OSDN Git Service

Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[uclinux-h8/linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device.
225                          */
226                         ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227                         break;
228                 default:
229                         /* Nothing to do */
230                         ret = 0;
231                         break;
232                 }
233         }
234         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235         return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242         struct clock_event_device *evt = td->evtdev;
243
244         if (!evt)
245                 return -ENODEV;
246
247         if (!evt->event_handler)
248                 return -EINVAL;
249
250         evt->event_handler(evt);
251         return 0;
252 }
253 #endif
254
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260         int cpu = smp_processor_id();
261         struct tick_device *td;
262         bool local = false;
263
264         /*
265          * Check, if the current cpu is in the mask
266          */
267         if (cpumask_test_cpu(cpu, mask)) {
268                 cpumask_clear_cpu(cpu, mask);
269                 local = true;
270         }
271
272         if (!cpumask_empty(mask)) {
273                 /*
274                  * It might be necessary to actually check whether the devices
275                  * have different broadcast functions. For now, just use the
276                  * one of the first device. This works as long as we have this
277                  * misfeature only on x86 (lapic)
278                  */
279                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280                 td->evtdev->broadcast(mask);
281         }
282         return local;
283 }
284
285 /*
286  * Periodic broadcast:
287  * - invoke the broadcast handlers
288  */
289 static bool tick_do_periodic_broadcast(void)
290 {
291         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
292         return tick_do_broadcast(tmpmask);
293 }
294
295 /*
296  * Event handler for periodic broadcast ticks
297  */
298 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
299 {
300         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
301         bool bc_local;
302
303         raw_spin_lock(&tick_broadcast_lock);
304         bc_local = tick_do_periodic_broadcast();
305
306         if (clockevent_state_oneshot(dev)) {
307                 ktime_t next = ktime_add(dev->next_event, tick_period);
308
309                 clockevents_program_event(dev, next, true);
310         }
311         raw_spin_unlock(&tick_broadcast_lock);
312
313         /*
314          * We run the handler of the local cpu after dropping
315          * tick_broadcast_lock because the handler might deadlock when
316          * trying to switch to oneshot mode.
317          */
318         if (bc_local)
319                 td->evtdev->event_handler(td->evtdev);
320 }
321
322 /**
323  * tick_broadcast_control - Enable/disable or force broadcast mode
324  * @mode:       The selected broadcast mode
325  *
326  * Called when the system enters a state where affected tick devices
327  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
328  *
329  * Called with interrupts disabled, so clockevents_lock is not
330  * required here because the local clock event device cannot go away
331  * under us.
332  */
333 void tick_broadcast_control(enum tick_broadcast_mode mode)
334 {
335         struct clock_event_device *bc, *dev;
336         struct tick_device *td;
337         int cpu, bc_stopped;
338
339         td = this_cpu_ptr(&tick_cpu_device);
340         dev = td->evtdev;
341
342         /*
343          * Is the device not affected by the powerstate ?
