OSDN Git Service

tick/broadcast: Sanity check the shutdown of the local clock_event
[uclinux-h8/linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret = 0;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device, if
225                          * the broadcast device exists and is not
226                          * hrtimer based.
227                          */
228                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230                         break;
231                 default:
232                         break;
233                 }
234         }
235         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236         return ret;
237 }
238
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
241 {
242         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243         struct clock_event_device *evt = td->evtdev;
244
245         if (!evt)
246                 return -ENODEV;
247
248         if (!evt->event_handler)
249                 return -EINVAL;
250
251         evt->event_handler(evt);
252         return 0;
253 }
254 #endif
255
256 /*
257  * Broadcast the event to the cpus, which are set in the mask (mangled).
258  */
259 static bool tick_do_broadcast(struct cpumask *mask)
260 {
261         int cpu = smp_processor_id();
262         struct tick_device *td;
263         bool local = false;
264
265         /*
266          * Check, if the current cpu is in the mask
267          */
268         if (cpumask_test_cpu(cpu, mask)) {
269                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
270
271                 cpumask_clear_cpu(cpu, mask);
272                 /*
273                  * We only run the local handler, if the broadcast
274                  * device is not hrtimer based. Otherwise we run into
275                  * a hrtimer recursion.
276                  *
277                  * local timer_interrupt()
278                  *   local_handler()
279                  *     expire_hrtimers()
280                  *       bc_handler()
281                  *         local_handler()
282                  *           expire_hrtimers()
283                  */
284                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285         }
286
287         if (!cpumask_empty(mask)) {
288                 /*
289                  * It might be necessary to actually check whether the devices
290                  * have different broadcast functions. For now, just use the
291                  * one of the first device. This works as long as we have this
292                  * misfeature only on x86 (lapic)
293                  */
294                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295                 td->evtdev->broadcast(mask);
296         }
297         return local;
298 }
299
300 /*
301  * Periodic broadcast:
302  * - invoke the broadcast handlers
303  */
304 static bool tick_do_periodic_broadcast(void)
305 {
306         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307         return tick_do_broadcast(tmpmask);
308 }
309
310 /*
311  * Event handler for periodic broadcast ticks
312  */
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314 {
315         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316         bool bc_local;
317
318         raw_spin_lock(&tick_broadcast_lock);
319         bc_local = tick_do_periodic_broadcast();
320
321         if (clockevent_state_oneshot(dev)) {
322                 ktime_t next = ktime_add(dev->next_event, tick_period);
323
324                 clockevents_program_event(dev, next, true);
325         }
326         raw_spin_unlock(&tick_broadcast_lock);
327
328         /*
329          * We run the handler of the local cpu after dropping
330          * tick_broadcast_lock because the handler might deadlock when
331          * trying to switch to oneshot mode.
332          */
333         if (bc_local)
334                 td->evtdev->event_handler(td->evtdev);
335 }
336
337 /**
338  * tick_broadcast_control - Enable/disable or force broadcast mode
339  * @mode:       The selected broadcast mode
340  *
341  * Called when the system enters a state where affected tick devices
342  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
343  *
344  * Called with interrupts disabled, so clockevents_lock is not
345  * required here because the local clock event device cannot go away
346  * under us.
347  */
348 void tick_broadcast_control(enum tick_broadcast_mode mode)
349 {
350         struct clock_event_device *bc, *dev;
351         struct tick_device *td;
352         int cpu, bc_stopped;
353
354         td = this_cpu_ptr(&tick_cpu_device);
355         dev = td->evtdev;
356
357         /*
358          * Is the device not affected by the powerstate ?
