OSDN Git Service

perf machine: Set main kernel end address properly
[uclinux-h8/linux.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32         INIT_LIST_HEAD(&dsos->head);
33         dsos->root = RB_ROOT;
34         init_rwsem(&dsos->lock);
35 }
36
37 static void machine__threads_init(struct machine *machine)
38 {
39         int i;
40
41         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42                 struct threads *threads = &machine->threads[i];
43                 threads->entries = RB_ROOT;
44                 init_rwsem(&threads->lock);
45                 threads->nr = 0;
46                 INIT_LIST_HEAD(&threads->dead);
47                 threads->last_match = NULL;
48         }
49 }
50
51 static int machine__set_mmap_name(struct machine *machine)
52 {
53         if (machine__is_host(machine))
54                 machine->mmap_name = strdup("[kernel.kallsyms]");
55         else if (machine__is_default_guest(machine))
56                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
57         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
58                           machine->pid) < 0)
59                 machine->mmap_name = NULL;
60
61         return machine->mmap_name ? 0 : -ENOMEM;
62 }
63
64 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
65 {
66         int err = -ENOMEM;
67
68         memset(machine, 0, sizeof(*machine));
69         map_groups__init(&machine->kmaps, machine);
70         RB_CLEAR_NODE(&machine->rb_node);
71         dsos__init(&machine->dsos);
72
73         machine__threads_init(machine);
74
75         machine->vdso_info = NULL;
76         machine->env = NULL;
77
78         machine->pid = pid;
79
80         machine->id_hdr_size = 0;
81         machine->kptr_restrict_warned = false;
82         machine->comm_exec = false;
83         machine->kernel_start = 0;
84
85         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
86
87         machine->root_dir = strdup(root_dir);
88         if (machine->root_dir == NULL)
89                 return -ENOMEM;
90
91         if (machine__set_mmap_name(machine))
92                 goto out;
93
94         if (pid != HOST_KERNEL_ID) {
95                 struct thread *thread = machine__findnew_thread(machine, -1,
96                                                                 pid);
97                 char comm[64];
98
99                 if (thread == NULL)
100                         goto out;
101
102                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103                 thread__set_comm(thread, comm, 0);
104                 thread__put(thread);
105         }
106
107         machine->current_tid = NULL;
108         err = 0;
109
110 out:
111         if (err) {
112                 zfree(&machine->root_dir);
113                 zfree(&machine->mmap_name);
114         }
115         return 0;
116 }
117
118 struct machine *machine__new_host(void)
119 {
120         struct machine *machine = malloc(sizeof(*machine));
121
122         if (machine != NULL) {
123                 machine__init(machine, "", HOST_KERNEL_ID);
124
125                 if (machine__create_kernel_maps(machine) < 0)
126                         goto out_delete;
127         }
128
129         return machine;
130 out_delete:
131         free(machine);
132         return NULL;
133 }
134
135 struct machine *machine__new_kallsyms(void)
136 {
137         struct machine *machine = machine__new_host();
138         /*
139          * FIXME:
140          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
141          *    functions and data objects.
142          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
143          *    ask for not using the kcore parsing code, once this one is fixed
144          *    to create a map per module.
145          */
146         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147                 machine__delete(machine);
148                 machine = NULL;
149         }
150
151         return machine;
152 }
153
154 static void dsos__purge(struct dsos *dsos)
155 {
156         struct dso *pos, *n;
157
158         down_write(&dsos->lock);
159
160         list_for_each_entry_safe(pos, n, &dsos->head, node) {
161                 RB_CLEAR_NODE(&pos->rb_node);
162                 pos->root = NULL;
163                 list_del_init(&pos->node);
164                 dso__put(pos);
165         }
166
167         up_write(&dsos->lock);
168 }
169
170 static void dsos__exit(struct dsos *dsos)
171 {
172         dsos__purge(dsos);
173         exit_rwsem(&dsos->lock);
174 }
175
176 void machine__delete_threads(struct machine *machine)
177 {
178         struct rb_node *nd;
179         int i;
180
181         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182                 struct threads *threads = &machine->threads[i];
183                 down_write(&threads->lock);
184                 nd = rb_first(&threads->entries);
185                 while (nd) {
186                         struct thread *t = rb_entry(nd, struct thread, rb_node);
187
188                         nd = rb_next(nd);
189                         __machine__remove_thread(machine, t, false);
190                 }
191                 up_write(&threads->lock);
192         }
193 }
194
195 void machine__exit(struct machine *machine)
196 {
197         int i;
198
199         if (machine == NULL)
200                 return;
201
202         machine__destroy_kernel_maps(machine);
203         map_groups__exit(&machine->kmaps);
204         dsos__exit(&machine->dsos);
205         machine__exit_vdso(machine);
206         zfree(&machine->root_dir);
207         zfree(&machine->mmap_name);
208         zfree(&machine->current_tid);
209
210         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211                 struct threads *threads = &machine->threads[i];
212                 exit_rwsem(&threads->lock);
213         }
214 }
215
216 void machine__delete(struct machine *machine)
217 {
218         if (machine) {
219                 machine__exit(machine);
220                 free(machine);
221         }
222 }
223
224 void machines__init(struct machines *machines)
225 {
226         machine__init(&machines->host, "", HOST_KERNEL_ID);
227         machines->guests = RB_ROOT;
228 }
229
230 void machines__exit(struct machines *machines)
231 {
232         machine__exit(&machines->host);
233         /* XXX exit guest */
234 }
235
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237                               const char *root_dir)
238 {
239         struct rb_node **p = &machines->guests.rb_node;
240         struct rb_node *parent = NULL;
241         struct machine *pos, *machine = malloc(sizeof(*machine));
242
243         if (machine == NULL)
244                 return NULL;
245
246         if (machine__init(machine, root_dir, pid) != 0) {
247                 free(machine);
248                 return NULL;
249         }
250
251         while (*p != NULL) {
252                 parent = *p;
253                 pos = rb_entry(parent, struct machine, rb_node);
254                 if (pid < pos->pid)
255                         p = &(*p)->rb_left;
256                 else
257                         p = &(*p)->rb_right;
258         }
259
260         rb_link_node(&machine->rb_node, parent, p);
261         rb_insert_color(&machine->rb_node, &machines->guests);
262
263         return machine;
264 }
265
266 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
267 {
268         struct rb_node *nd;
269
270         machines->host.comm_exec = comm_exec;
271
272         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
273                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
274
275                 machine->comm_exec = comm_exec;
276         }
277 }
278
279 struct machine *machines__find(struct machines *machines, pid_t pid)
280 {
281         struct rb_node **p = &machines->guests.rb_node;
282         struct rb_node *parent = NULL;
283         struct machine *machine;
284         struct machine *default_machine = NULL;
285
286         if (pid == HOST_KERNEL_ID)
287                 return &machines->host;
288
289         while (*p != NULL) {
290                 parent = *p;
291                 machine = rb_entry(parent, struct machine, rb_node);
292                 if (pid < machine->pid)
293                         p = &(*p)->rb_left;
294                 else if (pid > machine->pid)
295                         p = &(*p)->rb_right;
296                 else
297                         return machine;
298                 if (!machine->pid)
299                         default_machine = machine;
300         }
301
302         return default_machine;
303 }
304
305 struct machine *machines__findnew(struct machines *machines, pid_t pid)
306 {
307         char path[PATH_MAX];
308         const char *root_dir = "";
309         struct machine *machine = machines__find(machines, pid);
310
311         if (machine && (machine->pid == pid))
312                 goto out;
313
314         if ((pid != HOST_KERNEL_ID) &&
315             (pid != DEFAULT_GUEST_KERNEL_ID) &&
316             (symbol_conf.guestmount)) {
317                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
318                 if (access(path, R_OK)) {
319                         static struct strlist *seen;
320
321                         if (!seen)
322                                 seen = strlist__new(NULL, NULL);
323
324                         if (!strlist__has_entry(seen, path)) {
325                                 pr_err("Can't access file %s\n", path);
326                                 strlist__add(seen, path);
327                         }
328                         machine = NULL;
329                         goto out;
330                 }
331                 root_dir = path;
332         }
333
334         machine = machines__add(machines, pid, root_dir);
335 out:
336         return machine;
337 }
338
339 void machines__process_guests(struct machines *machines,
340                               machine__process_t process, void *data)
341 {
342         struct rb_node *nd;
343
344         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
346                 process(pos, data);
347         }
348 }
349
350 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351 {
352         struct rb_node *node;
353         struct machine *machine;
354
355         machines->host.id_hdr_size = id_hdr_size;
356
357         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358                 machine = rb_entry(node, struct machine, rb_node);
359                 machine->id_hdr_size = id_hdr_size;
360         }
361
362         return;
363 }
364
365 static void machine__update_thread_pid(struct machine *machine,
366                                        struct thread *th, pid_t pid)
367 {
368         struct thread *leader;
369
370         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
371                 return;
372
373         th->pid_ = pid;
374
375         if (th->pid_ == th->tid)
376                 return;
377
378         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379         if (!leader)
380                 goto out_err;
381
382         if (!leader->mg)
383                 leader->mg = map_groups__new(machine);
384
385         if (!leader->mg)
386                 goto out_err;
387
388         if (th->mg == leader->mg)
389                 return;
390
391         if (th->mg) {
392                 /*
393                  * Maps are created from MMAP events which provide the pid and
394                  * tid.  Consequently there never should be any maps on a thread
395                  * with an unknown pid.  Just print an error if there are.
