
1296                          * of this free space and the length of this free space
1297                          * is stored in max_hole_size. Thus, we return
1298                          * max_hole_start and max_hole_size and go back to the
1299                          * caller.
1300                          */
1301                         if (hole_size >= num_bytes) {
1302                                 ret = 0;
1303                                 goto out;
1304                         }
1305                 }
1306
1307                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1308                 extent_end = key.offset + btrfs_dev_extent_length(l,
1309                                                                   dev_extent);
1310                 if (extent_end > search_start)
1311                         search_start = extent_end;
1312 next:
1313                 path->slots[0]++;
1314                 cond_resched();
1315         }
1316
1317         /*
1318          * At this point, search_start should be the end of
1319          * allocated dev extents, and when shrinking the device,
1320          * search_end may be smaller than search_start.
1321          */
1322         if (search_end > search_start) {
1323                 hole_size = search_end - search_start;
1324
1325                 if (contains_pending_extent(trans, device, &search_start,
1326                                             hole_size)) {
1327                         btrfs_release_path(path);
1328                         goto again;
1329                 }
1330
1331                 if (hole_size > max_hole_size) {
1332                         max_hole_start = search_start;
1333                         max_hole_size = hole_size;
1334                 }
1335         }
1336
1337         /* See above. */
1338         if (max_hole_size < num_bytes)
1339                 ret = -ENOSPC;
1340         else
1341                 ret = 0;
1342
1343 out:
1344         btrfs_free_path(path);
1345         *start = max_hole_start;
1346         if (len)
1347                 *len = max_hole_size;
1348         return ret;
1349 }
1350
1351 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1352                           struct btrfs_device *device,
1353                           u64 start, u64 *dev_extent_len)
1354 {
1355         int ret;
1356         struct btrfs_path *path;
1357         struct btrfs_root *root = device->dev_root;
1358         struct btrfs_key key;
1359         struct btrfs_key found_key;
1360         struct extent_buffer *leaf = NULL;
1361         struct btrfs_dev_extent *extent = NULL;
1362
1363         path = btrfs_alloc_path();
1364         if (!path)
1365                 return -ENOMEM;
1366
1367         key.objectid = device->devid;
1368         key.offset = start;
1369         key.type = BTRFS_DEV_EXTENT_KEY;
1370 again:
1371         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1372         if (ret > 0) {
1373                 ret = btrfs_previous_item(root, path, key.objectid,
1374                                           BTRFS_DEV_EXTENT_KEY);
1375                 if (ret)
1376                         goto out;
1377                 leaf = path->nodes[0];
1378                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1379                 extent = btrfs_item_ptr(leaf, path->slots[0],
1380                                         struct btrfs_dev_extent);
1381                 BUG_ON(found_key.offset > start || found_key.offset +
1382                        btrfs_dev_extent_length(leaf, extent) < start);
1383                 key = found_key;
1384                 btrfs_release_path(path);
1385                 goto again;
1386         } else if (ret == 0) {
1387                 leaf = path->nodes[0];
1388                 extent = btrfs_item_ptr(leaf, path->slots[0],
1389                                         struct btrfs_dev_extent);
1390         } else {
1391                 btrfs_error(root->fs_info, ret, "Slot search failed");
1392                 goto out;
1393         }
1394
1395         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1396
1397         ret = btrfs_del_item(trans, root, path);
1398         if (ret) {
1399                 btrfs_error(root->fs_info, ret,
1400                             "Failed to remove dev extent item");
1401         } else {
1402                 trans->transaction->have_free_bgs = 1;
1403         }
1404 out:
1405         btrfs_free_path(path);
1406         return ret;
1407 }
1408
1409 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1410                                   struct btrfs_device *device,
1411                                   u64 chunk_tree, u64 chunk_objectid,
1412                                   u64 chunk_offset, u64 start, u64 num_bytes)
1413 {
1414         int ret;
1415         struct btrfs_path *path;
1416         struct btrfs_root *root = device->dev_root;
1417         struct btrfs_dev_extent *extent;
1418         struct extent_buffer *leaf;
1419         struct btrfs_key key;
1420
1421         WARN_ON(!device->in_fs_metadata);
1422         WARN_ON(device->is_tgtdev_for_dev_replace);
1423         path = btrfs_alloc_path();
1424         if (!path)
1425                 return -ENOMEM;
1426
1427         key.objectid = device->devid;
1428         key.offset = start;
1429         key.type = BTRFS_DEV_EXTENT_KEY;
1430         ret = btrfs_insert_empty_item(trans, root, path, &key,
1431                                       sizeof(*extent));
1432         if (ret)
1433                 goto out;
1434
1435         leaf = path->nodes[0];
1436         extent = btrfs_item_ptr(leaf, path->slots[0],
1437                                 struct btrfs_dev_extent);
1438         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1439         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1440         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1441
1442         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1443                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1444
1445         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1446         btrfs_mark_buffer_dirty(leaf);
1447 out:
1448         btrfs_free_path(path);
1449         return ret;
1450 }
1451
1452 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1453 {
1454         struct extent_map_tree *em_tree;
1455         struct extent_map *em;
1456         struct rb_node *n;
1457         u64 ret = 0;
1458
1459         em_tree = &fs_info->mapping_tree.map_tree;
1460         read_lock(&em_tree->lock);
1461         n = rb_last(&em_tree->map);
1462         if (n) {
1463                 em = rb_entry(n, struct extent_map, rb_node);
1464                 ret = em->start + em->len;
1465         }
1466         read_unlock(&em_tree->lock);
1467
1468         return ret;
1469 }
1470
1471 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1472                                     u64 *devid_ret)
1473 {
1474         int ret;
1475         struct btrfs_key key;
1476         struct btrfs_key found_key;
1477         struct btrfs_path *path;
1478
1479         path = btrfs_alloc_path();
1480         if (!path)
1481                 return -ENOMEM;
1482
1483         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1484         key.type = BTRFS_DEV_ITEM_KEY;
1485         key.offset = (u64)-1;
1486
1487         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1488         if (ret < 0)
1489                 goto error;
1490
1491         BUG_ON(ret == 0); /* Corruption */
1492
1493         ret = btrfs_previous_item(fs_info->chunk_root, path,
1494                                   BTRFS_DEV_ITEMS_OBJECTID,
1495                                   BTRFS_DEV_ITEM_KEY);
1496         if (ret) {
1497                 *devid_ret = 1;
1498         } else {
1499                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1500                                       path->slots[0]);
1501                 *devid_ret = found_key.offset + 1;
1502         }
1503         ret = 0;
1504 error:
1505         btrfs_free_path(path);
1506         return ret;
1507 }
1508
1509 /*
1510  * the device information is stored in the chunk root
1511  * the btrfs_device struct should be fully filled in
1512  */
1513 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1514                             struct btrfs_root *root,
1515                             struct btrfs_device *device)
1516 {
1517         int ret;
1518         struct btrfs_path *path;
1519         struct btrfs_dev_item *dev_item;
1520         struct extent_buffer *leaf;
1521         struct btrfs_key key;
1522         unsigned long ptr;
1523
1524         root = root->fs_info->chunk_root;
1525
1526         path = btrfs_alloc_path();
1527         if (!path)
1528                 return -ENOMEM;
1529
1530         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1531         key.type = BTRFS_DEV_ITEM_KEY;
1532         key.offset = device->devid;
1533
1534         ret = btrfs_insert_empty_item(trans, root, path, &key,
1535                                       sizeof(*dev_item));
1536         if (ret)
1537                 goto out;
1538
1539         leaf = path->nodes[0];
1540         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541
1542         btrfs_set_device_id(leaf, dev_item, device->devid);
1543         btrfs_set_device_generation(leaf, dev_item, 0);
1544         btrfs_set_device_type(leaf, dev_item, device->type);
1545         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1546         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1547         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1548         btrfs_set_device_total_bytes(leaf, dev_item,
1549                                      btrfs_device_get_disk_total_bytes(device));
1550         btrfs_set_device_bytes_used(leaf, dev_item,
1551                                     btrfs_device_get_bytes_used(device));
1552         btrfs_set_device_group(leaf, dev_item, 0);
1553         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1554         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1555         btrfs_set_device_start_offset(leaf, dev_item, 0);
1556
1557         ptr = btrfs_device_uuid(dev_item);
1558         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1559         ptr = btrfs_device_fsid(dev_item);
1560         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1561         btrfs_mark_buffer_dirty(leaf);
1562
1563         ret = 0;
1564 out:
1565         btrfs_free_path(path);
1566         return ret;
1567 }
1568
1569 /*
1570  * Function to update ctime/mtime for a given device path.
1571  * Mainly used for ctime/mtime based probe like libblkid.
1572  */
1573 static void update_dev_time(char *path_name)
1574 {
1575         struct file *filp;
1576
1577         filp = filp_open(path_name, O_RDWR, 0);
1578         if (IS_ERR(filp))
1579                 return;
1580         file_update_time(filp);
1581         filp_close(filp, NULL);
1582         return;
1583 }
1584
1585 static int btrfs_rm_dev_item(struct btrfs_root *root,
1586                              struct btrfs_device *device)
1587 {
1588         int ret;
1589         struct btrfs_path *path;
1590         struct btrfs_key key;
1591         struct btrfs_trans_handle *trans;
1592
1593         root = root->fs_info->chunk_root;
1594
1595         path = btrfs_alloc_path();
1596         if (!path)
1597                 return -ENOMEM;
1598
1599         trans = btrfs_start_transaction(root, 0);
1600         if (IS_ERR(trans)) {
1601                 btrfs_free_path(path);
1602                 return PTR_ERR(trans);
1603         }
1604         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1605         key.type = BTRFS_DEV_ITEM_KEY;
1606         key.offset = device->devid;
1607
1608         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1609         if (ret < 0)
1610                 goto out;
1611
1612         if (ret > 0) {
1613                 ret = -ENOENT;
1614                 goto out;
1615         }
1616
1617         ret = btrfs_del_item(trans, root, path);
1618         if (ret)
1619                 goto out;
1620 out:
1621         btrfs_free_path(path);
1622         btrfs_commit_transaction(trans, root);
1623         return ret;
1624 }
1625
1626 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1627 {
1628         struct btrfs_device *device;
1629         struct btrfs_device *next_device;
1630         struct block_device *bdev;
1631         struct buffer_head *bh = NULL;
1632         struct btrfs_super_block *disk_super;
1633         struct btrfs_fs_devices *cur_devices;
1634         u64 all_avail;
1635         u64 devid;
1636         u64 num_devices;
1637         u8 *dev_uuid;
1638         unsigned seq;
1639         int ret = 0;
1640         bool clear_super = false;
1641
1642         mutex_lock(&uuid_mutex);
1643
1644         do {
1645                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1646
1647                 all_avail = root->fs_info->avail_data_alloc_bits |
1648                             root->fs_info->avail_system_alloc_bits |
1649                             root->fs_info->avail_metadata_alloc_bits;
1650         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1651
1652         num_devices = root->fs_info->fs_devices->num_devices;
1653         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1654         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1655                 WARN_ON(num_devices < 1);
1656                 num_devices--;
1657         }
1658         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1659
1660         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1661                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1662                 goto out;
1663         }
1664
1665         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1666                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1667                 goto out;
1668         }
1669
1670         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1671             root->fs_info->fs_devices->rw_devices <= 2) {
1672                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1673                 goto out;
1674         }
1675         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1676             root->fs_info->fs_devices->rw_devices <= 3) {
1677                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1678                 goto out;
1679         }
1680
1681         if (strcmp(device_path, "missing") == 0) {
1682                 struct list_head *devices;
1683                 struct btrfs_device *tmp;
1684
1685                 device = NULL;
1686                 devices = &root->fs_info->fs_devices->devices;
1687                 /*
1688                  * It is safe to read the devices since the volume_mutex
1689                  * is held.
1690                  */
1691                 list_for_each_entry(tmp, devices, dev_list) {
1692                         if (tmp->in_fs_metadata &&
1693                             !tmp->is_tgtdev_for_dev_replace &&
1694                             !tmp->bdev) {
1695                                 device = tmp;
1696                                 break;
1697                         }
1698                 }
1699                 bdev = NULL;
1700                 bh = NULL;
1701                 disk_super = NULL;
1702                 if (!device) {
1703                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1704                         goto out;
1705                 }
1706         } else {
1707                 ret = btrfs_get_bdev_and_sb(device_path,
1708                                             FMODE_WRITE | FMODE_EXCL,
1709                                             root->fs_info->bdev_holder, 0,
1710                                             &bdev, &bh);
1711                 if (ret)
1712                         goto out;
1713                 disk_super = (struct btrfs_super_block *)bh->b_data;
1714                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1715                 dev_uuid = disk_super->dev_item.uuid;
1716                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1717                                            disk_super->fsid);
1718                 if (!device) {
1719                         ret = -ENOENT;
1720                         goto error_brelse;
1721                 }
1722         }
1723
1724         if (device->is_tgtdev_for_dev_replace) {
1725                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1726                 goto error_brelse;
1727         }
1728
1729         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1730                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1731                 goto error_brelse;
1732         }
1733
1734         if (device->writeable) {
1735                 lock_chunks(root);
1736                 list_del_init(&device->dev_alloc_list);
1737                 device->fs_devices->rw_devices--;
1738                 unlock_chunks(root);
1739                 clear_super = true;
1740         }
1741
1742         mutex_unlock(&uuid_mutex);
1743         ret = btrfs_shrink_device(device, 0);
1744         mutex_lock(&uuid_mutex);
1745         if (ret)
1746                 goto error_undo;
1747
1748         /*
1749          * TODO: the superblock still includes this device in its num_devices
1750          * counter although write_all_supers() is not locked out. This
1751          * could give a filesystem state which requires a degraded mount.
1752          */
1753         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1754         if (ret)
1755                 goto error_undo;
1756
1757         device->in_fs_metadata = 0;
1758         btrfs_scrub_cancel_dev(root->fs_info, device);
1759
1760         /*
1761          * the device list mutex makes sure that we don't change
1762          * the device list while someone else is writing out all
1763          * the device supers. Whoever is writing all supers, should
1764          * lock the device list mutex before getting the number of
1765          * devices in the super block (super_copy). Conversely,
1766          * whoever updates the number of devices in the super block
1767          * (super_copy) should hold the device list mutex.
1768          */
1769
1770         cur_devices = device->fs_devices;
1771         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1772         list_del_rcu(&device->dev_list);
1773
1774         device->fs_devices->num_devices--;
1775         device->fs_devices->total_devices--;
1776
1777         if (device->missing)
1778                 device->fs_devices->missing_devices--;
1779
1780         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1781                                  struct btrfs_device, dev_list);
1782         if (device->bdev == root->fs_info->sb->s_bdev)
1783                 root->fs_info->sb->s_bdev = next_device->bdev;
1784         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1785                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1786
1787         if (device->bdev) {
1788                 device->fs_devices->open_devices--;
1789                 /* remove sysfs entry */
1790                 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1791         }
1792
1793         call_rcu(&device->rcu, free_device);
1794
1795         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1796         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1797         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1798
1799         if (cur_devices->open_devices == 0) {
1800                 struct btrfs_fs_devices *fs_devices;
1801                 fs_devices = root->fs_info->fs_devices;
1802                 while (fs_devices) {
1803                         if (fs_devices->seed == cur_devices) {
1804                                 fs_devices->seed = cur_devices->seed;
1805                                 break;
1806                         }
1807                         fs_devices = fs_devices->seed;
1808                 }
1809                 cur_devices->seed = NULL;
1810                 __btrfs_close_devices(cur_devices);
1811                 free_fs_devices(cur_devices);
1812         }
1813
1814         root->fs_info->num_tolerated_disk_barrier_failures =
1815                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1816
1817         /*
1818          * at this point, the device is zero sized.  We want to
1819          * remove it from the devices list and zero out the old super
1820          */
1821         if (clear_super && disk_super) {
1822                 u64 bytenr;
1823                 int i;
1824
1825                 /* make sure this device isn't detected as part of
1826                  * the FS anymore
1827                  */
1828                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1829                 set_buffer_dirty(bh);
1830                 sync_dirty_buffer(bh);
1831
1832                 /* clear the mirror copies of super block on the disk
1833                  * being removed, 0th copy is been taken care above and
1834                  * the below would take of the rest
1835                  */
1836                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1837                         bytenr = btrfs_sb_offset(i);
1838                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1839                                         i_size_read(bdev->bd_inode))
1840                                 break;
1841
1842                         brelse(bh);
1843                         bh = __bread(bdev, bytenr / 4096,
1844                                         BTRFS_SUPER_INFO_SIZE);
1845                         if (!bh)
1846                                 continue;
1847
1848                         disk_super = (struct btrfs_super_block *)bh->b_data;
1849
1850                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1851                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1852                                 continue;
1853                         }
1854                         memset(&disk_super->magic, 0,
1855                                                 sizeof(disk_super->magic));
1856                         set_buffer_dirty(bh);
1857                         sync_dirty_buffer(bh);
1858                 }
1859         }
1860
1861         ret = 0;
1862
1863         if (bdev) {
1864                 /* Notify udev that device has changed */
1865                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1866
1867                 /* Update ctime/mtime for device path for libblkid */
1868                 update_dev_time(device_path);
1869         }
1870
1871 error_brelse:
1872         brelse(bh);
1873         if (bdev)
1874                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1875 out:
1876         mutex_unlock(&uuid_mutex);
1877         return ret;
1878 error_undo:
1879         if (device->writeable) {
1880                 lock_chunks(root);
1881                 list_add(&device->dev_alloc_list,
1882                          &root->fs_info->fs_devices->alloc_list);
1883                 device->fs_devices->rw_devices++;
1884                 unlock_chunks(root);
1885         }
1886         goto error_brelse;
1887 }
1888
1889 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1890                                         struct btrfs_device *srcdev)
1891 {
1892         struct btrfs_fs_devices *fs_devices;
1893
1894         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1895
1896         /*
1897          * in case of fs with no seed, srcdev->fs_devices will point
1898          * to fs_devices of fs_info. However when the dev being replaced is
1899          * a seed dev it will point to the seed's local fs_devices. In short
1900          * srcdev will have its correct fs_devices in both the cases.
1901          */
1902         fs_devices = srcdev->fs_devices;
1903
1904         list_del_rcu(&srcdev->dev_list);
1905         list_del_rcu(&srcdev->dev_alloc_list);
1906         fs_devices->num_devices--;
1907         if (srcdev->missing)
1908                 fs_devices->missing_devices--;
1909
1910         if (srcdev->writeable) {
1911                 fs_devices->rw_devices--;
1912                 /* zero out the old super if it is writable */
1913                 btrfs_scratch_superblock(srcdev);
1914         }
1915
1916         if (srcdev->bdev)
1917                 fs_devices->open_devices--;
1918 }
1919
1920 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1921                                       struct btrfs_device *srcdev)
1922 {
1923         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1924
1925         call_rcu(&srcdev->rcu, free_device);
1926
1927         /*
1928          * unless fs_devices is seed fs, num_devices shouldn't go
1929          * zero
1930          */
1931         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1932
1933         /* if this is no devs we rather delete the fs_devices */
1934         if (!fs_devices->num_devices) {
1935                 struct btrfs_fs_devices *tmp_fs_devices;
1936
1937                 tmp_fs_devices = fs_info->fs_devices;
1938                 while (tmp_fs_devices) {
1939                         if (tmp_fs_devices->seed == fs_devices) {
1940                                 tmp_fs_devices->seed = fs_devices->seed;
1941                                 break;
1942                         }
1943                         tmp_fs_devices = tmp_fs_devices->seed;
1944                 }
1945                 fs_devices->seed = NULL;
1946                 __btrfs_close_devices(fs_devices);
1947                 free_fs_devices(fs_devices);
1948         }
1949 }
1950
1951 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1952                                       struct btrfs_device *tgtdev)
1953 {
1954         struct btrfs_device *next_device;
1955
1956         mutex_lock(&uuid_mutex);
1957         WARN_ON(!tgtdev);
1958         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1959
1960         btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1961
1962         if (tgtdev->bdev) {
1963                 btrfs_scratch_superblock(tgtdev);
1964                 fs_info->fs_devices->open_devices--;
1965         }
1966         fs_info->fs_devices->num_devices--;
1967
1968         next_device = list_entry(fs_info->fs_devices->devices.next,
1969                                  struct btrfs_device, dev_list);
1970         if (tgtdev->bdev == fs_info->sb->s_bdev)
1971                 fs_info->sb->s_bdev = next_device->bdev;
1972         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1973                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1974         list_del_rcu(&tgtdev->dev_list);
1975
1976         call_rcu(&tgtdev->rcu, free_device);
1977
1978         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1979         mutex_unlock(&uuid_mutex);
1980 }
1981
1982 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1983                                      struct btrfs_device **device)
1984 {
1985         int ret = 0;
1986         struct btrfs_super_block *disk_super;
1987         u64 devid;
1988         u8 *dev_uuid;
1989         struct block_device *bdev;
1990         struct buffer_head *bh;
1991
1992         *device = NULL;
1993         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1994                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1995         if (ret)
1996                 return ret;
1997         disk_super = (struct btrfs_super_block *)bh->b_data;
1998         devid = btrfs_stack_device_id(&disk_super->dev_item);
1999         dev_uuid = disk_super->dev_item.uuid;
2000         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2001                                     disk_super->fsid);
2002         brelse(bh);
2003         if (!*device)
2004                 ret = -ENOENT;
2005         blkdev_put(bdev, FMODE_READ);
2006         return ret;
2007 }
2008
2009 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2010                                          char *device_path,
2011                                          struct btrfs_device **device)
2012 {
2013         *device = NULL;
2014         if (strcmp(device_path, "missing") == 0) {
2015                 struct list_head *devices;
2016                 struct btrfs_device *tmp;
2017
2018                 devices = &root->fs_info->fs_devices->devices;
2019                 /*
2020                  * It is safe to read the devices since the volume_mutex
2021                  * is held by the caller.
