OSDN Git Service

drm/radeon: unpin cursor BOs on suspend and pin them again on resume (v2)
[uclinux-h8/linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         unsigned int single_wait:1;
57         unsigned int single_done:1;
58         enum wb_reason reason;          /* why was writeback initiated? */
59
60         struct list_head list;          /* pending work list */
61         struct wb_completion *done;     /* set if the caller waits */
62 };
63
64 /*
65  * If one wants to wait for one or more wb_writeback_works, each work's
66  * ->done should be set to a wb_completion defined using the following
67  * macro.  Once all work items are issued with wb_queue_work(), the caller
68  * can wait for the completion of all using wb_wait_for_completion().  Work
69  * items which are waited upon aren't freed automatically on completion.
70  */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
72         struct wb_completion cmpl = {                                   \
73                 .cnt            = ATOMIC_INIT(1),                       \
74         }
75
76
77 /*
78  * If an inode is constantly having its pages dirtied, but then the
79  * updates stop dirtytime_expire_interval seconds in the past, it's
80  * possible for the worst case time between when an inode has its
81  * timestamps updated and when they finally get written out to be two
82  * dirtytime_expire_intervals.  We set the default to 12 hours (in
83  * seconds), which means most of the time inodes will have their
84  * timestamps written to disk after 12 hours, but in the worst case a
85  * few inodes might not their timestamps updated for 24 hours.
86  */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91         return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95  * Include the creation of the trace points after defining the
96  * wb_writeback_work structure and inline functions so that the definition
97  * remains local to this file.
98  */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106         if (wb_has_dirty_io(wb)) {
107                 return false;
108         } else {
109                 set_bit(WB_has_dirty_io, &wb->state);
110                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111                 atomic_long_add(wb->avg_write_bandwidth,
112                                 &wb->bdi->tot_write_bandwidth);
113                 return true;
114         }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121                 clear_bit(WB_has_dirty_io, &wb->state);
122                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123                                         &wb->bdi->tot_write_bandwidth) < 0);
124         }
125 }
126
127 /**
128  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129  * @inode: inode to be moved
130  * @wb: target bdi_writeback
131  * @head: one of @wb->b_{dirty|io|more_io}
132  *
133  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134  * Returns %true if @inode is the first occupant of the !dirty_time IO
135  * lists; otherwise, %false.
136  */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138                                       struct bdi_writeback *wb,
139                                       struct list_head *head)
140 {
141         assert_spin_locked(&wb->list_lock);
142
143         list_move(&inode->i_wb_list, head);
144
145         /* dirty_time doesn't count as dirty_io until expiration */
146         if (head != &wb->b_dirty_time)
147                 return wb_io_lists_populated(wb);
148
149         wb_io_lists_depopulated(wb);
150         return false;
151 }
152
153 /**
154  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155  * @inode: inode to be removed
156  * @wb: bdi_writeback @inode is being removed from
157  *
158  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159  * clear %WB_has_dirty_io if all are empty afterwards.
160  */
161 static void inode_wb_list_del_locked(struct inode *inode,
162                                      struct bdi_writeback *wb)
163 {
164         assert_spin_locked(&wb->list_lock);
165
166         list_del_init(&inode->i_wb_list);
167         wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172         spin_lock_bh(&wb->work_lock);
173         if (test_bit(WB_registered, &wb->state))
174                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175         spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179                           struct wb_writeback_work *work)
180 {
181         trace_writeback_queue(wb->bdi, work);
182
183         spin_lock_bh(&wb->work_lock);
184         if (!test_bit(WB_registered, &wb->state)) {
185                 if (work->single_wait)
186                         work->single_done = 1;
187                 goto out_unlock;
188         }
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191         list_add_tail(&work->list, &wb->work_list);
192         mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194         spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198  * wb_wait_for_completion - wait for completion of bdi_writeback_works
199  * @bdi: bdi work items were issued to
200  * @done: target wb_completion
201  *
202  * Wait for one or more work items issued to @bdi with their ->done field
203  * set to @done, which should have been defined with
204  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
205  * work items are completed.  Work items which are waited upon aren't freed
206  * automatically on completion.
207  */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209                                    struct wb_completion *done)
210 {
211         atomic_dec(&done->cnt);         /* put down the initial count */
212         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
222
223 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225                                         /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
227                                         /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229                                         /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233         struct backing_dev_info *bdi = inode_to_bdi(inode);
234         struct bdi_writeback *wb = NULL;
235
236         if (inode_cgwb_enabled(inode)) {
237                 struct cgroup_subsys_state *memcg_css;
238
239                 if (page) {
240                         memcg_css = mem_cgroup_css_from_page(page);
241                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242                 } else {
243                         /* must pin memcg_css, see wb_get_create() */
244                         memcg_css = task_get_css(current, memory_cgrp_id);
245                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246                         css_put(memcg_css);
247                 }
248         }
249
250         if (!wb)
251                 wb = &bdi->wb;
252
253         /*
254          * There may be multiple instances of this function racing to
255          * update the same inode.  Use cmpxchg() to tell the winner.
256          */
257         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258                 wb_put(wb);
259 }
260
261 /**
262  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263  * @inode: inode of interest with i_lock held
264  *
265  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
266  * held on entry and is released on return.  The returned wb is guaranteed
267  * to stay @inode's associated wb until its list_lock is released.
268  */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271         __releases(&inode->i_lock)
272         __acquires(&wb->list_lock)
273 {
274         while (true) {
275                 struct bdi_writeback *wb = inode_to_wb(inode);
276
277                 /*
278                  * inode_to_wb() association is protected by both
279                  * @inode->i_lock and @wb->list_lock but list_lock nests
280                  * outside i_lock.  Drop i_lock and verify that the
281                  * association hasn't changed after acquiring list_lock.
282                  */
283                 wb_get(wb);
284                 spin_unlock(&inode->i_lock);
285                 spin_lock(&wb->list_lock);
286                 wb_put(wb);             /* not gonna deref it anymore */
287
288                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289                 if (likely(wb == inode->i_wb))
290                         return wb;      /* @inode already has ref */
291
292                 spin_unlock(&wb->list_lock);
293                 cpu_relax();
294                 spin_lock(&inode->i_lock);
295         }
296 }
297
298 /**
299  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300  * @inode: inode of interest
301  *
302  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303  * on entry.
304  */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306         __acquires(&wb->list_lock)
307 {
308         spin_lock(&inode->i_lock);
309         return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313         struct inode            *inode;
314         struct bdi_writeback    *new_wb;
315
316         struct rcu_head         rcu_head;
317         struct work_struct      work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322         struct inode_switch_wbs_context *isw =
323                 container_of(work, struct inode_switch_wbs_context, work);
324         struct inode *inode = isw->inode;
325         struct address_space *mapping = inode->i_mapping;
326         struct bdi_writeback *old_wb = inode->i_wb;
327         struct bdi_writeback *new_wb = isw->new_wb;
328         struct radix_tree_iter iter;
329         bool switched = false;
330         void **slot;
331
332         /*
333          * By the time control reaches here, RCU grace period has passed
334          * since I_WB_SWITCH assertion and all wb stat update transactions
335          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336          * synchronizing against mapping->tree_lock.
337          *
338          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339          * gives us exclusion against all wb related operations on @inode
340          * including IO list manipulations and stat updates.
341          */
342         if (old_wb < new_wb) {
343                 spin_lock(&old_wb->list_lock);
344                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345         } else {
346                 spin_lock(&new_wb->list_lock);
347                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348         }
349         spin_lock(&inode->i_lock);
350         spin_lock_irq(&mapping->tree_lock);
351
352         /*
353          * Once I_FREEING is visible under i_lock, the eviction path owns
354          * the inode and we shouldn't modify ->i_wb_list.
355          */
356         if (unlikely(inode->i_state & I_FREEING))
357                 goto skip_switch;
358
359         /*
360          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
361          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362          * pages actually under underwriteback.
363          */
364         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365                                    PAGECACHE_TAG_DIRTY) {
366                 struct page *page = radix_tree_deref_slot_protected(slot,
367                                                         &mapping->tree_lock);
368                 if (likely(page) && PageDirty(page)) {
369                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371                 }
372         }
373
374         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375                                    PAGECACHE_TAG_WRITEBACK) {
376                 struct page *page = radix_tree_deref_slot_protected(slot,
377                                                         &mapping->tree_lock);
378                 if (likely(page)) {
379                         WARN_ON_ONCE(!PageWriteback(page));
380                         __dec_wb_stat(old_wb, WB_WRITEBACK);
381                         __inc_wb_stat(new_wb, WB_WRITEBACK);
382                 }
383         }
384
385         wb_get(new_wb);
386
387         /*
388          * Transfer to @new_wb's IO list if necessary.  The specific list
389          * @inode was on is ignored and the inode is put on ->b_dirty which
390          * is always correct including from ->b_dirty_time.  The transfer
391          * preserves @inode->dirtied_when ordering.