396                  */
397                 if (!map_groups__empty(th->mg))
398                         pr_err("Discarding thread maps for %d:%d\n",
399                                th->pid_, th->tid);
400                 map_groups__put(th->mg);
401         }
402
403         th->mg = map_groups__get(leader->mg);
404 out_put:
405         thread__put(leader);
406         return;
407 out_err:
408         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409         goto out_put;
410 }
411
412 /*
413  * Caller must eventually drop thread->refcnt returned with a successful
414  * lookup/new thread inserted.
415  */
416 static struct thread *____machine__findnew_thread(struct machine *machine,
417                                                   struct threads *threads,
418                                                   pid_t pid, pid_t tid,
419                                                   bool create)
420 {
421         struct rb_node **p = &threads->entries.rb_node;
422         struct rb_node *parent = NULL;
423         struct thread *th;
424
425         /*
426          * Front-end cache - TID lookups come in blocks,
427          * so most of the time we dont have to look up
428          * the full rbtree:
429          */
430         th = threads->last_match;
431         if (th != NULL) {
432                 if (th->tid == tid) {
433                         machine__update_thread_pid(machine, th, pid);
434                         return thread__get(th);
435                 }
436
437                 threads->last_match = NULL;
438         }
439
440         while (*p != NULL) {
441                 parent = *p;
442                 th = rb_entry(parent, struct thread, rb_node);
443
444                 if (th->tid == tid) {
445                         threads->last_match = th;
446                         machine__update_thread_pid(machine, th, pid);
447                         return thread__get(th);
448                 }
449
450                 if (tid < th->tid)
451                         p = &(*p)->rb_left;
452                 else
453                         p = &(*p)->rb_right;
454         }
455
456         if (!create)
457                 return NULL;
458
459         th = thread__new(pid, tid);
460         if (th != NULL) {
461                 rb_link_node(&th->rb_node, parent, p);
462                 rb_insert_color(&th->rb_node, &threads->entries);
463
464                 /*
465                  * We have to initialize map_groups separately
466                  * after rb tree is updated.
467                  *
468                  * The reason is that we call machine__findnew_thread
469                  * within thread__init_map_groups to find the thread
470                  * leader and that would screwed the rb tree.
471                  */
472                 if (thread__init_map_groups(th, machine)) {
473                         rb_erase_init(&th->rb_node, &threads->entries);
474                         RB_CLEAR_NODE(&th->rb_node);
475                         thread__put(th);
476                         return NULL;
477                 }
478                 /*
479                  * It is now in the rbtree, get a ref
480                  */
481                 thread__get(th);
482                 threads->last_match = th;
483                 ++threads->nr;
484         }
485
486         return th;
487 }
488
489 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
490 {
491         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492 }
493
494 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
495                                        pid_t tid)
496 {
497         struct threads *threads = machine__threads(machine, tid);
498         struct thread *th;
499
500         down_write(&threads->lock);
501         th = __machine__findnew_thread(machine, pid, tid);
502         up_write(&threads->lock);
503         return th;
504 }
505
506 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
507                                     pid_t tid)
508 {
509         struct threads *threads = machine__threads(machine, tid);
510         struct thread *th;
511
512         down_read(&threads->lock);
513         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
514         up_read(&threads->lock);
515         return th;
516 }
517
518 struct comm *machine__thread_exec_comm(struct machine *machine,
519                                        struct thread *thread)
520 {
521         if (machine->comm_exec)
522                 return thread__exec_comm(thread);
523         else
524                 return thread__comm(thread);
525 }
526
527 int machine__process_comm_event(struct machine *machine, union perf_event *event,
528                                 struct perf_sample *sample)
529 {
530         struct thread *thread = machine__findnew_thread(machine,
531                                                         event->comm.pid,
532                                                         event->comm.tid);
533         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534         int err = 0;
535
536         if (exec)
537                 machine->comm_exec = true;
538
539         if (dump_trace)
540                 perf_event__fprintf_comm(event, stdout);
541
542         if (thread == NULL ||
543             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545                 err = -1;
546         }
547
548         thread__put(thread);
549
550         return err;
551 }
552
553 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
554                                       union perf_event *event,
555                                       struct perf_sample *sample __maybe_unused)
556 {
557         struct thread *thread = machine__findnew_thread(machine,
558                                                         event->namespaces.pid,
559                                                         event->namespaces.tid);
560         int err = 0;
561
562         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
563                   "\nWARNING: kernel seems to support more namespaces than perf"
564                   " tool.\nTry updating the perf tool..\n\n");
565
566         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
567                   "\nWARNING: perf tool seems to support more namespaces than"
568                   " the kernel.\nTry updating the kernel..\n\n");
569
570         if (dump_trace)
571                 perf_event__fprintf_namespaces(event, stdout);
572
573         if (thread == NULL ||
574             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
575                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
576                 err = -1;
577         }
578
579         thread__put(thread);
580
581         return err;
582 }
583
584 int machine__process_lost_event(struct machine *machine __maybe_unused,
585                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
586 {
587         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
588                     event->lost.id, event->lost.lost);
589         return 0;
590 }
591
592 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
593                                         union perf_event *event, struct perf_sample *sample)
594 {
595         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
596                     sample->id, event->lost_samples.lost);
597         return 0;
598 }
599
600 static struct dso *machine__findnew_module_dso(struct machine *machine,
601                                                struct kmod_path *m,
602                                                const char *filename)
603 {
604         struct dso *dso;
605
606         down_write(&machine->dsos.lock);
607
608         dso = __dsos__find(&machine->dsos, m->name, true);
609         if (!dso) {
610                 dso = __dsos__addnew(&machine->dsos, m->name);
611                 if (dso == NULL)
612                         goto out_unlock;
613
614                 dso__set_module_info(dso, m, machine);
615                 dso__set_long_name(dso, strdup(filename), true);
616         }
617
618         dso__get(dso);
619 out_unlock:
620         up_write(&machine->dsos.lock);
621         return dso;
622 }
623
624 int machine__process_aux_event(struct machine *machine __maybe_unused,
625                                union perf_event *event)
626 {
627         if (dump_trace)
628                 perf_event__fprintf_aux(event, stdout);
629         return 0;
630 }
631
632 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
633                                         union perf_event *event)
634 {
635         if (dump_trace)
636                 perf_event__fprintf_itrace_start(event, stdout);
637         return 0;
638 }
639
640 int machine__process_switch_event(struct machine *machine __maybe_unused,
641                                   union perf_event *event)
642 {
643         if (dump_trace)
644                 perf_event__fprintf_switch(event, stdout);
645         return 0;
646 }
647
648 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
649 {
650         const char *dup_filename;
651
652         if (!filename || !dso || !dso->long_name)
653                 return;
654         if (dso->long_name[0] != '[')
655                 return;
656         if (!strchr(filename, '/'))
657                 return;
658
659         dup_filename = strdup(filename);
660         if (!dup_filename)
661                 return;
662
663         dso__set_long_name(dso, dup_filename, true);
664 }
665
666 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
667                                         const char *filename)
668 {
669         struct map *map = NULL;
670         struct dso *dso = NULL;
671         struct kmod_path m;
672
673         if (kmod_path__parse_name(&m, filename))
674                 return NULL;
675
676         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
677                                        m.name);
678         if (map) {
679                 /*
680                  * If the map's dso is an offline module, give dso__load()
681                  * a chance to find the file path of that module by fixing
682                  * long_name.