2022                  */
2023                 list_for_each_entry(tmp, devices, dev_list) {
2024                         if (tmp->in_fs_metadata && !tmp->bdev) {
2025                                 *device = tmp;
2026                                 break;
2027                         }
2028                 }
2029
2030                 if (!*device) {
2031                         btrfs_err(root->fs_info, "no missing device found");
2032                         return -ENOENT;
2033                 }
2034
2035                 return 0;
2036         } else {
2037                 return btrfs_find_device_by_path(root, device_path, device);
2038         }
2039 }
2040
2041 /*
2042  * does all the dirty work required for changing file system's UUID.
2043  */
2044 static int btrfs_prepare_sprout(struct btrfs_root *root)
2045 {
2046         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2047         struct btrfs_fs_devices *old_devices;
2048         struct btrfs_fs_devices *seed_devices;
2049         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2050         struct btrfs_device *device;
2051         u64 super_flags;
2052
2053         BUG_ON(!mutex_is_locked(&uuid_mutex));
2054         if (!fs_devices->seeding)
2055                 return -EINVAL;
2056
2057         seed_devices = __alloc_fs_devices();
2058         if (IS_ERR(seed_devices))
2059                 return PTR_ERR(seed_devices);
2060
2061         old_devices = clone_fs_devices(fs_devices);
2062         if (IS_ERR(old_devices)) {
2063                 kfree(seed_devices);
2064                 return PTR_ERR(old_devices);
2065         }
2066
2067         list_add(&old_devices->list, &fs_uuids);
2068
2069         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2070         seed_devices->opened = 1;
2071         INIT_LIST_HEAD(&seed_devices->devices);
2072         INIT_LIST_HEAD(&seed_devices->alloc_list);
2073         mutex_init(&seed_devices->device_list_mutex);
2074
2075         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2076         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2077                               synchronize_rcu);
2078         list_for_each_entry(device, &seed_devices->devices, dev_list)
2079                 device->fs_devices = seed_devices;
2080
2081         lock_chunks(root);
2082         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2083         unlock_chunks(root);
2084
2085         fs_devices->seeding = 0;
2086         fs_devices->num_devices = 0;
2087         fs_devices->open_devices = 0;
2088         fs_devices->missing_devices = 0;
2089         fs_devices->rotating = 0;
2090         fs_devices->seed = seed_devices;
2091
2092         generate_random_uuid(fs_devices->fsid);
2093         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2094         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2095         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096
2097         super_flags = btrfs_super_flags(disk_super) &
2098                       ~BTRFS_SUPER_FLAG_SEEDING;
2099         btrfs_set_super_flags(disk_super, super_flags);
2100
2101         return 0;
2102 }
2103
2104 /*
2105  * strore the expected generation for seed devices in device items.
2106  */
2107 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2108                                struct btrfs_root *root)
2109 {
2110         struct btrfs_path *path;
2111         struct extent_buffer *leaf;
2112         struct btrfs_dev_item *dev_item;
2113         struct btrfs_device *device;
2114         struct btrfs_key key;
2115         u8 fs_uuid[BTRFS_UUID_SIZE];
2116         u8 dev_uuid[BTRFS_UUID_SIZE];
2117         u64 devid;
2118         int ret;
2119
2120         path = btrfs_alloc_path();
2121         if (!path)
2122                 return -ENOMEM;
2123
2124         root = root->fs_info->chunk_root;
2125         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2126         key.offset = 0;
2127         key.type = BTRFS_DEV_ITEM_KEY;
2128
2129         while (1) {
2130                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2131                 if (ret < 0)
2132                         goto error;
2133
2134                 leaf = path->nodes[0];
2135 next_slot:
2136                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2137                         ret = btrfs_next_leaf(root, path);
2138                         if (ret > 0)
2139                                 break;
2140                         if (ret < 0)
2141                                 goto error;
2142                         leaf = path->nodes[0];
2143                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2144                         btrfs_release_path(path);
2145                         continue;
2146                 }
2147
2148                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2149                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2150                     key.type != BTRFS_DEV_ITEM_KEY)
2151                         break;
2152
2153                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2154                                           struct btrfs_dev_item);
2155                 devid = btrfs_device_id(leaf, dev_item);
2156                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2157                                    BTRFS_UUID_SIZE);
2158                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2159                                    BTRFS_UUID_SIZE);
2160                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2161                                            fs_uuid);
2162                 BUG_ON(!device); /* Logic error */
2163
2164                 if (device->fs_devices->seeding) {
2165                         btrfs_set_device_generation(leaf, dev_item,
2166                                                     device->generation);
2167                         btrfs_mark_buffer_dirty(leaf);
2168                 }
2169
2170                 path->slots[0]++;
2171                 goto next_slot;
2172         }
2173         ret = 0;
2174 error:
2175         btrfs_free_path(path);
2176         return ret;
2177 }
2178
2179 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2180 {
2181         struct request_queue *q;
2182         struct btrfs_trans_handle *trans;
2183         struct btrfs_device *device;
2184         struct block_device *bdev;
2185         struct list_head *devices;
2186         struct super_block *sb = root->fs_info->sb;
2187         struct rcu_string *name;
2188         u64 tmp;
2189         int seeding_dev = 0;
2190         int ret = 0;
2191
2192         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2193                 return -EROFS;
2194
2195         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2196                                   root->fs_info->bdev_holder);
2197         if (IS_ERR(bdev))
2198                 return PTR_ERR(bdev);
2199
2200         if (root->fs_info->fs_devices->seeding) {
2201                 seeding_dev = 1;
2202                 down_write(&sb->s_umount);
2203                 mutex_lock(&uuid_mutex);
2204         }
2205
2206         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2207
2208         devices = &root->fs_info->fs_devices->devices;
2209
2210         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2211         list_for_each_entry(device, devices, dev_list) {
2212                 if (device->bdev == bdev) {
2213                         ret = -EEXIST;
2214                         mutex_unlock(
2215                                 &root->fs_info->fs_devices->device_list_mutex);
2216                         goto error;
2217                 }
2218         }
2219         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2220
2221         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2222         if (IS_ERR(device)) {
2223                 /* we can safely leave the fs_devices entry around */
2224                 ret = PTR_ERR(device);
2225                 goto error;
2226         }
2227
2228         name = rcu_string_strdup(device_path, GFP_NOFS);
2229         if (!name) {
2230                 kfree(device);
2231                 ret = -ENOMEM;
2232                 goto error;
2233         }
2234         rcu_assign_pointer(device->name, name);
2235
2236         trans = btrfs_start_transaction(root, 0);
2237         if (IS_ERR(trans)) {
2238                 rcu_string_free(device->name);
2239                 kfree(device);
2240                 ret = PTR_ERR(trans);
2241                 goto error;
2242         }
2243
2244         q = bdev_get_queue(bdev);
2245         if (blk_queue_discard(q))
2246                 device->can_discard = 1;
2247         device->writeable = 1;
2248         device->generation = trans->transid;
2249         device->io_width = root->sectorsize;
2250         device->io_align = root->sectorsize;
2251         device->sector_size = root->sectorsize;
2252         device->total_bytes = i_size_read(bdev->bd_inode);
2253         device->disk_total_bytes = device->total_bytes;
2254         device->commit_total_bytes = device->total_bytes;
2255         device->dev_root = root->fs_info->dev_root;
2256         device->bdev = bdev;
2257         device->in_fs_metadata = 1;
2258         device->is_tgtdev_for_dev_replace = 0;
2259         device->mode = FMODE_EXCL;
2260         device->dev_stats_valid = 1;
2261         set_blocksize(device->bdev, 4096);
2262
2263         if (seeding_dev) {
2264                 sb->s_flags &= ~MS_RDONLY;
2265                 ret = btrfs_prepare_sprout(root);
2266                 BUG_ON(ret); /* -ENOMEM */
2267         }
2268
2269         device->fs_devices = root->fs_info->fs_devices;
2270
2271         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2272         lock_chunks(root);
2273         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2274         list_add(&device->dev_alloc_list,
2275                  &root->fs_info->fs_devices->alloc_list);
2276         root->fs_info->fs_devices->num_devices++;
2277         root->fs_info->fs_devices->open_devices++;
2278         root->fs_info->fs_devices->rw_devices++;
2279         root->fs_info->fs_devices->total_devices++;
2280         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2281
2282         spin_lock(&root->fs_info->free_chunk_lock);
2283         root->fs_info->free_chunk_space += device->total_bytes;
2284         spin_unlock(&root->fs_info->free_chunk_lock);
2285
2286         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2287                 root->fs_info->fs_devices->rotating = 1;
2288
2289         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2290         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2291                                     tmp + device->total_bytes);
2292
2293         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2294         btrfs_set_super_num_devices(root->fs_info->super_copy,
2295                                     tmp + 1);
2296
2297         /* add sysfs device entry */
2298         btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2299
2300         /*
2301          * we've got more storage, clear any full flags on the space
2302          * infos
2303          */
2304         btrfs_clear_space_info_full(root->fs_info);
2305
2306         unlock_chunks(root);
2307         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308
2309         if (seeding_dev) {
2310                 lock_chunks(root);
2311                 ret = init_first_rw_device(trans, root, device);
2312                 unlock_chunks(root);
2313                 if (ret) {
2314                         btrfs_abort_transaction(trans, root, ret);
2315                         goto error_trans;
2316                 }
2317         }
2318
2319         ret = btrfs_add_device(trans, root, device);
2320         if (ret) {
2321                 btrfs_abort_transaction(trans, root, ret);
2322                 goto error_trans;
2323         }
2324
2325         if (seeding_dev) {
2326                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2327
2328                 ret = btrfs_finish_sprout(trans, root);
2329                 if (ret) {
2330                         btrfs_abort_transaction(trans, root, ret);
2331                         goto error_trans;
2332                 }
2333
2334                 /* Sprouting would change fsid of the mounted root,
2335                  * so rename the fsid on the sysfs
2336                  */
2337                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2338                                                 root->fs_info->fsid);
2339                 if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2340                                                                 fsid_buf))
2341                         pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2342         }
2343
2344         root->fs_info->num_tolerated_disk_barrier_failures =
2345                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2346         ret = btrfs_commit_transaction(trans, root);
2347
2348         if (seeding_dev) {
2349                 mutex_unlock(&uuid_mutex);
2350                 up_write(&sb->s_umount);
2351
2352                 if (ret) /* transaction commit */
2353                         return ret;
2354
2355                 ret = btrfs_relocate_sys_chunks(root);
2356                 if (ret < 0)
2357                         btrfs_error(root->fs_info, ret,
2358                                     "Failed to relocate sys chunks after "
2359                                     "device initialization. This can be fixed "
2360                                     "using the \"btrfs balance\" command.");
2361                 trans = btrfs_attach_transaction(root);
2362                 if (IS_ERR(trans)) {
2363                         if (PTR_ERR(trans) == -ENOENT)
2364                                 return 0;
2365                         return PTR_ERR(trans);
2366                 }
2367                 ret = btrfs_commit_transaction(trans, root);
2368         }
2369
2370         /* Update ctime/mtime for libblkid */
2371         update_dev_time(device_path);
2372         return ret;
2373
2374 error_trans:
2375         btrfs_end_transaction(trans, root);
2376         rcu_string_free(device->name);
2377         btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2378         kfree(device);
2379 error:
2380         blkdev_put(bdev, FMODE_EXCL);
2381         if (seeding_dev) {
2382                 mutex_unlock(&uuid_mutex);
2383                 up_write(&sb->s_umount);
2384         }
2385         return ret;
2386 }
2387
2388 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2389                                   struct btrfs_device *srcdev,
2390                                   struct btrfs_device **device_out)
2391 {
2392         struct request_queue *q;
2393         struct btrfs_device *device;
2394         struct block_device *bdev;
2395         struct btrfs_fs_info *fs_info = root->fs_info;
2396         struct list_head *devices;
2397         struct rcu_string *name;
2398         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2399         int ret = 0;
2400
2401         *device_out = NULL;
2402         if (fs_info->fs_devices->seeding) {
2403                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2404                 return -EINVAL;
2405         }
2406
2407         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2408                                   fs_info->bdev_holder);
2409         if (IS_ERR(bdev)) {
2410                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2411                 return PTR_ERR(bdev);
2412         }
2413
2414         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415
2416         devices = &fs_info->fs_devices->devices;
2417         list_for_each_entry(device, devices, dev_list) {
2418                 if (device->bdev == bdev) {
2419                         btrfs_err(fs_info, "target device is in the filesystem!");
2420                         ret = -EEXIST;
2421                         goto error;
2422                 }
2423         }
2424
2425
2426         if (i_size_read(bdev->bd_inode) <
2427             btrfs_device_get_total_bytes(srcdev)) {
2428                 btrfs_err(fs_info, "target device is smaller than source device!");
2429                 ret = -EINVAL;
2430                 goto error;
2431         }
2432
2433
2434         device = btrfs_alloc_device(NULL, &devid, NULL);
2435         if (IS_ERR(device)) {
2436                 ret = PTR_ERR(device);
2437                 goto error;
2438         }
2439
2440         name = rcu_string_strdup(device_path, GFP_NOFS);
2441         if (!name) {
2442                 kfree(device);
2443                 ret = -ENOMEM;
2444                 goto error;
2445         }
2446         rcu_assign_pointer(device->name, name);
2447
2448         q = bdev_get_queue(bdev);
2449         if (blk_queue_discard(q))
2450                 device->can_discard = 1;
2451         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2452         device->writeable = 1;
2453         device->generation = 0;
2454         device->io_width = root->sectorsize;
2455         device->io_align = root->sectorsize;
2456         device->sector_size = root->sectorsize;
2457         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2458         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2459         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2460         ASSERT(list_empty(&srcdev->resized_list));
2461         device->commit_total_bytes = srcdev->commit_total_bytes;
2462         device->commit_bytes_used = device->bytes_used;
2463         device->dev_root = fs_info->dev_root;
2464         device->bdev = bdev;
2465         device->in_fs_metadata = 1;
2466         device->is_tgtdev_for_dev_replace = 1;
2467         device->mode = FMODE_EXCL;
2468         device->dev_stats_valid = 1;
2469         set_blocksize(device->bdev, 4096);
2470         device->fs_devices = fs_info->fs_devices;
2471         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2472         fs_info->fs_devices->num_devices++;
2473         fs_info->fs_devices->open_devices++;
2474         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2475
2476         *device_out = device;
2477         return ret;
2478
2479 error:
2480         blkdev_put(bdev, FMODE_EXCL);
2481         return ret;
2482 }
2483
2484 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2485                                               struct btrfs_device *tgtdev)
2486 {
2487         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2488         tgtdev->io_width = fs_info->dev_root->sectorsize;
2489         tgtdev->io_align = fs_info->dev_root->sectorsize;
2490         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2491         tgtdev->dev_root = fs_info->dev_root;
2492         tgtdev->in_fs_metadata = 1;
2493 }
2494
2495 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2496                                         struct btrfs_device *device)
2497 {
2498         int ret;
2499         struct btrfs_path *path;
2500         struct btrfs_root *root;
2501         struct btrfs_dev_item *dev_item;
2502         struct extent_buffer *leaf;
2503         struct btrfs_key key;
2504
2505         root = device->dev_root->fs_info->chunk_root;
2506
2507         path = btrfs_alloc_path();
2508         if (!path)
2509                 return -ENOMEM;
2510
2511         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512         key.type = BTRFS_DEV_ITEM_KEY;
2513         key.offset = device->devid;
2514
2515         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2516         if (ret < 0)
2517                 goto out;
2518
2519         if (ret > 0) {
2520                 ret = -ENOENT;
2521                 goto out;
2522         }
2523
2524         leaf = path->nodes[0];
2525         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2526
2527         btrfs_set_device_id(leaf, dev_item, device->devid);
2528         btrfs_set_device_type(leaf, dev_item, device->type);
2529         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2530         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2531         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2532         btrfs_set_device_total_bytes(leaf, dev_item,
2533                                      btrfs_device_get_disk_total_bytes(device));
2534         btrfs_set_device_bytes_used(leaf, dev_item,
2535                                     btrfs_device_get_bytes_used(device));
2536         btrfs_mark_buffer_dirty(leaf);
2537
2538 out:
2539         btrfs_free_path(path);
2540         return ret;
2541 }
2542
2543 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2544                       struct btrfs_device *device, u64 new_size)
2545 {
2546         struct btrfs_super_block *super_copy =
2547                 device->dev_root->fs_info->super_copy;
2548         struct btrfs_fs_devices *fs_devices;
2549         u64 old_total;
2550         u64 diff;
2551
2552         if (!device->writeable)
2553                 return -EACCES;
2554
2555         lock_chunks(device->dev_root);
2556         old_total = btrfs_super_total_bytes(super_copy);
2557         diff = new_size - device->total_bytes;
2558
2559         if (new_size <= device->total_bytes ||
2560             device->is_tgtdev_for_dev_replace) {
2561                 unlock_chunks(device->dev_root);
2562                 return -EINVAL;
2563         }
2564
2565         fs_devices = device->dev_root->fs_info->fs_devices;
2566
2567         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2568         device->fs_devices->total_rw_bytes += diff;
2569
2570         btrfs_device_set_total_bytes(device, new_size);
2571         btrfs_device_set_disk_total_bytes(device, new_size);
2572         btrfs_clear_space_info_full(device->dev_root->fs_info);
2573         if (list_empty(&device->resized_list))
2574                 list_add_tail(&device->resized_list,
2575                               &fs_devices->resized_devices);
2576         unlock_chunks(device->dev_root);
2577
2578         return btrfs_update_device(trans, device);
2579 }
2580
2581 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2582                             struct btrfs_root *root, u64 chunk_objectid,
2583                             u64 chunk_offset)
2584 {
2585         int ret;
2586         struct btrfs_path *path;
2587         struct btrfs_key key;
2588
2589         root = root->fs_info->chunk_root;
2590         path = btrfs_alloc_path();
2591         if (!path)
2592                 return -ENOMEM;
2593
2594         key.objectid = chunk_objectid;
2595         key.offset = chunk_offset;
2596         key.type = BTRFS_CHUNK_ITEM_KEY;
2597
2598         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2599         if (ret < 0)
2600                 goto out;
2601         else if (ret > 0) { /* Logic error or corruption */
2602                 btrfs_error(root->fs_info, -ENOENT,
2603                             "Failed lookup while freeing chunk.");
2604                 ret = -ENOENT;
2605                 goto out;
2606         }
2607
2608         ret = btrfs_del_item(trans, root, path);
2609         if (ret < 0)
2610                 btrfs_error(root->fs_info, ret,
2611                             "Failed to delete chunk item.");
2612 out:
2613         btrfs_free_path(path);
2614         return ret;
2615 }
2616
2617 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2618                         chunk_offset)
2619 {
2620         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2621         struct btrfs_disk_key *disk_key;
2622         struct btrfs_chunk *chunk;
2623         u8 *ptr;
2624         int ret = 0;
2625         u32 num_stripes;
2626         u32 array_size;
2627         u32 len = 0;
2628         u32 cur;
2629         struct btrfs_key key;
2630
2631         lock_chunks(root);
2632         array_size = btrfs_super_sys_array_size(super_copy);
2633
2634         ptr = super_copy->sys_chunk_array;
2635         cur = 0;
2636
2637         while (cur < array_size) {
2638                 disk_key = (struct btrfs_disk_key *)ptr;
2639                 btrfs_disk_key_to_cpu(&key, disk_key);
2640
2641                 len = sizeof(*disk_key);
2642
2643                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2644                         chunk = (struct btrfs_chunk *)(ptr + len);
2645                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2646                         len += btrfs_chunk_item_size(num_stripes);
2647                 } else {
2648                         ret = -EIO;
2649                         break;
2650                 }
2651                 if (key.objectid == chunk_objectid &&
2652                     key.offset == chunk_offset) {
2653                         memmove(ptr, ptr + len, array_size - (cur + len));
2654                         array_size -= len;
2655                         btrfs_set_super_sys_array_size(super_copy, array_size);
2656                 } else {
2657                         ptr += len;
2658                         cur += len;
2659                 }
2660         }
2661         unlock_chunks(root);
2662         return ret;
2663 }
2664
2665 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2666                        struct btrfs_root *root, u64 chunk_offset)
2667 {
2668         struct extent_map_tree *em_tree;
2669         struct extent_map *em;
2670         struct btrfs_root *extent_root = root->fs_info->extent_root;
2671         struct map_lookup *map;
2672         u64 dev_extent_len = 0;
2673         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2674         int i, ret = 0;
2675
2676         /* Just in case */
2677         root = root->fs_info->chunk_root;
2678         em_tree = &root->fs_info->mapping_tree.map_tree;
2679
2680         read_lock(&em_tree->lock);
2681         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2682         read_unlock(&em_tree->lock);
2683
2684         if (!em || em->start > chunk_offset ||
2685             em->start + em->len < chunk_offset) {
2686                 /*
2687                  * This is a logic error, but we don't want to just rely on the
2688                  * user having built with ASSERT enabled, so if ASSERT doens't
2689                  * do anything we still error out.