344          */
345         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
346                 return;
347
348         if (!tick_device_is_functional(dev))
349                 return;
350
351         raw_spin_lock(&tick_broadcast_lock);
352         cpu = smp_processor_id();
353         bc = tick_broadcast_device.evtdev;
354         bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356         switch (mode) {
357         case TICK_BROADCAST_FORCE:
358                 tick_broadcast_forced = 1;
359         case TICK_BROADCAST_ON:
360                 cpumask_set_cpu(cpu, tick_broadcast_on);
361                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
362                         if (tick_broadcast_device.mode ==
363                             TICKDEV_MODE_PERIODIC)
364                                 clockevents_shutdown(dev);
365                 }
366                 break;
367
368         case TICK_BROADCAST_OFF:
369                 if (tick_broadcast_forced)
370                         break;
371                 cpumask_clear_cpu(cpu, tick_broadcast_on);
372                 if (!tick_device_is_functional(dev))
373                         break;
374                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375                         if (tick_broadcast_device.mode ==
376                             TICKDEV_MODE_PERIODIC)
377                                 tick_setup_periodic(dev, 0);
378                 }
379                 break;
380         }
381
382         if (cpumask_empty(tick_broadcast_mask)) {
383                 if (!bc_stopped)
384                         clockevents_shutdown(bc);
385         } else if (bc_stopped) {
386                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387                         tick_broadcast_start_periodic(bc);
388                 else
389                         tick_broadcast_setup_oneshot(bc);
390         }
391         raw_spin_unlock(&tick_broadcast_lock);
392 }
393 EXPORT_SYMBOL_GPL(tick_broadcast_control);
394
395 /*
396  * Set the periodic handler depending on broadcast on/off
397  */
398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
399 {
400         if (!broadcast)
401                 dev->event_handler = tick_handle_periodic;
402         else
403                 dev->event_handler = tick_handle_periodic_broadcast;
404 }
405
406 #ifdef CONFIG_HOTPLUG_CPU
407 /*
408  * Remove a CPU from broadcasting
409  */
410 void tick_shutdown_broadcast(unsigned int cpu)
411 {
412         struct clock_event_device *bc;
413         unsigned long flags;
414
415         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
416
417         bc = tick_broadcast_device.evtdev;
418         cpumask_clear_cpu(cpu, tick_broadcast_mask);
419         cpumask_clear_cpu(cpu, tick_broadcast_on);
420
421         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422                 if (bc && cpumask_empty(tick_broadcast_mask))
423                         clockevents_shutdown(bc);
424         }
425
426         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428 #endif
429
430 void tick_suspend_broadcast(void)
431 {
432         struct clock_event_device *bc;
433         unsigned long flags;
434
435         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
436
437         bc = tick_broadcast_device.evtdev;
438         if (bc)
439                 clockevents_shutdown(bc);
440
441         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
442 }
443
444 /*
445  * This is called from tick_resume_local() on a resuming CPU. That's
446  * called from the core resume function, tick_unfreeze() and the magic XEN
447  * resume hackery.
448  *
449  * In none of these cases the broadcast device mode can change and the
450  * bit of the resuming CPU in the broadcast mask is safe as well.
451  */
452 bool tick_resume_check_broadcast(void)
453 {
454         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
455                 return false;
456         else
457                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
458 }
459
460 void tick_resume_broadcast(void)
461 {
462         struct clock_event_device *bc;
463         unsigned long flags;
464
465         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
466
467         bc = tick_broadcast_device.evtdev;
468
469         if (bc) {
470                 clockevents_tick_resume(bc);
471
472                 switch (tick_broadcast_device.mode) {
473                 case TICKDEV_MODE_PERIODIC:
474                         if (!cpumask_empty(tick_broadcast_mask))
475                                 tick_broadcast_start_periodic(bc);
476                         break;
477                 case TICKDEV_MODE_ONESHOT:
478                         if (!cpumask_empty(tick_broadcast_mask))
479                                 tick_resume_broadcast_oneshot(bc);
480                         break;
481                 }
482         }
483         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
484 }
485
486 #ifdef CONFIG_TICK_ONESHOT
487
488 static cpumask_var_t tick_broadcast_oneshot_mask;
489 static cpumask_var_t tick_broadcast_pending_mask;
490 static cpumask_var_t tick_broadcast_force_mask;
491
492 /*
493  * Exposed for debugging: see timer_list.c
494  */
495 struct cpumask *tick_get_broadcast_oneshot_mask(void)
496 {
497         return tick_broadcast_oneshot_mask;
498 }
499
500 /*
501  * Called before going idle with interrupts disabled. Checks whether a
502  * broadcast event from the other core is about to happen. We detected
503  * that in tick_broadcast_oneshot_control(). The callsite can use this
504  * to avoid a deep idle transition as we are about to get the
505  * broadcast IPI right away.