683                  */
684                 dso__adjust_kmod_long_name(map->dso, filename);
685                 goto out;
686         }
687
688         dso = machine__findnew_module_dso(machine, &m, filename);
689         if (dso == NULL)
690                 goto out;
691
692         map = map__new2(start, dso, MAP__FUNCTION);
693         if (map == NULL)
694                 goto out;
695
696         map_groups__insert(&machine->kmaps, map);
697
698         /* Put the map here because map_groups__insert alread got it */
699         map__put(map);
700 out:
701         /* put the dso here, corresponding to  machine__findnew_module_dso */
702         dso__put(dso);
703         free(m.name);
704         return map;
705 }
706
707 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
708 {
709         struct rb_node *nd;
710         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
711
712         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
713                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
714                 ret += __dsos__fprintf(&pos->dsos.head, fp);
715         }
716
717         return ret;
718 }
719
720 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
721                                      bool (skip)(struct dso *dso, int parm), int parm)
722 {
723         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
724 }
725
726 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
727                                      bool (skip)(struct dso *dso, int parm), int parm)
728 {
729         struct rb_node *nd;
730         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
731
732         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
733                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
734                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
735         }
736         return ret;
737 }
738
739 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
740 {
741         int i;
742         size_t printed = 0;
743         struct dso *kdso = machine__kernel_map(machine)->dso;
744
745         if (kdso->has_build_id) {
746                 char filename[PATH_MAX];
747                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
748                                            false))
749                         printed += fprintf(fp, "[0] %s\n", filename);
750         }
751
752         for (i = 0; i < vmlinux_path__nr_entries; ++i)
753                 printed += fprintf(fp, "[%d] %s\n",
754                                    i + kdso->has_build_id, vmlinux_path[i]);
755
756         return printed;
757 }
758
759 size_t machine__fprintf(struct machine *machine, FILE *fp)
760 {
761         struct rb_node *nd;
762         size_t ret;
763         int i;
764
765         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
766                 struct threads *threads = &machine->threads[i];
767
768                 down_read(&threads->lock);
769
770                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
771
772                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
773                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
774
775                         ret += thread__fprintf(pos, fp);
776                 }
777
778                 up_read(&threads->lock);
779         }
780         return ret;
781 }
782
783 static struct dso *machine__get_kernel(struct machine *machine)
784 {
785         const char *vmlinux_name = machine->mmap_name;
786         struct dso *kernel;
787
788         if (machine__is_host(machine)) {
789                 if (symbol_conf.vmlinux_name)
790                         vmlinux_name = symbol_conf.vmlinux_name;
791
792                 kernel = machine__findnew_kernel(machine, vmlinux_name,
793                                                  "[kernel]", DSO_TYPE_KERNEL);
794         } else {
795                 if (symbol_conf.default_guest_vmlinux_name)
796                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
797
798                 kernel = machine__findnew_kernel(machine, vmlinux_name,
799                                                  "[guest.kernel]",
800                                                  DSO_TYPE_GUEST_KERNEL);
801         }
802
803         if (kernel != NULL && (!kernel->has_build_id))
804                 dso__read_running_kernel_build_id(kernel, machine);
805
806         return kernel;
807 }
808
809 struct process_args {
810         u64 start;
811 };
812
813 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
814                                            size_t bufsz)
815 {
816         if (machine__is_default_guest(machine))
817                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
818         else
819                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
820 }
821
822 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
823
824 /* Figure out the start address of kernel map from /proc/kallsyms.
825  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
826  * symbol_name if it's not that important.
827  */
828 static int machine__get_running_kernel_start(struct machine *machine,
829                                              const char **symbol_name, u64 *start)
830 {
831         char filename[PATH_MAX];
832         int i, err = -1;
833         const char *name;
834         u64 addr = 0;
835
836         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
837
838         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
839                 return 0;
840
841         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
842                 err = kallsyms__get_function_start(filename, name, &addr);
843                 if (!err)
844                         break;
845         }
846
847         if (err)
848                 return -1;
849
850         if (symbol_name)
851                 *symbol_name = name;
852
853         *start = addr;
854         return 0;
855 }
856
857 static int
858 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
859 {
860         int type;
861
862         /* In case of renewal the kernel map, destroy previous one */
863         machine__destroy_kernel_maps(machine);
864
865         for (type = 0; type < MAP__NR_TYPES; ++type) {
866                 struct kmap *kmap;
867                 struct map *map;
868
869                 machine->vmlinux_maps[type] = map__new2(0, kernel, type);
870                 if (machine->vmlinux_maps[type] == NULL)
871                         return -1;
872
873                 machine->vmlinux_maps[type]->map_ip =
874                         machine->vmlinux_maps[type]->unmap_ip =
875                                 identity__map_ip;
876                 map = __machine__kernel_map(machine, type);
877                 kmap = map__kmap(map);
878                 if (!kmap)
879                         return -1;
880
881                 kmap->kmaps = &machine->kmaps;
882                 map_groups__insert(&machine->kmaps, map);
883         }
884
885         return 0;
886 }
887
888 void machine__destroy_kernel_maps(struct machine *machine)
889 {
890         int type;
891
892         for (type = 0; type < MAP__NR_TYPES; ++type) {
893                 struct kmap *kmap;
894                 struct map *map = __machine__kernel_map(machine, type);
895
896                 if (map == NULL)
897                         continue;
898
899                 kmap = map__kmap(map);
900                 map_groups__remove(&machine->kmaps, map);
901                 if (kmap && kmap->ref_reloc_sym) {
902                         /*
903                          * ref_reloc_sym is shared among all maps, so free just
904                          * on one of them.
905                          */
906                         if (type == MAP__FUNCTION) {
907                                 zfree((char **)&kmap->ref_reloc_sym->name);
908                                 zfree(&kmap->ref_reloc_sym);
909                         } else
910                                 kmap->ref_reloc_sym = NULL;
911                 }
912
913                 map__put(machine->vmlinux_maps[type]);
914                 machine->vmlinux_maps[type] = NULL;
915         }
916 }
917
918 int machines__create_guest_kernel_maps(struct machines *machines)
919 {
920         int ret = 0;
921         struct dirent **namelist = NULL;
922         int i, items = 0;
923         char path[PATH_MAX];
924         pid_t pid;
925         char *endp;
926
927         if (symbol_conf.default_guest_vmlinux_name ||
928             symbol_conf.default_guest_modules ||
929             symbol_conf.default_guest_kallsyms) {
930                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
931         }
932
933         if (symbol_conf.guestmount) {
934                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
935                 if (items <= 0)
936                         return -ENOENT;
937                 for (i = 0; i < items; i++) {
938                         if (!isdigit(namelist[i]->d_name[0])) {
939                                 /* Filter out . and .. */
940                                 continue;
941                         }
942                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
943                         if ((*endp != '\0') ||
944                             (endp == namelist[i]->d_name) ||
945                             (errno == ERANGE)) {
946                                 pr_debug("invalid directory (%s). Skipping.\n",
947                                          namelist[i]->d_name);
948                                 continue;
949                         }
950                         sprintf(path, "%s/%s/proc/kallsyms",
951                                 symbol_conf.guestmount,
952                                 namelist[i]->d_name);
953                         ret = access(path, R_OK);
954                         if (ret) {
955                                 pr_debug("Can't access file %s\n", path);
956                                 goto failure;
957                         }
958                         machines__create_kernel_maps(machines, pid);
959                 }
960 failure:
961                 free(namelist);
962         }
963
964         return ret;
965 }
966
967 void machines__destroy_kernel_maps(struct machines *machines)
968 {
969         struct rb_node *next = rb_first(&machines->guests);
970
971         machine__destroy_kernel_maps(&machines->host);
972
973         while (next) {
974                 struct machine *pos = rb_entry(next, struct machine, rb_node);
975
976                 next = rb_next(&pos->rb_node);
977                 rb_erase(&pos->rb_node, &machines->guests);
978                 machine__delete(pos);
979         }
980 }
981
982 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
983 {
984         struct machine *machine = machines__findnew(machines, pid);
985
986         if (machine == NULL)
987                 return -1;
988
989         return machine__create_kernel_maps(machine);
990 }
991
992 int machine__load_kallsyms(struct machine *machine, const char *filename,
993                              enum map_type type)
994 {
995         struct map *map = machine__kernel_map(machine);
996         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
997
998         if (ret > 0) {
999                 dso__set_loaded(map->dso, type);
1000                 /*
1001                  * Since /proc/kallsyms will have multiple sessions for the
1002                  * kernel, with modules between them, fixup the end of all
1003                  * sections.