359          */
360         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
361                 return;
362
363         if (!tick_device_is_functional(dev))
364                 return;
365
366         raw_spin_lock(&tick_broadcast_lock);
367         cpu = smp_processor_id();
368         bc = tick_broadcast_device.evtdev;
369         bc_stopped = cpumask_empty(tick_broadcast_mask);
370
371         switch (mode) {
372         case TICK_BROADCAST_FORCE:
373                 tick_broadcast_forced = 1;
374         case TICK_BROADCAST_ON:
375                 cpumask_set_cpu(cpu, tick_broadcast_on);
376                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
377                         /*
378                          * Only shutdown the cpu local device, if:
379                          *
380                          * - the broadcast device exists
381                          * - the broadcast device is not a hrtimer based one
382                          * - the broadcast device is in periodic mode to
383                          *   avoid a hickup during switch to oneshot mode
384                          */
385                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
386                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387                                 clockevents_shutdown(dev);
388                 }
389                 break;
390
391         case TICK_BROADCAST_OFF:
392                 if (tick_broadcast_forced)
393                         break;
394                 cpumask_clear_cpu(cpu, tick_broadcast_on);
395                 if (!tick_device_is_functional(dev))
396                         break;
397                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
398                         if (tick_broadcast_device.mode ==
399                             TICKDEV_MODE_PERIODIC)
400                                 tick_setup_periodic(dev, 0);
401                 }
402                 break;
403         }
404
405         if (cpumask_empty(tick_broadcast_mask)) {
406                 if (!bc_stopped)
407                         clockevents_shutdown(bc);
408         } else if (bc_stopped) {
409                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
410                         tick_broadcast_start_periodic(bc);
411                 else
412                         tick_broadcast_setup_oneshot(bc);
413         }
414         raw_spin_unlock(&tick_broadcast_lock);
415 }
416 EXPORT_SYMBOL_GPL(tick_broadcast_control);
417
418 /*
419  * Set the periodic handler depending on broadcast on/off
420  */
421 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
422 {
423         if (!broadcast)
424                 dev->event_handler = tick_handle_periodic;
425         else
426                 dev->event_handler = tick_handle_periodic_broadcast;
427 }
428
429 #ifdef CONFIG_HOTPLUG_CPU
430 /*
431  * Remove a CPU from broadcasting
432  */
433 void tick_shutdown_broadcast(unsigned int cpu)
434 {
435         struct clock_event_device *bc;
436         unsigned long flags;
437
438         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
439
440         bc = tick_broadcast_device.evtdev;
441         cpumask_clear_cpu(cpu, tick_broadcast_mask);
442         cpumask_clear_cpu(cpu, tick_broadcast_on);
443
444         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
445                 if (bc && cpumask_empty(tick_broadcast_mask))
446                         clockevents_shutdown(bc);
447         }
448
449         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
450 }
451 #endif
452
453 void tick_suspend_broadcast(void)
454 {
455         struct clock_event_device *bc;
456         unsigned long flags;
457
458         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
459
460         bc = tick_broadcast_device.evtdev;
461         if (bc)
462                 clockevents_shutdown(bc);
463
464         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
465 }
466
467 /*
468  * This is called from tick_resume_local() on a resuming CPU. That's
469  * called from the core resume function, tick_unfreeze() and the magic XEN
470  * resume hackery.
471  *
472  * In none of these cases the broadcast device mode can change and the
473  * bit of the resuming CPU in the broadcast mask is safe as well.
474  */
475 bool tick_resume_check_broadcast(void)
476 {
477         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
478                 return false;
479         else
480                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
481 }
482
483 void tick_resume_broadcast(void)
484 {
485         struct clock_event_device *bc;
486         unsigned long flags;
487
488         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
489
490         bc = tick_broadcast_device.evtdev;
491
492         if (bc) {
493                 clockevents_tick_resume(bc);
494
495                 switch (tick_broadcast_device.mode) {
496                 case TICKDEV_MODE_PERIODIC:
497                         if (!cpumask_empty(tick_broadcast_mask))
498                                 tick_broadcast_start_periodic(bc);
499                         break;
500                 case TICKDEV_MODE_ONESHOT:
501                         if (!cpumask_empty(tick_broadcast_mask))
502                                 tick_resume_broadcast_oneshot(bc);
503                         break;
504                 }
505         }
506         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
507 }
508
509 #ifdef CONFIG_TICK_ONESHOT
510
511 static cpumask_var_t tick_broadcast_oneshot_mask;
512 static cpumask_var_t tick_broadcast_pending_mask;
513 static cpumask_var_t tick_broadcast_force_mask;
514
515 /*
516  * Exposed for debugging: see timer_list.c
517  */
518 struct cpumask *tick_get_broadcast_oneshot_mask(void)
519 {
520         return tick_broadcast_oneshot_mask;
521 }
522
523 /*
524  * Called before going idle with interrupts disabled. Checks whether a
525  * broadcast event from the other core is about to happen. We detected
526  * that in tick_broadcast_oneshot_control(). The callsite can use this
527  * to avoid a deep idle transition as we are about to get the
528  * broadcast IPI right away.