2690                  */
2691                 ASSERT(0);
2692                 if (em)
2693                         free_extent_map(em);
2694                 return -EINVAL;
2695         }
2696         map = (struct map_lookup *)em->bdev;
2697         lock_chunks(root->fs_info->chunk_root);
2698         check_system_chunk(trans, extent_root, map->type);
2699         unlock_chunks(root->fs_info->chunk_root);
2700
2701         for (i = 0; i < map->num_stripes; i++) {
2702                 struct btrfs_device *device = map->stripes[i].dev;
2703                 ret = btrfs_free_dev_extent(trans, device,
2704                                             map->stripes[i].physical,
2705                                             &dev_extent_len);
2706                 if (ret) {
2707                         btrfs_abort_transaction(trans, root, ret);
2708                         goto out;
2709                 }
2710
2711                 if (device->bytes_used > 0) {
2712                         lock_chunks(root);
2713                         btrfs_device_set_bytes_used(device,
2714                                         device->bytes_used - dev_extent_len);
2715                         spin_lock(&root->fs_info->free_chunk_lock);
2716                         root->fs_info->free_chunk_space += dev_extent_len;
2717                         spin_unlock(&root->fs_info->free_chunk_lock);
2718                         btrfs_clear_space_info_full(root->fs_info);
2719                         unlock_chunks(root);
2720                 }
2721
2722                 if (map->stripes[i].dev) {
2723                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2724                         if (ret) {
2725                                 btrfs_abort_transaction(trans, root, ret);
2726                                 goto out;
2727                         }
2728                 }
2729         }
2730         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2731         if (ret) {
2732                 btrfs_abort_transaction(trans, root, ret);
2733                 goto out;
2734         }
2735
2736         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2737
2738         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2739                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2740                 if (ret) {
2741                         btrfs_abort_transaction(trans, root, ret);
2742                         goto out;
2743                 }
2744         }
2745
2746         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2747         if (ret) {
2748                 btrfs_abort_transaction(trans, extent_root, ret);
2749                 goto out;
2750         }
2751
2752 out:
2753         /* once for us */
2754         free_extent_map(em);
2755         return ret;
2756 }
2757
2758 static int btrfs_relocate_chunk(struct btrfs_root *root,
2759                                 u64 chunk_objectid,
2760                                 u64 chunk_offset)
2761 {
2762         struct btrfs_root *extent_root;
2763         struct btrfs_trans_handle *trans;
2764         int ret;
2765
2766         root = root->fs_info->chunk_root;
2767         extent_root = root->fs_info->extent_root;
2768
2769         ret = btrfs_can_relocate(extent_root, chunk_offset);
2770         if (ret)
2771                 return -ENOSPC;
2772
2773         /* step one, relocate all the extents inside this chunk */
2774         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2775         if (ret)
2776                 return ret;
2777
2778         trans = btrfs_start_transaction(root, 0);
2779         if (IS_ERR(trans)) {
2780                 ret = PTR_ERR(trans);
2781                 btrfs_std_error(root->fs_info, ret);
2782                 return ret;
2783         }
2784
2785         /*
2786          * step two, delete the device extents and the
2787          * chunk tree entries
2788          */
2789         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2790         btrfs_end_transaction(trans, root);
2791         return ret;
2792 }
2793
2794 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2795 {
2796         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2797         struct btrfs_path *path;
2798         struct extent_buffer *leaf;
2799         struct btrfs_chunk *chunk;
2800         struct btrfs_key key;
2801         struct btrfs_key found_key;
2802         u64 chunk_type;
2803         bool retried = false;
2804         int failed = 0;
2805         int ret;
2806
2807         path = btrfs_alloc_path();
2808         if (!path)
2809                 return -ENOMEM;
2810
2811 again:
2812         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2813         key.offset = (u64)-1;
2814         key.type = BTRFS_CHUNK_ITEM_KEY;
2815
2816         while (1) {
2817                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2818                 if (ret < 0)
2819                         goto error;
2820                 BUG_ON(ret == 0); /* Corruption */
2821
2822                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2823                                           key.type);
2824                 if (ret < 0)
2825                         goto error;
2826                 if (ret > 0)
2827                         break;
2828
2829                 leaf = path->nodes[0];
2830                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2831
2832                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2833                                        struct btrfs_chunk);
2834                 chunk_type = btrfs_chunk_type(leaf, chunk);
2835                 btrfs_release_path(path);
2836
2837                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2838                         ret = btrfs_relocate_chunk(chunk_root,
2839                                                    found_key.objectid,
2840                                                    found_key.offset);
2841                         if (ret == -ENOSPC)
2842                                 failed++;
2843                         else
2844                                 BUG_ON(ret);
2845                 }
2846
2847                 if (found_key.offset == 0)
2848                         break;
2849                 key.offset = found_key.offset - 1;
2850         }
2851         ret = 0;
2852         if (failed && !retried) {
2853                 failed = 0;
2854                 retried = true;
2855                 goto again;
2856         } else if (WARN_ON(failed && retried)) {
2857                 ret = -ENOSPC;
2858         }
2859 error:
2860         btrfs_free_path(path);
2861         return ret;
2862 }
2863
2864 static int insert_balance_item(struct btrfs_root *root,
2865                                struct btrfs_balance_control *bctl)
2866 {
2867         struct btrfs_trans_handle *trans;
2868         struct btrfs_balance_item *item;
2869         struct btrfs_disk_balance_args disk_bargs;
2870         struct btrfs_path *path;
2871         struct extent_buffer *leaf;
2872         struct btrfs_key key;
2873         int ret, err;
2874
2875         path = btrfs_alloc_path();
2876         if (!path)
2877                 return -ENOMEM;
2878
2879         trans = btrfs_start_transaction(root, 0);
2880         if (IS_ERR(trans)) {
2881                 btrfs_free_path(path);
2882                 return PTR_ERR(trans);
2883         }
2884
2885         key.objectid = BTRFS_BALANCE_OBJECTID;
2886         key.type = BTRFS_BALANCE_ITEM_KEY;
2887         key.offset = 0;
2888
2889         ret = btrfs_insert_empty_item(trans, root, path, &key,
2890                                       sizeof(*item));
2891         if (ret)
2892                 goto out;
2893
2894         leaf = path->nodes[0];
2895         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2896
2897         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2898
2899         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2900         btrfs_set_balance_data(leaf, item, &disk_bargs);
2901         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2902         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2903         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2904         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2905
2906         btrfs_set_balance_flags(leaf, item, bctl->flags);
2907
2908         btrfs_mark_buffer_dirty(leaf);
2909 out:
2910         btrfs_free_path(path);
2911         err = btrfs_commit_transaction(trans, root);
2912         if (err && !ret)
2913                 ret = err;
2914         return ret;
2915 }
2916
2917 static int del_balance_item(struct btrfs_root *root)
2918 {
2919         struct btrfs_trans_handle *trans;
2920         struct btrfs_path *path;
2921         struct btrfs_key key;
2922         int ret, err;
2923
2924         path = btrfs_alloc_path();
2925         if (!path)
2926                 return -ENOMEM;
2927
2928         trans = btrfs_start_transaction(root, 0);
2929         if (IS_ERR(trans)) {
2930                 btrfs_free_path(path);
2931                 return PTR_ERR(trans);
2932         }
2933
2934         key.objectid = BTRFS_BALANCE_OBJECTID;
2935         key.type = BTRFS_BALANCE_ITEM_KEY;
2936         key.offset = 0;
2937
2938         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2939         if (ret < 0)
2940                 goto out;
2941         if (ret > 0) {
2942                 ret = -ENOENT;
2943                 goto out;
2944         }
2945
2946         ret = btrfs_del_item(trans, root, path);
2947 out:
2948         btrfs_free_path(path);
2949         err = btrfs_commit_transaction(trans, root);
2950         if (err && !ret)
2951                 ret = err;
2952         return ret;
2953 }
2954
2955 /*
2956  * This is a heuristic used to reduce the number of chunks balanced on
2957  * resume after balance was interrupted.
2958  */
2959 static void update_balance_args(struct btrfs_balance_control *bctl)
2960 {
2961         /*
2962          * Turn on soft mode for chunk types that were being converted.
2963          */
2964         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2965                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2966         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2967                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2968         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2969                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2970
2971         /*
2972          * Turn on usage filter if is not already used.  The idea is
2973          * that chunks that we have already balanced should be
2974          * reasonably full.  Don't do it for chunks that are being
2975          * converted - that will keep us from relocating unconverted
2976          * (albeit full) chunks.
2977          */
2978         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2979             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2980                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2981                 bctl->data.usage = 90;
2982         }
2983         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2984             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2985                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2986                 bctl->sys.usage = 90;
2987         }
2988         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2989             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2990                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2991                 bctl->meta.usage = 90;
2992         }
2993 }
2994
2995 /*
2996  * Should be called with both balance and volume mutexes held to
2997  * serialize other volume operations (add_dev/rm_dev/resize) with
2998  * restriper.  Same goes for unset_balance_control.
2999  */
3000 static void set_balance_control(struct btrfs_balance_control *bctl)
3001 {
3002         struct btrfs_fs_info *fs_info = bctl->fs_info;
3003
3004         BUG_ON(fs_info->balance_ctl);
3005
3006         spin_lock(&fs_info->balance_lock);
3007         fs_info->balance_ctl = bctl;
3008         spin_unlock(&fs_info->balance_lock);
3009 }
3010
3011 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3012 {
3013         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3014
3015         BUG_ON(!fs_info->balance_ctl);
3016
3017         spin_lock(&fs_info->balance_lock);
3018         fs_info->balance_ctl = NULL;
3019         spin_unlock(&fs_info->balance_lock);
3020
3021         kfree(bctl);
3022 }
3023
3024 /*
3025  * Balance filters.  Return 1 if chunk should be filtered out
3026  * (should not be balanced).
3027  */
3028 static int chunk_profiles_filter(u64 chunk_type,
3029                                  struct btrfs_balance_args *bargs)
3030 {
3031         chunk_type = chunk_to_extended(chunk_type) &
3032                                 BTRFS_EXTENDED_PROFILE_MASK;
3033
3034         if (bargs->profiles & chunk_type)
3035                 return 0;
3036
3037         return 1;
3038 }
3039
3040 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3041                               struct btrfs_balance_args *bargs)
3042 {
3043         struct btrfs_block_group_cache *cache;
3044         u64 chunk_used, user_thresh;
3045         int ret = 1;
3046
3047         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3048         chunk_used = btrfs_block_group_used(&cache->item);
3049
3050         if (bargs->usage == 0)
3051                 user_thresh = 1;
3052         else if (bargs->usage > 100)
3053                 user_thresh = cache->key.offset;
3054         else
3055                 user_thresh = div_factor_fine(cache->key.offset,
3056                                               bargs->usage);
3057
3058         if (chunk_used < user_thresh)
3059                 ret = 0;
3060
3061         btrfs_put_block_group(cache);
3062         return ret;
3063 }
3064
3065 static int chunk_devid_filter(struct extent_buffer *leaf,
3066                               struct btrfs_chunk *chunk,
3067                               struct btrfs_balance_args *bargs)
3068 {
3069         struct btrfs_stripe *stripe;
3070         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3071         int i;
3072
3073         for (i = 0; i < num_stripes; i++) {
3074                 stripe = btrfs_stripe_nr(chunk, i);
3075                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3076                         return 0;
3077         }
3078
3079         return 1;
3080 }
3081
3082 /* [pstart, pend) */
3083 static int chunk_drange_filter(struct extent_buffer *leaf,
3084                                struct btrfs_chunk *chunk,
3085                                u64 chunk_offset,
3086                                struct btrfs_balance_args *bargs)
3087 {
3088         struct btrfs_stripe *stripe;
3089         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3090         u64 stripe_offset;
3091         u64 stripe_length;
3092         int factor;
3093         int i;
3094
3095         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3096                 return 0;
3097
3098         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3099              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3100                 factor = num_stripes / 2;
3101         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3102                 factor = num_stripes - 1;
3103         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3104                 factor = num_stripes - 2;
3105         } else {
3106                 factor = num_stripes;
3107         }
3108
3109         for (i = 0; i < num_stripes; i++) {
3110                 stripe = btrfs_stripe_nr(chunk, i);
3111                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3112                         continue;
3113
3114                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3115                 stripe_length = btrfs_chunk_length(leaf, chunk);
3116                 stripe_length = div_u64(stripe_length, factor);
3117
3118                 if (stripe_offset < bargs->pend &&
3119                     stripe_offset + stripe_length > bargs->pstart)
3120                         return 0;
3121         }
3122
3123         return 1;
3124 }
3125
3126 /* [vstart, vend) */
3127 static int chunk_vrange_filter(struct extent_buffer *leaf,
3128                                struct btrfs_chunk *chunk,
3129                                u64 chunk_offset,
3130                                struct btrfs_balance_args *bargs)
3131 {
3132         if (chunk_offset < bargs->vend &&
3133             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3134                 /* at least part of the chunk is inside this vrange */
3135                 return 0;
3136
3137         return 1;
3138 }
3139
3140 static int chunk_soft_convert_filter(u64 chunk_type,
3141                                      struct btrfs_balance_args *bargs)
3142 {
3143         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3144                 return 0;
3145
3146         chunk_type = chunk_to_extended(chunk_type) &
3147                                 BTRFS_EXTENDED_PROFILE_MASK;
3148
3149         if (bargs->target == chunk_type)
3150                 return 1;
3151
3152         return 0;
3153 }
3154
3155 static int should_balance_chunk(struct btrfs_root *root,
3156                                 struct extent_buffer *leaf,
3157                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3158 {
3159         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3160         struct btrfs_balance_args *bargs = NULL;
3161         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3162
3163         /* type filter */
3164         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3165               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3166                 return 0;
3167         }
3168
3169         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3170                 bargs = &bctl->data;
3171         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3172                 bargs = &bctl->sys;
3173         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3174                 bargs = &bctl->meta;
3175
3176         /* profiles filter */
3177         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3178             chunk_profiles_filter(chunk_type, bargs)) {
3179                 return 0;
3180         }
3181
3182         /* usage filter */
3183         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3184             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3185                 return 0;
3186         }
3187
3188         /* devid filter */
3189         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3190             chunk_devid_filter(leaf, chunk, bargs)) {
3191                 return 0;
3192         }
3193
3194         /* drange filter, makes sense only with devid filter */
3195         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3196             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3197                 return 0;
3198         }
3199
3200         /* vrange filter */
3201         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3202             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3203                 return 0;
3204         }
3205
3206         /* soft profile changing mode */
3207         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3208             chunk_soft_convert_filter(chunk_type, bargs)) {
3209                 return 0;
3210         }
3211
3212         /*
3213          * limited by count, must be the last filter
3214          */
3215         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3216                 if (bargs->limit == 0)
3217                         return 0;
3218                 else
3219                         bargs->limit--;
3220         }
3221
3222         return 1;
3223 }
3224
3225 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3226 {
3227         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3228         struct btrfs_root *chunk_root = fs_info->chunk_root;
3229         struct btrfs_root *dev_root = fs_info->dev_root;
3230         struct list_head *devices;
3231         struct btrfs_device *device;
3232         u64 old_size;
3233         u64 size_to_free;
3234         struct btrfs_chunk *chunk;
3235         struct btrfs_path *path;
3236         struct btrfs_key key;
3237         struct btrfs_key found_key;
3238         struct btrfs_trans_handle *trans;
3239         struct extent_buffer *leaf;
3240         int slot;
3241         int ret;
3242         int enospc_errors = 0;
3243         bool counting = true;
3244         u64 limit_data = bctl->data.limit;
3245         u64 limit_meta = bctl->meta.limit;
3246         u64 limit_sys = bctl->sys.limit;
3247
3248         /* step one make some room on all the devices */
3249         devices = &fs_info->fs_devices->devices;
3250         list_for_each_entry(device, devices, dev_list) {
3251                 old_size = btrfs_device_get_total_bytes(device);
3252                 size_to_free = div_factor(old_size, 1);
3253                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3254                 if (!device->writeable ||
3255                     btrfs_device_get_total_bytes(device) -
3256                     btrfs_device_get_bytes_used(device) > size_to_free ||
3257                     device->is_tgtdev_for_dev_replace)
3258                         continue;
3259
3260                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3261                 if (ret == -ENOSPC)
3262                         break;
3263                 BUG_ON(ret);
3264
3265                 trans = btrfs_start_transaction(dev_root, 0);
3266                 BUG_ON(IS_ERR(trans));
3267
3268                 ret = btrfs_grow_device(trans, device, old_size);
3269                 BUG_ON(ret);
3270
3271                 btrfs_end_transaction(trans, dev_root);
3272         }
3273
3274         /* step two, relocate all the chunks */
3275         path = btrfs_alloc_path();
3276         if (!path) {
3277                 ret = -ENOMEM;
3278                 goto error;
3279         }
3280
3281         /* zero out stat counters */
3282         spin_lock(&fs_info->balance_lock);
3283         memset(&bctl->stat, 0, sizeof(bctl->stat));
3284         spin_unlock(&fs_info->balance_lock);
3285 again:
3286         if (!counting) {
3287                 bctl->data.limit = limit_data;
3288                 bctl->meta.limit = limit_meta;
3289                 bctl->sys.limit = limit_sys;
3290         }
3291         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3292         key.offset = (u64)-1;
3293         key.type = BTRFS_CHUNK_ITEM_KEY;
3294
3295         while (1) {
3296                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3297                     atomic_read(&fs_info->balance_cancel_req)) {
3298                         ret = -ECANCELED;
3299                         goto error;
3300                 }
3301
3302                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3303                 if (ret < 0)
3304                         goto error;
3305
3306                 /*
3307                  * this shouldn't happen, it means the last relocate
3308                  * failed
3309                  */
3310                 if (ret == 0)
3311                         BUG(); /* FIXME break ? */
3312
3313                 ret = btrfs_previous_item(chunk_root, path, 0,
3314                                           BTRFS_CHUNK_ITEM_KEY);
3315                 if (ret) {
3316                         ret = 0;
3317                         break;
3318                 }
3319
3320                 leaf = path->nodes[0];
3321                 slot = path->slots[0];
3322                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3323
3324                 if (found_key.objectid != key.objectid)
3325                         break;
3326
3327                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3328
3329                 if (!counting) {
3330                         spin_lock(&fs_info->balance_lock);
3331                         bctl->stat.considered++;
3332                         spin_unlock(&fs_info->balance_lock);
3333                 }
3334
3335                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3336                                            found_key.offset);
3337                 btrfs_release_path(path);
3338                 if (!ret)
3339                         goto loop;
3340
3341                 if (counting) {
3342                         spin_lock(&fs_info->balance_lock);
3343                         bctl->stat.expected++;
3344                         spin_unlock(&fs_info->balance_lock);
3345                         goto loop;
3346                 }
3347
3348                 ret = btrfs_relocate_chunk(chunk_root,
3349                                            found_key.objectid,
3350                                            found_key.offset);
3351                 if (ret && ret != -ENOSPC)
3352                         goto error;
3353                 if (ret == -ENOSPC) {
3354                         enospc_errors++;
3355                 } else {
3356                         spin_lock(&fs_info->balance_lock);
3357                         bctl->stat.completed++;
3358                         spin_unlock(&fs_info->balance_lock);
3359                 }
3360 loop:
3361                 if (found_key.offset == 0)
3362                         break;
3363                 key.offset = found_key.offset - 1;
3364         }
3365
3366         if (counting) {
3367                 btrfs_release_path(path);
3368                 counting = false;
3369                 goto again;
3370         }
3371 error:
3372         btrfs_free_path(path);
3373         if (enospc_errors) {
3374                 btrfs_info(fs_info, "%d enospc errors during balance",
3375                        enospc_errors);
3376                 if (!ret)
3377                         ret = -ENOSPC;
3378         }
3379
3380         return ret;
3381 }
3382
3383 /**
3384  * alloc_profile_is_valid - see if a given profile is valid and reduced
3385  * @flags: profile to validate
3386  * @extended: if true @flags is treated as an extended profile
3387  */
3388 static int alloc_profile_is_valid(u64 flags, int extended)
3389 {
3390         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3391                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3392
3393         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3394
3395         /* 1) check that all other bits are zeroed */
3396         if (flags & ~mask)
3397                 return 0;
3398
3399         /* 2) see if profile is reduced */
3400         if (flags == 0)
3401                 return !extended; /* "0" is valid for usual profiles */
3402
3403         /* true if exactly one bit set */
3404         return (flags & (flags - 1)) == 0;
3405 }
3406
3407 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3408 {
3409         /* cancel requested || normal exit path */
3410         return atomic_read(&fs_info->balance_cancel_req) ||
3411                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3412                  atomic_read(&fs_info->balance_cancel_req) == 0);
3413 }
3414
3415 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3416 {
3417         int ret;
3418
3419         unset_balance_control(fs_info);
3420         ret = del_balance_item(fs_info->tree_root);
3421         if (ret)
3422                 btrfs_std_error(fs_info, ret);
3423
3424         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3425 }
3426
3427 /*
3428  * Should be called with both balance and volume mutexes held
3429  */
3430 int btrfs_balance(struct btrfs_balance_control *bctl,
3431                   struct btrfs_ioctl_balance_args *bargs)
3432 {
3433         struct btrfs_fs_info *fs_info = bctl->fs_info;
3434         u64 allowed;
3435         int mixed = 0;
3436         int ret;
3437         u64 num_devices;
3438         unsigned seq;
3439
3440         if (btrfs_fs_closing(fs_info) ||
3441             atomic_read(&fs_info->balance_pause_req) ||
3442             atomic_read(&fs_info->balance_cancel_req)) {
3443                 ret = -EINVAL;
3444                 goto out;
3445         }
3446
3447         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3448         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3449                 mixed = 1;
3450
3451         /*
3452          * In case of mixed groups both data and meta should be picked,
3453          * and identical options should be given for both of them.