1004                  */
1005                 __map_groups__fixup_end(&machine->kmaps, type);
1006         }
1007
1008         return ret;
1009 }
1010
1011 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012 {
1013         struct map *map = machine__kernel_map(machine);
1014         int ret = dso__load_vmlinux_path(map->dso, map);
1015
1016         if (ret > 0)
1017                 dso__set_loaded(map->dso, type);
1018
1019         return ret;
1020 }
1021
1022 static char *get_kernel_version(const char *root_dir)
1023 {
1024         char version[PATH_MAX];
1025         FILE *file;
1026         char *name, *tmp;
1027         const char *prefix = "Linux version ";
1028
1029         sprintf(version, "%s/proc/version", root_dir);
1030         file = fopen(version, "r");
1031         if (!file)
1032                 return NULL;
1033
1034         version[0] = '\0';
1035         tmp = fgets(version, sizeof(version), file);
1036         fclose(file);
1037
1038         name = strstr(version, prefix);
1039         if (!name)
1040                 return NULL;
1041         name += strlen(prefix);
1042         tmp = strchr(name, ' ');
1043         if (tmp)
1044                 *tmp = '\0';
1045
1046         return strdup(name);
1047 }
1048
1049 static bool is_kmod_dso(struct dso *dso)
1050 {
1051         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1052                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1053 }
1054
1055 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1056                                        struct kmod_path *m)
1057 {
1058         struct map *map;
1059         char *long_name;
1060
1061         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1062         if (map == NULL)
1063                 return 0;
1064
1065         long_name = strdup(path);
1066         if (long_name == NULL)
1067                 return -ENOMEM;
1068
1069         dso__set_long_name(map->dso, long_name, true);
1070         dso__kernel_module_get_build_id(map->dso, "");
1071
1072         /*
1073          * Full name could reveal us kmod compression, so
1074          * we need to update the symtab_type if needed.
1075          */
1076         if (m->comp && is_kmod_dso(map->dso))
1077                 map->dso->symtab_type++;
1078
1079         return 0;
1080 }
1081
1082 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1083                                 const char *dir_name, int depth)
1084 {
1085         struct dirent *dent;
1086         DIR *dir = opendir(dir_name);
1087         int ret = 0;
1088
1089         if (!dir) {
1090                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1091                 return -1;
1092         }
1093
1094         while ((dent = readdir(dir)) != NULL) {
1095                 char path[PATH_MAX];
1096                 struct stat st;
1097
1098                 /*sshfs might return bad dent->d_type, so we have to stat*/
1099                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1100                 if (stat(path, &st))
1101                         continue;
1102
1103                 if (S_ISDIR(st.st_mode)) {
1104                         if (!strcmp(dent->d_name, ".") ||
1105                             !strcmp(dent->d_name, ".."))
1106                                 continue;
1107
1108                         /* Do not follow top-level source and build symlinks */
1109                         if (depth == 0) {
1110                                 if (!strcmp(dent->d_name, "source") ||
1111                                     !strcmp(dent->d_name, "build"))
1112                                         continue;
1113                         }
1114
1115                         ret = map_groups__set_modules_path_dir(mg, path,
1116                                                                depth + 1);
1117                         if (ret < 0)
1118                                 goto out;
1119                 } else {
1120                         struct kmod_path m;
1121
1122                         ret = kmod_path__parse_name(&m, dent->d_name);
1123                         if (ret)
1124                                 goto out;
1125
1126                         if (m.kmod)
1127                                 ret = map_groups__set_module_path(mg, path, &m);
1128
1129                         free(m.name);
1130
1131                         if (ret)
1132                                 goto out;
1133                 }
1134         }
1135
1136 out:
1137         closedir(dir);
1138         return ret;
1139 }
1140
1141 static int machine__set_modules_path(struct machine *machine)
1142 {
1143         char *version;
1144         char modules_path[PATH_MAX];
1145
1146         version = get_kernel_version(machine->root_dir);
1147         if (!version)
1148                 return -1;
1149
1150         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1151                  machine->root_dir, version);
1152         free(version);
1153
1154         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1155 }
1156 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1157                                 const char *name __maybe_unused)
1158 {
1159         return 0;
1160 }
1161
1162 static int machine__create_module(void *arg, const char *name, u64 start,
1163                                   u64 size)
1164 {
1165         struct machine *machine = arg;
1166         struct map *map;
1167
1168         if (arch__fix_module_text_start(&start, name) < 0)
1169                 return -1;
1170
1171         map = machine__findnew_module_map(machine, start, name);
1172         if (map == NULL)
1173                 return -1;
1174         map->end = start + size;
1175
1176         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1177
1178         return 0;
1179 }
1180
1181 static int machine__create_modules(struct machine *machine)
1182 {
1183         const char *modules;
1184         char path[PATH_MAX];
1185
1186         if (machine__is_default_guest(machine)) {
1187                 modules = symbol_conf.default_guest_modules;
1188         } else {
1189                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1190                 modules = path;
1191         }
1192
1193         if (symbol__restricted_filename(modules, "/proc/modules"))
1194                 return -1;
1195
1196         if (modules__parse(modules, machine, machine__create_module))
1197                 return -1;
1198
1199         if (!machine__set_modules_path(machine))
1200                 return 0;
1201
1202         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1203
1204         return 0;
1205 }
1206
1207 static void machine__set_kernel_mmap(struct machine *machine,
1208                                      u64 start, u64 end)
1209 {
1210         int i;
1211
1212         for (i = 0; i < MAP__NR_TYPES; i++) {
1213                 machine->vmlinux_maps[i]->start = start;
1214                 machine->vmlinux_maps[i]->end   = end;
1215
1216                 /*
1217                  * Be a bit paranoid here, some perf.data file came with
1218                  * a zero sized synthesized MMAP event for the kernel.
1219                  */
1220                 if (start == 0 && end == 0)
1221                         machine->vmlinux_maps[i]->end = ~0ULL;
1222         }
1223 }
1224
1225 int machine__create_kernel_maps(struct machine *machine)
1226 {
1227         struct dso *kernel = machine__get_kernel(machine);
1228         const char *name = NULL;
1229         struct map *map;
1230         u64 addr = 0;
1231         int ret;
1232
1233         if (kernel == NULL)
1234                 return -1;
1235
1236         ret = __machine__create_kernel_maps(machine, kernel);
1237         dso__put(kernel);
1238         if (ret < 0)
1239                 return -1;
1240
1241         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1242                 if (machine__is_host(machine))
1243                         pr_debug("Problems creating module maps, "
1244                                  "continuing anyway...\n");
1245                 else
1246                         pr_debug("Problems creating module maps for guest %d, "
1247                                  "continuing anyway...\n", machine->pid);
1248         }
1249
1250         if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1251                 if (name &&
1252                     maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1253                         machine__destroy_kernel_maps(machine);
1254                         return -1;
1255                 }
1256
1257                 /* we have a real start address now, so re-order the kmaps */
1258                 map = machine__kernel_map(machine);
1259
1260                 map__get(map);
1261                 map_groups__remove(&machine->kmaps, map);
1262
1263                 /* assume it's the last in the kmaps */
1264                 machine__set_kernel_mmap(machine, addr, ~0ULL);
1265
1266                 map_groups__insert(&machine->kmaps, map);
1267                 map__put(map);
1268         }
1269
1270         /* update end address of the kernel map using adjacent module address */
1271         map = map__next(machine__kernel_map(machine));
1272         if (map)
1273                 machine__set_kernel_mmap(machine, addr, map->start);
1274
1275         return 0;
1276 }
1277
1278 static bool machine__uses_kcore(struct machine *machine)
1279 {
1280         struct dso *dso;
1281
1282         list_for_each_entry(dso, &machine->dsos.head, node) {
1283                 if (dso__is_kcore(dso))
1284                         return true;
1285         }
1286
1287         return false;
1288 }
1289
1290 static int machine__process_kernel_mmap_event(struct machine *machine,
1291                                               union perf_event *event)
1292 {
1293         struct map *map;
1294         enum dso_kernel_type kernel_type;
1295         bool is_kernel_mmap;
1296
1297         /* If we have maps from kcore then we do not need or want any others */
1298         if (machine__uses_kcore(machine))
1299                 return 0;
1300
1301         if (machine__is_host(machine))
1302                 kernel_type = DSO_TYPE_KERNEL;
1303         else
1304                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1305
1306         is_kernel_mmap = memcmp(event->mmap.filename,
1307                                 machine->mmap_name,
1308                                 strlen(machine->mmap_name) - 1) == 0;
1309         if (event->mmap.filename[0] == '/' ||
1310             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311                 map = machine__findnew_module_map(machine, event->mmap.start,
1312                                                   event->mmap.filename);
1313                 if (map == NULL)
1314                         goto out_problem;
1315
1316                 map->end = map->start + event->mmap.len;
1317         } else if (is_kernel_mmap) {
1318                 const char *symbol_name = (event->mmap.filename +
1319                                 strlen(machine->mmap_name));
1320                 /*
1321                  * Should be there already, from the build-id table in
1322                  * the header.