506  */
507 int tick_check_broadcast_expired(void)
508 {
509         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
510 }
511
512 /*
513  * Set broadcast interrupt affinity
514  */
515 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
516                                         const struct cpumask *cpumask)
517 {
518         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
519                 return;
520
521         if (cpumask_equal(bc->cpumask, cpumask))
522                 return;
523
524         bc->cpumask = cpumask;
525         irq_set_affinity(bc->irq, bc->cpumask);
526 }
527
528 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
529                                      ktime_t expires)
530 {
531         if (!clockevent_state_oneshot(bc))
532                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
533
534         clockevents_program_event(bc, expires, 1);
535         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
536 }
537
538 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
539 {
540         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
541 }
542
543 /*
544  * Called from irq_enter() when idle was interrupted to reenable the
545  * per cpu device.
546  */
547 void tick_check_oneshot_broadcast_this_cpu(void)
548 {
549         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
550                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
551
552                 /*
553                  * We might be in the middle of switching over from
554                  * periodic to oneshot. If the CPU has not yet
555                  * switched over, leave the device alone.
556                  */
557                 if (td->mode == TICKDEV_MODE_ONESHOT) {
558                         clockevents_switch_state(td->evtdev,
559                                               CLOCK_EVT_STATE_ONESHOT);
560                 }
561         }
562 }
563
564 /*
565  * Handle oneshot mode broadcasting
566  */
567 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
568 {
569         struct tick_device *td;
570         ktime_t now, next_event;
571         int cpu, next_cpu = 0;
572         bool bc_local;
573
574         raw_spin_lock(&tick_broadcast_lock);
575         dev->next_event.tv64 = KTIME_MAX;
576         next_event.tv64 = KTIME_MAX;
577         cpumask_clear(tmpmask);
578         now = ktime_get();
579         /* Find all expired events */
580         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
581                 td = &per_cpu(tick_cpu_device, cpu);
582                 if (td->evtdev->next_event.tv64 <= now.tv64) {
583                         cpumask_set_cpu(cpu, tmpmask);
584                         /*
585                          * Mark the remote cpu in the pending mask, so
586                          * it can avoid reprogramming the cpu local
587                          * timer in tick_broadcast_oneshot_control().
588                          */
589                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
590                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
591                         next_event.tv64 = td->evtdev->next_event.tv64;
592                         next_cpu = cpu;
593                 }
594         }
595
596         /*
597          * Remove the current cpu from the pending mask. The event is
598          * delivered immediately in tick_do_broadcast() !
599          */
600         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
601
602         /* Take care of enforced broadcast requests */
603         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
604         cpumask_clear(tick_broadcast_force_mask);
605
606         /*
607          * Sanity check. Catch the case where we try to broadcast to
608          * offline cpus.
609          */
610         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
611                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
612
613         /*
614          * Wakeup the cpus which have an expired event.
615          */
616         bc_local = tick_do_broadcast(tmpmask);
617
618         /*
619          * Two reasons for reprogram:
620          *
621          * - The global event did not expire any CPU local
622          * events. This happens in dyntick mode, as the maximum PIT
623          * delta is quite small.
624          *
625          * - There are pending events on sleeping CPUs which were not
626          * in the event mask
627          */
628         if (next_event.tv64 != KTIME_MAX)
629                 tick_broadcast_set_event(dev, next_cpu, next_event);
630
631         raw_spin_unlock(&tick_broadcast_lock);
632
633         if (bc_local) {
634                 td = this_cpu_ptr(&tick_cpu_device);
635                 td->evtdev->event_handler(td->evtdev);
636         }
637 }
638
639 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
640 {
641         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
642                 return 0;
643         if (bc->next_event.tv64 == KTIME_MAX)
644                 return 0;
645         return bc->bound_on == cpu ? -EBUSY : 0;
646 }
647
648 static void broadcast_shutdown_local(struct clock_event_device *bc,
649                                      struct clock_event_device *dev)
650 {
651         /*
652          * For hrtimer based broadcasting we cannot shutdown the cpu
653          * local device if our own event is the first one to expire or
654          * if we own the broadcast timer.
655          */
656         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
657                 if (broadcast_needs_cpu(bc, smp_processor_id()))
658                         return;
659                 if (dev->next_event.tv64 < bc->next_event.tv64)
660                         return;
661         }
662         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
663 }
664
665 /**
666  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
667  * @state:      The target state (enter/exit)
668  *
669  * The system enters/leaves a state, where affected devices might stop
670  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
671  *
672  * Called with interrupts disabled, so clockevents_lock is not
673  * required here because the local clock event device cannot go away
674  * under us.