3454          */
3455         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3456         if (mixed && (bctl->flags & allowed)) {
3457                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3458                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3459                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3460                         btrfs_err(fs_info, "with mixed groups data and "
3461                                    "metadata balance options must be the same");
3462                         ret = -EINVAL;
3463                         goto out;
3464                 }
3465         }
3466
3467         num_devices = fs_info->fs_devices->num_devices;
3468         btrfs_dev_replace_lock(&fs_info->dev_replace);
3469         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3470                 BUG_ON(num_devices < 1);
3471                 num_devices--;
3472         }
3473         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3474         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3475         if (num_devices == 1)
3476                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3477         else if (num_devices > 1)
3478                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3479         if (num_devices > 2)
3480                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3481         if (num_devices > 3)
3482                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3483                             BTRFS_BLOCK_GROUP_RAID6);
3484         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3485             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3486              (bctl->data.target & ~allowed))) {
3487                 btrfs_err(fs_info, "unable to start balance with target "
3488                            "data profile %llu",
3489                        bctl->data.target);
3490                 ret = -EINVAL;
3491                 goto out;
3492         }
3493         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3494             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3495              (bctl->meta.target & ~allowed))) {
3496                 btrfs_err(fs_info,
3497                            "unable to start balance with target metadata profile %llu",
3498                        bctl->meta.target);
3499                 ret = -EINVAL;
3500                 goto out;
3501         }
3502         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3503             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3504              (bctl->sys.target & ~allowed))) {
3505                 btrfs_err(fs_info,
3506                            "unable to start balance with target system profile %llu",
3507                        bctl->sys.target);
3508                 ret = -EINVAL;
3509                 goto out;
3510         }
3511
3512         /* allow dup'ed data chunks only in mixed mode */
3513         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3514             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3515                 btrfs_err(fs_info, "dup for data is not allowed");
3516                 ret = -EINVAL;
3517                 goto out;
3518         }
3519
3520         /* allow to reduce meta or sys integrity only if force set */
3521         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3522                         BTRFS_BLOCK_GROUP_RAID10 |
3523                         BTRFS_BLOCK_GROUP_RAID5 |
3524                         BTRFS_BLOCK_GROUP_RAID6;
3525         do {
3526                 seq = read_seqbegin(&fs_info->profiles_lock);
3527
3528                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3529                      (fs_info->avail_system_alloc_bits & allowed) &&
3530                      !(bctl->sys.target & allowed)) ||
3531                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3532                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3533                      !(bctl->meta.target & allowed))) {
3534                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3535                                 btrfs_info(fs_info, "force reducing metadata integrity");
3536                         } else {
3537                                 btrfs_err(fs_info, "balance will reduce metadata "
3538                                            "integrity, use force if you want this");
3539                                 ret = -EINVAL;
3540                                 goto out;
3541                         }
3542                 }
3543         } while (read_seqretry(&fs_info->profiles_lock, seq));
3544
3545         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3546                 int num_tolerated_disk_barrier_failures;
3547                 u64 target = bctl->sys.target;
3548
3549                 num_tolerated_disk_barrier_failures =
3550                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3551                 if (num_tolerated_disk_barrier_failures > 0 &&
3552                     (target &
3553                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3554                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3555                         num_tolerated_disk_barrier_failures = 0;
3556                 else if (num_tolerated_disk_barrier_failures > 1 &&
3557                          (target &
3558                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3559                         num_tolerated_disk_barrier_failures = 1;
3560
3561                 fs_info->num_tolerated_disk_barrier_failures =
3562                         num_tolerated_disk_barrier_failures;
3563         }
3564
3565         ret = insert_balance_item(fs_info->tree_root, bctl);
3566         if (ret && ret != -EEXIST)
3567                 goto out;
3568
3569         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3570                 BUG_ON(ret == -EEXIST);
3571                 set_balance_control(bctl);
3572         } else {
3573                 BUG_ON(ret != -EEXIST);
3574                 spin_lock(&fs_info->balance_lock);
3575                 update_balance_args(bctl);
3576                 spin_unlock(&fs_info->balance_lock);
3577         }
3578
3579         atomic_inc(&fs_info->balance_running);
3580         mutex_unlock(&fs_info->balance_mutex);
3581
3582         ret = __btrfs_balance(fs_info);
3583
3584         mutex_lock(&fs_info->balance_mutex);
3585         atomic_dec(&fs_info->balance_running);
3586
3587         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3588                 fs_info->num_tolerated_disk_barrier_failures =
3589                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3590         }
3591
3592         if (bargs) {
3593                 memset(bargs, 0, sizeof(*bargs));
3594                 update_ioctl_balance_args(fs_info, 0, bargs);
3595         }
3596
3597         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3598             balance_need_close(fs_info)) {
3599                 __cancel_balance(fs_info);
3600         }
3601
3602         wake_up(&fs_info->balance_wait_q);
3603
3604         return ret;
3605 out:
3606         if (bctl->flags & BTRFS_BALANCE_RESUME)
3607                 __cancel_balance(fs_info);
3608         else {
3609                 kfree(bctl);
3610                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3611         }
3612         return ret;
3613 }
3614
3615 static int balance_kthread(void *data)
3616 {
3617         struct btrfs_fs_info *fs_info = data;
3618         int ret = 0;
3619
3620         mutex_lock(&fs_info->volume_mutex);
3621         mutex_lock(&fs_info->balance_mutex);
3622
3623         if (fs_info->balance_ctl) {
3624                 btrfs_info(fs_info, "continuing balance");
3625                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3626         }
3627
3628         mutex_unlock(&fs_info->balance_mutex);
3629         mutex_unlock(&fs_info->volume_mutex);
3630
3631         return ret;
3632 }
3633
3634 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3635 {
3636         struct task_struct *tsk;
3637
3638         spin_lock(&fs_info->balance_lock);
3639         if (!fs_info->balance_ctl) {
3640                 spin_unlock(&fs_info->balance_lock);
3641                 return 0;
3642         }
3643         spin_unlock(&fs_info->balance_lock);
3644
3645         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3646                 btrfs_info(fs_info, "force skipping balance");
3647                 return 0;
3648         }
3649
3650         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3651         return PTR_ERR_OR_ZERO(tsk);
3652 }
3653
3654 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3655 {
3656         struct btrfs_balance_control *bctl;
3657         struct btrfs_balance_item *item;
3658         struct btrfs_disk_balance_args disk_bargs;
3659         struct btrfs_path *path;
3660         struct extent_buffer *leaf;
3661         struct btrfs_key key;
3662         int ret;
3663
3664         path = btrfs_alloc_path();
3665         if (!path)
3666                 return -ENOMEM;
3667
3668         key.objectid = BTRFS_BALANCE_OBJECTID;
3669         key.type = BTRFS_BALANCE_ITEM_KEY;
3670         key.offset = 0;
3671
3672         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3673         if (ret < 0)
3674                 goto out;
3675         if (ret > 0) { /* ret = -ENOENT; */
3676                 ret = 0;
3677                 goto out;
3678         }
3679
3680         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3681         if (!bctl) {
3682                 ret = -ENOMEM;
3683                 goto out;
3684         }
3685
3686         leaf = path->nodes[0];
3687         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3688
3689         bctl->fs_info = fs_info;
3690         bctl->flags = btrfs_balance_flags(leaf, item);
3691         bctl->flags |= BTRFS_BALANCE_RESUME;
3692
3693         btrfs_balance_data(leaf, item, &disk_bargs);
3694         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3695         btrfs_balance_meta(leaf, item, &disk_bargs);
3696         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3697         btrfs_balance_sys(leaf, item, &disk_bargs);
3698         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3699
3700         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3701
3702         mutex_lock(&fs_info->volume_mutex);
3703         mutex_lock(&fs_info->balance_mutex);
3704
3705         set_balance_control(bctl);
3706
3707         mutex_unlock(&fs_info->balance_mutex);
3708         mutex_unlock(&fs_info->volume_mutex);
3709 out:
3710         btrfs_free_path(path);
3711         return ret;
3712 }
3713
3714 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3715 {
3716         int ret = 0;
3717
3718         mutex_lock(&fs_info->balance_mutex);
3719         if (!fs_info->balance_ctl) {
3720                 mutex_unlock(&fs_info->balance_mutex);
3721                 return -ENOTCONN;
3722         }
3723
3724         if (atomic_read(&fs_info->balance_running)) {
3725                 atomic_inc(&fs_info->balance_pause_req);
3726                 mutex_unlock(&fs_info->balance_mutex);
3727
3728                 wait_event(fs_info->balance_wait_q,
3729                            atomic_read(&fs_info->balance_running) == 0);
3730
3731                 mutex_lock(&fs_info->balance_mutex);
3732                 /* we are good with balance_ctl ripped off from under us */
3733                 BUG_ON(atomic_read(&fs_info->balance_running));
3734                 atomic_dec(&fs_info->balance_pause_req);
3735         } else {
3736                 ret = -ENOTCONN;
3737         }
3738
3739         mutex_unlock(&fs_info->balance_mutex);
3740         return ret;
3741 }
3742
3743 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3744 {
3745         if (fs_info->sb->s_flags & MS_RDONLY)
3746                 return -EROFS;
3747
3748         mutex_lock(&fs_info->balance_mutex);
3749         if (!fs_info->balance_ctl) {
3750                 mutex_unlock(&fs_info->balance_mutex);
3751                 return -ENOTCONN;
3752         }
3753
3754         atomic_inc(&fs_info->balance_cancel_req);
3755         /*
3756          * if we are running just wait and return, balance item is
3757          * deleted in btrfs_balance in this case
3758          */
3759         if (atomic_read(&fs_info->balance_running)) {
3760                 mutex_unlock(&fs_info->balance_mutex);
3761                 wait_event(fs_info->balance_wait_q,
3762                            atomic_read(&fs_info->balance_running) == 0);
3763                 mutex_lock(&fs_info->balance_mutex);
3764         } else {
3765                 /* __cancel_balance needs volume_mutex */
3766                 mutex_unlock(&fs_info->balance_mutex);
3767                 mutex_lock(&fs_info->volume_mutex);
3768                 mutex_lock(&fs_info->balance_mutex);
3769
3770                 if (fs_info->balance_ctl)
3771                         __cancel_balance(fs_info);
3772
3773                 mutex_unlock(&fs_info->volume_mutex);
3774         }
3775
3776         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3777         atomic_dec(&fs_info->balance_cancel_req);
3778         mutex_unlock(&fs_info->balance_mutex);
3779         return 0;
3780 }
3781
3782 static int btrfs_uuid_scan_kthread(void *data)
3783 {
3784         struct btrfs_fs_info *fs_info = data;
3785         struct btrfs_root *root = fs_info->tree_root;
3786         struct btrfs_key key;
3787         struct btrfs_key max_key;
3788         struct btrfs_path *path = NULL;
3789         int ret = 0;
3790         struct extent_buffer *eb;
3791         int slot;
3792         struct btrfs_root_item root_item;
3793         u32 item_size;
3794         struct btrfs_trans_handle *trans = NULL;
3795
3796         path = btrfs_alloc_path();
3797         if (!path) {
3798                 ret = -ENOMEM;
3799                 goto out;
3800         }
3801
3802         key.objectid = 0;
3803         key.type = BTRFS_ROOT_ITEM_KEY;
3804         key.offset = 0;
3805
3806         max_key.objectid = (u64)-1;
3807         max_key.type = BTRFS_ROOT_ITEM_KEY;
3808         max_key.offset = (u64)-1;
3809
3810         while (1) {
3811                 ret = btrfs_search_forward(root, &key, path, 0);
3812                 if (ret) {
3813                         if (ret > 0)
3814                                 ret = 0;
3815                         break;
3816                 }
3817
3818                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3819                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3820                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3821                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3822                         goto skip;
3823
3824                 eb = path->nodes[0];
3825                 slot = path->slots[0];
3826                 item_size = btrfs_item_size_nr(eb, slot);
3827                 if (item_size < sizeof(root_item))
3828                         goto skip;
3829
3830                 read_extent_buffer(eb, &root_item,
3831                                    btrfs_item_ptr_offset(eb, slot),
3832                                    (int)sizeof(root_item));
3833                 if (btrfs_root_refs(&root_item) == 0)
3834                         goto skip;
3835
3836                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3837                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3838                         if (trans)
3839                                 goto update_tree;
3840
3841                         btrfs_release_path(path);
3842                         /*
3843                          * 1 - subvol uuid item
3844                          * 1 - received_subvol uuid item
3845                          */
3846                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3847                         if (IS_ERR(trans)) {
3848                                 ret = PTR_ERR(trans);
3849                                 break;
3850                         }
3851                         continue;
3852                 } else {
3853                         goto skip;
3854                 }
3855 update_tree:
3856                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3857                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3858                                                   root_item.uuid,
3859                                                   BTRFS_UUID_KEY_SUBVOL,
3860                                                   key.objectid);
3861                         if (ret < 0) {
3862                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3863                                         ret);
3864                                 break;
3865                         }
3866                 }
3867
3868                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3869                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3870                                                   root_item.received_uuid,
3871                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3872                                                   key.objectid);
3873                         if (ret < 0) {
3874                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3875                                         ret);
3876                                 break;
3877                         }
3878                 }
3879
3880 skip:
3881                 if (trans) {
3882                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3883                         trans = NULL;
3884                         if (ret)
3885                                 break;
3886                 }
3887
3888                 btrfs_release_path(path);
3889                 if (key.offset < (u64)-1) {
3890                         key.offset++;
3891                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3892                         key.offset = 0;
3893                         key.type = BTRFS_ROOT_ITEM_KEY;
3894                 } else if (key.objectid < (u64)-1) {
3895                         key.offset = 0;
3896                         key.type = BTRFS_ROOT_ITEM_KEY;
3897                         key.objectid++;
3898                 } else {
3899                         break;
3900                 }
3901                 cond_resched();
3902         }
3903
3904 out:
3905         btrfs_free_path(path);
3906         if (trans && !IS_ERR(trans))
3907                 btrfs_end_transaction(trans, fs_info->uuid_root);
3908         if (ret)
3909                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3910         else
3911                 fs_info->update_uuid_tree_gen = 1;
3912         up(&fs_info->uuid_tree_rescan_sem);
3913         return 0;
3914 }
3915
3916 /*
3917  * Callback for btrfs_uuid_tree_iterate().
3918  * returns:
3919  * 0    check succeeded, the entry is not outdated.
3920  * < 0  if an error occured.
3921  * > 0  if the check failed, which means the caller shall remove the entry.
3922  */
3923 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3924                                        u8 *uuid, u8 type, u64 subid)
3925 {
3926         struct btrfs_key key;
3927         int ret = 0;
3928         struct btrfs_root *subvol_root;
3929
3930         if (type != BTRFS_UUID_KEY_SUBVOL &&
3931             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3932                 goto out;
3933
3934         key.objectid = subid;
3935         key.type = BTRFS_ROOT_ITEM_KEY;
3936         key.offset = (u64)-1;
3937         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3938         if (IS_ERR(subvol_root)) {
3939                 ret = PTR_ERR(subvol_root);
3940                 if (ret == -ENOENT)
3941                         ret = 1;
3942                 goto out;
3943         }
3944
3945         switch (type) {
3946         case BTRFS_UUID_KEY_SUBVOL:
3947                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3948                         ret = 1;
3949                 break;
3950         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3951                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3952                            BTRFS_UUID_SIZE))
3953                         ret = 1;
3954                 break;
3955         }
3956
3957 out:
3958         return ret;
3959 }
3960
3961 static int btrfs_uuid_rescan_kthread(void *data)
3962 {
3963         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3964         int ret;
3965
3966         /*
3967          * 1st step is to iterate through the existing UUID tree and
3968          * to delete all entries that contain outdated data.
3969          * 2nd step is to add all missing entries to the UUID tree.
3970          */
3971         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3972         if (ret < 0) {
3973                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3974                 up(&fs_info->uuid_tree_rescan_sem);
3975                 return ret;
3976         }
3977         return btrfs_uuid_scan_kthread(data);
3978 }
3979
3980 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3981 {
3982         struct btrfs_trans_handle *trans;
3983         struct btrfs_root *tree_root = fs_info->tree_root;
3984         struct btrfs_root *uuid_root;
3985         struct task_struct *task;
3986         int ret;
3987
3988         /*
3989          * 1 - root node
3990          * 1 - root item
3991          */
3992         trans = btrfs_start_transaction(tree_root, 2);
3993         if (IS_ERR(trans))
3994                 return PTR_ERR(trans);
3995
3996         uuid_root = btrfs_create_tree(trans, fs_info,
3997                                       BTRFS_UUID_TREE_OBJECTID);
3998         if (IS_ERR(uuid_root)) {
3999                 ret = PTR_ERR(uuid_root);
4000                 btrfs_abort_transaction(trans, tree_root, ret);
4001                 return ret;
4002         }
4003
4004         fs_info->uuid_root = uuid_root;
4005
4006         ret = btrfs_commit_transaction(trans, tree_root);
4007         if (ret)
4008                 return ret;
4009
4010         down(&fs_info->uuid_tree_rescan_sem);
4011         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4012         if (IS_ERR(task)) {
4013                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4014                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4015                 up(&fs_info->uuid_tree_rescan_sem);
4016                 return PTR_ERR(task);
4017         }
4018
4019         return 0;
4020 }
4021
4022 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4023 {
4024         struct task_struct *task;
4025
4026         down(&fs_info->uuid_tree_rescan_sem);
4027         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4028         if (IS_ERR(task)) {
4029                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4030                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4031                 up(&fs_info->uuid_tree_rescan_sem);
4032                 return PTR_ERR(task);
4033         }
4034
4035         return 0;
4036 }
4037
4038 /*
4039  * shrinking a device means finding all of the device extents past
4040  * the new size, and then following the back refs to the chunks.
4041  * The chunk relocation code actually frees the device extent
4042  */
4043 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4044 {
4045         struct btrfs_trans_handle *trans;
4046         struct btrfs_root *root = device->dev_root;
4047         struct btrfs_dev_extent *dev_extent = NULL;
4048         struct btrfs_path *path;
4049         u64 length;
4050         u64 chunk_objectid;
4051         u64 chunk_offset;
4052         int ret;
4053         int slot;
4054         int failed = 0;
4055         bool retried = false;
4056         bool checked_pending_chunks = false;
4057         struct extent_buffer *l;
4058         struct btrfs_key key;
4059         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4060         u64 old_total = btrfs_super_total_bytes(super_copy);
4061         u64 old_size = btrfs_device_get_total_bytes(device);
4062         u64 diff = old_size - new_size;
4063
4064         if (device->is_tgtdev_for_dev_replace)
4065                 return -EINVAL;
4066
4067         path = btrfs_alloc_path();
4068         if (!path)
4069                 return -ENOMEM;
4070
4071         path->reada = 2;
4072
4073         lock_chunks(root);
4074
4075         btrfs_device_set_total_bytes(device, new_size);
4076         if (device->writeable) {
4077                 device->fs_devices->total_rw_bytes -= diff;
4078                 spin_lock(&root->fs_info->free_chunk_lock);
4079                 root->fs_info->free_chunk_space -= diff;
4080                 spin_unlock(&root->fs_info->free_chunk_lock);
4081         }
4082         unlock_chunks(root);
4083
4084 again:
4085         key.objectid = device->devid;
4086         key.offset = (u64)-1;
4087         key.type = BTRFS_DEV_EXTENT_KEY;
4088
4089         do {
4090                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4091                 if (ret < 0)
4092                         goto done;
4093
4094                 ret = btrfs_previous_item(root, path, 0, key.type);
4095                 if (ret < 0)
4096                         goto done;
4097                 if (ret) {
4098                         ret = 0;
4099                         btrfs_release_path(path);
4100                         break;
4101                 }
4102
4103                 l = path->nodes[0];
4104                 slot = path->slots[0];
4105                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4106
4107                 if (key.objectid != device->devid) {
4108                         btrfs_release_path(path);
4109                         break;
4110                 }
4111
4112                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4113                 length = btrfs_dev_extent_length(l, dev_extent);
4114
4115                 if (key.offset + length <= new_size) {
4116                         btrfs_release_path(path);
4117                         break;
4118                 }
4119
4120                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4121                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4122                 btrfs_release_path(path);
4123
4124                 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4125                 if (ret && ret != -ENOSPC)
4126                         goto done;
4127                 if (ret == -ENOSPC)
4128                         failed++;
4129         } while (key.offset-- > 0);
4130
4131         if (failed && !retried) {
4132                 failed = 0;
4133                 retried = true;
4134                 goto again;
4135         } else if (failed && retried) {
4136                 ret = -ENOSPC;
4137                 goto done;
4138         }
4139
4140         /* Shrinking succeeded, else we would be at "done". */
4141         trans = btrfs_start_transaction(root, 0);
4142         if (IS_ERR(trans)) {
4143                 ret = PTR_ERR(trans);
4144                 goto done;
4145         }
4146
4147         lock_chunks(root);
4148
4149         /*
4150          * We checked in the above loop all device extents that were already in
4151          * the device tree. However before we have updated the device's
4152          * total_bytes to the new size, we might have had chunk allocations that
4153          * have not complete yet (new block groups attached to transaction
4154          * handles), and therefore their device extents were not yet in the
4155          * device tree and we missed them in the loop above. So if we have any
4156          * pending chunk using a device extent that overlaps the device range
4157          * that we can not use anymore, commit the current transaction and
4158          * repeat the search on the device tree - this way we guarantee we will
4159          * not have chunks using device extents that end beyond 'new_size'.