1323                  */
1324                 struct dso *kernel = NULL;
1325                 struct dso *dso;
1326
1327                 down_read(&machine->dsos.lock);
1328
1329                 list_for_each_entry(dso, &machine->dsos.head, node) {
1330
1331                         /*
1332                          * The cpumode passed to is_kernel_module is not the
1333                          * cpumode of *this* event. If we insist on passing
1334                          * correct cpumode to is_kernel_module, we should
1335                          * record the cpumode when we adding this dso to the
1336                          * linked list.
1337                          *
1338                          * However we don't really need passing correct
1339                          * cpumode.  We know the correct cpumode must be kernel
1340                          * mode (if not, we should not link it onto kernel_dsos
1341                          * list).
1342                          *
1343                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344                          * is_kernel_module() treats it as a kernel cpumode.
1345                          */
1346
1347                         if (!dso->kernel ||
1348                             is_kernel_module(dso->long_name,
1349                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350                                 continue;
1351
1352
1353                         kernel = dso;
1354                         break;
1355                 }
1356
1357                 up_read(&machine->dsos.lock);
1358
1359                 if (kernel == NULL)
1360                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1361                 if (kernel == NULL)
1362                         goto out_problem;
1363
1364                 kernel->kernel = kernel_type;
1365                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366                         dso__put(kernel);
1367                         goto out_problem;
1368                 }
1369
1370                 if (strstr(kernel->long_name, "vmlinux"))
1371                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372
1373                 machine__set_kernel_mmap(machine, event->mmap.start,
1374                                          event->mmap.start + event->mmap.len);
1375
1376                 /*
1377                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1378                  * symbol. Effectively having zero here means that at record
1379                  * time /proc/sys/kernel/kptr_restrict was non zero.
1380                  */
1381                 if (event->mmap.pgoff != 0) {
1382                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1383                                                          symbol_name,
1384                                                          event->mmap.pgoff);
1385                 }
1386
1387                 if (machine__is_default_guest(machine)) {
1388                         /*
1389                          * preload dso of guest kernel and modules
1390                          */
1391                         dso__load(kernel, machine__kernel_map(machine));
1392                 }
1393         }
1394         return 0;
1395 out_problem:
1396         return -1;
1397 }
1398
1399 int machine__process_mmap2_event(struct machine *machine,
1400                                  union perf_event *event,
1401                                  struct perf_sample *sample)
1402 {
1403         struct thread *thread;
1404         struct map *map;
1405         enum map_type type;
1406         int ret = 0;
1407
1408         if (dump_trace)
1409                 perf_event__fprintf_mmap2(event, stdout);
1410
1411         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1412             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1413                 ret = machine__process_kernel_mmap_event(machine, event);
1414                 if (ret < 0)
1415                         goto out_problem;
1416                 return 0;
1417         }
1418
1419         thread = machine__findnew_thread(machine, event->mmap2.pid,
1420                                         event->mmap2.tid);
1421         if (thread == NULL)
1422                 goto out_problem;
1423
1424         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1425                 type = MAP__VARIABLE;
1426         else
1427                 type = MAP__FUNCTION;
1428
1429         map = map__new(machine, event->mmap2.start,
1430                         event->mmap2.len, event->mmap2.pgoff,
1431                         event->mmap2.maj,
1432                         event->mmap2.min, event->mmap2.ino,
1433                         event->mmap2.ino_generation,
1434                         event->mmap2.prot,
1435                         event->mmap2.flags,
1436                         event->mmap2.filename, type, thread);
1437
1438         if (map == NULL)
1439                 goto out_problem_map;
1440
1441         ret = thread__insert_map(thread, map);
1442         if (ret)
1443                 goto out_problem_insert;
1444
1445         thread__put(thread);
1446         map__put(map);
1447         return 0;
1448
1449 out_problem_insert:
1450         map__put(map);
1451 out_problem_map:
1452         thread__put(thread);
1453 out_problem:
1454         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1455         return 0;
1456 }
1457
1458 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1459                                 struct perf_sample *sample)
1460 {
1461         struct thread *thread;
1462         struct map *map;
1463         enum map_type type;
1464         int ret = 0;
1465
1466         if (dump_trace)
1467                 perf_event__fprintf_mmap(event, stdout);
1468
1469         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1470             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1471                 ret = machine__process_kernel_mmap_event(machine, event);
1472                 if (ret < 0)
1473                         goto out_problem;
1474                 return 0;
1475         }
1476
1477         thread = machine__findnew_thread(machine, event->mmap.pid,
1478                                          event->mmap.tid);
1479         if (thread == NULL)
1480                 goto out_problem;
1481
1482         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1483                 type = MAP__VARIABLE;
1484         else
1485                 type = MAP__FUNCTION;
1486
1487         map = map__new(machine, event->mmap.start,
1488                         event->mmap.len, event->mmap.pgoff,
1489                         0, 0, 0, 0, 0, 0,
1490                         event->mmap.filename,
1491                         type, thread);
1492
1493         if (map == NULL)
1494                 goto out_problem_map;
1495
1496         ret = thread__insert_map(thread, map);
1497         if (ret)
1498                 goto out_problem_insert;
1499
1500         thread__put(thread);
1501         map__put(map);
1502         return 0;
1503
1504 out_problem_insert:
1505         map__put(map);
1506 out_problem_map:
1507         thread__put(thread);
1508 out_problem:
1509         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1510         return 0;
1511 }
1512
1513 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1514 {
1515         struct threads *threads = machine__threads(machine, th->tid);
1516
1517         if (threads->last_match == th)
1518                 threads->last_match = NULL;
1519
1520         BUG_ON(refcount_read(&th->refcnt) == 0);
1521         if (lock)
1522                 down_write(&threads->lock);
1523         rb_erase_init(&th->rb_node, &threads->entries);
1524         RB_CLEAR_NODE(&th->rb_node);
1525         --threads->nr;
1526         /*
1527          * Move it first to the dead_threads list, then drop the reference,
1528          * if this is the last reference, then the thread__delete destructor
1529          * will be called and we will remove it from the dead_threads list.
1530          */
1531         list_add_tail(&th->node, &threads->dead);
1532         if (lock)
1533                 up_write(&threads->lock);
1534         thread__put(th);
1535 }
1536
1537 void machine__remove_thread(struct machine *machine, struct thread *th)
1538 {
1539         return __machine__remove_thread(machine, th, true);
1540 }
1541
1542 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1543                                 struct perf_sample *sample)
1544 {
1545         struct thread *thread = machine__find_thread(machine,
1546                                                      event->fork.pid,
1547                                                      event->fork.tid);
1548         struct thread *parent = machine__findnew_thread(machine,
1549                                                         event->fork.ppid,
1550                                                         event->fork.ptid);
1551         int err = 0;
1552
1553         if (dump_trace)
1554                 perf_event__fprintf_task(event, stdout);
1555
1556         /*
1557          * There may be an existing thread that is not actually the parent,
1558          * either because we are processing events out of order, or because the
1559          * (fork) event that would have removed the thread was lost. Assume the
1560          * latter case and continue on as best we can.