529  */
530 int tick_check_broadcast_expired(void)
531 {
532         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
533 }
534
535 /*
536  * Set broadcast interrupt affinity
537  */
538 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
539                                         const struct cpumask *cpumask)
540 {
541         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
542                 return;
543
544         if (cpumask_equal(bc->cpumask, cpumask))
545                 return;
546
547         bc->cpumask = cpumask;
548         irq_set_affinity(bc->irq, bc->cpumask);
549 }
550
551 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
552                                      ktime_t expires)
553 {
554         if (!clockevent_state_oneshot(bc))
555                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
556
557         clockevents_program_event(bc, expires, 1);
558         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
559 }
560
561 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
562 {
563         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
564 }
565
566 /*
567  * Called from irq_enter() when idle was interrupted to reenable the
568  * per cpu device.
569  */
570 void tick_check_oneshot_broadcast_this_cpu(void)
571 {
572         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
573                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
574
575                 /*
576                  * We might be in the middle of switching over from
577                  * periodic to oneshot. If the CPU has not yet
578                  * switched over, leave the device alone.
579                  */
580                 if (td->mode == TICKDEV_MODE_ONESHOT) {
581                         clockevents_switch_state(td->evtdev,
582                                               CLOCK_EVT_STATE_ONESHOT);
583                 }
584         }
585 }
586
587 /*
588  * Handle oneshot mode broadcasting
589  */
590 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
591 {
592         struct tick_device *td;
593         ktime_t now, next_event;
594         int cpu, next_cpu = 0;
595         bool bc_local;
596
597         raw_spin_lock(&tick_broadcast_lock);
598         dev->next_event.tv64 = KTIME_MAX;
599         next_event.tv64 = KTIME_MAX;
600         cpumask_clear(tmpmask);
601         now = ktime_get();
602         /* Find all expired events */
603         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
604                 td = &per_cpu(tick_cpu_device, cpu);
605                 if (td->evtdev->next_event.tv64 <= now.tv64) {
606                         cpumask_set_cpu(cpu, tmpmask);
607                         /*
608                          * Mark the remote cpu in the pending mask, so
609                          * it can avoid reprogramming the cpu local
610                          * timer in tick_broadcast_oneshot_control().
611                          */
612                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
613                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
614                         next_event.tv64 = td->evtdev->next_event.tv64;
615                         next_cpu = cpu;
616                 }
617         }
618
619         /*
620          * Remove the current cpu from the pending mask. The event is
621          * delivered immediately in tick_do_broadcast() !
622          */
623         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
624
625         /* Take care of enforced broadcast requests */
626         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
627         cpumask_clear(tick_broadcast_force_mask);
628
629         /*
630          * Sanity check. Catch the case where we try to broadcast to
631          * offline cpus.
632          */
633         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
634                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
635
636         /*
637          * Wakeup the cpus which have an expired event.
638          */
639         bc_local = tick_do_broadcast(tmpmask);
640
641         /*
642          * Two reasons for reprogram:
643          *
644          * - The global event did not expire any CPU local
645          * events. This happens in dyntick mode, as the maximum PIT
646          * delta is quite small.
647          *
648          * - There are pending events on sleeping CPUs which were not
649          * in the event mask
650          */
651         if (next_event.tv64 != KTIME_MAX)
652                 tick_broadcast_set_event(dev, next_cpu, next_event);
653
654         raw_spin_unlock(&tick_broadcast_lock);
655
656         if (bc_local) {
657                 td = this_cpu_ptr(&tick_cpu_device);
658                 td->evtdev->event_handler(td->evtdev);
659         }
660 }
661
662 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
663 {
664         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
665                 return 0;
666         if (bc->next_event.tv64 == KTIME_MAX)
667                 return 0;
668         return bc->bound_on == cpu ? -EBUSY : 0;
669 }
670
671 static void broadcast_shutdown_local(struct clock_event_device *bc,
672                                      struct clock_event_device *dev)
673 {
674         /*
675          * For hrtimer based broadcasting we cannot shutdown the cpu
676          * local device if our own event is the first one to expire or
677          * if we own the broadcast timer.