392          */
393         if (!list_empty(&inode->i_wb_list)) {
394                 struct inode *pos;
395
396                 inode_wb_list_del_locked(inode, old_wb);
397                 inode->i_wb = new_wb;
398                 list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
399                         if (time_after_eq(inode->dirtied_when,
400                                           pos->dirtied_when))
401                                 break;
402                 inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
403         } else {
404                 inode->i_wb = new_wb;
405         }
406
407         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408         inode->i_wb_frn_winner = 0;
409         inode->i_wb_frn_avg_time = 0;
410         inode->i_wb_frn_history = 0;
411         switched = true;
412 skip_switch:
413         /*
414          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415          * ensures that the new wb is visible if they see !I_WB_SWITCH.
416          */
417         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419         spin_unlock_irq(&mapping->tree_lock);
420         spin_unlock(&inode->i_lock);
421         spin_unlock(&new_wb->list_lock);
422         spin_unlock(&old_wb->list_lock);
423
424         if (switched) {
425                 wb_wakeup(new_wb);
426                 wb_put(old_wb);
427         }
428         wb_put(new_wb);
429
430         iput(inode);
431         kfree(isw);
432 }
433
434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435 {
436         struct inode_switch_wbs_context *isw = container_of(rcu_head,
437                                 struct inode_switch_wbs_context, rcu_head);
438
439         /* needs to grab bh-unsafe locks, bounce to work item */
440         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441         schedule_work(&isw->work);
442 }
443
444 /**
445  * inode_switch_wbs - change the wb association of an inode
446  * @inode: target inode
447  * @new_wb_id: ID of the new wb
448  *
449  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
450  * switching is performed asynchronously and may fail silently.
451  */
452 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453 {
454         struct backing_dev_info *bdi = inode_to_bdi(inode);
455         struct cgroup_subsys_state *memcg_css;
456         struct inode_switch_wbs_context *isw;
457
458         /* noop if seems to be already in progress */
459         if (inode->i_state & I_WB_SWITCH)
460                 return;
461
462         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463         if (!isw)
464                 return;
465
466         /* find and pin the new wb */
467         rcu_read_lock();
468         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469         if (memcg_css)
470                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471         rcu_read_unlock();
472         if (!isw->new_wb)
473                 goto out_free;
474
475         /* while holding I_WB_SWITCH, no one else can update the association */
476         spin_lock(&inode->i_lock);
477         if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478             inode_to_wb(inode) == isw->new_wb) {
479                 spin_unlock(&inode->i_lock);
480                 goto out_free;
481         }
482         inode->i_state |= I_WB_SWITCH;
483         spin_unlock(&inode->i_lock);
484
485         ihold(inode);
486         isw->inode = inode;
487
488         /*
489          * In addition to synchronizing among switchers, I_WB_SWITCH tells
490          * the RCU protected stat update paths to grab the mapping's
491          * tree_lock so that stat transfer can synchronize against them.
492          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493          */
494         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495         return;
496
497 out_free:
498         if (isw->new_wb)
499                 wb_put(isw->new_wb);
500         kfree(isw);
501 }
502
503 /**
504  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505  * @wbc: writeback_control of interest
506  * @inode: target inode
507  *
508  * @inode is locked and about to be written back under the control of @wbc.
509  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
510  * writeback completion, wbc_detach_inode() should be called.  This is used
511  * to track the cgroup writeback context.
512  */
513 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514                                  struct inode *inode)
515 {
516         if (!inode_cgwb_enabled(inode)) {
517                 spin_unlock(&inode->i_lock);
518                 return;
519         }
520
521         wbc->wb = inode_to_wb(inode);
522         wbc->inode = inode;
523
524         wbc->wb_id = wbc->wb->memcg_css->id;
525         wbc->wb_lcand_id = inode->i_wb_frn_winner;
526         wbc->wb_tcand_id = 0;
527         wbc->wb_bytes = 0;
528         wbc->wb_lcand_bytes = 0;
529         wbc->wb_tcand_bytes = 0;
530
531         wb_get(wbc->wb);
532         spin_unlock(&inode->i_lock);
533
534         /*
535          * A dying wb indicates that the memcg-blkcg mapping has changed
536          * and a new wb is already serving the memcg.  Switch immediately.
537          */
538         if (unlikely(wb_dying(wbc->wb)))
539                 inode_switch_wbs(inode, wbc->wb_id);
540 }
541
542 /**
543  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
544  * @wbc: writeback_control of the just finished writeback
545  *
546  * To be called after a writeback attempt of an inode finishes and undoes
547  * wbc_attach_and_unlock_inode().  Can be called under any context.
548  *
549  * As concurrent write sharing of an inode is expected to be very rare and
550  * memcg only tracks page ownership on first-use basis severely confining
551  * the usefulness of such sharing, cgroup writeback tracks ownership
552  * per-inode.  While the support for concurrent write sharing of an inode
553  * is deemed unnecessary, an inode being written to by different cgroups at
554  * different points in time is a lot more common, and, more importantly,
555  * charging only by first-use can too readily lead to grossly incorrect
556  * behaviors (single foreign page can lead to gigabytes of writeback to be
557  * incorrectly attributed).
558  *
559  * To resolve this issue, cgroup writeback detects the majority dirtier of
560  * an inode and transfers the ownership to it.  To avoid unnnecessary
561  * oscillation, the detection mechanism keeps track of history and gives
562  * out the switch verdict only if the foreign usage pattern is stable over
563  * a certain amount of time and/or writeback attempts.
564  *
565  * On each writeback attempt, @wbc tries to detect the majority writer
566  * using Boyer-Moore majority vote algorithm.  In addition to the byte
567  * count from the majority voting, it also counts the bytes written for the
568  * current wb and the last round's winner wb (max of last round's current
569  * wb, the winner from two rounds ago, and the last round's majority
570  * candidate).  Keeping track of the historical winner helps the algorithm
571  * to semi-reliably detect the most active writer even when it's not the
572  * absolute majority.
573  *
574  * Once the winner of the round is determined, whether the winner is
575  * foreign or not and how much IO time the round consumed is recorded in
576  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
577  * over a certain threshold, the switch verdict is given.
578  */
579 void wbc_detach_inode(struct writeback_control *wbc)
580 {
581         struct bdi_writeback *wb = wbc->wb;
582         struct inode *inode = wbc->inode;
583         unsigned long avg_time, max_bytes, max_time;
584         u16 history;
585         int max_id;
586
587         if (!wb)
588                 return;
589
590         history = inode->i_wb_frn_history;
591         avg_time = inode->i_wb_frn_avg_time;
592
593         /* pick the winner of this round */
594         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
595             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
596                 max_id = wbc->wb_id;
597                 max_bytes = wbc->wb_bytes;
598         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
599                 max_id = wbc->wb_lcand_id;
600                 max_bytes = wbc->wb_lcand_bytes;
601         } else {
602                 max_id = wbc->wb_tcand_id;
603                 max_bytes = wbc->wb_tcand_bytes;
604         }
605
606         /*
607          * Calculate the amount of IO time the winner consumed and fold it
608          * into the running average kept per inode.  If the consumed IO
609          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
610          * deciding whether to switch or not.  This is to prevent one-off
611          * small dirtiers from skewing the verdict.
612          */
613         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
614                                 wb->avg_write_bandwidth);
615         if (avg_time)
616                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
617                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
618         else
619                 avg_time = max_time;    /* immediate catch up on first run */
620
621         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
622                 int slots;
623
624                 /*
625                  * The switch verdict is reached if foreign wb's consume
626                  * more than a certain proportion of IO time in a
627                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
628                  * history mask where each bit represents one sixteenth of
629                  * the period.  Determine the number of slots to shift into
630                  * history from @max_time.
631                  */
632                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
633                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
634                 history <<= slots;
635                 if (wbc->wb_id != max_id)
636                         history |= (1U << slots) - 1;
637
638                 /*
639                  * Switch if the current wb isn't the consistent winner.
640                  * If there are multiple closely competing dirtiers, the
641                  * inode may switch across them repeatedly over time, which
642                  * is okay.  The main goal is avoiding keeping an inode on
643                  * the wrong wb for an extended period of time.
644                  */
645                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
646                         inode_switch_wbs(inode, max_id);
647         }
648
649         /*
650          * Multiple instances of this function may race to update the
651          * following fields but we don't mind occassional inaccuracies.
652          */
653         inode->i_wb_frn_winner = max_id;
654         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
655         inode->i_wb_frn_history = history;
656
657         wb_put(wbc->wb);
658         wbc->wb = NULL;
659 }
660
661 /**
662  * wbc_account_io - account IO issued during writeback
663  * @wbc: writeback_control of the writeback in progress
664  * @page: page being written out
665  * @bytes: number of bytes being written out
666  *
667  * @bytes from @page are about to written out during the writeback
668  * controlled by @wbc.  Keep the book for foreign inode detection.  See
669  * wbc_detach_inode().
670  */
671 void wbc_account_io(struct writeback_control *wbc, struct page *page,
672                     size_t bytes)
673 {
674         int id;
675
676         /*
677          * pageout() path doesn't attach @wbc to the inode being written
678          * out.  This is intentional as we don't want the function to block
679          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
680          * regular writeback instead of writing things out itself.