4160          */
4161         if (!checked_pending_chunks) {
4162                 u64 start = new_size;
4163                 u64 len = old_size - new_size;
4164
4165                 if (contains_pending_extent(trans, device, &start, len)) {
4166                         unlock_chunks(root);
4167                         checked_pending_chunks = true;
4168                         failed = 0;
4169                         retried = false;
4170                         ret = btrfs_commit_transaction(trans, root);
4171                         if (ret)
4172                                 goto done;
4173                         goto again;
4174                 }
4175         }
4176
4177         btrfs_device_set_disk_total_bytes(device, new_size);
4178         if (list_empty(&device->resized_list))
4179                 list_add_tail(&device->resized_list,
4180                               &root->fs_info->fs_devices->resized_devices);
4181
4182         WARN_ON(diff > old_total);
4183         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4184         unlock_chunks(root);
4185
4186         /* Now btrfs_update_device() will change the on-disk size. */
4187         ret = btrfs_update_device(trans, device);
4188         btrfs_end_transaction(trans, root);
4189 done:
4190         btrfs_free_path(path);
4191         if (ret) {
4192                 lock_chunks(root);
4193                 btrfs_device_set_total_bytes(device, old_size);
4194                 if (device->writeable)
4195                         device->fs_devices->total_rw_bytes += diff;
4196                 spin_lock(&root->fs_info->free_chunk_lock);
4197                 root->fs_info->free_chunk_space += diff;
4198                 spin_unlock(&root->fs_info->free_chunk_lock);
4199                 unlock_chunks(root);
4200         }
4201         return ret;
4202 }
4203
4204 static int btrfs_add_system_chunk(struct btrfs_root *root,
4205                            struct btrfs_key *key,
4206                            struct btrfs_chunk *chunk, int item_size)
4207 {
4208         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4209         struct btrfs_disk_key disk_key;
4210         u32 array_size;
4211         u8 *ptr;
4212
4213         lock_chunks(root);
4214         array_size = btrfs_super_sys_array_size(super_copy);
4215         if (array_size + item_size + sizeof(disk_key)
4216                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4217                 unlock_chunks(root);
4218                 return -EFBIG;
4219         }
4220
4221         ptr = super_copy->sys_chunk_array + array_size;
4222         btrfs_cpu_key_to_disk(&disk_key, key);
4223         memcpy(ptr, &disk_key, sizeof(disk_key));
4224         ptr += sizeof(disk_key);
4225         memcpy(ptr, chunk, item_size);
4226         item_size += sizeof(disk_key);
4227         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4228         unlock_chunks(root);
4229
4230         return 0;
4231 }
4232
4233 /*
4234  * sort the devices in descending order by max_avail, total_avail
4235  */
4236 static int btrfs_cmp_device_info(const void *a, const void *b)
4237 {
4238         const struct btrfs_device_info *di_a = a;
4239         const struct btrfs_device_info *di_b = b;
4240
4241         if (di_a->max_avail > di_b->max_avail)
4242                 return -1;
4243         if (di_a->max_avail < di_b->max_avail)
4244                 return 1;
4245         if (di_a->total_avail > di_b->total_avail)
4246                 return -1;
4247         if (di_a->total_avail < di_b->total_avail)
4248                 return 1;
4249         return 0;
4250 }
4251
4252 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4253         [BTRFS_RAID_RAID10] = {
4254                 .sub_stripes    = 2,
4255                 .dev_stripes    = 1,
4256                 .devs_max       = 0,    /* 0 == as many as possible */
4257                 .devs_min       = 4,
4258                 .devs_increment = 2,
4259                 .ncopies        = 2,
4260         },
4261         [BTRFS_RAID_RAID1] = {
4262                 .sub_stripes    = 1,
4263                 .dev_stripes    = 1,
4264                 .devs_max       = 2,
4265                 .devs_min       = 2,
4266                 .devs_increment = 2,
4267                 .ncopies        = 2,
4268         },
4269         [BTRFS_RAID_DUP] = {
4270                 .sub_stripes    = 1,
4271                 .dev_stripes    = 2,
4272                 .devs_max       = 1,
4273                 .devs_min       = 1,
4274                 .devs_increment = 1,
4275                 .ncopies        = 2,
4276         },
4277         [BTRFS_RAID_RAID0] = {
4278                 .sub_stripes    = 1,
4279                 .dev_stripes    = 1,
4280                 .devs_max       = 0,
4281                 .devs_min       = 2,
4282                 .devs_increment = 1,
4283                 .ncopies        = 1,
4284         },
4285         [BTRFS_RAID_SINGLE] = {
4286                 .sub_stripes    = 1,
4287                 .dev_stripes    = 1,
4288                 .devs_max       = 1,
4289                 .devs_min       = 1,
4290                 .devs_increment = 1,
4291                 .ncopies        = 1,
4292         },
4293         [BTRFS_RAID_RAID5] = {
4294                 .sub_stripes    = 1,
4295                 .dev_stripes    = 1,
4296                 .devs_max       = 0,
4297                 .devs_min       = 2,
4298                 .devs_increment = 1,
4299                 .ncopies        = 2,
4300         },
4301         [BTRFS_RAID_RAID6] = {
4302                 .sub_stripes    = 1,
4303                 .dev_stripes    = 1,
4304                 .devs_max       = 0,
4305                 .devs_min       = 3,
4306                 .devs_increment = 1,
4307                 .ncopies        = 3,
4308         },
4309 };
4310
4311 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4312 {
4313         /* TODO allow them to set a preferred stripe size */
4314         return 64 * 1024;
4315 }
4316
4317 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4318 {
4319         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4320                 return;
4321
4322         btrfs_set_fs_incompat(info, RAID56);
4323 }
4324
4325 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4326                         - sizeof(struct btrfs_item)             \
4327                         - sizeof(struct btrfs_chunk))           \
4328                         / sizeof(struct btrfs_stripe) + 1)
4329
4330 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4331                                 - 2 * sizeof(struct btrfs_disk_key)     \
4332                                 - 2 * sizeof(struct btrfs_chunk))       \
4333                                 / sizeof(struct btrfs_stripe) + 1)
4334
4335 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4336                                struct btrfs_root *extent_root, u64 start,
4337                                u64 type)
4338 {
4339         struct btrfs_fs_info *info = extent_root->fs_info;
4340         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4341         struct list_head *cur;
4342         struct map_lookup *map = NULL;
4343         struct extent_map_tree *em_tree;
4344         struct extent_map *em;
4345         struct btrfs_device_info *devices_info = NULL;
4346         u64 total_avail;
4347         int num_stripes;        /* total number of stripes to allocate */
4348         int data_stripes;       /* number of stripes that count for
4349                                    block group size */
4350         int sub_stripes;        /* sub_stripes info for map */
4351         int dev_stripes;        /* stripes per dev */
4352         int devs_max;           /* max devs to use */
4353         int devs_min;           /* min devs needed */
4354         int devs_increment;     /* ndevs has to be a multiple of this */
4355         int ncopies;            /* how many copies to data has */
4356         int ret;
4357         u64 max_stripe_size;
4358         u64 max_chunk_size;
4359         u64 stripe_size;
4360         u64 num_bytes;
4361         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4362         int ndevs;
4363         int i;
4364         int j;
4365         int index;
4366
4367         BUG_ON(!alloc_profile_is_valid(type, 0));
4368
4369         if (list_empty(&fs_devices->alloc_list))
4370                 return -ENOSPC;
4371
4372         index = __get_raid_index(type);
4373
4374         sub_stripes = btrfs_raid_array[index].sub_stripes;
4375         dev_stripes = btrfs_raid_array[index].dev_stripes;
4376         devs_max = btrfs_raid_array[index].devs_max;
4377         devs_min = btrfs_raid_array[index].devs_min;
4378         devs_increment = btrfs_raid_array[index].devs_increment;
4379         ncopies = btrfs_raid_array[index].ncopies;
4380
4381         if (type & BTRFS_BLOCK_GROUP_DATA) {
4382                 max_stripe_size = 1024 * 1024 * 1024;
4383                 max_chunk_size = 10 * max_stripe_size;
4384                 if (!devs_max)
4385                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4386         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4387                 /* for larger filesystems, use larger metadata chunks */
4388                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4389                         max_stripe_size = 1024 * 1024 * 1024;
4390                 else
4391                         max_stripe_size = 256 * 1024 * 1024;
4392                 max_chunk_size = max_stripe_size;
4393                 if (!devs_max)
4394                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4395         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4396                 max_stripe_size = 32 * 1024 * 1024;
4397                 max_chunk_size = 2 * max_stripe_size;
4398                 if (!devs_max)
4399                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4400         } else {
4401                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4402                        type);
4403                 BUG_ON(1);
4404         }
4405
4406         /* we don't want a chunk larger than 10% of writeable space */
4407         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4408                              max_chunk_size);
4409
4410         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4411                                GFP_NOFS);
4412         if (!devices_info)
4413                 return -ENOMEM;
4414
4415         cur = fs_devices->alloc_list.next;
4416
4417         /*
4418          * in the first pass through the devices list, we gather information
4419          * about the available holes on each device.
4420          */
4421         ndevs = 0;
4422         while (cur != &fs_devices->alloc_list) {
4423                 struct btrfs_device *device;
4424                 u64 max_avail;
4425                 u64 dev_offset;
4426
4427                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4428
4429                 cur = cur->next;
4430
4431                 if (!device->writeable) {
4432                         WARN(1, KERN_ERR
4433                                "BTRFS: read-only device in alloc_list\n");
4434                         continue;
4435                 }
4436
4437                 if (!device->in_fs_metadata ||
4438                     device->is_tgtdev_for_dev_replace)
4439                         continue;
4440
4441                 if (device->total_bytes > device->bytes_used)
4442                         total_avail = device->total_bytes - device->bytes_used;
4443                 else
4444                         total_avail = 0;
4445
4446                 /* If there is no space on this device, skip it. */
4447                 if (total_avail == 0)
4448                         continue;
4449
4450                 ret = find_free_dev_extent(trans, device,
4451                                            max_stripe_size * dev_stripes,
4452                                            &dev_offset, &max_avail);
4453                 if (ret && ret != -ENOSPC)
4454                         goto error;
4455
4456                 if (ret == 0)
4457                         max_avail = max_stripe_size * dev_stripes;
4458
4459                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4460                         continue;
4461
4462                 if (ndevs == fs_devices->rw_devices) {
4463                         WARN(1, "%s: found more than %llu devices\n",
4464                              __func__, fs_devices->rw_devices);
4465                         break;
4466                 }
4467                 devices_info[ndevs].dev_offset = dev_offset;
4468                 devices_info[ndevs].max_avail = max_avail;
4469                 devices_info[ndevs].total_avail = total_avail;
4470                 devices_info[ndevs].dev = device;
4471                 ++ndevs;
4472         }
4473
4474         /*
4475          * now sort the devices by hole size / available space
4476          */
4477         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4478              btrfs_cmp_device_info, NULL);
4479
4480         /* round down to number of usable stripes */
4481         ndevs -= ndevs % devs_increment;
4482
4483         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4484                 ret = -ENOSPC;
4485                 goto error;
4486         }
4487
4488         if (devs_max && ndevs > devs_max)
4489                 ndevs = devs_max;
4490         /*
4491          * the primary goal is to maximize the number of stripes, so use as many
4492          * devices as possible, even if the stripes are not maximum sized.
4493          */
4494         stripe_size = devices_info[ndevs-1].max_avail;
4495         num_stripes = ndevs * dev_stripes;
4496
4497         /*
4498          * this will have to be fixed for RAID1 and RAID10 over
4499          * more drives
4500          */
4501         data_stripes = num_stripes / ncopies;
4502
4503         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4504                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4505                                  btrfs_super_stripesize(info->super_copy));
4506                 data_stripes = num_stripes - 1;
4507         }
4508         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4509                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4510                                  btrfs_super_stripesize(info->super_copy));
4511                 data_stripes = num_stripes - 2;
4512         }
4513
4514         /*
4515          * Use the number of data stripes to figure out how big this chunk
4516          * is really going to be in terms of logical address space,
4517          * and compare that answer with the max chunk size
4518          */
4519         if (stripe_size * data_stripes > max_chunk_size) {
4520                 u64 mask = (1ULL << 24) - 1;
4521
4522                 stripe_size = div_u64(max_chunk_size, data_stripes);
4523
4524                 /* bump the answer up to a 16MB boundary */
4525                 stripe_size = (stripe_size + mask) & ~mask;
4526
4527                 /* but don't go higher than the limits we found
4528                  * while searching for free extents
4529                  */
4530                 if (stripe_size > devices_info[ndevs-1].max_avail)
4531                         stripe_size = devices_info[ndevs-1].max_avail;
4532         }
4533
4534         stripe_size = div_u64(stripe_size, dev_stripes);
4535
4536         /* align to BTRFS_STRIPE_LEN */
4537         stripe_size = div_u64(stripe_size, raid_stripe_len);
4538         stripe_size *= raid_stripe_len;
4539
4540         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4541         if (!map) {
4542                 ret = -ENOMEM;
4543                 goto error;
4544         }
4545         map->num_stripes = num_stripes;
4546
4547         for (i = 0; i < ndevs; ++i) {
4548                 for (j = 0; j < dev_stripes; ++j) {
4549                         int s = i * dev_stripes + j;
4550                         map->stripes[s].dev = devices_info[i].dev;
4551                         map->stripes[s].physical = devices_info[i].dev_offset +
4552                                                    j * stripe_size;
4553                 }
4554         }
4555         map->sector_size = extent_root->sectorsize;
4556         map->stripe_len = raid_stripe_len;
4557         map->io_align = raid_stripe_len;
4558         map->io_width = raid_stripe_len;
4559         map->type = type;
4560         map->sub_stripes = sub_stripes;
4561
4562         num_bytes = stripe_size * data_stripes;
4563
4564         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4565
4566         em = alloc_extent_map();
4567         if (!em) {
4568                 kfree(map);
4569                 ret = -ENOMEM;
4570                 goto error;
4571         }
4572         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4573         em->bdev = (struct block_device *)map;
4574         em->start = start;
4575         em->len = num_bytes;
4576         em->block_start = 0;
4577         em->block_len = em->len;
4578         em->orig_block_len = stripe_size;
4579
4580         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4581         write_lock(&em_tree->lock);
4582         ret = add_extent_mapping(em_tree, em, 0);
4583         if (!ret) {
4584                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4585                 atomic_inc(&em->refs);
4586         }
4587         write_unlock(&em_tree->lock);
4588         if (ret) {
4589                 free_extent_map(em);
4590                 goto error;
4591         }
4592
4593         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4594                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4595                                      start, num_bytes);
4596         if (ret)
4597                 goto error_del_extent;
4598
4599         for (i = 0; i < map->num_stripes; i++) {
4600                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4601                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4602         }
4603
4604         spin_lock(&extent_root->fs_info->free_chunk_lock);
4605         extent_root->fs_info->free_chunk_space -= (stripe_size *
4606                                                    map->num_stripes);
4607         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4608
4609         free_extent_map(em);
4610         check_raid56_incompat_flag(extent_root->fs_info, type);
4611
4612         kfree(devices_info);
4613         return 0;
4614
4615 error_del_extent:
4616         write_lock(&em_tree->lock);
4617         remove_extent_mapping(em_tree, em);
4618         write_unlock(&em_tree->lock);
4619
4620         /* One for our allocation */
4621         free_extent_map(em);
4622         /* One for the tree reference */
4623         free_extent_map(em);
4624         /* One for the pending_chunks list reference */
4625         free_extent_map(em);
4626 error:
4627         kfree(devices_info);
4628         return ret;
4629 }
4630
4631 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4632                                 struct btrfs_root *extent_root,
4633                                 u64 chunk_offset, u64 chunk_size)
4634 {
4635         struct btrfs_key key;
4636         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4637         struct btrfs_device *device;
4638         struct btrfs_chunk *chunk;
4639         struct btrfs_stripe *stripe;
4640         struct extent_map_tree *em_tree;
4641         struct extent_map *em;
4642         struct map_lookup *map;
4643         size_t item_size;
4644         u64 dev_offset;
4645         u64 stripe_size;
4646         int i = 0;
4647         int ret;
4648
4649         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4650         read_lock(&em_tree->lock);
4651         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4652         read_unlock(&em_tree->lock);
4653
4654         if (!em) {
4655                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4656                            "%Lu len %Lu", chunk_offset, chunk_size);
4657                 return -EINVAL;
4658         }
4659
4660         if (em->start != chunk_offset || em->len != chunk_size) {
4661                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4662                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4663                           chunk_size, em->start, em->len);
4664                 free_extent_map(em);
4665                 return -EINVAL;
4666         }
4667
4668         map = (struct map_lookup *)em->bdev;
4669         item_size = btrfs_chunk_item_size(map->num_stripes);
4670         stripe_size = em->orig_block_len;
4671
4672         chunk = kzalloc(item_size, GFP_NOFS);
4673         if (!chunk) {
4674                 ret = -ENOMEM;
4675                 goto out;
4676         }
4677
4678         for (i = 0; i < map->num_stripes; i++) {
4679                 device = map->stripes[i].dev;
4680                 dev_offset = map->stripes[i].physical;
4681
4682                 ret = btrfs_update_device(trans, device);
4683                 if (ret)
4684                         goto out;
4685                 ret = btrfs_alloc_dev_extent(trans, device,
4686                                              chunk_root->root_key.objectid,
4687                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4688                                              chunk_offset, dev_offset,
4689                                              stripe_size);
4690                 if (ret)
4691                         goto out;
4692         }
4693
4694         stripe = &chunk->stripe;
4695         for (i = 0; i < map->num_stripes; i++) {
4696                 device = map->stripes[i].dev;
4697                 dev_offset = map->stripes[i].physical;
4698
4699                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4700                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4701                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4702                 stripe++;
4703         }
4704
4705         btrfs_set_stack_chunk_length(chunk, chunk_size);
4706         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4707         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4708         btrfs_set_stack_chunk_type(chunk, map->type);
4709         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4710         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4711         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4712         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4713         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4714
4715         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4716         key.type = BTRFS_CHUNK_ITEM_KEY;
4717         key.offset = chunk_offset;
4718
4719         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4720         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4721                 /*
4722                  * TODO: Cleanup of inserted chunk root in case of
4723                  * failure.
4724                  */
4725                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4726                                              item_size);
4727         }
4728
4729 out:
4730         kfree(chunk);
4731         free_extent_map(em);
4732         return ret;
4733 }
4734
4735 /*
4736  * Chunk allocation falls into two parts. The first part does works
4737  * that make the new allocated chunk useable, but not do any operation
4738  * that modifies the chunk tree. The second part does the works that
4739  * require modifying the chunk tree. This division is important for the
4740  * bootstrap process of adding storage to a seed btrfs.
4741  */
4742 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4743                       struct btrfs_root *extent_root, u64 type)
4744 {
4745         u64 chunk_offset;
4746
4747         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4748         chunk_offset = find_next_chunk(extent_root->fs_info);
4749         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4750 }
4751
4752 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4753                                          struct btrfs_root *root,
4754                                          struct btrfs_device *device)
4755 {
4756         u64 chunk_offset;
4757         u64 sys_chunk_offset;
4758         u64 alloc_profile;
4759         struct btrfs_fs_info *fs_info = root->fs_info;
4760         struct btrfs_root *extent_root = fs_info->extent_root;
4761         int ret;
4762
4763         chunk_offset = find_next_chunk(fs_info);
4764         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4765         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4766                                   alloc_profile);
4767         if (ret)
4768                 return ret;
4769
4770         sys_chunk_offset = find_next_chunk(root->fs_info);
4771         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4772         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4773                                   alloc_profile);
4774         return ret;
4775 }
4776
4777 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4778 {
4779         int max_errors;
4780
4781         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4782                          BTRFS_BLOCK_GROUP_RAID10 |
4783                          BTRFS_BLOCK_GROUP_RAID5 |
4784                          BTRFS_BLOCK_GROUP_DUP)) {
4785                 max_errors = 1;
4786         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4787                 max_errors = 2;
4788         } else {
4789                 max_errors = 0;
4790         }
4791
4792         return max_errors;
4793 }
4794
4795 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4796 {
4797         struct extent_map *em;
4798         struct map_lookup *map;
4799         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4800         int readonly = 0;
4801         int miss_ndevs = 0;
4802         int i;
4803
4804         read_lock(&map_tree->map_tree.lock);
4805         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4806         read_unlock(&map_tree->map_tree.lock);
4807         if (!em)
4808                 return 1;
4809
4810         map = (struct map_lookup *)em->bdev;
4811         for (i = 0; i < map->num_stripes; i++) {
4812                 if (map->stripes[i].dev->missing) {
4813                         miss_ndevs++;
4814                         continue;
4815                 }
4816
4817                 if (!map->stripes[i].dev->writeable) {
4818                         readonly = 1;
4819                         goto end;
4820                 }
4821         }
4822
4823         /*
4824          * If the number of missing devices is larger than max errors,
4825          * we can not write the data into that chunk successfully, so
4826          * set it readonly.