1561          */
1562         if (parent->pid_ != (pid_t)event->fork.ppid) {
1563                 dump_printf("removing erroneous parent thread %d/%d\n",
1564                             parent->pid_, parent->tid);
1565                 machine__remove_thread(machine, parent);
1566                 thread__put(parent);
1567                 parent = machine__findnew_thread(machine, event->fork.ppid,
1568                                                  event->fork.ptid);
1569         }
1570
1571         /* if a thread currently exists for the thread id remove it */
1572         if (thread != NULL) {
1573                 machine__remove_thread(machine, thread);
1574                 thread__put(thread);
1575         }
1576
1577         thread = machine__findnew_thread(machine, event->fork.pid,
1578                                          event->fork.tid);
1579
1580         if (thread == NULL || parent == NULL ||
1581             thread__fork(thread, parent, sample->time) < 0) {
1582                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1583                 err = -1;
1584         }
1585         thread__put(thread);
1586         thread__put(parent);
1587
1588         return err;
1589 }
1590
1591 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1592                                 struct perf_sample *sample __maybe_unused)
1593 {
1594         struct thread *thread = machine__find_thread(machine,
1595                                                      event->fork.pid,
1596                                                      event->fork.tid);
1597
1598         if (dump_trace)
1599                 perf_event__fprintf_task(event, stdout);
1600
1601         if (thread != NULL) {
1602                 thread__exited(thread);
1603                 thread__put(thread);
1604         }
1605
1606         return 0;
1607 }
1608
1609 int machine__process_event(struct machine *machine, union perf_event *event,
1610                            struct perf_sample *sample)
1611 {
1612         int ret;
1613
1614         switch (event->header.type) {
1615         case PERF_RECORD_COMM:
1616                 ret = machine__process_comm_event(machine, event, sample); break;
1617         case PERF_RECORD_MMAP:
1618                 ret = machine__process_mmap_event(machine, event, sample); break;
1619         case PERF_RECORD_NAMESPACES:
1620                 ret = machine__process_namespaces_event(machine, event, sample); break;
1621         case PERF_RECORD_MMAP2:
1622                 ret = machine__process_mmap2_event(machine, event, sample); break;
1623         case PERF_RECORD_FORK:
1624                 ret = machine__process_fork_event(machine, event, sample); break;
1625         case PERF_RECORD_EXIT:
1626                 ret = machine__process_exit_event(machine, event, sample); break;
1627         case PERF_RECORD_LOST:
1628                 ret = machine__process_lost_event(machine, event, sample); break;
1629         case PERF_RECORD_AUX:
1630                 ret = machine__process_aux_event(machine, event); break;
1631         case PERF_RECORD_ITRACE_START:
1632                 ret = machine__process_itrace_start_event(machine, event); break;
1633         case PERF_RECORD_LOST_SAMPLES:
1634                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1635         case PERF_RECORD_SWITCH:
1636         case PERF_RECORD_SWITCH_CPU_WIDE:
1637                 ret = machine__process_switch_event(machine, event); break;
1638         default:
1639                 ret = -1;
1640                 break;
1641         }
1642
1643         return ret;
1644 }
1645
1646 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1647 {
1648         if (!regexec(regex, sym->name, 0, NULL, 0))
1649                 return 1;
1650         return 0;
1651 }
1652
1653 static void ip__resolve_ams(struct thread *thread,
1654                             struct addr_map_symbol *ams,
1655                             u64 ip)
1656 {
1657         struct addr_location al;
1658
1659         memset(&al, 0, sizeof(al));
1660         /*
1661          * We cannot use the header.misc hint to determine whether a
1662          * branch stack address is user, kernel, guest, hypervisor.
1663          * Branches may straddle the kernel/user/hypervisor boundaries.
1664          * Thus, we have to try consecutively until we find a match
1665          * or else, the symbol is unknown
1666          */
1667         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1668
1669         ams->addr = ip;
1670         ams->al_addr = al.addr;
1671         ams->sym = al.sym;
1672         ams->map = al.map;
1673         ams->phys_addr = 0;
1674 }
1675
1676 static void ip__resolve_data(struct thread *thread,
1677                              u8 m, struct addr_map_symbol *ams,
1678                              u64 addr, u64 phys_addr)
1679 {
1680         struct addr_location al;
1681
1682         memset(&al, 0, sizeof(al));
1683
1684         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1685         if (al.map == NULL) {
1686                 /*
1687                  * some shared data regions have execute bit set which puts
1688                  * their mapping in the MAP__FUNCTION type array.
1689                  * Check there as a fallback option before dropping the sample.
1690                  */
1691                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1692         }
1693
1694         ams->addr = addr;
1695         ams->al_addr = al.addr;
1696         ams->sym = al.sym;
1697         ams->map = al.map;
1698         ams->phys_addr = phys_addr;
1699 }
1700
1701 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1702                                      struct addr_location *al)
1703 {
1704         struct mem_info *mi = mem_info__new();
1705
1706         if (!mi)
1707                 return NULL;
1708
1709         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1710         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1711                          sample->addr, sample->phys_addr);
1712         mi->data_src.val = sample->data_src;
1713
1714         return mi;
1715 }
1716
1717 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1718 {
1719         char *srcline = NULL;
1720
1721         if (!map || callchain_param.key == CCKEY_FUNCTION)
1722                 return srcline;
1723
1724         srcline = srcline__tree_find(&map->dso->srclines, ip);
1725         if (!srcline) {
1726                 bool show_sym = false;
1727                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1728
1729                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1730                                       sym, show_sym, show_addr, ip);
1731                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1732         }
1733
1734         return srcline;
1735 }
1736
1737 struct iterations {
1738         int nr_loop_iter;
1739         u64 cycles;
1740 };
1741
1742 static int add_callchain_ip(struct thread *thread,
1743                             struct callchain_cursor *cursor,
1744                             struct symbol **parent,
1745                             struct addr_location *root_al,
1746                             u8 *cpumode,
1747                             u64 ip,
1748                             bool branch,
1749                             struct branch_flags *flags,
1750                             struct iterations *iter,
1751                             u64 branch_from)
1752 {
1753         struct addr_location al;
1754         int nr_loop_iter = 0;
1755         u64 iter_cycles = 0;
1756         const char *srcline = NULL;
1757
1758         al.filtered = 0;
1759         al.sym = NULL;
1760         if (!cpumode) {
1761                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1762                                                    ip, &al);
1763         } else {
1764                 if (ip >= PERF_CONTEXT_MAX) {
1765                         switch (ip) {
1766                         case PERF_CONTEXT_HV:
1767                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1768                                 break;
1769                         case PERF_CONTEXT_KERNEL:
1770                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1771                                 break;
1772                         case PERF_CONTEXT_USER:
1773                                 *cpumode = PERF_RECORD_MISC_USER;
1774                                 break;
1775                         default:
1776                                 pr_debug("invalid callchain context: "
1777                                          "%"PRId64"\n", (s64) ip);
1778                                 /*
1779                                  * It seems the callchain is corrupted.
1780                                  * Discard all.
1781                                  */
1782                                 callchain_cursor_reset(cursor);
1783                                 return 1;
1784                         }
1785                         return 0;
1786                 }
1787                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1788                                            ip, &al);
1789         }
1790
1791         if (al.sym != NULL) {
1792                 if (perf_hpp_list.parent && !*parent &&
1793                     symbol__match_regex(al.sym, &parent_regex))
1794                         *parent = al.sym;
1795                 else if (have_ignore_callees && root_al &&
1796                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1797                         /* Treat this symbol as the root,
1798                            forgetting its callees. */
1799                         *root_al = al;
1800                         callchain_cursor_reset(cursor);
1801                 }
1802         }
1803
1804         if (symbol_conf.hide_unresolved && al.sym == NULL)
1805                 return 0;
1806
1807         if (iter) {
1808                 nr_loop_iter = iter->nr_loop_iter;
1809                 iter_cycles = iter->cycles;
1810         }
1811
1812         srcline = callchain_srcline(al.map, al.sym, al.addr);
1813         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1814                                        branch, flags, nr_loop_iter,
1815                                        iter_cycles, branch_from, srcline);
1816 }
1817
1818 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1819                                            struct addr_location *al)
1820 {
1821         unsigned int i;
1822         const struct branch_stack *bs = sample->branch_stack;
1823         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1824
1825         if (!bi)
1826                 return NULL;
1827
1828         for (i = 0; i < bs->nr; i++) {
1829                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1830                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1831                 bi[i].flags = bs->entries[i].flags;
1832         }
1833         return bi;
1834 }
1835
1836 static void save_iterations(struct iterations *iter,
1837                             struct branch_entry *be, int nr)
1838 {
1839         int i;
1840
1841         iter->nr_loop_iter = nr;
1842         iter->cycles = 0;
1843
1844         for (i = 0; i < nr; i++)
1845                 iter->cycles += be[i].flags.cycles;
1846 }
1847
1848 #define CHASHSZ 127
1849 #define CHASHBITS 7
1850 #define NO_ENTRY 0xff
1851
1852 #define PERF_MAX_BRANCH_DEPTH 127
1853
1854 /* Remove loops. */
1855 static int remove_loops(struct branch_entry *l, int nr,
1856                         struct iterations *iter)
1857 {
1858         int i, j, off;
1859         unsigned char chash[CHASHSZ];
1860
1861         memset(chash, NO_ENTRY, sizeof(chash));
1862
1863         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1864
1865         for (i = 0; i < nr; i++) {
1866                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1867
1868                 /* no collision handling for now */
1869                 if (chash[h] == NO_ENTRY) {
1870                         chash[h] = i;
1871                 } else if (l[chash[h]].from == l[i].from) {
1872                         bool is_loop = true;
1873                         /* check if it is a real loop */
1874                         off = 0;
1875                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1876                                 if (l[j].from != l[i + off].from) {
1877                                         is_loop = false;
1878                                         break;
1879                                 }
1880                         if (is_loop) {
1881                                 j = nr - (i + off);
1882                                 if (j > 0) {
1883                                         save_iterations(iter + i + off,
1884                                                 l + i, off);
1885
1886                                         memmove(iter + i, iter + i + off,
1887                                                 j * sizeof(*iter));
1888
1889                                         memmove(l + i, l + i + off,
1890                                                 j * sizeof(*l));
1891                                 }
1892
1893                                 nr -= off;
1894                         }
1895                 }
1896         }
1897         return nr;
1898 }
1899
1900 /*
1901  * Recolve LBR callstack chain sample
1902  * Return:
1903  * 1 on success get LBR callchain information
1904  * 0 no available LBR callchain information, should try fp
1905  * negative error code on other errors.