681          */
682         if (!wbc->wb)
683                 return;
684
685         rcu_read_lock();
686         id = mem_cgroup_css_from_page(page)->id;
687         rcu_read_unlock();
688
689         if (id == wbc->wb_id) {
690                 wbc->wb_bytes += bytes;
691                 return;
692         }
693
694         if (id == wbc->wb_lcand_id)
695                 wbc->wb_lcand_bytes += bytes;
696
697         /* Boyer-Moore majority vote algorithm */
698         if (!wbc->wb_tcand_bytes)
699                 wbc->wb_tcand_id = id;
700         if (id == wbc->wb_tcand_id)
701                 wbc->wb_tcand_bytes += bytes;
702         else
703                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705
706 /**
707  * inode_congested - test whether an inode is congested
708  * @inode: inode to test for congestion
709  * @cong_bits: mask of WB_[a]sync_congested bits to test
710  *
711  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
712  * bits to test and the return value is the mask of set bits.
713  *
714  * If cgroup writeback is enabled for @inode, the congestion state is
715  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
716  * associated with @inode is congested; otherwise, the root wb's congestion
717  * state is used.
718  */
719 int inode_congested(struct inode *inode, int cong_bits)
720 {
721         /*
722          * Once set, ->i_wb never becomes NULL while the inode is alive.
723          * Start transaction iff ->i_wb is visible.
724          */
725         if (inode && inode_to_wb_is_valid(inode)) {
726                 struct bdi_writeback *wb;
727                 bool locked, congested;
728
729                 wb = unlocked_inode_to_wb_begin(inode, &locked);
730                 congested = wb_congested(wb, cong_bits);
731                 unlocked_inode_to_wb_end(inode, locked);
732                 return congested;
733         }
734
735         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
736 }
737 EXPORT_SYMBOL_GPL(inode_congested);
738
739 /**
740  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
741  * @bdi: bdi the work item was issued to
742  * @work: work item to wait for
743  *
744  * Wait for the completion of @work which was issued to one of @bdi's
745  * bdi_writeback's.  The caller must have set @work->single_wait before
746  * issuing it.  This wait operates independently fo
747  * wb_wait_for_completion() and also disables automatic freeing of @work.
748  */
749 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
750                                     struct wb_writeback_work *work)
751 {
752         if (WARN_ON_ONCE(!work->single_wait))
753                 return;
754
755         wait_event(bdi->wb_waitq, work->single_done);
756
757         /*
758          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
759          * modifications to @work prior to assertion of ->single_done is
760          * visible to the caller once this function returns.
761          */
762         smp_rmb();
763 }
764
765 /**
766  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
767  * @wb: target bdi_writeback to split @nr_pages to
768  * @nr_pages: number of pages to write for the whole bdi
769  *
770  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
771  * relation to the total write bandwidth of all wb's w/ dirty inodes on
772  * @wb->bdi.
773  */
774 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
775 {
776         unsigned long this_bw = wb->avg_write_bandwidth;
777         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
778
779         if (nr_pages == LONG_MAX)
780                 return LONG_MAX;
781
782         /*
783          * This may be called on clean wb's and proportional distribution
784          * may not make sense, just use the original @nr_pages in those
785          * cases.  In general, we wanna err on the side of writing more.
786          */
787         if (!tot_bw || this_bw >= tot_bw)
788                 return nr_pages;
789         else
790                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
791 }
792
793 /**
794  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
795  * @wb: target bdi_writeback
796  * @base_work: source wb_writeback_work
797  *
798  * Try to make a clone of @base_work and issue it to @wb.  If cloning
799  * succeeds, %true is returned; otherwise, @base_work is issued directly
800  * and %false is returned.  In the latter case, the caller is required to
801  * wait for @base_work's completion using wb_wait_for_single_work().
802  *
803  * A clone is auto-freed on completion.  @base_work never is.
804  */
805 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
806                                     struct wb_writeback_work *base_work)
807 {
808         struct wb_writeback_work *work;
809
810         work = kmalloc(sizeof(*work), GFP_ATOMIC);
811         if (work) {
812                 *work = *base_work;
813                 work->auto_free = 1;
814                 work->single_wait = 0;
815         } else {
816                 work = base_work;
817                 work->auto_free = 0;
818                 work->single_wait = 1;
819         }
820         work->single_done = 0;
821         wb_queue_work(wb, work);
822         return work != base_work;
823 }
824
825 /**
826  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827  * @bdi: target backing_dev_info
828  * @base_work: wb_writeback_work to issue
829  * @skip_if_busy: skip wb's which already have writeback in progress
830  *
831  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
833  * distributed to the busy wbs according to each wb's proportion in the
834  * total active write bandwidth of @bdi.
835  */
836 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
837                                   struct wb_writeback_work *base_work,
838                                   bool skip_if_busy)
839 {
840         long nr_pages = base_work->nr_pages;
841         int next_blkcg_id = 0;
842         struct bdi_writeback *wb;
843         struct wb_iter iter;
844
845         might_sleep();
846
847         if (!bdi_has_dirty_io(bdi))
848                 return;
849 restart:
850         rcu_read_lock();
851         bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
852                 if (!wb_has_dirty_io(wb) ||
853                     (skip_if_busy && writeback_in_progress(wb)))
854                         continue;
855
856                 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
857                 if (!wb_clone_and_queue_work(wb, base_work)) {
858                         next_blkcg_id = wb->blkcg_css->id + 1;
859                         rcu_read_unlock();
860                         wb_wait_for_single_work(bdi, base_work);
861                         goto restart;
862                 }
863         }
864         rcu_read_unlock();
865 }
866
867 #else   /* CONFIG_CGROUP_WRITEBACK */
868
869 static struct bdi_writeback *
870 locked_inode_to_wb_and_lock_list(struct inode *inode)
871         __releases(&inode->i_lock)
872         __acquires(&wb->list_lock)
873 {
874         struct bdi_writeback *wb = inode_to_wb(inode);
875
876         spin_unlock(&inode->i_lock);
877         spin_lock(&wb->list_lock);
878         return wb;
879 }
880
881 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
882         __acquires(&wb->list_lock)
883 {
884         struct bdi_writeback *wb = inode_to_wb(inode);
885
886         spin_lock(&wb->list_lock);
887         return wb;
888 }
889
890 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
891 {
892         return nr_pages;
893 }
894
895 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
896                                   struct wb_writeback_work *base_work,
897                                   bool skip_if_busy)
898 {
899         might_sleep();
900
901         if (bdi_has_dirty_io(bdi) &&
902             (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
903                 base_work->auto_free = 0;
904                 base_work->single_wait = 0;
905                 base_work->single_done = 0;
906                 wb_queue_work(&bdi->wb, base_work);
907         }
908 }
909
910 #endif  /* CONFIG_CGROUP_WRITEBACK */
911
912 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
913                         bool range_cyclic, enum wb_reason reason)
914 {
915         struct wb_writeback_work *work;
916
917         if (!wb_has_dirty_io(wb))
918                 return;
919
920         /*
921          * This is WB_SYNC_NONE writeback, so if allocation fails just
922          * wakeup the thread for old dirty data writeback
923          */
924         work = kzalloc(sizeof(*work), GFP_ATOMIC);
925         if (!work) {
926                 trace_writeback_nowork(wb->bdi);
927                 wb_wakeup(wb);
928                 return;
929         }
930
931         work->sync_mode = WB_SYNC_NONE;
932         work->nr_pages  = nr_pages;
933         work->range_cyclic = range_cyclic;
934         work->reason    = reason;
935         work->auto_free = 1;
936
937         wb_queue_work(wb, work);
938 }
939
940 /**
941  * wb_start_background_writeback - start background writeback
942  * @wb: bdi_writback to write from
943  *
944  * Description:
945  *   This makes sure WB_SYNC_NONE background writeback happens. When
946  *   this function returns, it is only guaranteed that for given wb
947  *   some IO is happening if we are over background dirty threshold.
948  *   Caller need not hold sb s_umount semaphore.
949  */
950 void wb_start_background_writeback(struct bdi_writeback *wb)
951 {
952         /*
953          * We just wake up the flusher thread. It will perform background
954          * writeback as soon as there is no other work to do.
955          */
956         trace_writeback_wake_background(wb->bdi);
957         wb_wakeup(wb);
958 }
959
960 /*
961  * Remove the inode from the writeback list it is on.
962  */
963 void inode_wb_list_del(struct inode *inode)
964 {
965         struct bdi_writeback *wb;
966
967         wb = inode_to_wb_and_lock_list(inode);
968         inode_wb_list_del_locked(inode, wb);
969         spin_unlock(&wb->list_lock);
970 }
971
972 /*
973  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
974  * furthest end of its superblock's dirty-inode list.
975  *
976  * Before stamping the inode's ->dirtied_when, we check to see whether it is
977  * already the most-recently-dirtied inode on the b_dirty list.  If that is
978  * the case then the inode must have been redirtied while it was being written
979  * out and we don't reset its dirtied_when.