4827          */
4828         if (miss_ndevs > btrfs_chunk_max_errors(map))
4829                 readonly = 1;
4830 end:
4831         free_extent_map(em);
4832         return readonly;
4833 }
4834
4835 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4836 {
4837         extent_map_tree_init(&tree->map_tree);
4838 }
4839
4840 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4841 {
4842         struct extent_map *em;
4843
4844         while (1) {
4845                 write_lock(&tree->map_tree.lock);
4846                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4847                 if (em)
4848                         remove_extent_mapping(&tree->map_tree, em);
4849                 write_unlock(&tree->map_tree.lock);
4850                 if (!em)
4851                         break;
4852                 /* once for us */
4853                 free_extent_map(em);
4854                 /* once for the tree */
4855                 free_extent_map(em);
4856         }
4857 }
4858
4859 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4860 {
4861         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4862         struct extent_map *em;
4863         struct map_lookup *map;
4864         struct extent_map_tree *em_tree = &map_tree->map_tree;
4865         int ret;
4866
4867         read_lock(&em_tree->lock);
4868         em = lookup_extent_mapping(em_tree, logical, len);
4869         read_unlock(&em_tree->lock);
4870
4871         /*
4872          * We could return errors for these cases, but that could get ugly and
4873          * we'd probably do the same thing which is just not do anything else
4874          * and exit, so return 1 so the callers don't try to use other copies.
4875          */
4876         if (!em) {
4877                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4878                             logical+len);
4879                 return 1;
4880         }
4881
4882         if (em->start > logical || em->start + em->len < logical) {
4883                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4884                             "%Lu-%Lu", logical, logical+len, em->start,
4885                             em->start + em->len);
4886                 free_extent_map(em);
4887                 return 1;
4888         }
4889
4890         map = (struct map_lookup *)em->bdev;
4891         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4892                 ret = map->num_stripes;
4893         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4894                 ret = map->sub_stripes;
4895         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4896                 ret = 2;
4897         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4898                 ret = 3;
4899         else
4900                 ret = 1;
4901         free_extent_map(em);
4902
4903         btrfs_dev_replace_lock(&fs_info->dev_replace);
4904         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4905                 ret++;
4906         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4907
4908         return ret;
4909 }
4910
4911 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4912                                     struct btrfs_mapping_tree *map_tree,
4913                                     u64 logical)
4914 {
4915         struct extent_map *em;
4916         struct map_lookup *map;
4917         struct extent_map_tree *em_tree = &map_tree->map_tree;
4918         unsigned long len = root->sectorsize;
4919
4920         read_lock(&em_tree->lock);
4921         em = lookup_extent_mapping(em_tree, logical, len);
4922         read_unlock(&em_tree->lock);
4923         BUG_ON(!em);
4924
4925         BUG_ON(em->start > logical || em->start + em->len < logical);
4926         map = (struct map_lookup *)em->bdev;
4927         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4928                 len = map->stripe_len * nr_data_stripes(map);
4929         free_extent_map(em);
4930         return len;
4931 }
4932
4933 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4934                            u64 logical, u64 len, int mirror_num)
4935 {
4936         struct extent_map *em;
4937         struct map_lookup *map;
4938         struct extent_map_tree *em_tree = &map_tree->map_tree;
4939         int ret = 0;
4940
4941         read_lock(&em_tree->lock);
4942         em = lookup_extent_mapping(em_tree, logical, len);
4943         read_unlock(&em_tree->lock);
4944         BUG_ON(!em);
4945
4946         BUG_ON(em->start > logical || em->start + em->len < logical);
4947         map = (struct map_lookup *)em->bdev;
4948         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4949                 ret = 1;
4950         free_extent_map(em);
4951         return ret;
4952 }
4953
4954 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4955                             struct map_lookup *map, int first, int num,
4956                             int optimal, int dev_replace_is_ongoing)
4957 {
4958         int i;
4959         int tolerance;
4960         struct btrfs_device *srcdev;
4961
4962         if (dev_replace_is_ongoing &&
4963             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4964              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4965                 srcdev = fs_info->dev_replace.srcdev;
4966         else
4967                 srcdev = NULL;
4968
4969         /*
4970          * try to avoid the drive that is the source drive for a
4971          * dev-replace procedure, only choose it if no other non-missing
4972          * mirror is available
4973          */
4974         for (tolerance = 0; tolerance < 2; tolerance++) {
4975                 if (map->stripes[optimal].dev->bdev &&
4976                     (tolerance || map->stripes[optimal].dev != srcdev))
4977                         return optimal;
4978                 for (i = first; i < first + num; i++) {
4979                         if (map->stripes[i].dev->bdev &&
4980                             (tolerance || map->stripes[i].dev != srcdev))
4981                                 return i;
4982                 }
4983         }
4984
4985         /* we couldn't find one that doesn't fail.  Just return something
4986          * and the io error handling code will clean up eventually
4987          */
4988         return optimal;
4989 }
4990
4991 static inline int parity_smaller(u64 a, u64 b)
4992 {
4993         return a > b;
4994 }
4995
4996 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4997 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4998 {
4999         struct btrfs_bio_stripe s;
5000         int i;
5001         u64 l;
5002         int again = 1;
5003
5004         while (again) {
5005                 again = 0;
5006                 for (i = 0; i < num_stripes - 1; i++) {
5007                         if (parity_smaller(bbio->raid_map[i],
5008                                            bbio->raid_map[i+1])) {
5009                                 s = bbio->stripes[i];
5010                                 l = bbio->raid_map[i];
5011                                 bbio->stripes[i] = bbio->stripes[i+1];
5012                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5013                                 bbio->stripes[i+1] = s;
5014                                 bbio->raid_map[i+1] = l;
5015
5016                                 again = 1;
5017                         }
5018                 }
5019         }
5020 }
5021
5022 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5023 {
5024         struct btrfs_bio *bbio = kzalloc(
5025                  /* the size of the btrfs_bio */
5026                 sizeof(struct btrfs_bio) +
5027                 /* plus the variable array for the stripes */
5028                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5029                 /* plus the variable array for the tgt dev */
5030                 sizeof(int) * (real_stripes) +
5031                 /*
5032                  * plus the raid_map, which includes both the tgt dev
5033                  * and the stripes
5034                  */
5035                 sizeof(u64) * (total_stripes),
5036                 GFP_NOFS);
5037         if (!bbio)
5038                 return NULL;
5039
5040         atomic_set(&bbio->error, 0);
5041         atomic_set(&bbio->refs, 1);
5042
5043         return bbio;
5044 }
5045
5046 void btrfs_get_bbio(struct btrfs_bio *bbio)
5047 {
5048         WARN_ON(!atomic_read(&bbio->refs));
5049         atomic_inc(&bbio->refs);
5050 }
5051
5052 void btrfs_put_bbio(struct btrfs_bio *bbio)
5053 {
5054         if (!bbio)
5055                 return;
5056         if (atomic_dec_and_test(&bbio->refs))
5057                 kfree(bbio);
5058 }
5059
5060 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5061                              u64 logical, u64 *length,
5062                              struct btrfs_bio **bbio_ret,
5063                              int mirror_num, int need_raid_map)
5064 {
5065         struct extent_map *em;
5066         struct map_lookup *map;
5067         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5068         struct extent_map_tree *em_tree = &map_tree->map_tree;
5069         u64 offset;
5070         u64 stripe_offset;
5071         u64 stripe_end_offset;
5072         u64 stripe_nr;
5073         u64 stripe_nr_orig;
5074         u64 stripe_nr_end;
5075         u64 stripe_len;
5076         u32 stripe_index;
5077         int i;
5078         int ret = 0;
5079         int num_stripes;
5080         int max_errors = 0;
5081         int tgtdev_indexes = 0;
5082         struct btrfs_bio *bbio = NULL;
5083         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5084         int dev_replace_is_ongoing = 0;
5085         int num_alloc_stripes;
5086         int patch_the_first_stripe_for_dev_replace = 0;
5087         u64 physical_to_patch_in_first_stripe = 0;
5088         u64 raid56_full_stripe_start = (u64)-1;
5089
5090         read_lock(&em_tree->lock);
5091         em = lookup_extent_mapping(em_tree, logical, *length);
5092         read_unlock(&em_tree->lock);
5093
5094         if (!em) {
5095                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5096                         logical, *length);
5097                 return -EINVAL;
5098         }
5099
5100         if (em->start > logical || em->start + em->len < logical) {
5101                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5102                            "found %Lu-%Lu", logical, em->start,
5103                            em->start + em->len);
5104                 free_extent_map(em);
5105                 return -EINVAL;
5106         }
5107
5108         map = (struct map_lookup *)em->bdev;
5109         offset = logical - em->start;
5110
5111         stripe_len = map->stripe_len;
5112         stripe_nr = offset;
5113         /*
5114          * stripe_nr counts the total number of stripes we have to stride
5115          * to get to this block
5116          */
5117         stripe_nr = div64_u64(stripe_nr, stripe_len);
5118
5119         stripe_offset = stripe_nr * stripe_len;
5120         BUG_ON(offset < stripe_offset);
5121
5122         /* stripe_offset is the offset of this block in its stripe*/
5123         stripe_offset = offset - stripe_offset;
5124
5125         /* if we're here for raid56, we need to know the stripe aligned start */
5126         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5127                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5128                 raid56_full_stripe_start = offset;
5129
5130                 /* allow a write of a full stripe, but make sure we don't
5131                  * allow straddling of stripes
5132                  */
5133                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5134                                 full_stripe_len);
5135                 raid56_full_stripe_start *= full_stripe_len;
5136         }
5137
5138         if (rw & REQ_DISCARD) {
5139                 /* we don't discard raid56 yet */
5140                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5141                         ret = -EOPNOTSUPP;
5142                         goto out;
5143                 }
5144                 *length = min_t(u64, em->len - offset, *length);
5145         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5146                 u64 max_len;
5147                 /* For writes to RAID[56], allow a full stripeset across all disks.
5148                    For other RAID types and for RAID[56] reads, just allow a single
5149                    stripe (on a single disk). */
5150                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5151                     (rw & REQ_WRITE)) {
5152                         max_len = stripe_len * nr_data_stripes(map) -
5153                                 (offset - raid56_full_stripe_start);
5154                 } else {
5155                         /* we limit the length of each bio to what fits in a stripe */
5156                         max_len = stripe_len - stripe_offset;
5157                 }
5158                 *length = min_t(u64, em->len - offset, max_len);
5159         } else {
5160                 *length = em->len - offset;
5161         }
5162
5163         /* This is for when we're called from btrfs_merge_bio_hook() and all
5164            it cares about is the length */
5165         if (!bbio_ret)
5166                 goto out;
5167
5168         btrfs_dev_replace_lock(dev_replace);
5169         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5170         if (!dev_replace_is_ongoing)
5171                 btrfs_dev_replace_unlock(dev_replace);
5172
5173         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5174             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5175             dev_replace->tgtdev != NULL) {
5176                 /*
5177                  * in dev-replace case, for repair case (that's the only
5178                  * case where the mirror is selected explicitly when
5179                  * calling btrfs_map_block), blocks left of the left cursor
5180                  * can also be read from the target drive.
5181                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5182                  * the last one to the array of stripes. For READ, it also
5183                  * needs to be supported using the same mirror number.
5184                  * If the requested block is not left of the left cursor,
5185                  * EIO is returned. This can happen because btrfs_num_copies()
5186                  * returns one more in the dev-replace case.
5187                  */
5188                 u64 tmp_length = *length;
5189                 struct btrfs_bio *tmp_bbio = NULL;
5190                 int tmp_num_stripes;
5191                 u64 srcdev_devid = dev_replace->srcdev->devid;
5192                 int index_srcdev = 0;
5193                 int found = 0;
5194                 u64 physical_of_found = 0;
5195
5196                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5197                              logical, &tmp_length, &tmp_bbio, 0, 0);
5198                 if (ret) {
5199                         WARN_ON(tmp_bbio != NULL);
5200                         goto out;
5201                 }
5202
5203                 tmp_num_stripes = tmp_bbio->num_stripes;
5204                 if (mirror_num > tmp_num_stripes) {
5205                         /*
5206                          * REQ_GET_READ_MIRRORS does not contain this
5207                          * mirror, that means that the requested area
5208                          * is not left of the left cursor
5209                          */
5210                         ret = -EIO;
5211                         btrfs_put_bbio(tmp_bbio);
5212                         goto out;
5213                 }
5214
5215                 /*
5216                  * process the rest of the function using the mirror_num
5217                  * of the source drive. Therefore look it up first.
5218                  * At the end, patch the device pointer to the one of the
5219                  * target drive.
5220                  */
5221                 for (i = 0; i < tmp_num_stripes; i++) {
5222                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5223                                 /*
5224                                  * In case of DUP, in order to keep it
5225                                  * simple, only add the mirror with the
5226                                  * lowest physical address
5227                                  */
5228                                 if (found &&
5229                                     physical_of_found <=
5230                                      tmp_bbio->stripes[i].physical)
5231                                         continue;
5232                                 index_srcdev = i;
5233                                 found = 1;
5234                                 physical_of_found =
5235                                         tmp_bbio->stripes[i].physical;
5236                         }
5237                 }
5238
5239                 if (found) {
5240                         mirror_num = index_srcdev + 1;
5241                         patch_the_first_stripe_for_dev_replace = 1;
5242                         physical_to_patch_in_first_stripe = physical_of_found;
5243                 } else {
5244                         WARN_ON(1);
5245                         ret = -EIO;
5246                         btrfs_put_bbio(tmp_bbio);
5247                         goto out;
5248                 }
5249
5250                 btrfs_put_bbio(tmp_bbio);
5251         } else if (mirror_num > map->num_stripes) {
5252                 mirror_num = 0;
5253         }
5254
5255         num_stripes = 1;
5256         stripe_index = 0;
5257         stripe_nr_orig = stripe_nr;
5258         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5259         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5260         stripe_end_offset = stripe_nr_end * map->stripe_len -
5261                             (offset + *length);
5262
5263         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5264                 if (rw & REQ_DISCARD)
5265                         num_stripes = min_t(u64, map->num_stripes,
5266                                             stripe_nr_end - stripe_nr_orig);
5267                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5268                                 &stripe_index);
5269                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5270                         mirror_num = 1;
5271         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5272                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5273                         num_stripes = map->num_stripes;
5274                 else if (mirror_num)
5275                         stripe_index = mirror_num - 1;
5276                 else {
5277                         stripe_index = find_live_mirror(fs_info, map, 0,
5278                                             map->num_stripes,
5279                                             current->pid % map->num_stripes,
5280                                             dev_replace_is_ongoing);
5281                         mirror_num = stripe_index + 1;
5282                 }
5283
5284         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5285                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5286                         num_stripes = map->num_stripes;
5287                 } else if (mirror_num) {
5288                         stripe_index = mirror_num - 1;
5289                 } else {
5290                         mirror_num = 1;
5291                 }
5292
5293         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5294                 u32 factor = map->num_stripes / map->sub_stripes;
5295
5296                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5297                 stripe_index *= map->sub_stripes;
5298
5299                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5300                         num_stripes = map->sub_stripes;
5301                 else if (rw & REQ_DISCARD)
5302                         num_stripes = min_t(u64, map->sub_stripes *
5303                                             (stripe_nr_end - stripe_nr_orig),
5304                                             map->num_stripes);
5305                 else if (mirror_num)
5306                         stripe_index += mirror_num - 1;
5307                 else {
5308                         int old_stripe_index = stripe_index;
5309                         stripe_index = find_live_mirror(fs_info, map,
5310                                               stripe_index,
5311                                               map->sub_stripes, stripe_index +
5312                                               current->pid % map->sub_stripes,
5313                                               dev_replace_is_ongoing);
5314                         mirror_num = stripe_index - old_stripe_index + 1;
5315                 }
5316
5317         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5318                 if (need_raid_map &&
5319                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5320                      mirror_num > 1)) {
5321                         /* push stripe_nr back to the start of the full stripe */
5322                         stripe_nr = div_u64(raid56_full_stripe_start,
5323                                         stripe_len * nr_data_stripes(map));
5324
5325                         /* RAID[56] write or recovery. Return all stripes */
5326                         num_stripes = map->num_stripes;
5327                         max_errors = nr_parity_stripes(map);
5328
5329                         *length = map->stripe_len;
5330                         stripe_index = 0;
5331                         stripe_offset = 0;
5332                 } else {
5333                         /*
5334                          * Mirror #0 or #1 means the original data block.
5335                          * Mirror #2 is RAID5 parity block.
5336                          * Mirror #3 is RAID6 Q block.
5337                          */
5338                         stripe_nr = div_u64_rem(stripe_nr,
5339                                         nr_data_stripes(map), &stripe_index);
5340                         if (mirror_num > 1)
5341                                 stripe_index = nr_data_stripes(map) +
5342                                                 mirror_num - 2;
5343
5344                         /* We distribute the parity blocks across stripes */
5345                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5346                                         &stripe_index);
5347                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5348                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5349                                 mirror_num = 1;
5350                 }
5351         } else {
5352                 /*
5353                  * after this, stripe_nr is the number of stripes on this
5354                  * device we have to walk to find the data, and stripe_index is
5355                  * the number of our device in the stripe array
5356                  */
5357                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5358                                 &stripe_index);
5359                 mirror_num = stripe_index + 1;
5360         }
5361         BUG_ON(stripe_index >= map->num_stripes);
5362
5363         num_alloc_stripes = num_stripes;
5364         if (dev_replace_is_ongoing) {
5365                 if (rw & (REQ_WRITE | REQ_DISCARD))
5366                         num_alloc_stripes <<= 1;
5367                 if (rw & REQ_GET_READ_MIRRORS)
5368                         num_alloc_stripes++;
5369                 tgtdev_indexes = num_stripes;
5370         }
5371
5372         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5373         if (!bbio) {
5374                 ret = -ENOMEM;
5375                 goto out;
5376         }
5377         if (dev_replace_is_ongoing)
5378                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5379
5380         /* build raid_map */
5381         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5382             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5383             mirror_num > 1)) {
5384                 u64 tmp;
5385                 unsigned rot;
5386
5387                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5388                                  sizeof(struct btrfs_bio_stripe) *
5389                                  num_alloc_stripes +
5390                                  sizeof(int) * tgtdev_indexes);
5391
5392                 /* Work out the disk rotation on this stripe-set */
5393                 div_u64_rem(stripe_nr, num_stripes, &rot);
5394
5395                 /* Fill in the logical address of each stripe */
5396                 tmp = stripe_nr * nr_data_stripes(map);
5397                 for (i = 0; i < nr_data_stripes(map); i++)
5398                         bbio->raid_map[(i+rot) % num_stripes] =
5399                                 em->start + (tmp + i) * map->stripe_len;
5400
5401                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5402                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5403                         bbio->raid_map[(i+rot+1) % num_stripes] =
5404                                 RAID6_Q_STRIPE;
5405         }
5406
5407         if (rw & REQ_DISCARD) {
5408                 u32 factor = 0;
5409                 u32 sub_stripes = 0;
5410                 u64 stripes_per_dev = 0;
5411                 u32 remaining_stripes = 0;
5412                 u32 last_stripe = 0;
5413
5414                 if (map->type &
5415                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5416                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5417                                 sub_stripes = 1;
5418                         else
5419                                 sub_stripes = map->sub_stripes;
5420
5421                         factor = map->num_stripes / sub_stripes;
5422                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5423                                                       stripe_nr_orig,
5424                                                       factor,
5425                                                       &remaining_stripes);
5426                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5427                         last_stripe *= sub_stripes;
5428                 }
5429
5430                 for (i = 0; i < num_stripes; i++) {
5431                         bbio->stripes[i].physical =
5432                                 map->stripes[stripe_index].physical +
5433                                 stripe_offset + stripe_nr * map->stripe_len;
5434                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5435
5436                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5437                                          BTRFS_BLOCK_GROUP_RAID10)) {
5438                                 bbio->stripes[i].length = stripes_per_dev *
5439                                                           map->stripe_len;
5440
5441                                 if (i / sub_stripes < remaining_stripes)
5442                                         bbio->stripes[i].length +=
5443                                                 map->stripe_len;
5444
5445                                 /*
5446                                  * Special for the first stripe and
5447                                  * the last stripe:
5448                                  *
5449                                  * |-------|...|-------|
5450                                  *     |----------|
5451                                  *    off     end_off
5452                                  */
5453                                 if (i < sub_stripes)
5454                                         bbio->stripes[i].length -=
5455                                                 stripe_offset;
5456
5457                                 if (stripe_index >= last_stripe &&
5458                                     stripe_index <= (last_stripe +
5459                                                      sub_stripes - 1))
5460                                         bbio->stripes[i].length -=
5461                                                 stripe_end_offset;
5462
5463                                 if (i == sub_stripes - 1)
5464                                         stripe_offset = 0;
5465                         } else
5466                                 bbio->stripes[i].length = *length;
5467
5468                         stripe_index++;
5469                         if (stripe_index == map->num_stripes) {
5470                                 /* This could only happen for RAID0/10 */
5471                                 stripe_index = 0;
5472                                 stripe_nr++;
5473                         }
5474                 }
5475         } else {
5476                 for (i = 0; i < num_stripes; i++) {
5477                         bbio->stripes[i].physical =
5478                                 map->stripes[stripe_index].physical +
5479                                 stripe_offset +
5480                                 stripe_nr * map->stripe_len;
5481                         bbio->stripes[i].dev =
5482                                 map->stripes[stripe_index].dev;
5483                         stripe_index++;
5484                 }
5485         }
5486
5487         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5488                 max_errors = btrfs_chunk_max_errors(map);
5489
5490         if (bbio->raid_map)
5491                 sort_parity_stripes(bbio, num_stripes);
5492
5493         tgtdev_indexes = 0;
5494         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5495             dev_replace->tgtdev != NULL) {
5496                 int index_where_to_add;
5497                 u64 srcdev_devid = dev_replace->srcdev->devid;
5498
5499                 /*
5500                  * duplicate the write operations while the dev replace
5501                  * procedure is running. Since the copying of the old disk
5502                  * to the new disk takes place at run time while the
5503                  * filesystem is mounted writable, the regular write
5504                  * operations to the old disk have to be duplicated to go
5505                  * to the new disk as well.