675  */
676 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
677 {
678         struct clock_event_device *bc, *dev;
679         struct tick_device *td;
680         int cpu, ret = 0;
681         ktime_t now;
682
683         /*
684          * Periodic mode does not care about the enter/exit of power
685          * states
686          */
687         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
688                 return 0;
689
690         /*
691          * We are called with preemtion disabled from the depth of the
692          * idle code, so we can't be moved away.
693          */
694         td = this_cpu_ptr(&tick_cpu_device);
695         dev = td->evtdev;
696
697         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
698                 return 0;
699
700         raw_spin_lock(&tick_broadcast_lock);
701         bc = tick_broadcast_device.evtdev;
702         cpu = smp_processor_id();
703
704         if (state == TICK_BROADCAST_ENTER) {
705                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
706                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
707                         broadcast_shutdown_local(bc, dev);
708                         /*
709                          * We only reprogram the broadcast timer if we
710                          * did not mark ourself in the force mask and
711                          * if the cpu local event is earlier than the
712                          * broadcast event. If the current CPU is in
713                          * the force mask, then we are going to be
714                          * woken by the IPI right away.
715                          */
716                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
717                             dev->next_event.tv64 < bc->next_event.tv64)
718                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
719                 }
720                 /*
721                  * If the current CPU owns the hrtimer broadcast
722                  * mechanism, it cannot go deep idle and we remove the
723                  * CPU from the broadcast mask. We don't have to go
724                  * through the EXIT path as the local timer is not
725                  * shutdown.
726                  */
727                 ret = broadcast_needs_cpu(bc, cpu);
728                 if (ret)
729                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
730         } else {
731                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
732                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
733                         /*
734                          * The cpu which was handling the broadcast
735                          * timer marked this cpu in the broadcast
736                          * pending mask and fired the broadcast
737                          * IPI. So we are going to handle the expired
738                          * event anyway via the broadcast IPI
739                          * handler. No need to reprogram the timer
740                          * with an already expired event.
741                          */
742                         if (cpumask_test_and_clear_cpu(cpu,
743                                        tick_broadcast_pending_mask))
744                                 goto out;
745
746                         /*
747                          * Bail out if there is no next event.
748                          */
749                         if (dev->next_event.tv64 == KTIME_MAX)
750                                 goto out;
751                         /*
752                          * If the pending bit is not set, then we are
753                          * either the CPU handling the broadcast
754                          * interrupt or we got woken by something else.
755                          *
756                          * We are not longer in the broadcast mask, so
757                          * if the cpu local expiry time is already
758                          * reached, we would reprogram the cpu local
759                          * timer with an already expired event.
760                          *
761                          * This can lead to a ping-pong when we return
762                          * to idle and therefor rearm the broadcast
763                          * timer before the cpu local timer was able
764                          * to fire. This happens because the forced
765                          * reprogramming makes sure that the event
766                          * will happen in the future and depending on
767                          * the min_delta setting this might be far
768                          * enough out that the ping-pong starts.
769                          *
770                          * If the cpu local next_event has expired
771                          * then we know that the broadcast timer
772                          * next_event has expired as well and
773                          * broadcast is about to be handled. So we
774                          * avoid reprogramming and enforce that the
775                          * broadcast handler, which did not run yet,
776                          * will invoke the cpu local handler.
777                          *
778                          * We cannot call the handler directly from
779                          * here, because we might be in a NOHZ phase
780                          * and we did not go through the irq_enter()
781                          * nohz fixups.
782                          */
783                         now = ktime_get();
784                         if (dev->next_event.tv64 <= now.tv64) {
785                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
786                                 goto out;
787                         }
788                         /*
789                          * We got woken by something else. Reprogram
790                          * the cpu local timer device.