980  */
981 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
982 {
983         if (!list_empty(&wb->b_dirty)) {
984                 struct inode *tail;
985
986                 tail = wb_inode(wb->b_dirty.next);
987                 if (time_before(inode->dirtied_when, tail->dirtied_when))
988                         inode->dirtied_when = jiffies;
989         }
990         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
991 }
992
993 /*
994  * requeue inode for re-scanning after bdi->b_io list is exhausted.
995  */
996 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
997 {
998         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
999 }
1000
1001 static void inode_sync_complete(struct inode *inode)
1002 {
1003         inode->i_state &= ~I_SYNC;
1004         /* If inode is clean an unused, put it into LRU now... */
1005         inode_add_lru(inode);
1006         /* Waiters must see I_SYNC cleared before being woken up */
1007         smp_mb();
1008         wake_up_bit(&inode->i_state, __I_SYNC);
1009 }
1010
1011 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1012 {
1013         bool ret = time_after(inode->dirtied_when, t);
1014 #ifndef CONFIG_64BIT
1015         /*
1016          * For inodes being constantly redirtied, dirtied_when can get stuck.
1017          * It _appears_ to be in the future, but is actually in distant past.
1018          * This test is necessary to prevent such wrapped-around relative times
1019          * from permanently stopping the whole bdi writeback.
1020          */
1021         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1022 #endif
1023         return ret;
1024 }
1025
1026 #define EXPIRE_DIRTY_ATIME 0x0001
1027
1028 /*
1029  * Move expired (dirtied before work->older_than_this) dirty inodes from
1030  * @delaying_queue to @dispatch_queue.
1031  */
1032 static int move_expired_inodes(struct list_head *delaying_queue,
1033                                struct list_head *dispatch_queue,
1034                                int flags,
1035                                struct wb_writeback_work *work)
1036 {
1037         unsigned long *older_than_this = NULL;
1038         unsigned long expire_time;
1039         LIST_HEAD(tmp);
1040         struct list_head *pos, *node;
1041         struct super_block *sb = NULL;
1042         struct inode *inode;
1043         int do_sb_sort = 0;
1044         int moved = 0;
1045
1046         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1047                 older_than_this = work->older_than_this;
1048         else if (!work->for_sync) {
1049                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1050                 older_than_this = &expire_time;
1051         }
1052         while (!list_empty(delaying_queue)) {
1053                 inode = wb_inode(delaying_queue->prev);
1054                 if (older_than_this &&
1055                     inode_dirtied_after(inode, *older_than_this))
1056                         break;
1057                 list_move(&inode->i_wb_list, &tmp);
1058                 moved++;
1059                 if (flags & EXPIRE_DIRTY_ATIME)
1060                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1061                 if (sb_is_blkdev_sb(inode->i_sb))
1062                         continue;
1063                 if (sb && sb != inode->i_sb)
1064                         do_sb_sort = 1;
1065                 sb = inode->i_sb;
1066         }
1067
1068         /* just one sb in list, splice to dispatch_queue and we're done */
1069         if (!do_sb_sort) {
1070                 list_splice(&tmp, dispatch_queue);
1071                 goto out;
1072         }
1073
1074         /* Move inodes from one superblock together */
1075         while (!list_empty(&tmp)) {
1076                 sb = wb_inode(tmp.prev)->i_sb;
1077                 list_for_each_prev_safe(pos, node, &tmp) {
1078                         inode = wb_inode(pos);
1079                         if (inode->i_sb == sb)
1080                                 list_move(&inode->i_wb_list, dispatch_queue);
1081                 }
1082         }
1083 out:
1084         return moved;
1085 }
1086
1087 /*
1088  * Queue all expired dirty inodes for io, eldest first.
1089  * Before
1090  *         newly dirtied     b_dirty    b_io    b_more_io
1091  *         =============>    gf         edc     BA
1092  * After
1093  *         newly dirtied     b_dirty    b_io    b_more_io
1094  *         =============>    g          fBAedc
1095  *                                           |
1096  *                                           +--> dequeue for IO
1097  */
1098 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1099 {
1100         int moved;
1101
1102         assert_spin_locked(&wb->list_lock);
1103         list_splice_init(&wb->b_more_io, &wb->b_io);
1104         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1105         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1106                                      EXPIRE_DIRTY_ATIME, work);
1107         if (moved)
1108                 wb_io_lists_populated(wb);
1109         trace_writeback_queue_io(wb, work, moved);
1110 }
1111
1112 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1113 {
1114         int ret;
1115
1116         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1117                 trace_writeback_write_inode_start(inode, wbc);
1118                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1119                 trace_writeback_write_inode(inode, wbc);
1120                 return ret;
1121         }
1122         return 0;
1123 }
1124
1125 /*
1126  * Wait for writeback on an inode to complete. Called with i_lock held.
1127  * Caller must make sure inode cannot go away when we drop i_lock.
1128  */
1129 static void __inode_wait_for_writeback(struct inode *inode)
1130         __releases(inode->i_lock)
1131         __acquires(inode->i_lock)
1132 {
1133         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1134         wait_queue_head_t *wqh;
1135
1136         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1137         while (inode->i_state & I_SYNC) {
1138                 spin_unlock(&inode->i_lock);
1139                 __wait_on_bit(wqh, &wq, bit_wait,
1140                               TASK_UNINTERRUPTIBLE);
1141                 spin_lock(&inode->i_lock);
1142         }
1143 }
1144
1145 /*
1146  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1147  */
1148 void inode_wait_for_writeback(struct inode *inode)
1149 {
1150         spin_lock(&inode->i_lock);
1151         __inode_wait_for_writeback(inode);
1152         spin_unlock(&inode->i_lock);
1153 }
1154
1155 /*
1156  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1157  * held and drops it. It is aimed for callers not holding any inode reference
1158  * so once i_lock is dropped, inode can go away.
1159  */
1160 static void inode_sleep_on_writeback(struct inode *inode)
1161         __releases(inode->i_lock)
1162 {
1163         DEFINE_WAIT(wait);
1164         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1165         int sleep;
1166
1167         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1168         sleep = inode->i_state & I_SYNC;
1169         spin_unlock(&inode->i_lock);
1170         if (sleep)
1171                 schedule();
1172         finish_wait(wqh, &wait);
1173 }
1174
1175 /*
1176  * Find proper writeback list for the inode depending on its current state and
1177  * possibly also change of its state while we were doing writeback.  Here we
1178  * handle things such as livelock prevention or fairness of writeback among
1179  * inodes. This function can be called only by flusher thread - noone else
1180  * processes all inodes in writeback lists and requeueing inodes behind flusher
1181  * thread's back can have unexpected consequences.
1182  */
1183 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1184                           struct writeback_control *wbc)
1185 {
1186         if (inode->i_state & I_FREEING)
1187                 return;
1188
1189         /*
1190          * Sync livelock prevention. Each inode is tagged and synced in one
1191          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1192          * the dirty time to prevent enqueue and sync it again.
1193          */
1194         if ((inode->i_state & I_DIRTY) &&
1195             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1196                 inode->dirtied_when = jiffies;
1197
1198         if (wbc->pages_skipped) {
1199                 /*
1200                  * writeback is not making progress due to locked
1201                  * buffers. Skip this inode for now.
1202                  */
1203                 redirty_tail(inode, wb);
1204                 return;
1205         }
1206
1207         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1208                 /*
1209                  * We didn't write back all the pages.  nfs_writepages()
1210                  * sometimes bales out without doing anything.
1211                  */
1212                 if (wbc->nr_to_write <= 0) {
1213                         /* Slice used up. Queue for next turn. */
1214                         requeue_io(inode, wb);
1215                 } else {
1216                         /*
1217                          * Writeback blocked by something other than
1218                          * congestion. Delay the inode for some time to
1219                          * avoid spinning on the CPU (100% iowait)
1220                          * retrying writeback of the dirty page/inode
1221                          * that cannot be performed immediately.
1222                          */
1223                         redirty_tail(inode, wb);
1224                 }
1225         } else if (inode->i_state & I_DIRTY) {
1226                 /*
1227                  * Filesystems can dirty the inode during writeback operations,
1228                  * such as delayed allocation during submission or metadata
1229                  * updates after data IO completion.
1230                  */
1231                 redirty_tail(inode, wb);
1232         } else if (inode->i_state & I_DIRTY_TIME) {
1233                 inode->dirtied_when = jiffies;
1234                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1235         } else {
1236                 /* The inode is clean. Remove from writeback lists. */
1237                 inode_wb_list_del_locked(inode, wb);
1238         }
1239 }
1240
1241 /*
1242  * Write out an inode and its dirty pages. Do not update the writeback list
1243  * linkage. That is left to the caller. The caller is also responsible for
1244  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1245  */
1246 static int
1247 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1248 {
1249         struct address_space *mapping = inode->i_mapping;
1250         long nr_to_write = wbc->nr_to_write;
1251         unsigned dirty;
1252         int ret;
1253
1254         WARN_ON(!(inode->i_state & I_SYNC));
1255
1256         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1257
1258         ret = do_writepages(mapping, wbc);
1259
1260         /*
1261          * Make sure to wait on the data before writing out the metadata.