5506                  * Note that device->missing is handled by the caller, and
5507                  * that the write to the old disk is already set up in the
5508                  * stripes array.
5509                  */
5510                 index_where_to_add = num_stripes;
5511                 for (i = 0; i < num_stripes; i++) {
5512                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5513                                 /* write to new disk, too */
5514                                 struct btrfs_bio_stripe *new =
5515                                         bbio->stripes + index_where_to_add;
5516                                 struct btrfs_bio_stripe *old =
5517                                         bbio->stripes + i;
5518
5519                                 new->physical = old->physical;
5520                                 new->length = old->length;
5521                                 new->dev = dev_replace->tgtdev;
5522                                 bbio->tgtdev_map[i] = index_where_to_add;
5523                                 index_where_to_add++;
5524                                 max_errors++;
5525                                 tgtdev_indexes++;
5526                         }
5527                 }
5528                 num_stripes = index_where_to_add;
5529         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5530                    dev_replace->tgtdev != NULL) {
5531                 u64 srcdev_devid = dev_replace->srcdev->devid;
5532                 int index_srcdev = 0;
5533                 int found = 0;
5534                 u64 physical_of_found = 0;
5535
5536                 /*
5537                  * During the dev-replace procedure, the target drive can
5538                  * also be used to read data in case it is needed to repair
5539                  * a corrupt block elsewhere. This is possible if the
5540                  * requested area is left of the left cursor. In this area,
5541                  * the target drive is a full copy of the source drive.
5542                  */
5543                 for (i = 0; i < num_stripes; i++) {
5544                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5545                                 /*
5546                                  * In case of DUP, in order to keep it
5547                                  * simple, only add the mirror with the
5548                                  * lowest physical address
5549                                  */
5550                                 if (found &&
5551                                     physical_of_found <=
5552                                      bbio->stripes[i].physical)
5553                                         continue;
5554                                 index_srcdev = i;
5555                                 found = 1;
5556                                 physical_of_found = bbio->stripes[i].physical;
5557                         }
5558                 }
5559                 if (found) {
5560                         if (physical_of_found + map->stripe_len <=
5561                             dev_replace->cursor_left) {
5562                                 struct btrfs_bio_stripe *tgtdev_stripe =
5563                                         bbio->stripes + num_stripes;
5564
5565                                 tgtdev_stripe->physical = physical_of_found;
5566                                 tgtdev_stripe->length =
5567                                         bbio->stripes[index_srcdev].length;
5568                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5569                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5570
5571                                 tgtdev_indexes++;
5572                                 num_stripes++;
5573                         }
5574                 }
5575         }
5576
5577         *bbio_ret = bbio;
5578         bbio->map_type = map->type;
5579         bbio->num_stripes = num_stripes;
5580         bbio->max_errors = max_errors;
5581         bbio->mirror_num = mirror_num;
5582         bbio->num_tgtdevs = tgtdev_indexes;
5583
5584         /*
5585          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5586          * mirror_num == num_stripes + 1 && dev_replace target drive is
5587          * available as a mirror
5588          */
5589         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5590                 WARN_ON(num_stripes > 1);
5591                 bbio->stripes[0].dev = dev_replace->tgtdev;
5592                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5593                 bbio->mirror_num = map->num_stripes + 1;
5594         }
5595 out:
5596         if (dev_replace_is_ongoing)
5597                 btrfs_dev_replace_unlock(dev_replace);
5598         free_extent_map(em);
5599         return ret;
5600 }
5601
5602 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5603                       u64 logical, u64 *length,
5604                       struct btrfs_bio **bbio_ret, int mirror_num)
5605 {
5606         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5607                                  mirror_num, 0);
5608 }
5609
5610 /* For Scrub/replace */
5611 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5612                      u64 logical, u64 *length,
5613                      struct btrfs_bio **bbio_ret, int mirror_num,
5614                      int need_raid_map)
5615 {
5616         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5617                                  mirror_num, need_raid_map);
5618 }
5619
5620 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5621                      u64 chunk_start, u64 physical, u64 devid,
5622                      u64 **logical, int *naddrs, int *stripe_len)
5623 {
5624         struct extent_map_tree *em_tree = &map_tree->map_tree;
5625         struct extent_map *em;
5626         struct map_lookup *map;
5627         u64 *buf;
5628         u64 bytenr;
5629         u64 length;
5630         u64 stripe_nr;
5631         u64 rmap_len;
5632         int i, j, nr = 0;
5633
5634         read_lock(&em_tree->lock);
5635         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5636         read_unlock(&em_tree->lock);
5637
5638         if (!em) {
5639                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5640                        chunk_start);
5641                 return -EIO;
5642         }
5643
5644         if (em->start != chunk_start) {
5645                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5646                        em->start, chunk_start);
5647                 free_extent_map(em);
5648                 return -EIO;
5649         }
5650         map = (struct map_lookup *)em->bdev;
5651
5652         length = em->len;
5653         rmap_len = map->stripe_len;
5654
5655         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5656                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5657         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5658                 length = div_u64(length, map->num_stripes);
5659         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5660                 length = div_u64(length, nr_data_stripes(map));
5661                 rmap_len = map->stripe_len * nr_data_stripes(map);
5662         }
5663
5664         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5665         BUG_ON(!buf); /* -ENOMEM */
5666
5667         for (i = 0; i < map->num_stripes; i++) {
5668                 if (devid && map->stripes[i].dev->devid != devid)
5669                         continue;
5670                 if (map->stripes[i].physical > physical ||
5671                     map->stripes[i].physical + length <= physical)
5672                         continue;
5673
5674                 stripe_nr = physical - map->stripes[i].physical;
5675                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5676
5677                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5678                         stripe_nr = stripe_nr * map->num_stripes + i;
5679                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5680                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5681                         stripe_nr = stripe_nr * map->num_stripes + i;
5682                 } /* else if RAID[56], multiply by nr_data_stripes().
5683                    * Alternatively, just use rmap_len below instead of
5684                    * map->stripe_len */
5685
5686                 bytenr = chunk_start + stripe_nr * rmap_len;
5687                 WARN_ON(nr >= map->num_stripes);
5688                 for (j = 0; j < nr; j++) {
5689                         if (buf[j] == bytenr)
5690                                 break;
5691                 }
5692                 if (j == nr) {
5693                         WARN_ON(nr >= map->num_stripes);
5694                         buf[nr++] = bytenr;
5695                 }
5696         }
5697
5698         *logical = buf;
5699         *naddrs = nr;
5700         *stripe_len = rmap_len;
5701
5702         free_extent_map(em);
5703         return 0;
5704 }
5705
5706 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5707 {
5708         bio->bi_private = bbio->private;
5709         bio->bi_end_io = bbio->end_io;
5710         bio_endio(bio, err);
5711
5712         btrfs_put_bbio(bbio);
5713 }
5714
5715 static void btrfs_end_bio(struct bio *bio, int err)
5716 {
5717         struct btrfs_bio *bbio = bio->bi_private;
5718         struct btrfs_device *dev = bbio->stripes[0].dev;
5719         int is_orig_bio = 0;
5720
5721         if (err) {
5722                 atomic_inc(&bbio->error);
5723                 if (err == -EIO || err == -EREMOTEIO) {
5724                         unsigned int stripe_index =
5725                                 btrfs_io_bio(bio)->stripe_index;
5726
5727                         BUG_ON(stripe_index >= bbio->num_stripes);
5728                         dev = bbio->stripes[stripe_index].dev;
5729                         if (dev->bdev) {
5730                                 if (bio->bi_rw & WRITE)
5731                                         btrfs_dev_stat_inc(dev,
5732                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5733                                 else
5734                                         btrfs_dev_stat_inc(dev,
5735                                                 BTRFS_DEV_STAT_READ_ERRS);
5736                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5737                                         btrfs_dev_stat_inc(dev,
5738                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5739                                 btrfs_dev_stat_print_on_error(dev);
5740                         }
5741                 }
5742         }
5743
5744         if (bio == bbio->orig_bio)
5745                 is_orig_bio = 1;
5746
5747         btrfs_bio_counter_dec(bbio->fs_info);
5748
5749         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5750                 if (!is_orig_bio) {
5751                         bio_put(bio);
5752                         bio = bbio->orig_bio;
5753                 }
5754
5755                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5756                 /* only send an error to the higher layers if it is
5757                  * beyond the tolerance of the btrfs bio
5758                  */
5759                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5760                         err = -EIO;
5761                 } else {
5762                         /*
5763                          * this bio is actually up to date, we didn't
5764                          * go over the max number of errors
5765                          */
5766                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5767                         err = 0;
5768                 }
5769
5770                 btrfs_end_bbio(bbio, bio, err);
5771         } else if (!is_orig_bio) {
5772                 bio_put(bio);
5773         }
5774 }
5775
5776 /*
5777  * see run_scheduled_bios for a description of why bios are collected for
5778  * async submit.
5779  *
5780  * This will add one bio to the pending list for a device and make sure
5781  * the work struct is scheduled.
5782  */
5783 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5784                                         struct btrfs_device *device,
5785                                         int rw, struct bio *bio)
5786 {
5787         int should_queue = 1;
5788         struct btrfs_pending_bios *pending_bios;
5789
5790         if (device->missing || !device->bdev) {
5791                 bio_endio(bio, -EIO);
5792                 return;
5793         }
5794
5795         /* don't bother with additional async steps for reads, right now */
5796         if (!(rw & REQ_WRITE)) {
5797                 bio_get(bio);
5798                 btrfsic_submit_bio(rw, bio);
5799                 bio_put(bio);
5800                 return;
5801         }
5802
5803         /*
5804          * nr_async_bios allows us to reliably return congestion to the
5805          * higher layers.  Otherwise, the async bio makes it appear we have
5806          * made progress against dirty pages when we've really just put it
5807          * on a queue for later
5808          */
5809         atomic_inc(&root->fs_info->nr_async_bios);
5810         WARN_ON(bio->bi_next);
5811         bio->bi_next = NULL;
5812         bio->bi_rw |= rw;
5813
5814         spin_lock(&device->io_lock);
5815         if (bio->bi_rw & REQ_SYNC)
5816                 pending_bios = &device->pending_sync_bios;
5817         else
5818                 pending_bios = &device->pending_bios;
5819
5820         if (pending_bios->tail)
5821                 pending_bios->tail->bi_next = bio;
5822
5823         pending_bios->tail = bio;
5824         if (!pending_bios->head)
5825                 pending_bios->head = bio;
5826         if (device->running_pending)
5827                 should_queue = 0;
5828
5829         spin_unlock(&device->io_lock);
5830
5831         if (should_queue)
5832                 btrfs_queue_work(root->fs_info->submit_workers,
5833                                  &device->work);
5834 }
5835
5836 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5837                        sector_t sector)
5838 {
5839         struct bio_vec *prev;
5840         struct request_queue *q = bdev_get_queue(bdev);
5841         unsigned int max_sectors = queue_max_sectors(q);
5842         struct bvec_merge_data bvm = {
5843                 .bi_bdev = bdev,
5844                 .bi_sector = sector,
5845                 .bi_rw = bio->bi_rw,
5846         };
5847
5848         if (WARN_ON(bio->bi_vcnt == 0))
5849                 return 1;
5850
5851         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5852         if (bio_sectors(bio) > max_sectors)
5853                 return 0;
5854
5855         if (!q->merge_bvec_fn)
5856                 return 1;
5857
5858         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5859         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5860                 return 0;
5861         return 1;
5862 }
5863
5864 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5865                               struct bio *bio, u64 physical, int dev_nr,
5866                               int rw, int async)
5867 {
5868         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5869
5870         bio->bi_private = bbio;
5871         btrfs_io_bio(bio)->stripe_index = dev_nr;
5872         bio->bi_end_io = btrfs_end_bio;
5873         bio->bi_iter.bi_sector = physical >> 9;
5874 #ifdef DEBUG
5875         {
5876                 struct rcu_string *name;
5877
5878                 rcu_read_lock();
5879                 name = rcu_dereference(dev->name);
5880                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5881                          "(%s id %llu), size=%u\n", rw,
5882                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5883                          name->str, dev->devid, bio->bi_iter.bi_size);
5884                 rcu_read_unlock();
5885         }
5886 #endif
5887         bio->bi_bdev = dev->bdev;
5888
5889         btrfs_bio_counter_inc_noblocked(root->fs_info);
5890
5891         if (async)
5892                 btrfs_schedule_bio(root, dev, rw, bio);
5893         else
5894                 btrfsic_submit_bio(rw, bio);
5895 }
5896
5897 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5898                               struct bio *first_bio, struct btrfs_device *dev,
5899                               int dev_nr, int rw, int async)
5900 {
5901         struct bio_vec *bvec = first_bio->bi_io_vec;
5902         struct bio *bio;
5903         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5904         u64 physical = bbio->stripes[dev_nr].physical;
5905
5906 again:
5907         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5908         if (!bio)
5909                 return -ENOMEM;
5910
5911         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5912                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5913                                  bvec->bv_offset) < bvec->bv_len) {
5914                         u64 len = bio->bi_iter.bi_size;
5915
5916                         atomic_inc(&bbio->stripes_pending);
5917                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5918                                           rw, async);
5919                         physical += len;
5920                         goto again;
5921                 }
5922                 bvec++;
5923         }
5924
5925         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5926         return 0;
5927 }
5928
5929 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5930 {
5931         atomic_inc(&bbio->error);
5932         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5933                 /* Shoud be the original bio. */
5934                 WARN_ON(bio != bbio->orig_bio);
5935
5936                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5937                 bio->bi_iter.bi_sector = logical >> 9;
5938
5939                 btrfs_end_bbio(bbio, bio, -EIO);
5940         }
5941 }
5942
5943 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5944                   int mirror_num, int async_submit)
5945 {
5946         struct btrfs_device *dev;
5947         struct bio *first_bio = bio;
5948         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5949         u64 length = 0;
5950         u64 map_length;
5951         int ret;
5952         int dev_nr;
5953         int total_devs;
5954         struct btrfs_bio *bbio = NULL;
5955
5956         length = bio->bi_iter.bi_size;
5957         map_length = length;
5958
5959         btrfs_bio_counter_inc_blocked(root->fs_info);
5960         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5961                               mirror_num, 1);
5962         if (ret) {
5963                 btrfs_bio_counter_dec(root->fs_info);
5964                 return ret;
5965         }
5966
5967         total_devs = bbio->num_stripes;
5968         bbio->orig_bio = first_bio;
5969         bbio->private = first_bio->bi_private;
5970         bbio->end_io = first_bio->bi_end_io;
5971         bbio->fs_info = root->fs_info;
5972         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5973
5974         if (bbio->raid_map) {
5975                 /* In this case, map_length has been set to the length of
5976                    a single stripe; not the whole write */
5977                 if (rw & WRITE) {
5978                         ret = raid56_parity_write(root, bio, bbio, map_length);
5979                 } else {
5980                         ret = raid56_parity_recover(root, bio, bbio, map_length,
5981                                                     mirror_num, 1);
5982                 }
5983
5984                 btrfs_bio_counter_dec(root->fs_info);
5985                 return ret;
5986         }
5987
5988         if (map_length < length) {
5989                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5990                         logical, length, map_length);
5991                 BUG();
5992         }
5993
5994         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5995                 dev = bbio->stripes[dev_nr].dev;
5996                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5997                         bbio_error(bbio, first_bio, logical);
5998                         continue;
5999                 }
6000
6001                 /*
6002                  * Check and see if we're ok with this bio based on it's size
6003                  * and offset with the given device.
6004                  */
6005                 if (!bio_size_ok(dev->bdev, first_bio,
6006                                  bbio->stripes[dev_nr].physical >> 9)) {
6007                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
6008                                                  dev_nr, rw, async_submit);
6009                         BUG_ON(ret);
6010                         continue;
6011                 }
6012
6013                 if (dev_nr < total_devs - 1) {
6014                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6015                         BUG_ON(!bio); /* -ENOMEM */
6016                 } else
6017                         bio = first_bio;
6018
6019                 submit_stripe_bio(root, bbio, bio,
6020                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
6021                                   async_submit);
6022         }
6023         btrfs_bio_counter_dec(root->fs_info);
6024         return 0;
6025 }
6026
6027 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6028                                        u8 *uuid, u8 *fsid)
6029 {
6030         struct btrfs_device *device;
6031         struct btrfs_fs_devices *cur_devices;
6032
6033         cur_devices = fs_info->fs_devices;
6034         while (cur_devices) {
6035                 if (!fsid ||
6036                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6037                         device = __find_device(&cur_devices->devices,
6038                                                devid, uuid);
6039                         if (device)
6040                                 return device;
6041                 }
6042                 cur_devices = cur_devices->seed;
6043         }
6044         return NULL;
6045 }
6046
6047 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6048                                             struct btrfs_fs_devices *fs_devices,
6049                                             u64 devid, u8 *dev_uuid)
6050 {
6051         struct btrfs_device *device;
6052
6053         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6054         if (IS_ERR(device))
6055                 return NULL;
6056
6057         list_add(&device->dev_list, &fs_devices->devices);
6058         device->fs_devices = fs_devices;
6059         fs_devices->num_devices++;
6060
6061         device->missing = 1;
6062         fs_devices->missing_devices++;
6063
6064         return device;
6065 }
6066
6067 /**
6068  * btrfs_alloc_device - allocate struct btrfs_device
6069  * @fs_info:    used only for generating a new devid, can be NULL if
6070  *              devid is provided (i.e. @devid != NULL).
6071  * @devid:      a pointer to devid for this device.  If NULL a new devid
6072  *              is generated.
6073  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6074  *              is generated.
6075  *
6076  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6077  * on error.  Returned struct is not linked onto any lists and can be
6078  * destroyed with kfree() right away.