1906  */
1907 static int resolve_lbr_callchain_sample(struct thread *thread,
1908                                         struct callchain_cursor *cursor,
1909                                         struct perf_sample *sample,
1910                                         struct symbol **parent,
1911                                         struct addr_location *root_al,
1912                                         int max_stack)
1913 {
1914         struct ip_callchain *chain = sample->callchain;
1915         int chain_nr = min(max_stack, (int)chain->nr), i;
1916         u8 cpumode = PERF_RECORD_MISC_USER;
1917         u64 ip, branch_from = 0;
1918
1919         for (i = 0; i < chain_nr; i++) {
1920                 if (chain->ips[i] == PERF_CONTEXT_USER)
1921                         break;
1922         }
1923
1924         /* LBR only affects the user callchain */
1925         if (i != chain_nr) {
1926                 struct branch_stack *lbr_stack = sample->branch_stack;
1927                 int lbr_nr = lbr_stack->nr, j, k;
1928                 bool branch;
1929                 struct branch_flags *flags;
1930                 /*
1931                  * LBR callstack can only get user call chain.
1932                  * The mix_chain_nr is kernel call chain
1933                  * number plus LBR user call chain number.
1934                  * i is kernel call chain number,
1935                  * 1 is PERF_CONTEXT_USER,
1936                  * lbr_nr + 1 is the user call chain number.
1937                  * For details, please refer to the comments
1938                  * in callchain__printf
1939                  */
1940                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1941
1942                 for (j = 0; j < mix_chain_nr; j++) {
1943                         int err;
1944                         branch = false;
1945                         flags = NULL;
1946
1947                         if (callchain_param.order == ORDER_CALLEE) {
1948                                 if (j < i + 1)
1949                                         ip = chain->ips[j];
1950                                 else if (j > i + 1) {
1951                                         k = j - i - 2;
1952                                         ip = lbr_stack->entries[k].from;
1953                                         branch = true;
1954                                         flags = &lbr_stack->entries[k].flags;
1955                                 } else {
1956                                         ip = lbr_stack->entries[0].to;
1957                                         branch = true;
1958                                         flags = &lbr_stack->entries[0].flags;
1959                                         branch_from =
1960                                                 lbr_stack->entries[0].from;
1961                                 }
1962                         } else {
1963                                 if (j < lbr_nr) {
1964                                         k = lbr_nr - j - 1;
1965                                         ip = lbr_stack->entries[k].from;
1966                                         branch = true;
1967                                         flags = &lbr_stack->entries[k].flags;
1968                                 }
1969                                 else if (j > lbr_nr)
1970                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1971                                 else {
1972                                         ip = lbr_stack->entries[0].to;
1973                                         branch = true;
1974                                         flags = &lbr_stack->entries[0].flags;
1975                                         branch_from =
1976                                                 lbr_stack->entries[0].from;
1977                                 }
1978                         }
1979
1980                         err = add_callchain_ip(thread, cursor, parent,
1981                                                root_al, &cpumode, ip,
1982                                                branch, flags, NULL,
1983                                                branch_from);
1984                         if (err)
1985                                 return (err < 0) ? err : 0;
1986                 }
1987                 return 1;
1988         }
1989
1990         return 0;
1991 }
1992
1993 static int thread__resolve_callchain_sample(struct thread *thread,
1994                                             struct callchain_cursor *cursor,
1995                                             struct perf_evsel *evsel,
1996                                             struct perf_sample *sample,
1997                                             struct symbol **parent,
1998                                             struct addr_location *root_al,
1999                                             int max_stack)
2000 {
2001         struct branch_stack *branch = sample->branch_stack;
2002         struct ip_callchain *chain = sample->callchain;
2003         int chain_nr = 0;
2004         u8 cpumode = PERF_RECORD_MISC_USER;
2005         int i, j, err, nr_entries;
2006         int skip_idx = -1;
2007         int first_call = 0;
2008
2009         if (chain)
2010                 chain_nr = chain->nr;
2011
2012         if (perf_evsel__has_branch_callstack(evsel)) {
2013                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2014                                                    root_al, max_stack);
2015                 if (err)
2016                         return (err < 0) ? err : 0;
2017         }
2018
2019         /*
2020          * Based on DWARF debug information, some architectures skip
2021          * a callchain entry saved by the kernel.
2022          */
2023         skip_idx = arch_skip_callchain_idx(thread, chain);
2024
2025         /*
2026          * Add branches to call stack for easier browsing. This gives
2027          * more context for a sample than just the callers.
2028          *
2029          * This uses individual histograms of paths compared to the
2030          * aggregated histograms the normal LBR mode uses.
2031          *
2032          * Limitations for now:
2033          * - No extra filters
2034          * - No annotations (should annotate somehow)
2035          */
2036
2037         if (branch && callchain_param.branch_callstack) {
2038                 int nr = min(max_stack, (int)branch->nr);
2039                 struct branch_entry be[nr];
2040                 struct iterations iter[nr];
2041
2042                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2043                         pr_warning("corrupted branch chain. skipping...\n");
2044                         goto check_calls;
2045                 }
2046
2047                 for (i = 0; i < nr; i++) {
2048                         if (callchain_param.order == ORDER_CALLEE) {
2049                                 be[i] = branch->entries[i];
2050
2051                                 if (chain == NULL)
2052                                         continue;
2053
2054                                 /*
2055                                  * Check for overlap into the callchain.
2056                                  * The return address is one off compared to
2057                                  * the branch entry. To adjust for this
2058                                  * assume the calling instruction is not longer
2059                                  * than 8 bytes.