1262          * This is important for filesystems that modify metadata on data
1263          * I/O completion. We don't do it for sync(2) writeback because it has a
1264          * separate, external IO completion path and ->sync_fs for guaranteeing
1265          * inode metadata is written back correctly.
1266          */
1267         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1268                 int err = filemap_fdatawait(mapping);
1269                 if (ret == 0)
1270                         ret = err;
1271         }
1272
1273         /*
1274          * Some filesystems may redirty the inode during the writeback
1275          * due to delalloc, clear dirty metadata flags right before
1276          * write_inode()
1277          */
1278         spin_lock(&inode->i_lock);
1279
1280         dirty = inode->i_state & I_DIRTY;
1281         if (inode->i_state & I_DIRTY_TIME) {
1282                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1283                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1284                     unlikely(time_after(jiffies,
1285                                         (inode->dirtied_time_when +
1286                                          dirtytime_expire_interval * HZ)))) {
1287                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1288                         trace_writeback_lazytime(inode);
1289                 }
1290         } else
1291                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1292         inode->i_state &= ~dirty;
1293
1294         /*
1295          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1296          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1297          * either they see the I_DIRTY bits cleared or we see the dirtied
1298          * inode.
1299          *
1300          * I_DIRTY_PAGES is always cleared together above even if @mapping
1301          * still has dirty pages.  The flag is reinstated after smp_mb() if
1302          * necessary.  This guarantees that either __mark_inode_dirty()
1303          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1304          */
1305         smp_mb();
1306
1307         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1308                 inode->i_state |= I_DIRTY_PAGES;
1309
1310         spin_unlock(&inode->i_lock);
1311
1312         if (dirty & I_DIRTY_TIME)
1313                 mark_inode_dirty_sync(inode);
1314         /* Don't write the inode if only I_DIRTY_PAGES was set */
1315         if (dirty & ~I_DIRTY_PAGES) {
1316                 int err = write_inode(inode, wbc);
1317                 if (ret == 0)
1318                         ret = err;
1319         }
1320         trace_writeback_single_inode(inode, wbc, nr_to_write);
1321         return ret;
1322 }
1323
1324 /*
1325  * Write out an inode's dirty pages. Either the caller has an active reference
1326  * on the inode or the inode has I_WILL_FREE set.
1327  *
1328  * This function is designed to be called for writing back one inode which
1329  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1330  * and does more profound writeback list handling in writeback_sb_inodes().
1331  */
1332 static int
1333 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1334                        struct writeback_control *wbc)
1335 {
1336         int ret = 0;
1337
1338         spin_lock(&inode->i_lock);
1339         if (!atomic_read(&inode->i_count))
1340                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1341         else
1342                 WARN_ON(inode->i_state & I_WILL_FREE);
1343
1344         if (inode->i_state & I_SYNC) {
1345                 if (wbc->sync_mode != WB_SYNC_ALL)
1346                         goto out;
1347                 /*
1348                  * It's a data-integrity sync. We must wait. Since callers hold
1349                  * inode reference or inode has I_WILL_FREE set, it cannot go
1350                  * away under us.
1351                  */
1352                 __inode_wait_for_writeback(inode);
1353         }
1354         WARN_ON(inode->i_state & I_SYNC);
1355         /*
1356          * Skip inode if it is clean and we have no outstanding writeback in
1357          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1358          * function since flusher thread may be doing for example sync in
1359          * parallel and if we move the inode, it could get skipped. So here we
1360          * make sure inode is on some writeback list and leave it there unless
1361          * we have completely cleaned the inode.
1362          */
1363         if (!(inode->i_state & I_DIRTY_ALL) &&
1364             (wbc->sync_mode != WB_SYNC_ALL ||
1365              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1366                 goto out;
1367         inode->i_state |= I_SYNC;
1368         wbc_attach_and_unlock_inode(wbc, inode);
1369
1370         ret = __writeback_single_inode(inode, wbc);
1371
1372         wbc_detach_inode(wbc);
1373         spin_lock(&wb->list_lock);
1374         spin_lock(&inode->i_lock);
1375         /*
1376          * If inode is clean, remove it from writeback lists. Otherwise don't
1377          * touch it. See comment above for explanation.
1378          */
1379         if (!(inode->i_state & I_DIRTY_ALL))
1380                 inode_wb_list_del_locked(inode, wb);
1381         spin_unlock(&wb->list_lock);
1382         inode_sync_complete(inode);
1383 out:
1384         spin_unlock(&inode->i_lock);
1385         return ret;
1386 }
1387
1388 static long writeback_chunk_size(struct bdi_writeback *wb,
1389                                  struct wb_writeback_work *work)
1390 {
1391         long pages;
1392
1393         /*
1394          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1395          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1396          * here avoids calling into writeback_inodes_wb() more than once.
1397          *
1398          * The intended call sequence for WB_SYNC_ALL writeback is:
1399          *
1400          *      wb_writeback()
1401          *          writeback_sb_inodes()       <== called only once
1402          *              write_cache_pages()     <== called once for each inode
1403          *                   (quickly) tag currently dirty pages
1404          *                   (maybe slowly) sync all tagged pages
1405          */
1406         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1407                 pages = LONG_MAX;
1408         else {
1409                 pages = min(wb->avg_write_bandwidth / 2,
1410                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1411                 pages = min(pages, work->nr_pages);
1412                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1413                                    MIN_WRITEBACK_PAGES);
1414         }
1415
1416         return pages;
1417 }
1418
1419 /*
1420  * Write a portion of b_io inodes which belong to @sb.
1421  *
1422  * Return the number of pages and/or inodes written.
1423  */
1424 static long writeback_sb_inodes(struct super_block *sb,
1425                                 struct bdi_writeback *wb,
1426                                 struct wb_writeback_work *work)
1427 {
1428         struct writeback_control wbc = {
1429                 .sync_mode              = work->sync_mode,
1430                 .tagged_writepages      = work->tagged_writepages,
1431                 .for_kupdate            = work->for_kupdate,
1432                 .for_background         = work->for_background,
1433                 .for_sync               = work->for_sync,
1434                 .range_cyclic           = work->range_cyclic,
1435                 .range_start            = 0,
1436                 .range_end              = LLONG_MAX,
1437         };
1438         unsigned long start_time = jiffies;
1439         long write_chunk;
1440         long wrote = 0;  /* count both pages and inodes */
1441
1442         while (!list_empty(&wb->b_io)) {
1443                 struct inode *inode = wb_inode(wb->b_io.prev);
1444
1445                 if (inode->i_sb != sb) {
1446                         if (work->sb) {
1447                                 /*
1448                                  * We only want to write back data for this
1449                                  * superblock, move all inodes not belonging
1450                                  * to it back onto the dirty list.
1451                                  */
1452                                 redirty_tail(inode, wb);
1453                                 continue;
1454                         }
1455
1456                         /*
1457                          * The inode belongs to a different superblock.
1458                          * Bounce back to the caller to unpin this and
1459                          * pin the next superblock.
1460                          */
1461                         break;
1462                 }
1463
1464                 /*
1465                  * Don't bother with new inodes or inodes being freed, first
1466                  * kind does not need periodic writeout yet, and for the latter
1467                  * kind writeout is handled by the freer.
1468                  */
1469                 spin_lock(&inode->i_lock);
1470                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1471                         spin_unlock(&inode->i_lock);
1472                         redirty_tail(inode, wb);
1473                         continue;
1474                 }
1475                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1476                         /*
1477                          * If this inode is locked for writeback and we are not
1478                          * doing writeback-for-data-integrity, move it to
1479                          * b_more_io so that writeback can proceed with the
1480                          * other inodes on s_io.
1481                          *
1482                          * We'll have another go at writing back this inode
1483                          * when we completed a full scan of b_io.
1484                          */
1485                         spin_unlock(&inode->i_lock);
1486                         requeue_io(inode, wb);
1487                         trace_writeback_sb_inodes_requeue(inode);
1488                         continue;
1489                 }
1490                 spin_unlock(&wb->list_lock);
1491
1492                 /*
1493                  * We already requeued the inode if it had I_SYNC set and we
1494                  * are doing WB_SYNC_NONE writeback. So this catches only the
1495                  * WB_SYNC_ALL case.
1496                  */
1497                 if (inode->i_state & I_SYNC) {
1498                         /* Wait for I_SYNC. This function drops i_lock... */
1499                         inode_sleep_on_writeback(inode);
1500                         /* Inode may be gone, start again */
1501                         spin_lock(&wb->list_lock);
1502                         continue;
1503                 }
1504                 inode->i_state |= I_SYNC;
1505                 wbc_attach_and_unlock_inode(&wbc, inode);
1506
1507                 write_chunk = writeback_chunk_size(wb, work);
1508                 wbc.nr_to_write = write_chunk;
1509                 wbc.pages_skipped = 0;
1510
1511                 /*
1512                  * We use I_SYNC to pin the inode in memory. While it is set
1513                  * evict_inode() will wait so the inode cannot be freed.