6079  */
6080 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6081                                         const u64 *devid,
6082                                         const u8 *uuid)
6083 {
6084         struct btrfs_device *dev;
6085         u64 tmp;
6086
6087         if (WARN_ON(!devid && !fs_info))
6088                 return ERR_PTR(-EINVAL);
6089
6090         dev = __alloc_device();
6091         if (IS_ERR(dev))
6092                 return dev;
6093
6094         if (devid)
6095                 tmp = *devid;
6096         else {
6097                 int ret;
6098
6099                 ret = find_next_devid(fs_info, &tmp);
6100                 if (ret) {
6101                         kfree(dev);
6102                         return ERR_PTR(ret);
6103                 }
6104         }
6105         dev->devid = tmp;
6106
6107         if (uuid)
6108                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6109         else
6110                 generate_random_uuid(dev->uuid);
6111
6112         btrfs_init_work(&dev->work, btrfs_submit_helper,
6113                         pending_bios_fn, NULL, NULL);
6114
6115         return dev;
6116 }
6117
6118 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6119                           struct extent_buffer *leaf,
6120                           struct btrfs_chunk *chunk)
6121 {
6122         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6123         struct map_lookup *map;
6124         struct extent_map *em;
6125         u64 logical;
6126         u64 length;
6127         u64 devid;
6128         u8 uuid[BTRFS_UUID_SIZE];
6129         int num_stripes;
6130         int ret;
6131         int i;
6132
6133         logical = key->offset;
6134         length = btrfs_chunk_length(leaf, chunk);
6135
6136         read_lock(&map_tree->map_tree.lock);
6137         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6138         read_unlock(&map_tree->map_tree.lock);
6139
6140         /* already mapped? */
6141         if (em && em->start <= logical && em->start + em->len > logical) {
6142                 free_extent_map(em);
6143                 return 0;
6144         } else if (em) {
6145                 free_extent_map(em);
6146         }
6147
6148         em = alloc_extent_map();
6149         if (!em)
6150                 return -ENOMEM;
6151         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6152         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6153         if (!map) {
6154                 free_extent_map(em);
6155                 return -ENOMEM;
6156         }
6157
6158         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6159         em->bdev = (struct block_device *)map;
6160         em->start = logical;
6161         em->len = length;
6162         em->orig_start = 0;
6163         em->block_start = 0;
6164         em->block_len = em->len;
6165
6166         map->num_stripes = num_stripes;
6167         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6168         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6169         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6170         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6171         map->type = btrfs_chunk_type(leaf, chunk);
6172         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6173         for (i = 0; i < num_stripes; i++) {
6174                 map->stripes[i].physical =
6175                         btrfs_stripe_offset_nr(leaf, chunk, i);
6176                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6177                 read_extent_buffer(leaf, uuid, (unsigned long)
6178                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6179                                    BTRFS_UUID_SIZE);
6180                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6181                                                         uuid, NULL);
6182                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6183                         free_extent_map(em);
6184                         return -EIO;
6185                 }
6186                 if (!map->stripes[i].dev) {
6187                         map->stripes[i].dev =
6188                                 add_missing_dev(root, root->fs_info->fs_devices,
6189                                                 devid, uuid);
6190                         if (!map->stripes[i].dev) {
6191                                 free_extent_map(em);
6192                                 return -EIO;
6193                         }
6194                         btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6195                                                 devid, uuid);
6196                 }
6197                 map->stripes[i].dev->in_fs_metadata = 1;
6198         }
6199
6200         write_lock(&map_tree->map_tree.lock);
6201         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6202         write_unlock(&map_tree->map_tree.lock);
6203         BUG_ON(ret); /* Tree corruption */
6204         free_extent_map(em);
6205
6206         return 0;
6207 }
6208
6209 static void fill_device_from_item(struct extent_buffer *leaf,
6210                                  struct btrfs_dev_item *dev_item,
6211                                  struct btrfs_device *device)
6212 {
6213         unsigned long ptr;
6214
6215         device->devid = btrfs_device_id(leaf, dev_item);
6216         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6217         device->total_bytes = device->disk_total_bytes;
6218         device->commit_total_bytes = device->disk_total_bytes;
6219         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6220         device->commit_bytes_used = device->bytes_used;
6221         device->type = btrfs_device_type(leaf, dev_item);
6222         device->io_align = btrfs_device_io_align(leaf, dev_item);
6223         device->io_width = btrfs_device_io_width(leaf, dev_item);
6224         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6225         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6226         device->is_tgtdev_for_dev_replace = 0;
6227
6228         ptr = btrfs_device_uuid(dev_item);
6229         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6230 }
6231
6232 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6233                                                   u8 *fsid)
6234 {
6235         struct btrfs_fs_devices *fs_devices;
6236         int ret;
6237
6238         BUG_ON(!mutex_is_locked(&uuid_mutex));
6239
6240         fs_devices = root->fs_info->fs_devices->seed;
6241         while (fs_devices) {
6242                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6243                         return fs_devices;
6244
6245                 fs_devices = fs_devices->seed;
6246         }
6247
6248         fs_devices = find_fsid(fsid);
6249         if (!fs_devices) {
6250                 if (!btrfs_test_opt(root, DEGRADED))
6251                         return ERR_PTR(-ENOENT);
6252
6253                 fs_devices = alloc_fs_devices(fsid);
6254                 if (IS_ERR(fs_devices))
6255                         return fs_devices;
6256
6257                 fs_devices->seeding = 1;
6258                 fs_devices->opened = 1;
6259                 return fs_devices;
6260         }
6261
6262         fs_devices = clone_fs_devices(fs_devices);
6263         if (IS_ERR(fs_devices))
6264                 return fs_devices;
6265
6266         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6267                                    root->fs_info->bdev_holder);
6268         if (ret) {
6269                 free_fs_devices(fs_devices);
6270                 fs_devices = ERR_PTR(ret);
6271                 goto out;
6272         }
6273
6274         if (!fs_devices->seeding) {
6275                 __btrfs_close_devices(fs_devices);
6276                 free_fs_devices(fs_devices);
6277                 fs_devices = ERR_PTR(-EINVAL);
6278                 goto out;
6279         }
6280
6281         fs_devices->seed = root->fs_info->fs_devices->seed;
6282         root->fs_info->fs_devices->seed = fs_devices;
6283 out:
6284         return fs_devices;
6285 }
6286
6287 static int read_one_dev(struct btrfs_root *root,
6288                         struct extent_buffer *leaf,
6289                         struct btrfs_dev_item *dev_item)
6290 {
6291         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6292         struct btrfs_device *device;
6293         u64 devid;
6294         int ret;
6295         u8 fs_uuid[BTRFS_UUID_SIZE];
6296         u8 dev_uuid[BTRFS_UUID_SIZE];
6297
6298         devid = btrfs_device_id(leaf, dev_item);
6299         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6300                            BTRFS_UUID_SIZE);
6301         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6302                            BTRFS_UUID_SIZE);
6303
6304         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6305                 fs_devices = open_seed_devices(root, fs_uuid);
6306                 if (IS_ERR(fs_devices))
6307                         return PTR_ERR(fs_devices);
6308         }
6309
6310         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6311         if (!device) {
6312                 if (!btrfs_test_opt(root, DEGRADED))
6313                         return -EIO;
6314
6315                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6316                 if (!device)
6317                         return -ENOMEM;
6318                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6319                                 devid, dev_uuid);
6320         } else {
6321                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6322                         return -EIO;
6323
6324                 if(!device->bdev && !device->missing) {
6325                         /*
6326                          * this happens when a device that was properly setup
6327                          * in the device info lists suddenly goes bad.
6328                          * device->bdev is NULL, and so we have to set
6329                          * device->missing to one here
6330                          */
6331                         device->fs_devices->missing_devices++;
6332                         device->missing = 1;
6333                 }
6334
6335                 /* Move the device to its own fs_devices */
6336                 if (device->fs_devices != fs_devices) {
6337                         ASSERT(device->missing);
6338
6339                         list_move(&device->dev_list, &fs_devices->devices);
6340                         device->fs_devices->num_devices--;
6341                         fs_devices->num_devices++;
6342
6343                         device->fs_devices->missing_devices--;
6344                         fs_devices->missing_devices++;
6345
6346                         device->fs_devices = fs_devices;
6347                 }
6348         }
6349
6350         if (device->fs_devices != root->fs_info->fs_devices) {
6351                 BUG_ON(device->writeable);
6352                 if (device->generation !=
6353                     btrfs_device_generation(leaf, dev_item))
6354                         return -EINVAL;
6355         }
6356
6357         fill_device_from_item(leaf, dev_item, device);
6358         device->in_fs_metadata = 1;
6359         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6360                 device->fs_devices->total_rw_bytes += device->total_bytes;
6361                 spin_lock(&root->fs_info->free_chunk_lock);
6362                 root->fs_info->free_chunk_space += device->total_bytes -
6363                         device->bytes_used;
6364                 spin_unlock(&root->fs_info->free_chunk_lock);
6365         }
6366         ret = 0;
6367         return ret;
6368 }
6369
6370 int btrfs_read_sys_array(struct btrfs_root *root)
6371 {
6372         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6373         struct extent_buffer *sb;
6374         struct btrfs_disk_key *disk_key;
6375         struct btrfs_chunk *chunk;
6376         u8 *array_ptr;
6377         unsigned long sb_array_offset;
6378         int ret = 0;
6379         u32 num_stripes;
6380         u32 array_size;
6381         u32 len = 0;
6382         u32 cur_offset;
6383         struct btrfs_key key;
6384
6385         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6386         /*
6387          * This will create extent buffer of nodesize, superblock size is
6388          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6389          * overallocate but we can keep it as-is, only the first page is used.
6390          */
6391         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6392         if (!sb)
6393                 return -ENOMEM;
6394         btrfs_set_buffer_uptodate(sb);
6395         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6396         /*
6397          * The sb extent buffer is artifical and just used to read the system array.
6398          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6399          * pages up-to-date when the page is larger: extent does not cover the
6400          * whole page and consequently check_page_uptodate does not find all
6401          * the page's extents up-to-date (the hole beyond sb),
6402          * write_extent_buffer then triggers a WARN_ON.
6403          *
6404          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6405          * but sb spans only this function. Add an explicit SetPageUptodate call
6406          * to silence the warning eg. on PowerPC 64.
6407          */
6408         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6409                 SetPageUptodate(sb->pages[0]);
6410
6411         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6412         array_size = btrfs_super_sys_array_size(super_copy);
6413
6414         array_ptr = super_copy->sys_chunk_array;
6415         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6416         cur_offset = 0;
6417
6418         while (cur_offset < array_size) {
6419                 disk_key = (struct btrfs_disk_key *)array_ptr;
6420                 len = sizeof(*disk_key);
6421                 if (cur_offset + len > array_size)
6422                         goto out_short_read;
6423
6424                 btrfs_disk_key_to_cpu(&key, disk_key);
6425
6426                 array_ptr += len;
6427                 sb_array_offset += len;
6428                 cur_offset += len;
6429
6430                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6431                         chunk = (struct btrfs_chunk *)sb_array_offset;
6432                         /*
6433                          * At least one btrfs_chunk with one stripe must be
6434                          * present, exact stripe count check comes afterwards
6435                          */
6436                         len = btrfs_chunk_item_size(1);
6437                         if (cur_offset + len > array_size)
6438                                 goto out_short_read;
6439
6440                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6441                         len = btrfs_chunk_item_size(num_stripes);
6442                         if (cur_offset + len > array_size)
6443                                 goto out_short_read;
6444
6445                         ret = read_one_chunk(root, &key, sb, chunk);
6446                         if (ret)
6447                                 break;
6448                 } else {
6449                         ret = -EIO;
6450                         break;
6451                 }
6452                 array_ptr += len;
6453                 sb_array_offset += len;
6454                 cur_offset += len;
6455         }
6456         free_extent_buffer(sb);
6457         return ret;
6458
6459 out_short_read:
6460         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6461                         len, cur_offset);
6462         free_extent_buffer(sb);
6463         return -EIO;
6464 }
6465
6466 int btrfs_read_chunk_tree(struct btrfs_root *root)
6467 {
6468         struct btrfs_path *path;
6469         struct extent_buffer *leaf;
6470         struct btrfs_key key;
6471         struct btrfs_key found_key;
6472         int ret;
6473         int slot;
6474
6475         root = root->fs_info->chunk_root;
6476
6477         path = btrfs_alloc_path();
6478         if (!path)
6479                 return -ENOMEM;
6480
6481         mutex_lock(&uuid_mutex);
6482         lock_chunks(root);
6483
6484         /*
6485          * Read all device items, and then all the chunk items. All
6486          * device items are found before any chunk item (their object id
6487          * is smaller than the lowest possible object id for a chunk
6488          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6489          */
6490         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6491         key.offset = 0;
6492         key.type = 0;
6493         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6494         if (ret < 0)
6495                 goto error;
6496         while (1) {
6497                 leaf = path->nodes[0];
6498                 slot = path->slots[0];
6499                 if (slot >= btrfs_header_nritems(leaf)) {
6500                         ret = btrfs_next_leaf(root, path);
6501                         if (ret == 0)
6502                                 continue;
6503                         if (ret < 0)
6504                                 goto error;
6505                         break;
6506                 }
6507                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6508                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6509                         struct btrfs_dev_item *dev_item;
6510                         dev_item = btrfs_item_ptr(leaf, slot,
6511                                                   struct btrfs_dev_item);
6512                         ret = read_one_dev(root, leaf, dev_item);
6513                         if (ret)
6514                                 goto error;
6515                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6516                         struct btrfs_chunk *chunk;
6517                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6518                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6519                         if (ret)
6520                                 goto error;
6521                 }
6522                 path->slots[0]++;
6523         }
6524         ret = 0;
6525 error:
6526         unlock_chunks(root);
6527         mutex_unlock(&uuid_mutex);
6528
6529         btrfs_free_path(path);
6530         return ret;
6531 }
6532
6533 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6534 {
6535         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6536         struct btrfs_device *device;
6537
6538         while (fs_devices) {
6539                 mutex_lock(&fs_devices->device_list_mutex);
6540                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6541                         device->dev_root = fs_info->dev_root;
6542                 mutex_unlock(&fs_devices->device_list_mutex);
6543
6544                 fs_devices = fs_devices->seed;
6545         }
6546 }
6547
6548 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6549 {
6550         int i;
6551
6552         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6553                 btrfs_dev_stat_reset(dev, i);
6554 }
6555
6556 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6557 {
6558         struct btrfs_key key;
6559         struct btrfs_key found_key;
6560         struct btrfs_root *dev_root = fs_info->dev_root;
6561         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562         struct extent_buffer *eb;
6563         int slot;
6564         int ret = 0;
6565         struct btrfs_device *device;
6566         struct btrfs_path *path = NULL;
6567         int i;
6568
6569         path = btrfs_alloc_path();
6570         if (!path) {
6571                 ret = -ENOMEM;
6572                 goto out;
6573         }
6574
6575         mutex_lock(&fs_devices->device_list_mutex);
6576         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6577                 int item_size;
6578                 struct btrfs_dev_stats_item *ptr;
6579
6580                 key.objectid = 0;
6581                 key.type = BTRFS_DEV_STATS_KEY;
6582                 key.offset = device->devid;
6583                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6584                 if (ret) {
6585                         __btrfs_reset_dev_stats(device);
6586                         device->dev_stats_valid = 1;
6587                         btrfs_release_path(path);
6588                         continue;
6589                 }
6590                 slot = path->slots[0];
6591                 eb = path->nodes[0];
6592                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6593                 item_size = btrfs_item_size_nr(eb, slot);
6594
6595                 ptr = btrfs_item_ptr(eb, slot,
6596                                      struct btrfs_dev_stats_item);
6597
6598                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6599                         if (item_size >= (1 + i) * sizeof(__le64))
6600                                 btrfs_dev_stat_set(device, i,
6601                                         btrfs_dev_stats_value(eb, ptr, i));
6602                         else
6603                                 btrfs_dev_stat_reset(device, i);
6604                 }
6605
6606                 device->dev_stats_valid = 1;
6607                 btrfs_dev_stat_print_on_load(device);
6608                 btrfs_release_path(path);
6609         }
6610         mutex_unlock(&fs_devices->device_list_mutex);
6611
6612 out:
6613         btrfs_free_path(path);
6614         return ret < 0 ? ret : 0;
6615 }
6616
6617 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6618                                 struct btrfs_root *dev_root,
6619                                 struct btrfs_device *device)
6620 {
6621         struct btrfs_path *path;
6622         struct btrfs_key key;
6623         struct extent_buffer *eb;
6624         struct btrfs_dev_stats_item *ptr;
6625         int ret;
6626         int i;
6627
6628         key.objectid = 0;
6629         key.type = BTRFS_DEV_STATS_KEY;
6630         key.offset = device->devid;
6631
6632         path = btrfs_alloc_path();
6633         BUG_ON(!path);
6634         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6635         if (ret < 0) {
6636                 printk_in_rcu(KERN_WARNING "BTRFS: "
6637                         "error %d while searching for dev_stats item for device %s!\n",
6638                               ret, rcu_str_deref(device->name));
6639                 goto out;
6640         }
6641
6642         if (ret == 0 &&
6643             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6644                 /* need to delete old one and insert a new one */
6645                 ret = btrfs_del_item(trans, dev_root, path);
6646                 if (ret != 0) {
6647                         printk_in_rcu(KERN_WARNING "BTRFS: "
6648                                 "delete too small dev_stats item for device %s failed %d!\n",
6649                                       rcu_str_deref(device->name), ret);
6650                         goto out;
6651                 }
6652                 ret = 1;
6653         }
6654
6655         if (ret == 1) {
6656                 /* need to insert a new item */
6657                 btrfs_release_path(path);
6658                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6659                                               &key, sizeof(*ptr));
6660                 if (ret < 0) {
6661                         printk_in_rcu(KERN_WARNING "BTRFS: "
6662                                           "insert dev_stats item for device %s failed %d!\n",
6663                                       rcu_str_deref(device->name), ret);
6664                         goto out;
6665                 }
6666         }
6667
6668         eb = path->nodes[0];
6669         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6670         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6671                 btrfs_set_dev_stats_value(eb, ptr, i,
6672                                           btrfs_dev_stat_read(device, i));
6673         btrfs_mark_buffer_dirty(eb);
6674
6675 out:
6676         btrfs_free_path(path);
6677         return ret;
6678 }
6679
6680 /*
6681  * called from commit_transaction. Writes all changed device stats to disk.
6682  */
6683 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6684                         struct btrfs_fs_info *fs_info)
6685 {
6686         struct btrfs_root *dev_root = fs_info->dev_root;
6687         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6688         struct btrfs_device *device;
6689         int stats_cnt;
6690         int ret = 0;
6691
6692         mutex_lock(&fs_devices->device_list_mutex);
6693         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6694                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6695                         continue;
6696
6697                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6698                 ret = update_dev_stat_item(trans, dev_root, device);
6699                 if (!ret)
6700                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6701         }
6702         mutex_unlock(&fs_devices->device_list_mutex);
6703
6704         return ret;
6705 }
6706
6707 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6708 {
6709         btrfs_dev_stat_inc(dev, index);
6710         btrfs_dev_stat_print_on_error(dev);
6711 }
6712
6713 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6714 {
6715         if (!dev->dev_stats_valid)
6716                 return;
6717         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6718                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6719                            rcu_str_deref(dev->name),
6720                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6721                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6722                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6723                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6724                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6725 }
6726
6727 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6728 {
6729         int i;
6730
6731         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6732                 if (btrfs_dev_stat_read(dev, i) != 0)
6733                         break;
6734         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6735                 return; /* all values == 0, suppress message */
6736
6737         printk_in_rcu(KERN_INFO "BTRFS: "
6738                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6739                rcu_str_deref(dev->name),
6740                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6741                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6742                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6743                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6744                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6745 }
6746
6747 int btrfs_get_dev_stats(struct btrfs_root *root,
6748                         struct btrfs_ioctl_get_dev_stats *stats)
6749 {
6750         struct btrfs_device *dev;
6751         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6752         int i;
6753
6754         mutex_lock(&fs_devices->device_list_mutex);
6755         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6756         mutex_unlock(&fs_devices->device_list_mutex);
6757
6758         if (!dev) {
6759                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6760                 return -ENODEV;
6761         } else if (!dev->dev_stats_valid) {
6762                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6763                 return -ENODEV;
6764         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6765                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6766                         if (stats->nr_items > i)
6767                                 stats->values[i] =
6768                                         btrfs_dev_stat_read_and_reset(dev, i);
6769                         else
6770                                 btrfs_dev_stat_reset(dev, i);
6771                 }
6772         } else {
6773                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6774                         if (stats->nr_items > i)
6775                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6776         }
6777         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6778                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6779         return 0;
6780 }
6781
6782 int btrfs_scratch_superblock(struct btrfs_device *device)
6783 {
6784         struct buffer_head *bh;
6785         struct btrfs_super_block *disk_super;
6786
6787         bh = btrfs_read_dev_super(device->bdev);
6788         if (!bh)
6789                 return -EINVAL;
6790         disk_super = (struct btrfs_super_block *)bh->b_data;
6791
6792         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6793         set_buffer_dirty(bh);
6794         sync_dirty_buffer(bh);
6795         brelse(bh);
6796
6797         return 0;
6798 }
6799
6800 /*
6801  * Update the size of all devices, which is used for writing out the
6802  * super blocks.
6803  */
6804 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6805 {
6806         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6807         struct btrfs_device *curr, *next;
6808
6809         if (list_empty(&fs_devices->resized_devices))
6810                 return;
6811
6812         mutex_lock(&fs_devices->device_list_mutex);
6813         lock_chunks(fs_info->dev_root);
6814         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6815                                  resized_list) {
6816                 list_del_init(&curr->resized_list);
6817                 curr->commit_total_bytes = curr->disk_total_bytes;
6818         }
6819         unlock_chunks(fs_info->dev_root);
6820         mutex_unlock(&fs_devices->device_list_mutex);
6821 }
6822
6823 /* Must be invoked during the transaction commit */
6824 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6825                                         struct btrfs_transaction *transaction)
6826 {
6827         struct extent_map *em;
6828         struct map_lookup *map;
6829         struct btrfs_device *dev;
6830         int i;
6831
6832         if (list_empty(&transaction->pending_chunks))
6833                 return;
6834
6835         /* In order to kick the device replace finish process */
6836         lock_chunks(root);
6837         list_for_each_entry(em, &transaction->pending_chunks, list) {
6838                 map = (struct map_lookup *)em->bdev;
6839
6840                 for (i = 0; i < map->num_stripes; i++) {
6841                         dev = map->stripes[i].dev;
6842                         dev->commit_bytes_used = dev->bytes_used;
6843                 }
6844         }
6845         unlock_chunks(root);
6846 }
6847
6848 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6849 {
6850         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6851         while (fs_devices) {
6852                 fs_devices->fs_info = fs_info;
6853                 fs_devices = fs_devices->seed;
6854         }
6855 }
6856
6857 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6858 {
6859         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6860         while (fs_devices) {
6861                 fs_devices->fs_info = NULL;
6862                 fs_devices = fs_devices->seed;
6863         }
6864 }