678          */
679         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
680                 if (broadcast_needs_cpu(bc, smp_processor_id()))
681                         return;
682                 if (dev->next_event.tv64 < bc->next_event.tv64)
683                         return;
684         }
685         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
686 }
687
688 /**
689  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
690  * @state:      The target state (enter/exit)
691  *
692  * The system enters/leaves a state, where affected devices might stop
693  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
694  *
695  * Called with interrupts disabled, so clockevents_lock is not
696  * required here because the local clock event device cannot go away
697  * under us.
698  */
699 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
700 {
701         struct clock_event_device *bc, *dev;
702         struct tick_device *td;
703         int cpu, ret = 0;
704         ktime_t now;
705
706         /*
707          * Periodic mode does not care about the enter/exit of power
708          * states
709          */
710         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
711                 return 0;
712
713         /*
714          * We are called with preemtion disabled from the depth of the
715          * idle code, so we can't be moved away.
716          */
717         td = this_cpu_ptr(&tick_cpu_device);
718         dev = td->evtdev;
719
720         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
721                 return 0;
722
723         raw_spin_lock(&tick_broadcast_lock);
724         bc = tick_broadcast_device.evtdev;
725         cpu = smp_processor_id();
726
727         if (state == TICK_BROADCAST_ENTER) {
728                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
729                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
730                         broadcast_shutdown_local(bc, dev);
731                         /*
732                          * We only reprogram the broadcast timer if we
733                          * did not mark ourself in the force mask and
734                          * if the cpu local event is earlier than the
735                          * broadcast event. If the current CPU is in
736                          * the force mask, then we are going to be
737                          * woken by the IPI right away.
738                          */
739                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
740                             dev->next_event.tv64 < bc->next_event.tv64)
741                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
742                 }
743                 /*
744                  * If the current CPU owns the hrtimer broadcast
745                  * mechanism, it cannot go deep idle and we remove the
746                  * CPU from the broadcast mask. We don't have to go
747                  * through the EXIT path as the local timer is not
748                  * shutdown.
749                  */
750                 ret = broadcast_needs_cpu(bc, cpu);
751                 if (ret)
752                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
753         } else {
754                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
755                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
756                         /*
757                          * The cpu which was handling the broadcast
758                          * timer marked this cpu in the broadcast
759                          * pending mask and fired the broadcast
760                          * IPI. So we are going to handle the expired
761                          * event anyway via the broadcast IPI
762                          * handler. No need to reprogram the timer
763                          * with an already expired event.
764                          */
765                         if (cpumask_test_and_clear_cpu(cpu,
766                                        tick_broadcast_pending_mask))
767                                 goto out;
768
769                         /*
770                          * Bail out if there is no next event.
771                          */
772                         if (dev->next_event.tv64 == KTIME_MAX)
773                                 goto out;
774                         /*
775                          * If the pending bit is not set, then we are
776                          * either the CPU handling the broadcast
777                          * interrupt or we got woken by something else.
778                          *
779                          * We are not longer in the broadcast mask, so
780                          * if the cpu local expiry time is already
781                          * reached, we would reprogram the cpu local
782                          * timer with an already expired event.
783                          *
784                          * This can lead to a ping-pong when we return
785                          * to idle and therefor rearm the broadcast
786                          * timer before the cpu local timer was able
787                          * to fire. This happens because the forced
788                          * reprogramming makes sure that the event
789                          * will happen in the future and depending on
790                          * the min_delta setting this might be far
791                          * enough out that the ping-pong starts.
792                          *
793                          * If the cpu local next_event has expired
794                          * then we know that the broadcast timer
795                          * next_event has expired as well and
796                          * broadcast is about to be handled. So we
797                          * avoid reprogramming and enforce that the
798                          * broadcast handler, which did not run yet,
799                          * will invoke the cpu local handler.
800                          *
801                          * We cannot call the handler directly from
802                          * here, because we might be in a NOHZ phase
803                          * and we did not go through the irq_enter()
804                          * nohz fixups.
805                          */
806                         now = ktime_get();
807                         if (dev->next_event.tv64 <= now.tv64) {
808                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
809                                 goto out;
810                         }
811                         /*
812                          * We got woken by something else. Reprogram
813                          * the cpu local timer device.