1514                  */
1515                 __writeback_single_inode(inode, &wbc);
1516
1517                 wbc_detach_inode(&wbc);
1518                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1519                 wrote += write_chunk - wbc.nr_to_write;
1520                 spin_lock(&wb->list_lock);
1521                 spin_lock(&inode->i_lock);
1522                 if (!(inode->i_state & I_DIRTY_ALL))
1523                         wrote++;
1524                 requeue_inode(inode, wb, &wbc);
1525                 inode_sync_complete(inode);
1526                 spin_unlock(&inode->i_lock);
1527                 cond_resched_lock(&wb->list_lock);
1528                 /*
1529                  * bail out to wb_writeback() often enough to check
1530                  * background threshold and other termination conditions.
1531                  */
1532                 if (wrote) {
1533                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1534                                 break;
1535                         if (work->nr_pages <= 0)
1536                                 break;
1537                 }
1538         }
1539         return wrote;
1540 }
1541
1542 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1543                                   struct wb_writeback_work *work)
1544 {
1545         unsigned long start_time = jiffies;
1546         long wrote = 0;
1547
1548         while (!list_empty(&wb->b_io)) {
1549                 struct inode *inode = wb_inode(wb->b_io.prev);
1550                 struct super_block *sb = inode->i_sb;
1551
1552                 if (!trylock_super(sb)) {
1553                         /*
1554                          * trylock_super() may fail consistently due to
1555                          * s_umount being grabbed by someone else. Don't use
1556                          * requeue_io() to avoid busy retrying the inode/sb.
1557                          */
1558                         redirty_tail(inode, wb);
1559                         continue;
1560                 }
1561                 wrote += writeback_sb_inodes(sb, wb, work);
1562                 up_read(&sb->s_umount);
1563
1564                 /* refer to the same tests at the end of writeback_sb_inodes */
1565                 if (wrote) {
1566                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1567                                 break;
1568                         if (work->nr_pages <= 0)
1569                                 break;
1570                 }
1571         }
1572         /* Leave any unwritten inodes on b_io */
1573         return wrote;
1574 }
1575
1576 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1577                                 enum wb_reason reason)
1578 {
1579         struct wb_writeback_work work = {
1580                 .nr_pages       = nr_pages,
1581                 .sync_mode      = WB_SYNC_NONE,
1582                 .range_cyclic   = 1,
1583                 .reason         = reason,
1584         };
1585
1586         spin_lock(&wb->list_lock);
1587         if (list_empty(&wb->b_io))
1588                 queue_io(wb, &work);
1589         __writeback_inodes_wb(wb, &work);
1590         spin_unlock(&wb->list_lock);
1591
1592         return nr_pages - work.nr_pages;
1593 }
1594
1595 /*
1596  * Explicit flushing or periodic writeback of "old" data.
1597  *
1598  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1599  * dirtying-time in the inode's address_space.  So this periodic writeback code
1600  * just walks the superblock inode list, writing back any inodes which are
1601  * older than a specific point in time.
1602  *
1603  * Try to run once per dirty_writeback_interval.  But if a writeback event
1604  * takes longer than a dirty_writeback_interval interval, then leave a
1605  * one-second gap.
1606  *
1607  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1608  * all dirty pages if they are all attached to "old" mappings.
1609  */
1610 static long wb_writeback(struct bdi_writeback *wb,
1611                          struct wb_writeback_work *work)
1612 {
1613         unsigned long wb_start = jiffies;
1614         long nr_pages = work->nr_pages;
1615         unsigned long oldest_jif;
1616         struct inode *inode;
1617         long progress;
1618
1619         oldest_jif = jiffies;
1620         work->older_than_this = &oldest_jif;
1621
1622         spin_lock(&wb->list_lock);
1623         for (;;) {
1624                 /*
1625                  * Stop writeback when nr_pages has been consumed
1626                  */
1627                 if (work->nr_pages <= 0)
1628                         break;
1629
1630                 /*
1631                  * Background writeout and kupdate-style writeback may
1632                  * run forever. Stop them if there is other work to do
1633                  * so that e.g. sync can proceed. They'll be restarted
1634                  * after the other works are all done.
1635                  */
1636                 if ((work->for_background || work->for_kupdate) &&
1637                     !list_empty(&wb->work_list))
1638                         break;
1639
1640                 /*
1641                  * For background writeout, stop when we are below the
1642                  * background dirty threshold
1643                  */
1644                 if (work->for_background && !wb_over_bg_thresh(wb))
1645                         break;
1646
1647                 /*
1648                  * Kupdate and background works are special and we want to
1649                  * include all inodes that need writing. Livelock avoidance is
1650                  * handled by these works yielding to any other work so we are
1651                  * safe.
1652                  */
1653                 if (work->for_kupdate) {
1654                         oldest_jif = jiffies -
1655                                 msecs_to_jiffies(dirty_expire_interval * 10);
1656                 } else if (work->for_background)
1657                         oldest_jif = jiffies;
1658
1659                 trace_writeback_start(wb->bdi, work);
1660                 if (list_empty(&wb->b_io))
1661                         queue_io(wb, work);
1662                 if (work->sb)
1663                         progress = writeback_sb_inodes(work->sb, wb, work);
1664                 else
1665                         progress = __writeback_inodes_wb(wb, work);
1666                 trace_writeback_written(wb->bdi, work);
1667
1668                 wb_update_bandwidth(wb, wb_start);
1669
1670                 /*
1671                  * Did we write something? Try for more
1672                  *
1673                  * Dirty inodes are moved to b_io for writeback in batches.
1674                  * The completion of the current batch does not necessarily
1675                  * mean the overall work is done. So we keep looping as long
1676                  * as made some progress on cleaning pages or inodes.
1677                  */
1678                 if (progress)
1679                         continue;
1680                 /*
1681                  * No more inodes for IO, bail
1682                  */
1683                 if (list_empty(&wb->b_more_io))
1684                         break;
1685                 /*
1686                  * Nothing written. Wait for some inode to
1687                  * become available for writeback. Otherwise
1688                  * we'll just busyloop.
1689                  */
1690                 if (!list_empty(&wb->b_more_io))  {
1691                         trace_writeback_wait(wb->bdi, work);
1692                         inode = wb_inode(wb->b_more_io.prev);
1693                         spin_lock(&inode->i_lock);
1694                         spin_unlock(&wb->list_lock);
1695                         /* This function drops i_lock... */
1696                         inode_sleep_on_writeback(inode);
1697                         spin_lock(&wb->list_lock);
1698                 }
1699         }
1700         spin_unlock(&wb->list_lock);
1701
1702         return nr_pages - work->nr_pages;
1703 }
1704
1705 /*
1706  * Return the next wb_writeback_work struct that hasn't been processed yet.
1707  */
1708 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1709 {
1710         struct wb_writeback_work *work = NULL;
1711
1712         spin_lock_bh(&wb->work_lock);
1713         if (!list_empty(&wb->work_list)) {
1714                 work = list_entry(wb->work_list.next,
1715                                   struct wb_writeback_work, list);
1716                 list_del_init(&work->list);
1717         }
1718         spin_unlock_bh(&wb->work_lock);
1719         return work;
1720 }
1721
1722 /*
1723  * Add in the number of potentially dirty inodes, because each inode
1724  * write can dirty pagecache in the underlying blockdev.
1725  */
1726 static unsigned long get_nr_dirty_pages(void)
1727 {
1728         return global_page_state(NR_FILE_DIRTY) +
1729                 global_page_state(NR_UNSTABLE_NFS) +
1730                 get_nr_dirty_inodes();
1731 }
1732
1733 static long wb_check_background_flush(struct bdi_writeback *wb)
1734 {
1735         if (wb_over_bg_thresh(wb)) {
1736
1737                 struct wb_writeback_work work = {
1738                         .nr_pages       = LONG_MAX,
1739                         .sync_mode      = WB_SYNC_NONE,
1740                         .for_background = 1,
1741                         .range_cyclic   = 1,
1742                         .reason         = WB_REASON_BACKGROUND,
1743                 };
1744
1745                 return wb_writeback(wb, &work);
1746         }
1747
1748         return 0;
1749 }
1750
1751 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1752 {
1753         unsigned long expired;
1754         long nr_pages;
1755
1756         /*
1757          * When set to zero, disable periodic writeback
1758          */
1759         if (!dirty_writeback_interval)
1760                 return 0;
1761
1762         expired = wb->last_old_flush +
1763                         msecs_to_jiffies(dirty_writeback_interval * 10);
1764         if (time_before(jiffies, expired))
1765                 return 0;
1766
1767         wb->last_old_flush = jiffies;
1768         nr_pages = get_nr_dirty_pages();
1769
1770         if (nr_pages) {
1771                 struct wb_writeback_work work = {
1772                         .nr_pages       = nr_pages,
1773                         .sync_mode      = WB_SYNC_NONE,
1774                         .for_kupdate    = 1,
1775                         .range_cyclic   = 1,
1776                         .reason         = WB_REASON_PERIODIC,
1777                 };
1778
1779                 return wb_writeback(wb, &work);
1780         }
1781
1782         return 0;
1783 }
1784
1785 /*
1786  * Retrieve work items and do the writeback they describe
1787  */
1788 static long wb_do_writeback(struct bdi_writeback *wb)
1789 {
1790         struct wb_writeback_work *work;
1791         long wrote = 0;
1792
1793         set_bit(WB_writeback_running, &wb->state);
1794         while ((work = get_next_work_item(wb)) != NULL) {
1795                 struct wb_completion *done = work->done;
1796                 bool need_wake_up = false;
1797
1798                 trace_writeback_exec(wb->bdi, work);
1799
1800                 wrote += wb_writeback(wb, work);
1801
1802                 if (work->single_wait) {
1803                         WARN_ON_ONCE(work->auto_free);
1804                         /* paired w/ rmb in wb_wait_for_single_work() */
1805                         smp_wmb();
1806                         work->single_done = 1;
1807                         need_wake_up = true;
1808                 } else if (work->auto_free) {
1809                         kfree(work);
1810                 }
1811
1812                 if (done && atomic_dec_and_test(&done->cnt))
1813                         need_wake_up = true;
1814
1815                 if (need_wake_up)
1816                         wake_up_all(&wb->bdi->wb_waitq);
1817         }
1818
1819         /*
1820          * Check for periodic writeback, kupdated() style
1821          */
1822         wrote += wb_check_old_data_flush(wb);
1823         wrote += wb_check_background_flush(wb);
1824         clear_bit(WB_writeback_running, &wb->state);
1825
1826         return wrote;
1827 }
1828
1829 /*
1830  * Handle writeback of dirty data for the device backed by this bdi. Also
1831  * reschedules periodically and does kupdated style flushing.