791                          */
792                         tick_program_event(dev->next_event, 1);
793                 }
794         }
795 out:
796         raw_spin_unlock(&tick_broadcast_lock);
797         return ret;
798 }
799 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
800
801 /*
802  * Reset the one shot broadcast for a cpu
803  *
804  * Called with tick_broadcast_lock held
805  */
806 static void tick_broadcast_clear_oneshot(int cpu)
807 {
808         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
809         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
810 }
811
812 static void tick_broadcast_init_next_event(struct cpumask *mask,
813                                            ktime_t expires)
814 {
815         struct tick_device *td;
816         int cpu;
817
818         for_each_cpu(cpu, mask) {
819                 td = &per_cpu(tick_cpu_device, cpu);
820                 if (td->evtdev)
821                         td->evtdev->next_event = expires;
822         }
823 }
824
825 /**
826  * tick_broadcast_setup_oneshot - setup the broadcast device
827  */
828 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
829 {
830         int cpu = smp_processor_id();
831
832         /* Set it up only once ! */
833         if (bc->event_handler != tick_handle_oneshot_broadcast) {
834                 int was_periodic = clockevent_state_periodic(bc);
835
836                 bc->event_handler = tick_handle_oneshot_broadcast;
837
838                 /*
839                  * We must be careful here. There might be other CPUs
840                  * waiting for periodic broadcast. We need to set the
841                  * oneshot_mask bits for those and program the
842                  * broadcast device to fire.
843                  */
844                 cpumask_copy(tmpmask, tick_broadcast_mask);
845                 cpumask_clear_cpu(cpu, tmpmask);
846                 cpumask_or(tick_broadcast_oneshot_mask,
847                            tick_broadcast_oneshot_mask, tmpmask);
848
849                 if (was_periodic && !cpumask_empty(tmpmask)) {
850                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
851                         tick_broadcast_init_next_event(tmpmask,
852                                                        tick_next_period);
853                         tick_broadcast_set_event(bc, cpu, tick_next_period);
854                 } else
855                         bc->next_event.tv64 = KTIME_MAX;
856         } else {
857                 /*
858                  * The first cpu which switches to oneshot mode sets
859                  * the bit for all other cpus which are in the general
860                  * (periodic) broadcast mask. So the bit is set and
861                  * would prevent the first broadcast enter after this
862                  * to program the bc device.
863                  */
864                 tick_broadcast_clear_oneshot(cpu);
865         }
866 }
867
868 /*
869  * Select oneshot operating mode for the broadcast device
870  */
871 void tick_broadcast_switch_to_oneshot(void)
872 {
873         struct clock_event_device *bc;
874         unsigned long flags;
875
876         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
877
878         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
879         bc = tick_broadcast_device.evtdev;
880         if (bc)
881                 tick_broadcast_setup_oneshot(bc);
882
883         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
884 }
885
886 #ifdef CONFIG_HOTPLUG_CPU
887 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
888 {
889         struct clock_event_device *bc;
890         unsigned long flags;
891
892         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
893         bc = tick_broadcast_device.evtdev;
894
895         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
896                 /* This moves the broadcast assignment to this CPU: */
897                 clockevents_program_event(bc, bc->next_event, 1);
898         }
899         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
900 }
901
902 /*
903  * Remove a dead CPU from broadcasting
904  */
905 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
906 {
907         unsigned long flags;
908
909         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
910
911         /*
912          * Clear the broadcast masks for the dead cpu, but do not stop
913          * the broadcast device!
914          */
915         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
916         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
917         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
918
919         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
920 }
921 #endif
922
923 /*
924  * Check, whether the broadcast device is in one shot mode
925  */
926 int tick_broadcast_oneshot_active(void)
927 {
928         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
929 }
930
931 /*
932  * Check whether the broadcast device supports oneshot.
933  */
934 bool tick_broadcast_oneshot_available(void)
935 {
936         struct clock_event_device *bc = tick_broadcast_device.evtdev;
937
938         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
939 }
940
941 #endif
942
943 void __init tick_broadcast_init(void)
944 {
945         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
946         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
947         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
948 #ifdef CONFIG_TICK_ONESHOT
949         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
950         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
951         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
952 #endif
953 }