2060                                  */
2061                                 if (i == skip_idx ||
2062                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2063                                         first_call++;
2064                                 else if (be[i].from < chain->ips[first_call] &&
2065                                     be[i].from >= chain->ips[first_call] - 8)
2066                                         first_call++;
2067                         } else
2068                                 be[i] = branch->entries[branch->nr - i - 1];
2069                 }
2070
2071                 memset(iter, 0, sizeof(struct iterations) * nr);
2072                 nr = remove_loops(be, nr, iter);
2073
2074                 for (i = 0; i < nr; i++) {
2075                         err = add_callchain_ip(thread, cursor, parent,
2076                                                root_al,
2077                                                NULL, be[i].to,
2078                                                true, &be[i].flags,
2079                                                NULL, be[i].from);
2080
2081                         if (!err)
2082                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2083                                                        NULL, be[i].from,
2084                                                        true, &be[i].flags,
2085                                                        &iter[i], 0);
2086                         if (err == -EINVAL)
2087                                 break;
2088                         if (err)
2089                                 return err;
2090                 }
2091
2092                 if (chain_nr == 0)
2093                         return 0;
2094
2095                 chain_nr -= nr;
2096         }
2097
2098 check_calls:
2099         for (i = first_call, nr_entries = 0;
2100              i < chain_nr && nr_entries < max_stack; i++) {
2101                 u64 ip;
2102
2103                 if (callchain_param.order == ORDER_CALLEE)
2104                         j = i;
2105                 else
2106                         j = chain->nr - i - 1;
2107
2108 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2109                 if (j == skip_idx)
2110                         continue;
2111 #endif
2112                 ip = chain->ips[j];
2113
2114                 if (ip < PERF_CONTEXT_MAX)
2115                        ++nr_entries;
2116
2117                 err = add_callchain_ip(thread, cursor, parent,
2118                                        root_al, &cpumode, ip,
2119                                        false, NULL, NULL, 0);
2120
2121                 if (err)
2122                         return (err < 0) ? err : 0;
2123         }
2124
2125         return 0;
2126 }
2127
2128 static int append_inlines(struct callchain_cursor *cursor,
2129                           struct map *map, struct symbol *sym, u64 ip)
2130 {
2131         struct inline_node *inline_node;
2132         struct inline_list *ilist;
2133         u64 addr;
2134         int ret = 1;
2135
2136         if (!symbol_conf.inline_name || !map || !sym)
2137                 return ret;
2138
2139         addr = map__rip_2objdump(map, ip);
2140
2141         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2142         if (!inline_node) {
2143                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2144                 if (!inline_node)
2145                         return ret;
2146                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2147         }
2148
2149         list_for_each_entry(ilist, &inline_node->val, list) {
2150                 ret = callchain_cursor_append(cursor, ip, map,
2151                                               ilist->symbol, false,
2152                                               NULL, 0, 0, 0, ilist->srcline);
2153
2154                 if (ret != 0)
2155                         return ret;
2156         }
2157
2158         return ret;
2159 }
2160
2161 static int unwind_entry(struct unwind_entry *entry, void *arg)
2162 {
2163         struct callchain_cursor *cursor = arg;
2164         const char *srcline = NULL;
2165
2166         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2167                 return 0;
2168
2169         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2170                 return 0;
2171
2172         srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2173         return callchain_cursor_append(cursor, entry->ip,
2174                                        entry->map, entry->sym,
2175                                        false, NULL, 0, 0, 0, srcline);
2176 }
2177
2178 static int thread__resolve_callchain_unwind(struct thread *thread,
2179                                             struct callchain_cursor *cursor,
2180                                             struct perf_evsel *evsel,
2181                                             struct perf_sample *sample,
2182                                             int max_stack)
2183 {
2184         /* Can we do dwarf post unwind? */
2185         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2186               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2187                 return 0;
2188
2189         /* Bail out if nothing was captured. */
2190         if ((!sample->user_regs.regs) ||
2191             (!sample->user_stack.size))
2192                 return 0;
2193
2194         return unwind__get_entries(unwind_entry, cursor,
2195                                    thread, sample, max_stack);
2196 }
2197
2198 int thread__resolve_callchain(struct thread *thread,
2199                               struct callchain_cursor *cursor,
2200                               struct perf_evsel *evsel,
2201                               struct perf_sample *sample,
2202                               struct symbol **parent,
2203                               struct addr_location *root_al,
2204                               int max_stack)
2205 {
2206         int ret = 0;
2207
2208         callchain_cursor_reset(cursor);
2209
2210         if (callchain_param.order == ORDER_CALLEE) {
2211                 ret = thread__resolve_callchain_sample(thread, cursor,
2212                                                        evsel, sample,
2213                                                        parent, root_al,
2214                                                        max_stack);
2215                 if (ret)
2216                         return ret;
2217                 ret = thread__resolve_callchain_unwind(thread, cursor,
2218                                                        evsel, sample,
2219                                                        max_stack);
2220         } else {
2221                 ret = thread__resolve_callchain_unwind(thread, cursor,
2222                                                        evsel, sample,
2223                                                        max_stack);
2224                 if (ret)
2225                         return ret;
2226                 ret = thread__resolve_callchain_sample(thread, cursor,
2227                                                        evsel, sample,
2228                                                        parent, root_al,
2229                                                        max_stack);
2230         }
2231
2232         return ret;
2233 }
2234
2235 int machine__for_each_thread(struct machine *machine,
2236                              int (*fn)(struct thread *thread, void *p),
2237                              void *priv)
2238 {
2239         struct threads *threads;
2240         struct rb_node *nd;
2241         struct thread *thread;
2242         int rc = 0;
2243         int i;
2244
2245         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2246                 threads = &machine->threads[i];
2247                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2248                         thread = rb_entry(nd, struct thread, rb_node);
2249                         rc = fn(thread, priv);
2250                         if (rc != 0)
2251                                 return rc;
2252                 }
2253
2254                 list_for_each_entry(thread, &threads->dead, node) {
2255                         rc = fn(thread, priv);
2256                         if (rc != 0)
2257                                 return rc;
2258                 }
2259         }
2260         return rc;
2261 }
2262
2263 int machines__for_each_thread(struct machines *machines,
2264                               int (*fn)(struct thread *thread, void *p),
2265                               void *priv)
2266 {
2267         struct rb_node *nd;
2268         int rc = 0;
2269
2270         rc = machine__for_each_thread(&machines->host, fn, priv);
2271         if (rc != 0)
2272                 return rc;
2273
2274         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2275                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2276
2277                 rc = machine__for_each_thread(machine, fn, priv);
2278                 if (rc != 0)
2279                         return rc;
2280         }
2281         return rc;
2282 }
2283
2284 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285                                   struct target *target, struct thread_map *threads,
2286                                   perf_event__handler_t process, bool data_mmap,
2287                                   unsigned int proc_map_timeout,
2288                                   unsigned int nr_threads_synthesize)
2289 {
2290         if (target__has_task(target))
2291                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2292         else if (target__has_cpu(target))
2293                 return perf_event__synthesize_threads(tool, process,
2294                                                       machine, data_mmap,
2295                                                       proc_map_timeout,
2296                                                       nr_threads_synthesize);
2297         /* command specified */
2298         return 0;
2299 }
2300
2301 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2302 {
2303         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2304                 return -1;
2305
2306         return machine->current_tid[cpu];
2307 }
2308
2309 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2310                              pid_t tid)
2311 {
2312         struct thread *thread;
2313
2314         if (cpu < 0)
2315                 return -EINVAL;
2316
2317         if (!machine->current_tid) {
2318                 int i;
2319
2320                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2321                 if (!machine->current_tid)
2322                         return -ENOMEM;
2323                 for (i = 0; i < MAX_NR_CPUS; i++)
2324                         machine->current_tid[i] = -1;
2325         }
2326
2327         if (cpu >= MAX_NR_CPUS) {
2328                 pr_err("Requested CPU %d too large. ", cpu);
2329                 pr_err("Consider raising MAX_NR_CPUS\n");
2330                 return -EINVAL;
2331         }
2332
2333         machine->current_tid[cpu] = tid;
2334
2335         thread = machine__findnew_thread(machine, pid, tid);
2336         if (!thread)
2337                 return -ENOMEM;
2338
2339         thread->cpu = cpu;
2340         thread__put(thread);
2341
2342         return 0;
2343 }
2344
2345 int machine__get_kernel_start(struct machine *machine)
2346 {
2347         struct map *map = machine__kernel_map(machine);
2348         int err = 0;
2349
2350         /*
2351          * The only addresses above 2^63 are kernel addresses of a 64-bit
2352          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2353          * all addresses including kernel addresses are less than 2^32.  In
2354          * that case (32-bit system), if the kernel mapping is unknown, all
2355          * addresses will be assumed to be in user space - see
2356          * machine__kernel_ip().
2357          */
2358         machine->kernel_start = 1ULL << 63;
2359         if (map) {
2360                 err = map__load(map);
2361                 if (!err)
2362                         machine->kernel_start = map->start;
2363         }
2364         return err;
2365 }
2366
2367 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2368 {
2369         return dsos__findnew(&machine->dsos, filename);
2370 }
2371
2372 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2373 {
2374         struct machine *machine = vmachine;
2375         struct map *map;
2376         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2377
2378         if (sym == NULL)
2379                 return NULL;
2380
2381         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2382         *addrp = map->unmap_ip(map, sym->start);
2383         return sym->name;
2384 }