1832  */
1833 void wb_workfn(struct work_struct *work)
1834 {
1835         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1836                                                 struct bdi_writeback, dwork);
1837         long pages_written;
1838
1839         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1840         current->flags |= PF_SWAPWRITE;
1841
1842         if (likely(!current_is_workqueue_rescuer() ||
1843                    !test_bit(WB_registered, &wb->state))) {
1844                 /*
1845                  * The normal path.  Keep writing back @wb until its
1846                  * work_list is empty.  Note that this path is also taken
1847                  * if @wb is shutting down even when we're running off the
1848                  * rescuer as work_list needs to be drained.
1849                  */
1850                 do {
1851                         pages_written = wb_do_writeback(wb);
1852                         trace_writeback_pages_written(pages_written);
1853                 } while (!list_empty(&wb->work_list));
1854         } else {
1855                 /*
1856                  * bdi_wq can't get enough workers and we're running off
1857                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1858                  * enough for efficient IO.
1859                  */
1860                 pages_written = writeback_inodes_wb(wb, 1024,
1861                                                     WB_REASON_FORKER_THREAD);
1862                 trace_writeback_pages_written(pages_written);
1863         }
1864
1865         if (!list_empty(&wb->work_list))
1866                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1867         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1868                 wb_wakeup_delayed(wb);
1869
1870         current->flags &= ~PF_SWAPWRITE;
1871 }
1872
1873 /*
1874  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1875  * the whole world.
1876  */
1877 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1878 {
1879         struct backing_dev_info *bdi;
1880
1881         if (!nr_pages)
1882                 nr_pages = get_nr_dirty_pages();
1883
1884         rcu_read_lock();
1885         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1886                 struct bdi_writeback *wb;
1887                 struct wb_iter iter;
1888
1889                 if (!bdi_has_dirty_io(bdi))
1890                         continue;
1891
1892                 bdi_for_each_wb(wb, bdi, &iter, 0)
1893                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1894                                            false, reason);
1895         }
1896         rcu_read_unlock();
1897 }
1898
1899 /*
1900  * Wake up bdi's periodically to make sure dirtytime inodes gets
1901  * written back periodically.  We deliberately do *not* check the
1902  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1903  * kernel to be constantly waking up once there are any dirtytime
1904  * inodes on the system.  So instead we define a separate delayed work
1905  * function which gets called much more rarely.  (By default, only
1906  * once every 12 hours.)
1907  *
1908  * If there is any other write activity going on in the file system,
1909  * this function won't be necessary.  But if the only thing that has
1910  * happened on the file system is a dirtytime inode caused by an atime
1911  * update, we need this infrastructure below to make sure that inode
1912  * eventually gets pushed out to disk.
1913  */
1914 static void wakeup_dirtytime_writeback(struct work_struct *w);
1915 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1916
1917 static void wakeup_dirtytime_writeback(struct work_struct *w)
1918 {
1919         struct backing_dev_info *bdi;
1920
1921         rcu_read_lock();
1922         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1923                 struct bdi_writeback *wb;
1924                 struct wb_iter iter;
1925
1926                 bdi_for_each_wb(wb, bdi, &iter, 0)
1927                         if (!list_empty(&bdi->wb.b_dirty_time))
1928                                 wb_wakeup(&bdi->wb);
1929         }
1930         rcu_read_unlock();
1931         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1932 }
1933
1934 static int __init start_dirtytime_writeback(void)
1935 {
1936         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1937         return 0;
1938 }
1939 __initcall(start_dirtytime_writeback);
1940
1941 int dirtytime_interval_handler(struct ctl_table *table, int write,
1942                                void __user *buffer, size_t *lenp, loff_t *ppos)
1943 {
1944         int ret;
1945
1946         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1947         if (ret == 0 && write)
1948                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1949         return ret;
1950 }
1951
1952 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1953 {
1954         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1955                 struct dentry *dentry;
1956                 const char *name = "?";
1957
1958                 dentry = d_find_alias(inode);
1959                 if (dentry) {
1960                         spin_lock(&dentry->d_lock);
1961                         name = (const char *) dentry->d_name.name;
1962                 }
1963                 printk(KERN_DEBUG
1964                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1965                        current->comm, task_pid_nr(current), inode->i_ino,
1966                        name, inode->i_sb->s_id);
1967                 if (dentry) {
1968                         spin_unlock(&dentry->d_lock);
1969                         dput(dentry);
1970                 }
1971         }
1972 }
1973
1974 /**
1975  *      __mark_inode_dirty -    internal function
1976  *      @inode: inode to mark
1977  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1978  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1979  *      mark_inode_dirty_sync.
1980  *
1981  * Put the inode on the super block's dirty list.
1982  *
1983  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1984  * dirty list only if it is hashed or if it refers to a blockdev.
1985  * If it was not hashed, it will never be added to the dirty list
1986  * even if it is later hashed, as it will have been marked dirty already.
1987  *
1988  * In short, make sure you hash any inodes _before_ you start marking
1989  * them dirty.
1990  *
1991  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1992  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1993  * the kernel-internal blockdev inode represents the dirtying time of the
1994  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1995  * page->mapping->host, so the page-dirtying time is recorded in the internal
1996  * blockdev inode.
1997  */
1998 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1999 void __mark_inode_dirty(struct inode *inode, int flags)
2000 {
2001         struct super_block *sb = inode->i_sb;
2002         int dirtytime;
2003
2004         trace_writeback_mark_inode_dirty(inode, flags);
2005
2006         /*
2007          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2008          * dirty the inode itself
2009          */
2010         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2011                 trace_writeback_dirty_inode_start(inode, flags);
2012
2013                 if (sb->s_op->dirty_inode)
2014                         sb->s_op->dirty_inode(inode, flags);
2015
2016                 trace_writeback_dirty_inode(inode, flags);
2017         }
2018         if (flags & I_DIRTY_INODE)
2019                 flags &= ~I_DIRTY_TIME;
2020         dirtytime = flags & I_DIRTY_TIME;
2021
2022         /*
2023          * Paired with smp_mb() in __writeback_single_inode() for the
2024          * following lockless i_state test.  See there for details.
2025          */
2026         smp_mb();
2027
2028         if (((inode->i_state & flags) == flags) ||
2029             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2030                 return;
2031
2032         if (unlikely(block_dump))
2033                 block_dump___mark_inode_dirty(inode);
2034
2035         spin_lock(&inode->i_lock);
2036         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2037                 goto out_unlock_inode;
2038         if ((inode->i_state & flags) != flags) {
2039                 const int was_dirty = inode->i_state & I_DIRTY;
2040
2041                 inode_attach_wb(inode, NULL);
2042
2043                 if (flags & I_DIRTY_INODE)
2044                         inode->i_state &= ~I_DIRTY_TIME;
2045                 inode->i_state |= flags;
2046
2047                 /*
2048                  * If the inode is being synced, just update its dirty state.
2049                  * The unlocker will place the inode on the appropriate
2050                  * superblock list, based upon its state.
2051                  */
2052                 if (inode->i_state & I_SYNC)
2053                         goto out_unlock_inode;
2054
2055                 /*
2056                  * Only add valid (hashed) inodes to the superblock's
2057                  * dirty list.  Add blockdev inodes as well.
2058                  */
2059                 if (!S_ISBLK(inode->i_mode)) {
2060                         if (inode_unhashed(inode))
2061                                 goto out_unlock_inode;
2062                 }
2063                 if (inode->i_state & I_FREEING)
2064                         goto out_unlock_inode;
2065
2066                 /*
2067                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2068                  * reposition it (that would break b_dirty time-ordering).