814                          */
815                         tick_program_event(dev->next_event, 1);
816                 }
817         }
818 out:
819         raw_spin_unlock(&tick_broadcast_lock);
820         return ret;
821 }
822 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
823
824 /*
825  * Reset the one shot broadcast for a cpu
826  *
827  * Called with tick_broadcast_lock held
828  */
829 static void tick_broadcast_clear_oneshot(int cpu)
830 {
831         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
832         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
833 }
834
835 static void tick_broadcast_init_next_event(struct cpumask *mask,
836                                            ktime_t expires)
837 {
838         struct tick_device *td;
839         int cpu;
840
841         for_each_cpu(cpu, mask) {
842                 td = &per_cpu(tick_cpu_device, cpu);
843                 if (td->evtdev)
844                         td->evtdev->next_event = expires;
845         }
846 }
847
848 /**
849  * tick_broadcast_setup_oneshot - setup the broadcast device
850  */
851 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
852 {
853         int cpu = smp_processor_id();
854
855         /* Set it up only once ! */
856         if (bc->event_handler != tick_handle_oneshot_broadcast) {
857                 int was_periodic = clockevent_state_periodic(bc);
858
859                 bc->event_handler = tick_handle_oneshot_broadcast;
860
861                 /*
862                  * We must be careful here. There might be other CPUs
863                  * waiting for periodic broadcast. We need to set the
864                  * oneshot_mask bits for those and program the
865                  * broadcast device to fire.
866                  */
867                 cpumask_copy(tmpmask, tick_broadcast_mask);
868                 cpumask_clear_cpu(cpu, tmpmask);
869                 cpumask_or(tick_broadcast_oneshot_mask,
870                            tick_broadcast_oneshot_mask, tmpmask);
871
872                 if (was_periodic && !cpumask_empty(tmpmask)) {
873                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
874                         tick_broadcast_init_next_event(tmpmask,
875                                                        tick_next_period);
876                         tick_broadcast_set_event(bc, cpu, tick_next_period);
877                 } else
878                         bc->next_event.tv64 = KTIME_MAX;
879         } else {
880                 /*
881                  * The first cpu which switches to oneshot mode sets
882                  * the bit for all other cpus which are in the general
883                  * (periodic) broadcast mask. So the bit is set and
884                  * would prevent the first broadcast enter after this
885                  * to program the bc device.
886                  */
887                 tick_broadcast_clear_oneshot(cpu);
888         }
889 }
890
891 /*
892  * Select oneshot operating mode for the broadcast device
893  */
894 void tick_broadcast_switch_to_oneshot(void)
895 {
896         struct clock_event_device *bc;
897         unsigned long flags;
898
899         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
900
901         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
902         bc = tick_broadcast_device.evtdev;
903         if (bc)
904                 tick_broadcast_setup_oneshot(bc);
905
906         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
907 }
908
909 #ifdef CONFIG_HOTPLUG_CPU
910 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
911 {
912         struct clock_event_device *bc;
913         unsigned long flags;
914
915         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
916         bc = tick_broadcast_device.evtdev;
917
918         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
919                 /* This moves the broadcast assignment to this CPU: */
920                 clockevents_program_event(bc, bc->next_event, 1);
921         }
922         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
923 }
924
925 /*
926  * Remove a dead CPU from broadcasting
927  */
928 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
929 {
930         unsigned long flags;
931
932         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
933
934         /*
935          * Clear the broadcast masks for the dead cpu, but do not stop
936          * the broadcast device!
937          */
938         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
939         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
940         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
941
942         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
943 }
944 #endif
945
946 /*
947  * Check, whether the broadcast device is in one shot mode
948  */
949 int tick_broadcast_oneshot_active(void)
950 {
951         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
952 }
953
954 /*
955  * Check whether the broadcast device supports oneshot.
956  */
957 bool tick_broadcast_oneshot_available(void)
958 {
959         struct clock_event_device *bc = tick_broadcast_device.evtdev;
960
961         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
962 }
963
964 #endif
965
966 void __init tick_broadcast_init(void)
967 {
968         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
969         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
970         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
971 #ifdef CONFIG_TICK_ONESHOT
972         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
973         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
974         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
975 #endif
976 }