2069                  */
2070                 if (!was_dirty) {
2071                         struct bdi_writeback *wb;
2072                         struct list_head *dirty_list;
2073                         bool wakeup_bdi = false;
2074
2075                         wb = locked_inode_to_wb_and_lock_list(inode);
2076
2077                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2078                              !test_bit(WB_registered, &wb->state),
2079                              "bdi-%s not registered\n", wb->bdi->name);
2080
2081                         inode->dirtied_when = jiffies;
2082                         if (dirtytime)
2083                                 inode->dirtied_time_when = jiffies;
2084
2085                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2086                                 dirty_list = &wb->b_dirty;
2087                         else
2088                                 dirty_list = &wb->b_dirty_time;
2089
2090                         wakeup_bdi = inode_wb_list_move_locked(inode, wb,
2091                                                                dirty_list);
2092
2093                         spin_unlock(&wb->list_lock);
2094                         trace_writeback_dirty_inode_enqueue(inode);
2095
2096                         /*
2097                          * If this is the first dirty inode for this bdi,
2098                          * we have to wake-up the corresponding bdi thread
2099                          * to make sure background write-back happens
2100                          * later.
2101                          */
2102                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2103                                 wb_wakeup_delayed(wb);
2104                         return;
2105                 }
2106         }
2107 out_unlock_inode:
2108         spin_unlock(&inode->i_lock);
2109
2110 }
2111 EXPORT_SYMBOL(__mark_inode_dirty);
2112
2113 static void wait_sb_inodes(struct super_block *sb)
2114 {
2115         struct inode *inode, *old_inode = NULL;
2116
2117         /*
2118          * We need to be protected against the filesystem going from
2119          * r/o to r/w or vice versa.
2120          */
2121         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2122
2123         spin_lock(&inode_sb_list_lock);
2124
2125         /*
2126          * Data integrity sync. Must wait for all pages under writeback,
2127          * because there may have been pages dirtied before our sync
2128          * call, but which had writeout started before we write it out.
2129          * In which case, the inode may not be on the dirty list, but
2130          * we still have to wait for that writeout.
2131          */
2132         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2133                 struct address_space *mapping = inode->i_mapping;
2134
2135                 spin_lock(&inode->i_lock);
2136                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2137                     (mapping->nrpages == 0)) {
2138                         spin_unlock(&inode->i_lock);
2139                         continue;
2140                 }
2141                 __iget(inode);
2142                 spin_unlock(&inode->i_lock);
2143                 spin_unlock(&inode_sb_list_lock);
2144
2145                 /*
2146                  * We hold a reference to 'inode' so it couldn't have been
2147                  * removed from s_inodes list while we dropped the
2148                  * inode_sb_list_lock.  We cannot iput the inode now as we can
2149                  * be holding the last reference and we cannot iput it under
2150                  * inode_sb_list_lock. So we keep the reference and iput it
2151                  * later.
2152                  */
2153                 iput(old_inode);
2154                 old_inode = inode;
2155
2156                 filemap_fdatawait(mapping);
2157
2158                 cond_resched();
2159
2160                 spin_lock(&inode_sb_list_lock);
2161         }
2162         spin_unlock(&inode_sb_list_lock);
2163         iput(old_inode);
2164 }
2165
2166 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2167                                      enum wb_reason reason, bool skip_if_busy)
2168 {
2169         DEFINE_WB_COMPLETION_ONSTACK(done);
2170         struct wb_writeback_work work = {
2171                 .sb                     = sb,
2172                 .sync_mode              = WB_SYNC_NONE,
2173                 .tagged_writepages      = 1,
2174                 .done                   = &done,
2175                 .nr_pages               = nr,
2176                 .reason                 = reason,
2177         };
2178         struct backing_dev_info *bdi = sb->s_bdi;
2179
2180         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2181                 return;
2182         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2183
2184         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2185         wb_wait_for_completion(bdi, &done);
2186 }
2187
2188 /**
2189  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2190  * @sb: the superblock
2191  * @nr: the number of pages to write
2192  * @reason: reason why some writeback work initiated
2193  *
2194  * Start writeback on some inodes on this super_block. No guarantees are made
2195  * on how many (if any) will be written, and this function does not wait
2196  * for IO completion of submitted IO.
2197  */
2198 void writeback_inodes_sb_nr(struct super_block *sb,
2199                             unsigned long nr,
2200                             enum wb_reason reason)
2201 {
2202         __writeback_inodes_sb_nr(sb, nr, reason, false);
2203 }
2204 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2205
2206 /**
2207  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2208  * @sb: the superblock
2209  * @reason: reason why some writeback work was initiated
2210  *
2211  * Start writeback on some inodes on this super_block. No guarantees are made
2212  * on how many (if any) will be written, and this function does not wait
2213  * for IO completion of submitted IO.
2214  */
2215 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2216 {
2217         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2218 }
2219 EXPORT_SYMBOL(writeback_inodes_sb);
2220
2221 /**
2222  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2223  * @sb: the superblock
2224  * @nr: the number of pages to write
2225  * @reason: the reason of writeback
2226  *
2227  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2228  * Returns 1 if writeback was started, 0 if not.
2229  */
2230 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2231                                    enum wb_reason reason)
2232 {
2233         if (!down_read_trylock(&sb->s_umount))
2234                 return false;
2235
2236         __writeback_inodes_sb_nr(sb, nr, reason, true);
2237         up_read(&sb->s_umount);
2238         return true;
2239 }
2240 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2241
2242 /**
2243  * try_to_writeback_inodes_sb - try to start writeback if none underway
2244  * @sb: the superblock
2245  * @reason: reason why some writeback work was initiated
2246  *
2247  * Implement by try_to_writeback_inodes_sb_nr()
2248  * Returns 1 if writeback was started, 0 if not.
2249  */
2250 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2251 {
2252         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2253 }
2254 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2255
2256 /**
2257  * sync_inodes_sb       -       sync sb inode pages
2258  * @sb: the superblock
2259  *
2260  * This function writes and waits on any dirty inode belonging to this
2261  * super_block.
2262  */
2263 void sync_inodes_sb(struct super_block *sb)
2264 {
2265         DEFINE_WB_COMPLETION_ONSTACK(done);
2266         struct wb_writeback_work work = {
2267                 .sb             = sb,
2268                 .sync_mode      = WB_SYNC_ALL,
2269                 .nr_pages       = LONG_MAX,
2270                 .range_cyclic   = 0,
2271                 .done           = &done,
2272                 .reason         = WB_REASON_SYNC,
2273                 .for_sync       = 1,
2274         };
2275         struct backing_dev_info *bdi = sb->s_bdi;
2276
2277         /* Nothing to do? */
2278         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2279                 return;
2280         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2281
2282         bdi_split_work_to_wbs(bdi, &work, false);
2283         wb_wait_for_completion(bdi, &done);
2284
2285         wait_sb_inodes(sb);
2286 }
2287 EXPORT_SYMBOL(sync_inodes_sb);
2288
2289 /**
2290  * write_inode_now      -       write an inode to disk
2291  * @inode: inode to write to disk
2292  * @sync: whether the write should be synchronous or not
2293  *
2294  * This function commits an inode to disk immediately if it is dirty. This is
2295  * primarily needed by knfsd.
2296  *
2297  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2298  */
2299 int write_inode_now(struct inode *inode, int sync)
2300 {
2301         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2302         struct writeback_control wbc = {
2303                 .nr_to_write = LONG_MAX,
2304                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2305                 .range_start = 0,
2306                 .range_end = LLONG_MAX,
2307         };
2308
2309         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2310                 wbc.nr_to_write = 0;
2311
2312         might_sleep();
2313         return writeback_single_inode(inode, wb, &wbc);
2314 }
2315 EXPORT_SYMBOL(write_inode_now);
2316
2317 /**
2318  * sync_inode - write an inode and its pages to disk.
2319  * @inode: the inode to sync
2320  * @wbc: controls the writeback mode
2321  *
2322  * sync_inode() will write an inode and its pages to disk.  It will also
2323  * correctly update the inode on its superblock's dirty inode lists and will
2324  * update inode->i_state.
2325  *
2326  * The caller must have a ref on the inode.
2327  */
2328 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2329 {
2330         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2331 }
2332 EXPORT_SYMBOL(sync_inode);
2333
2334 /**
2335  * sync_inode_metadata - write an inode to disk
2336  * @inode: the inode to sync
2337  * @wait: wait for I/O to complete.
2338  *
2339  * Write an inode to disk and adjust its dirty state after completion.
2340  *
2341  * Note: only writes the actual inode, no associated data or other metadata.
2342  */
2343 int sync_inode_metadata(struct inode *inode, int wait)
2344 {
2345         struct writeback_control wbc = {
2346                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2347                 .nr_to_write = 0, /* metadata-only */
2348         };
2349
2350         return sync_inode(inode, &wbc);
2351 }
2352 EXPORT_SYMBOL(sync_inode_metadata);